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GOODNESS OF FIT FOR LATTICE PROCESSES

JAVIER HIDALGO

Abstract. The paper discusses tests for the correct speci�cation of a model
when data is observed in a d-dimensional lattice, extending previous work
when the data is collected in the real line. As it happens with the latter
type of data, the asymptotic distribution of the tests are functionals of a
Gaussian sheet process, say B (�), � 2 [0; �]d. Because it is not easy to �nd a
time transformation h (�) such that B (h (�)) becomes the standard Brownian
sheet, a consequence is that the critical values are di¢ cult, if at all possible,
to obtain. So, to overcome the problem of its implementation, we propose to
employ a bootstrap approach, showing its validity in our context.

JEL Classi�cation: C21, C23.

1. INTRODUCTION

The paper is concerned with testing the goodness of �t of a parametric family
of models for data collected in a lattice. More speci�cally, we are concerned with
the correct speci�cation (or model selection) of the dynamic structure with time
series and/or spatial stationary processes fx (t)gt2Z de�ned on a d-dimensional
lattice. The key idea of the test is to compare how close is the parametric and
nonparametric �ts of the data to provide support for the null hypothesis. In the
paper, we shall explicitly consider data for which d � 3. The motivation lies in the
fact that the most often type of data available in economics is when d = 2, say with
agricultural or environmental data, or when d = 3. An important example of the
latter is the spatial-temporal data sets, that is data collected in a lattice during a
number of periods. However, we ought to mention that extensions to higher index
lattice processes can be adapted under suitable modi�cations.
All throughout the paper we will assume that the (spatial) process fx (t)gt2Zd

can be represented by the multilateral model

(1.1) x (t)� � =
X
j2Zd

 (j) " (t� j) ;
X
j2Zd

 2 (j) <1  (0) = 1,

for some sequence f" (t)gt2Zd satisfying E (" (t)) = 0 and E (" (0) " (t)) = �2"I (t = 0),
where I (�) denotes the indicator function. Notice that because our model is multi-
lateral, the sequence f" (t)gt2Zd loses its interpretation as the �prediction�error or
that it can be regarded as innovations. Under (1:1), the spectral density function
of fx (t)gt2Zd , f (�), can be factorized as

f (�) =
�2"

(2�)
d
j	(�)j2 , � 2 �d,

where � = (��; �] and with 	(�) =
P
j2Zd  (j) e

�ij��. The function 	(�) sum-
marizes the covariogram structure of fx (t)gt2Zd , which is the main feature to obtain

Date : 10 November 2008.
Key words and phrases. Goodness of �t tests. Spatial linear processes. Spectral domain.

Bootstrap tests.
The paper has bene�ted from the comments of two referees. Of course, any remaining errors

are the author�s sole responsibility.
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2 JAVIER HIDALGO

accurate prediction/extrapolation and/or interpolation (kriging) in the case of spa-
tial data. Notice that the ultimate aim when modelling data is nothing but to
predict the future. Henceforth the notation �j � ��means the inner product of
multi-indices j and � of dimensional d. Also, any element a that belongs to Zd
(or �d), the d-fold Cartesian product of the set Z (or �), will be referred to as a
multi-index of dimension d. Also, we shall write, say, a = (a [1] ; :::; a [d]) with the
square brackets used to denote the components of a.
The aim of the paper is to test whether the data support the null hypothesis

that 	(�) belongs to a speci�c parametric family

(1.2) H = f	� (�) : � 2 �g ,

where � � Rp is a proper compact parameter set. That is, we are interested on
the null hypothesis

(1.3) H0 : 8� 2 [��; �]d and for some �0 2 �, j	(�)j2 = j	�0 (�)j
2 .

The alternative hypothesis H1 is the negation of H0. Alternatively we could have
formulated the null hypothesis in terms of the covariogram f (s)gs2Zd , where
 (s) = Cov (x (t) ; x (t+ s)). That is, the null hypothesis is that the covariogram
follows a particular parametric family, say f (s)gs2Zd = f# (s)gs2Zd , where from
now on we denote # =

�
�0; �2"

�0
. This is the case after observing that for any

stationary spatial lattice process fx (t)gt2Zd , the spectral density f (�) and the
covariogram  (s) are related through the expression

 (s)
# (s)

=

� R
�d
f (�) e�is��d�R

�d
f# (�) e

�is��d�
; s 2 Zd.

One parameterization of (1:1), or (2:12) below, is the ARMA �eld model

P (L) (x (t)� �) = Q (L) " (t) ,

where denoting henceforth for muti-indeces z and j, zj =
Yd

`=1
z [`]

j[`] with the

convention that 00 = 1,

P (z) =
X
j2Zd

� (j) zj ; � (0) = 1; Q (z) =
X
j2Zd

� (j) zj ; � (0) = 1,

are �nite series in Zd. That is, only a �nite number of the � (j)0 s and � (j)
0
s

coe¢ cients are non-zero. For instance the ARMA �eld model given by

k2X
j=�k1

� (j) (x (t� j)� �) =
`2X

j=�`1

� (j) " (t� j) � (0) = � (0) = 1

whose spectral density function is

f (�) =
�2"

(2�)
d

���P`2
j=�`1 � (j) e

ij��
���2���Pk2

j=�k1 � (j) e
ij��
���2 .

Notice that the ARMA �eld model becomes a causal representation if the poly-
nomials Q (L) and P (L) are both unilateral. It is worth mentioning that Whittle
(1954) showed that, almost any given stationary bilateral scheme on a plane lat-
tice, there corresponds a unilateral autoregression having the same spectral scheme
although not necessarily of �nite order as is the case when d = 1. See also Guyon
(1982a).
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Another parametric model of interest is the extension of the classical Bloom�eld
(1973) exponential model, see also Whittle�s (1954) Section 6, to processes in a
lattice. These models are characterized as having a spectral density function

f# (�) = �2" exp

(
�
X
`�0

� (`; �) cos (` � �)
)
,

where ���denotes the lexicographical (dictionary) ordering which is de�ned as

j � k , (9` > 0) (8i < `) (j [i] = k [i] ^ j [`] < k [`]) ,

that is, if one of the terms j [`] < k [`] and all the proceeding ones are equal. For
instance, when d = 2, we would then have that, say, ` � 0 corresponds to the half
plane of Z2, Z2 =

�
(` [1] ; ` [2]) 2 Zd : (` [1] = 0 ^ ` [2] < 0) _ ` [1] < 0

	
. Observe

that if we allowed ` in the last displayed equality to belong to Zd the model would
not be then identi�ed as cos (` � �) = cos (�` � �).
When d = 1, the problem of testing a speci�c dependence structure of the

data is very exhaustive and prominent. Di¤erent tests have been formulated using
either the spectral density or the autocorrelation functions. Regarding the former,
we can cite among others, the pioneer work by Grenander and Rosenblatt (1957)
to test for the null hypothesis of white noise dependence. A classical test using
the autocorrelation function is the Box and Pierce (1970) statistic. For a latter
reference, see Delgado, Hidalgo and Velasco (2005) and references therein. In the
paper, we have chosen to employ frequency domain techniques or to base the test
in terms of the spectral density function, contrary to a �time domain� approach
based on the covariance/variogram structure of the data.
Our tests fall into the category of goodness of �t tests as we do not specify any

particular alternative model or family. The tests are based on a direct comparison
between two estimates of the spectral density function in a way similar to the well
known Hausman-Durbin-Wu�s test. That is, they rely on the comparison of two
estimates: one which is only consistent under the null, whereas the second (less
e¢ cient) estimator is consistent under the maintained hypothesis. Although the
literature when d > 1 is not very vast and exhaustive, some work has already been
done, see for instance Diblasi and Bowman (2001) or Crujeiras et al. (2006). How-
ever, our work di¤ers from theirs in that contrary to Diblasi and Bowman (2001)
we do test for general speci�cations and that contrary to Crujeiras et al. (2006)
our test does not involve any bandwidth or smoothing parameter. In fact, the lat-
ter approach uses the distance between a smooth estimator of the spectral density
function and its parametric estimator under H0. This approach provides asymptot-
ically distribution free tests under suitable conditions on the smoothing parameter,
see for instance Hong (1996) or Paparoditis (2000) among others. However, the lat-
ter approach seems to be a mere artifact when testing for a particular parametric
family and the �nal outcome of all these tests may depend on the arbitrary choice
of the bandwidth parameter(s) for which no relevant theory is available for testing
purposes. That is, there are not rules available on how to choose the bandwidth
parameter with empirical data. In fact, we might face the strange situation that
with the same data set two di¤erent practitioners might conclude di¤erently. The
latter is clearly not very desirable from both theoretical or applied stand point of
view. So, in this context, one of our main motivation is to extend goodness-of-�t
tests examined and described when d = 1 to d � 1, where we do not require the
choice of any bandwidth parameter. For that purpose, we rely on the periodogram
which although it is not a consistent estimator for f (�), its integral is a consistent
estimator of the spectral distribution function as the integral is the most natural
smoothing algorithm.
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The remainder of the paper is organized as follows. In the next section, we
present the test and examine its asymptotic properties when the true value of the
parameter �0 is known, whereas Section 3 extends these results to more realistic
situations where we need to estimate the parameters of the model. Because, the
asymptotic distribution of the test in the latter scenario is not pivotal and model
dependent, Section 4 describes the bootstrap test showing its validity. Section 5
gives the proof of a series of lemmas employed in the proof of our main results in
Section 6.

2. TESTS WHEN THE PARAMETERS ARE KNOWN

This section discusses and examines how we can test the null hypothesis H0

given in (1:3). That is, the hypothesis

H0 : f (�) =
�2"

(2�)
d
j	�0 (�)j

2 8� 2 e�d for some value �0,

when the �true� value of �0 is known, and where herewith e�d denotes [0; �] �
[��; �]d�1, that is � 2 e�d if � [1] 2 [0; �] and � [`] 2 [��; �] for ` = 2; :::; d. Before
we introduce and describe the test, we notice that we can alternatively state the
null hypothesis H0 as

(2.1) H0 :
G�0 (�)

G�0 (�)
=

dY
`=1

� [`]

�
for all � 2 [0; �]d ,

where G� (�) = 2
R �
�� j	� (!)j

�2
f (!) d! with the notation

(2.2)
Z �

�

=

Z �[1]

(�[1]^0)

Z �[2]

�[2]

:::

Z �[d]

�[d]

.

UnderH0, G�0 (�) is the spectral distribution function of the lattice process f" (t)gt2Z
and G�0 (�) = �2". Notice that by symmetry of f (�), it is irrelevant which coor-
dinate we choose to belong only to [0; �] as the choice does not a¤ect the value of
G� (�) and so the value of the test given below.

Given a record fx (t)gnt=1 and denoting henceforth N =
Yd

`=1
n [`], a natural

estimator of G�0 (�) is

eG�;N (�) = 2 1
N

[~n�=�]X
j=�[~n�=�]

Ix (�j)

j	� (�j)j2
,

where, for a generic sequence fv (t)gnt=1, Iv (�) denotes the periodogram

Iv (�) =
1

N

�����
nX
t=1

v (t) e�it��

�����
2

; � 2 e�d
and similarly to the de�nition of

R �
�
, we employ henceforth the notation

(2.3)
[~n�=�]X
j=[~n�=�]

=

[~n[1]�[1]=�]X
j[1]=[~n[1]�[1]=�]+

[~n[2]�[2]=�]X
j[2]=[~n[2]�[2]=�]

:::

[~n[d]�[d]=�]X
j[d]=[~n[d]�[d]=�]

,

where [q]+ = max fjqj ; 1g. Also we have abbreviated [n [`] =2] by ~n [`] for ` = 1; :::; d.
As usual we have excluded the frequency �j = 0 from the sum

P[~n�=�]
j=[~n�=�], so that we

can take Ex (t) = 0 or assume that x (t) has been already centered around its sample
mean. It is often the case that in real applications, in order to make use of the fast
Fourier transform, the periodogram is evaluated at the Fourier frequencies, that is
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�k =
�
�k[1]; :::; �k[d]

�0
, where with k [1] = 0; 1; :::; ~n [1] and k [`] = 0;�1; :::;�~n [`]

for ` = 2; :::; d,

�k[`] =
2�k [`]

n [`]
; ` = 1; :::; d.

Unfortunately, as noted by Guyon (1982b), due to nonnegligible end e¤ects, the
bias of Ix (�j) does not converge to zero fast enough when d > 1, so that it would
have unwanted consequences. One of these is that the Whittle estimator of #, see
Guyon (1982b), does not have the standard asymptotic properties as when d = 1.
Because of that, in the paper, we shall employ the taper periodogram de�ned as

(2.4) ITv (�j) =
��wTv (�j)��2 ,

for a generic sequence fv (t)gnt=1 and

wTv (�j) =
1

(
Pn
t=1 h

2 (t))
1=2

nX
t=1

h (t) v (t) eit��j

is the taper discrete Fourier transform. Tapering is primarily a technique employed
to reduce the bias of the �standard�periodogram Iv (�). Notice that when h (t) = 1,
we have that the taper discrete Fourier transform wTv (�j) becomes the standard
discrete Fourier transform (DFT). It is worth mentioning that to alleviate the bias
problem, alternative procedures to tapering have been proposed. One of these
proposals was due to Guyon (1982b), who replaced the periodogram by

I�v (�k) =
1

(2�)
d

X
h2D

b�v (h) e�ih��k ,
where b�v (h) = 1

N�jhj
P
t(h) v (t) v (t+ h) and D ={h : �n [`] < h [`] < n [`] ; ` =

1; :::; d}. However, Dahlhaus and Künsch (1987) have criticized the use of I�v (�k) on
the grounds that the Whittle estimator, see (3:1) below, loses its minimum distance
interpretability and that the objective function possesses several local maxima. The
latter implies that to obtain the maximum of the Whittle function becomes more
strenuous. Another possibility is the one described by Robinson and Vidal-Sanz
(2006). The latter proposal will be helpful when d � 4. However as we only consider
explicitly the most common scenario d � 3, it su¢ ces for our results to hold true
to employ the taper periodogram ITv (�j).
The bene�ts of tapering can be seen following the properties of the cosine-bell

(or Hanning) taper, which is de�ned as

(2.5) h (t) =
1

2d

dY
`=1

h` (t [`]) ; h` (t [`]) =

�
1� cos

�
2�t [`]

n [`]

��
.

Indeed, denoting the taper Dirichlet kernel by DT
` (� [`]) =

Pn[`]
t[`]=1 h` (t [`]) e

it[`]�[`],
we have that

(2.6) sup
n[`];�[`]>0

��DT
` (� [`])

�� = O
�
min

n
n [`] ; n [`]

�2 j� [`]j�3
o�
.

The immediate consequence of property (2:6) is that the bias of the taper peri-
odogram is of smaller order of magnitude than the one of the standard periodogram.
Observe that

(2.7) DT
`

�
�j[`]

�
=

1

61=2
�
�D`

�
�j[`]�1

�
+ 2D`

�
�j[`]

�
�D`

�
�j[`]+1

�	
,
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where D` (� [`]) =
Pn[`]
t[`]=1 e

it[`]�[`] is the Dirichlet kernel. It is worth observing that
the standard DFT and the cosine-bell taper DFT are related by the equality

(2.8) wTx (�j) =
1

6d=2

dY
`=1

�
�wx

�
�j[`]�1

�
+ 2wx

�
�j[`]

�
� wx

�
�j[`]+1

��
.

In the paper we shall explicitly consider the cosine-bell, although the same results
follow employing other taper functions such as Parzen or Kolmogorov�s tapers.
The formulation of H0 given in (2:1) suggests to use the Bartlett�s Tp � process

as a basis for testing H0. The Tp � process is de�ned as

(2.9) ��;N (�) = 2
�1=2N1=2

"
G�;N (�)

G�;N (�)
�

dY
`=1

�
� [`]

�

�#
, � 2 [0; �]d ,

where

(2.10) G�;N (�) = 2
1

N

[~n�=�]X
j=�[~n�=�]

ITx (�j)

j	� (�j)j2
.

It is worth mentioning that similarly we might have employed the Up � process as
Grenander and Rosenblatt (1957) did. The latter is de�ned as

U�;N (�) = 2
1

N

[~n�=�]X
j=�[~n�=�]

n
ITx (�j)� �2" j	� (�j)j

2
o
.

One motivation to employ ��;N (�) instead of U�;N (�) is that the latter statistic
is not invariant to the variance of f" (t)gt2Zd as is the former statistic ��;N (�)
in (2:9). Notice that because we have excluded the frequency �j = 0 from the
de�nition of

P[~n�=�]
j=�[~n�=�] and ��;N (�) is scale invariant, it is easy to show that a

linear transformation of the data does not change the value of ��;N and therefore
we can assume, without loss of generality, that Ex (t) = 0 and Var (" (t)) = 1.
One rational of the statistic ��;N (�) follows from the observation (see Lemma 4

in Section 5) that under H0, we have that

max
�~n�j�~n

E

����� ITx (�j)

j	�0 (�j)j
2 � I

T
" (�j)

����� = o (1) ,

where �a � b� means that a [`] � b [`] for all ` = 1; :::; d. Also, observe that
0 < j [1] � ~n [1] whereas �~n [`] < j [`] � ~n [`] for ` = 2; :::; d.
Thus, from the previous observation, we can expect that ��0;N will be asymp-

totically equivalent to Bartlett�s Up � process for f" (t)gt2Zd , i.e.

(2.11) �0N (�) = 2
�1=2N1=2

"
G0N (�)

G0N (�)
�

dY
`=1

�
� [`]

�

�#
,

with G0N (�) = 2
1
N

P[~n�=�]
j=�[~n�=�] I

T
" (�j) ; � 2 [0; �]

d. Observe that the Up� process
�0N and the Tp � process ��0;N are identical when fx (t)gt2Zd is a �white noise�
lattice process.
Let us introduce the following regularity conditions.

Condition C1: (a) f" (t)gt2Zd in (1:1) is a zero mean independent identically
distributed sequence of random variables with variance �2" = 1 and �nite
4th moments with �" denoting the fourth cumulant of f" (t)gt2Zd .
(b) The multilateralMoving Average representation of fx (t)gt2Zd in (1:1)

can be written (or it has a representation) as a multilateral Autocorrelation
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model

(2.12)
X
j2Zd

� (j)x (t� j) = " (t) � (0) = 1,

where � (j) is the coe¢ cient of zj in the Fourier expansion of L�1 (z), where

L (z) = L (z [1] ; :::; z [d]) =
X
j2Zd

 (j) zj .

Condition C2: N =
Yd

`=1
n [`], where n [`] � ~n for ` = 1; :::; d, and �a � b�

means that C�1 � a=b � C for some �nite positive constant C.
Condition C3: fh (t)gnt=1 is the cosine-bell taper function in (2:5).

We now comment on Conditions C1 to C3. Part (a) of Condition C1 seems to
be a minimal condition for Proposition 1 below to hold true. Observe that due to
the quadratic nature of �0N , for the latter to have �nite second moments, we require
�nite fourth moments of f" (t)gt2Zd . Also we have assumed that the true value of �2"
is 1. The latter follows from our comments made after the de�nition of G�;N (�) in
(2:10). However, we shall emphasize that we are not saying or suggesting that the
true value of �2" is known, only that it is equal to 1. Su¢ cient regularity conditions
required for the validity of the expansion in (2:12) is 	(z) be no zero for any z [`],
` = 1; :::d, which simultaneously satisfy jz [1]j = 1; :::; jz [d]j = 1 at least when the
Moving Average representation is of �nite order. The latter implies that f (�) is a
positive function.
Looking at the proof of Proposition 1 below, and then that of Theorem 1, it

appears that we do not need to assume �nite fourth moments of the sequence
f" (t)gt2Z. The reason is similar to the work of Anderson and Walker (1964).
However, as in the more realistic situation when we need to estimate the unknown
parameters of the model, we require �nite fourth moments to obtain the asymptotic
properties of the estimates, we have just preferred to leave the condition as it stands.
Condition C2 can be generalized to the case where the rate of convergence to

zero of n�1 [`] di¤ers for di¤erent ` = 1; :::; d. However, for notational simplicity we
prefer to leave it as it stands. On the other hand, in C3 the taper function employed
for the asymptotics to follow can be more general, as those given by Kolmogorov�s
or Parzen�s tapers. In fact, in situations where d > 3, it might be needed for the
results of the paper to follow. However, as the most important cases in empirical
applications are covered in the paper, we shall leave the cosine-bell taper explicitly
as the taper function to be employed.
The empirical processes �0N (�) and ��0;N (�) given in (2:11) and (2:9) respec-

tively are random elements in D [0; �]d. The functional space D [0; �]d is endowed
with the Skorohod�s metric (see Billingsley, 1968 or Bickel and Wichura, 1971) and
convergence in distribution in the corresponding topology is denoted by �)�.

Proposition 1. Under C1� C3, we have that

(2.13) �0N (�)) eB (�) = B��
�

�
�

dY
`=1

�
� [`]

�

�
B (1) � 2 [0; �]d ,

where
n
B (u) : u 2 [0; 1]d

o
is the standard Brownian sheet.

Remark 1. Recall that the covariance structure of the standard Brownian sheet is

Cov (B (u) ;B (v)) =
dY
`=1

(u [`] ^ v [`]) , for u; v 2 [0; 1]d .
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Proposition 1 extends Grenander and Rosenblatt�s (1957) results when d = 1,
although under stronger conditions than the ones we have assumed in this paper.
In particular, we do not need to assume eighth bounded moments.
To establish the asymptotic equivalence between ��0;N and �0N , we introduce

the following smoothness condition.

Condition C.4: j	(�)j2 =
���Pj2Zd  (j) e

�ij��
���2 is a positive and continu-

ously di¤erentiable function on [��; �]d.
Our main result of this section is the following theorem.

Theorem 1. Consider (1:1) and assume C1� C4. Then, under H0,

��0;N (�)) eB (�) � 2 [0; �]d .

Proof. The proof is an immediate consequence of Proposition 1 and Lemma 4 after
we observe that Lemma 4, with � (�) = 1 there, implies that

N1=2 sup
�2[0;�]d

��G�0;N (�)�G0N (�)�� = op (1)

so that N1=2 sup�2[0;�]d
���G�0;N

(�)

G�0;N
(�) �

G0
N (�)

G0
N (�)

��� = op (1) by standard algebra. �

Remark 2. An immediate conclusion from Theorem 1 and Proposition 1 is that

(2.14) G�0;N (�)� �2" = Op

�
N�1=2

�
.

We now comment on the result of Theorem 1. The theorem indicates that ��0;N
is asymptotically pivotal. One consequence is that critical regions of tests based on
a continuous functional � : D [0; �]d 7! R+ can be easily obtained. Di¤erent func-
tionals � lead to tests with di¤erent power properties. Among them are omnibus,
directional and/or Portmanteau-type tests. For example, classical functionals which
lead to omnibus tests are the Kolmogorov-Smirnov (� (g) = sup�2[0;�]d jg (�)j) and
the Cramér-von Mises (� (g) = ��d

R �
�� g (�)

2
d�).

In fact we have the following corollary.

Corollary 1. Under H0 and C1�C4, we have that for any continuous functional
� (�), � (��0;N )

d! �
� eB�.

Proof. The proof follows from Theorem 1 and the continuous mapping theorem. �

Unfortunately, the results of Theorem 1 and Corollary 1 are only valid when
the �true� value of �0 is known, which in practical situations is unrealistic. The
question is then how are our previous results a¤ected when we estimate �0? This
is the topic of the next section.

3. TESTS WHEN THE PARAMETERS ARE UNKNOWN

This section extends the results of Section 2 to the more realistic situation where
we need to estimate the parameters �0 to implement the test. That is, we replace
�0 in ��;N (�) by an estimator, for example b� given in (3:1) below. In this scenario,
drawing the terminology from Durbin (1973), we say that our null hypothesis H0

becomes a composite hypothesis.
A popular estimator of #00 =

�
�00; �

2
"

�
is the Whittle (1954) estimator de�ned asb#c = arg min

#2��R+
Qc (#) ,
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where Qc (#) =
R �
��

n
log f# (�) +

ITx (�)

(2�)df#(�)

o
d� or in its discrete version

(3.1) b# = arg min
#2��R+

QN (#) ,

where

(3.2) QN (#) =
1

N

~nX
j=�~n

(
log f# (�j) +

ITx (�j)

(2�)
d
f# (�j)

)

with f# (�j) = �2" j	� (�j)j = (2�)
d and � � Rp is a compact set. Recall our notation

given in (2:3) and that the true value of the variance of " (t) is unknown.
In this scenario, the Tp � process ��0;N (�) becomes

(3.3) �b�;N (�) = 2�1=2N1=2

"
Gb�;N (�)
Gb�;N (�) �

dY
`=1

�
� [`]

�

�#
, � 2 [0; �]d ,

where G�;N (�) is given in (2:10).
It is worth noticing that, contrary to the standard causal models, as Whittle

(1954) �rst noticed, the estimator of #0 obtained by

�� = argmin
�2�

2

N

~nX
j=�~n

ITx (�j)

j	� (�j)j2
, ��2" =

2

N

~nX
j=�~n

ITx (�j)��	�� (�j)��2
is inconsistent. The main reason for the lack of consistency of �� is that when the
model is not causal

R �
�� '� (�) d� 6= 0, where from now on we write

(3.4) '� (�) =
@

@�
log j	� (�)j2

and �# (�) =
@
@# log f# (�) =

�
'0� (�) ; �

�2
"

�0
.

Let�s introduce the following regularity conditions.

Condition C5: �0 is an interior point of the compact parameter set � � Rp.
Condition C6: j	� (�)j is a positive and twice continuously di¤erentiable
function in � on [��; �]d, and continuously di¤erentiable function on [��; �]d
for all � 2 �.

Condition C7: If �1 6= �2, then 	�1 (�) 6= 	�2 (�) in a set � � [��; �]
d with

positive Lebesgue measure.

The conditions imposed on � and the model (1:1) or (2:12) are standard so that
we omit any comment on them. Let
(3.5)

q#;N =
1

N

~nX
j=�~n

�# (�j)

(
ITx (�j)

�2" j	� (�j)j
2 � 1

)
; Q#;N =

1

N

~nX
j=�~n

�# (�j)�
0
# (�j) ,

and also, recalling our notation in (2:2),

�# = (2�)
�d
Z �

��
�# (�) d� and �# = (2�)

�d
Z �

��
�# (�)�

0
# (�) d�.

Notice that we write explicitly �2" as it is a parameter in itself.

Condition C8: �#0 is a continuously positive de�nite matrix.

Theorem 2. Under C1-C3 and C5� C8, we have that

N1=2
�b#� #0� d! N

�
0; 2��1#0 V#0�

�1
#0

�
,

where V#0 = 2�#0 + �" (35=18)
d
�#0�

0
#0
.
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Proof. First, by de�nition, we know thatb#� #0 = �Q�1e#;Nq#0;N ,
where e# is an intermediate point between #0 and b#, q#;N is given in (3:5) and Q#;N
is given by

Q#;N +
1

N

~nX
j=�~n

�
2�# (�j)�

0
# (�j)�

@2f# (�j)

@#@#0

�(
ITx (�j)

�2" j	� (�j)j
2 � 1

)
= Q#;N + op (1)

by Lemma 5 and that b# � #0 = op (1) by Lemma 6. On the other hand, by
Brillinger (1981, p.15) and standard arguments, since e#�#0 = op (1), we have that
Qe#;N � �#0 = op (1). Next, by Lemma 4 with � (�) = �#0 (�j) there,

q#0;N =
1

N

~nX
j=�~n

�#0 (�j)
�
IT" (�j)� 1

	
+ op (1) .

From here the proof proceeds as in Robinson and Vidal-Sanz (2006). �

Looking at the proof of Theorem 2, and denoting in what follows

e'� (�) = '� (�)�
2

(2�)
d

Z �

��
'� (�) d�, e�# (�) = �e'0� (�) ; 0�0

e'�;N (�j) = '� (�j)�
2

N

~nX
j=�~n

'� (�j) , e�#;N (�) = �e'0�;N (�) ; 0�0
with '� (�) given in (3:4), standard algebra establishes that the Whittle estimatorb# in (3:1) satis�es the asymptotic linearization
b#� #0 = �Q�1#0;N

8<:
Z �

��
e��0 (�)��0;N (d�) + Z �

��
�#0 (�) d�

1

N

~nX
j=�~n

 
ITx (�j)

(2�)
d
f#0 (�j)

� 1
!9=;

+ op

�
N�1=2

�
.

(3.6)

Now using (3:6) and de�ning

�1 (�) = eB (�)� 1

(2�)
d

Z �

��
e'0�0 ���� d��

! e��1 (�0)Z �

��
e'�0;N ���� eB �d��� ,

where e�� = 1
(2�)d

R �
�� e'� ���� e'0� ���� d��, we obtain the following result.

Theorem 3. Under H0 and assuming C1 � C3 and C5 � C8 , uniformly in � 2 [0 ; �],

(a) �b�;N (�) = �0N (�)�

0@ 1

N

[~n�=�]X
j=�[~n�=�]

e'0�0;N (�j)
1A e��1�0;N 1

N

~nX
j=�~n

e'0�0;N (�j) IT" (�j)
+op (1) ,

and e��;N = 1
N

P~n
j=�~n e'�;N (�j) e'0�;N (�j).

(b) �b�;N ) �1.
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Corollary 2. Let b�N := �
�
�b�;N

�
, where � (�) be a continuous functional � :

D [0; �]
d ! R. Under H0 and the same conditions of Theorem 3, we have that

b�N d! � (�1) .

Proof. The proof follows from Theorem 3 and the continuous mapping theorem. �

The main conclusion that we draw from Theorem 3 is that the Tp-process �b�;N
is no longer asymptotically pivotal, so that the immediate consequence is that tests
based on �, for example the Kolmogorov or Cramér-von Mises�s statistics, are not
useful for practical purposes as its asymptotic critical values are di¢ cult, if at all
possible, to obtain. To compute the critical values of the asymptotic distribution ofb�N , several approaches have been described and examined. A �rst approach makes
use of a bandwidth parameter that must behave in some required sense. This pro-
cedure makes the asymptotic distribution of the statistics b�N pivotal, so that its
critical values are readily available. Among them, the popular Portmanteau test.
Box and Pierce (1970) showed that the partial sum of the residuals squared auto-
correlations of a stationary ARMA process is approximately chi-squared distributed
assuming that the number of autocorrelations considered diverges to in�nity with
the sample size at an appropriate rate. Alternatively we could employ a frequency
domain approach as in Hong (1996) or Paparoditis (2000), who compared a non-
parametric estimator of f (�) with the parametric one. The �rst shortcoming of the
latter method is that the power of the test is smaller than the one proposed in the
paper, that is if we denote by bN the bandwidth parameter, their test has a local
power of order

�
NbdN

��1=2
whereas ours is N�1=2. A second potential drawback

is that the choice of bN seems an artifact when testing for a particular parametric
family and the �nal outcome of all these tests may depend on the arbitrary choice
of the bandwidth parameter for which no relevant theory is available. That is, there
are not rules available on how to choose bN for the purpose of testing.
A second alternative is in the spirit of Durbin, Knott and Taylor (1976) for

the classical empirical process, and it was the route followed by Anderson (1997),
who proposed to approximate the critical value of the Cramér-von Mises test for
a stationary AR model. The method considers a truncated version of the spec-
tral representation of �b�;N with estimated orthogonal components. The number
of estimated orthogonal components must suitably increase with the sample size.
However, its implementation is quite cumbersome even for the rather simpler case
when d = 1. See for instance Anderson (1997) for details.
So, in view of the preceding arguments, we consider a third approach based

on bootstrap algorithms. This is the route employed, among others, by Chen
and Romano (2000) or Hainz and Dahlhaus (2000) for short-range models using
the Up � process and by Hidalgo and Kreiss (2006), who allow also long-range
dependence using the Tp � process. Of course all those articles were for d = 1.
Also, we will see that bootstraps employed when d = 1 are not valid in our context.

4. BOOTSTRAP TEST FOR THE TEST

Since Efron (1979), bootstrap algorithms have become a common tool in applied
work and thus considerable e¤ort has been devoted to its development. The primary
motivation for this e¤ort is that they have proved to be a very useful statistical tool.
We can cite two main examples/reasons. First, bootstrap methods are capable of
approximating the �nite sample distribution of statistics better than those based
on their asymptotic counterparts. And secondly, and perhaps the most important,
they allow computing valid asymptotic quantiles of the limiting distribution in
situations when the practitioner is unable to compute its quantiles.
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In the present paper we face the latter situation. Following our comments at
the end of the previous section, the aim of this section is to propose a bootstrap

procedure for �b�;N given in (3:3) and thus for b�N = �
�
�b�;N

�
. The resampling

method must be such that the bootstrap statistic, say b��N , is such that b��N !d�

� (�1) in probability under H0, where �!d��denotes

Pr
hb��N � zj x

�

i
p! G (z) ,

at each continuity point z of G (z) = Pr (� (�1) � z). Moreover, under local alter-
natives

(4.1) Ha : f# (�)

�
1 +

1

N1=2
g (�)

�
for some # 2 �� R+

where g (�) is some symmetric, non-constant continuous function in [0; �]d such that
1

N1=2 g (�) > �1 for all N � 1, b��N must also converge, in bootstrap distribution
to � (�1), whereas under the alternative hypothesis, we only require that b��N is
bounded in probability to have good power properties.

Remark 3. We should point out that Ha could have been written as

Ha : f# (�) +
1

N1=2
eg (�) for some # 2 �� R+

where eg (�) is a positive integrable function. However, since we are concerned with
the relative error of ITx (�j) compared to f# (�j)

�
j	� (�j)j2

�
, we found notationally

more convenient to write Ha as given in (4:1).

When d = 1, Hidalgo and Kreiss (2006) examined a bootstrap algorithm based on
an approach in Hidalgo (2003) showing its validity and consistency. This bootstrap
consists on the following 3 STEPS.

STEP 1: Let ex (t) = (x (t)� x) =b�x, where x = N�1Pn
t=1 x (t) and b�2x =

N�1PN
t=1 (x (t)� x)

2, and a random sample of size N with replacement
from the empirical distribution of ex (t), denoted by x

�
� = fx� (t)gnt=1.

STEP 2: For j = 1; :::; ~n, compute the bootstrap periodogrameITx� (�j) = fb# (�j) �ITx� (�j) ,
where fb# (�j) = Gb�;N (�)

(2�)d

��	b� (�j)��2 and �ITx� (�j) as de�ned in (2:4) and then
the bootstrap analogue of b# by

(4.2) �#
�
= arg min

#2��R+
eQ�N (#) ,

where, with f# (�j) = �2" j	� (�j)j = (2�)
d,

eQ�N (#)= 1N
~nX

j=�~n

(
log f# (�j) +

eITx� (�j)
(2�)

d
f# (�j)

)
.

STEP 3: Compute the bootstrap Tp � process

����;N (�) = 2
�1=2N1=2

24 eG����;N (�)
G���;N (�)

�
dY
`=1

�
� [`]

�

�35 , � 2 [0; �]d ,
where eG��;N (�) = 2 1N P[~n�=�]

j=�[~n�=�]
eITx� (�j) = j	� (�j)j2.
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Other procedures are possible as that based on that of Franke and Härdle (1992),
where the bootstrap periodogram eITx� (�j) = ��	b� (�j)��2 �ITx� (�j) is replaced by

�ITx� (�j) = fb# (�j)�j ,
where ��~n; :::; �~n are independent exponential random variables. However, unlike
in the case of d = 1, the previous bootstrap algorithm will not be valid. The reason
is because the bootstrap does not correctly �estimate� the fourth cumulant �".
More speci�cally the asymptotic distribution of the bootstrap estimator �#

�
in (4:2)

will not have the same asymptotic variance as that of b# in (3:1).
So to overcome this problem, following Hidalgo (2007), see also Hidalgo and

Lazarova (2007), we propose in the paper an alternative algorithm, as described in
the next 4 STEPS.

STEP 1: We �rst obtain the residuals

b" (t) = (2�)d=2 1

N1=2

~nX
j=�~n

e�it��j	�1b� (�j)wx (�j) ,

for t = 1; :::; n. From here as usual, we obtain a random sample of size
N with replacement from the empirical distribution function of fb" (t)gnt=1.
Let�s denote the bootstrap sample by f"� (t)gnt=1.

Remark 4. (a) Notice that because b�N = �
�
�b�;N

�
is asymptotically independent

of the mean and variance of f" (t)gt2Zd , we do not need to standardize b" (t) to obtain
the bootstrap sample. (b) The motivation to compute the residuals as in STEP 1
comes from the observation that, for t = 1; :::; n,

" (t) ' (2�)d=2 1

N1=2

~nX
j=�~n

e�it��j	�1�0 (�j)wx (�j) .

STEP 2: For t = 1; :::; n, compute the bootstrap observations

(4.3) x� (t) = (2�)
d=2 1

N1=2

~nX
j=�~n

e�it��j	b� (�j)w"� (�j) ,
where w"� (�j) is the standard DFT of f"� (t)gnt=1, and the taper peri-
odogram ITx� (�j) as de�ned in (2:4).

STEP 3: The bootstrap analogue of b# is given by
(4.4) b#� = arg min

#2��R+
Q�N (#) ,

where

(4.5) Q�N (#) =
1

N

~nX
j=�~n

(
log f# (�j) +

ITx� (�j)

(2�)
d
f# (�j)

)
.

STEP 4: Compute the bootstrap Tp � process

(4.6) ��b��;N (�) = 2�1=2N1=2

"
G�b��;N (�)
G�b��;N (�) �

dY
`=1

�
� [`]

�

�#
, � 2 [0; �]d ,

with G��;N (�) = 2N
�1P[~n�=�]

j=�[~n�=�] j	� (�j)j
�2
ITx� (�j).

Theorem 4. Under C1� C3 and C5� C8, we have that

N1=2
�b#� � b#� d�! N

�
0; 2��1#0 V#0�

�1
#0

�
,

where d�! denotes convergence in bootstrap distribution.
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As with b# in Section 3, b#� in (4:4) satis�es the asymptotic linearization
b#� � b# = �Q�1b#;N

8<:
Z �

��
e�b� (�)�b�;N (d�) + Z �

��
�b# (�) d� 1N

~nX
j=�~n

 
ITx� (�j)

(2�)
d
fb# (�j) � 1

!9=;
+ op�

�
N�1=2

�
.

(4.7)

Denote G�0N (�) = 2
1
N

P[~n�=�]
j=�[~n�=�] I

T
"� (�j) and let

(4.8) ��0N (�) = 2
�1=2N1=2

"
G�0N (�)

G�0N (�)
�

dY
`=1

�
� [`]

�

�#
, � 2 [0; �]d .

Theorem 5. Under H0 and assuming C :1 � C :3 and C5 � C8 , uniformly in
� 2 [0 ; �],

(a) ��b��;N (�) = ��0N (�)�

0@ 1

N

[~n�=�]X
j=�[~n�=�]

e'0b�;N (�j)
1A e��1b�;N 1

N

~nX
j=�~n

e'0b�;N (�j) IT"� (�j)
+op� (1) .

(b) ��b��;N d�) �1.

A conclusion from Theorem 5 is the following corollary.

Corollary 3. Under the maintained hypothesis and assuming C1 � C3 and C5 � C8 ,
we have that for any continuous functional �,

b��N := �
�
��b��;N

�
d�! � (�1) .

Proof. The proof follows from Theorem 5 and the continuous mapping theorem. �
Thus, Theorem 5 and Corollary 3 indicate that the bootstrap statistic b��N is

consistent. That is, let cfN;(1��) and c
a
(1��) be such that

Pr
n
jb�N j > cfn;(1��)

o
= �; lim

n!1
Pr
n
jb�N j > ca(1��)

o
= �,

respectively. So, Theorems 3 and 5 indicate that cfN;(1��) ! ca(1��) and c
�
(1��)

p!

ca(1��), respectively, where c
�
(1��) is de�ned as Pr

n
jb��N j > c�(1��)

o
= �.

Typically, the �nite sample distribution of b��N is not available, although the
critical values c�(1��) can be approximated, as accurately as desired, by standard

Monte-Carlo simulation. To that end, consider the bootstrap samples
nb"�` (t)on

t=1

for ` = 1; :::; B, and compute �`b��;N (�) as in (4:5) for each `. Then, c�(1��) is approx-
imated by the value c�B(1��) that satis�es B

�1PB
`=1 I

�
�
�
�`b��;N

�
> c�B(1��)

�
= �.

Next we study the behaviour of the bootstrap tests under the alternative hy-
pothesis.

Corollary 4. Assuming C.1-C.8, under H1 ,b��N d�!� (e�1) in probability,
where e�1 is a centered Gaussian process with covariance structure as �1 but with
�0 replaced by �1 =plimb�.
Proof. The proof proceeds exactly as that of Theorem 5 and then Corollary 3 but
instead of writing b� � �0 = op (1) we write b� � �1 = op (1) and �1 instead of �0. �
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5. LEMMAS

First, we introduce some notation. We denote the conjugate of a complex num-
ber a by a. Also, for a generic function � (�), we abbreviate � (�j) by �j =�
�j[1]; :::; �j[d]

�0
and C will denote a generic positive and �nite constant.

For the next two lemmas, we shall assume that f� (t)gt2Zd and f� (t)gt2Zd are two
stationary spatial processes with a representation as that in (1:1) and whose respec-
tive errors satisfy C1. Also f�� (�) = (2�)

�dP
j2Zd E (� (t) � (t+ j)) exp f�ij � �g,

the cross-spectral density function, is a twice continuously di¤erentiable function
in � 2 �d. Denote eZd = fj : (�~n � j � ~n) ^ (0 < j [1])g.

Lemma 1. Consider j 2 eZd. Then,
(a) E

�
wT�;jw

T
�;j

�
� f��;j = O

�
~n�2

�
; (b) E

�
wT�;jw

T
�;j

�
= O

 
dY
`=1

j [`]
�3
!
.

Proof. We begin with part (a). By de�nition, the left side of the equality in (a) isZ
�d~n

(f�� (�)� f�� (�j))
dY
`=1

KT
�
� [`]� �j[`]

�
d�,

suppressing any reference to ` in KT
` and/or D

T
` for notational simplicity.

Now, because f�� (�) is twice continuously di¤erentiable and
R
�
�KT (�) d� = 0,

we have that the last displayed expression is bounded in modulus by

C

Z
�d

dX
`=1

dX
p=1

��� [`]� �j[`]�� ��� [p]� �j[p]�� dY
`=1

KT
�
� [`]� �j[`]

�
d�

� C

Z
�d

dX
`=1

��� [`]� �j[`]��2 dY
`=1

KT
�
� [`]� �j[`]

�
d�

by the Cauchy-Schwarz inequality. Now, using (2:6), that the Fejer�s kernel inte-
grates 1 and that

Pn[`]
t[`]=1 h` (t [`])

2 � C~n, we obtain that the right side of the last
displayed inequality is, by C2 and standard algebra, bounded by

C

N

Z
�d

dX
`=1

��� [`]� �j[`]��2 dY
`=1

min
n
~n2; ~n�4

��� [`]� �j[`]���6o d� = O
�
~n�2

�
.

Next we show part (b). Again by de�nition and that jf�� (�)j < C, we obtain

that
���E�wT�;jwT�;j���� is bounded by
C

Z
�d
jf�� (�)j

dY
`=1

n�1
��DT

�
� [`]� �j[`]

�
DT

�
� [`] + �j[`]

��� d� � C

dY
`=1

j [`]
�3

by standard arguments after using (2:6). �

Lemma 2. Let k � j 2 eZd and cjk = min�Yd

`=1
jj [`]� k [`]j�3+ ; log ~n~n

�
. Then,

(a) E
�
wT�;jw

T
�;k

�
= f��;jI (jj [`]� k [`]j = 2; ` = 1; :::; d) +O (cjk)

(b) E
�
wT�;jw

T
�;k

�
= O (cjk) .

Proof. We shall handle part (a) only, being part (b) identical. By de�nition,
(5.1)

E
�
wT�;jw

T
�;k

�
= 6�d

Z
�d
f�� (�)

dY
`=1

n [`]
�1
DT

�
� [`]� �j[`]

�
DT

�
�k[`] � � [`]

�
d�.
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Because jf�� (�)j < C, the modulus of the right side of (5:1) is bounded by

C

dY
`=1

~n�1

(Z �(j[`]+k[`])=2

��
+

Z �

�(j[`]+k[`])=2

)��DT
�
� [`]� �j[`]

��� ��DT
�
�k[`] � � [`]

��� d� [`]
using C2. Now using (2:6) and because

R �
0

��DT (�)
�� d� < C, the contribution due

to a factor of the type
R �(j[`]+k[`])=2
�� when �k[`] < �j[`] is bounded by

C jj [`]� k [`]j�3+
Z �(j[`]+k[`])=2

��

��DT
�
�k[`] � � [`]

��� d� [`] = O
�
jj [`]� k [`]j�3+

�
,

whereas if �j[`] < �k[`] by C jj [`]� k [`]j�3+
R �(j[`]+k[`])=2
��

��DT
�
� [`]� �j[`]

��� d� [`] =
O
�
jj [`]� k [`]j�3+

�
. Recall that k � j so we have for some ` = 1; ::; d � 1, �j[`] <

�k[`]. Finally, proceeding similarly the contribution due to a factor of the typeR �
�(j[`]+k[`])=2

is O
�
jj [`]� k [`]j�3+

�
. Now conclude by Hölder�s inequality and that���E�wT�;jwT�;k���� = O

�Yd

`=1
jj [`]� k [`]j�3+

�
. On the other hand, because when

jj [`]� k [`]j 6= 2 for some ` = 1; :::; d,

(5.2)
Z
�d

dY
`=1

DT
�
� [`]� �j[`]

�
DT

�
�k[`] � � [`]

�
d� = 0,

we have that in this case, except multiplicative constants, the left side of (5:1) is

N�1
Z
�d
(f�� (�)� f�� (�j))

dY
`=1

D
�
� [`]� �j[`]

�
D
�
�k[`] � � [`]

�
d�,

which, by the mean value theorem, is bounded in absolute value by

N�1
Z
�d

dX
`=1

��� [`]� �j[`]�� dY
`=1

��D �� [`]� �j[`]��� ��D ��k[`] � � [`]��� d� = O

�
log ~n

~n

�
,

because j�D (�)j < C,
R �
0
jD (�)j d� = O (log ~n) and the Cauchy-Schwarz inequality

imply that
R
�

��D ��� �j[`]��� ��D ��k[`] � ���� d� = O (~n). Now, when for all ` =
1; :::; d, jj [`]� k [`]j = 2, because the left side of (5:2) is 1, we have that proceeding
as above, the left side of (5:1) is f��;j+O

�
~n�1 log ~n

�
. This concludes the proof. �

In what follows, we shall abbreviate wTx (�) =	(�) and w
T
" (�) by u (�) and v (�)

respectively for all � 2 �d.

Lemma 3. Let � (�) be a continuously di¤erentiable function in �d. Under C1-C4,
we have that for all r � s 2 eZd
(5.3) E

������
sX
j=r

�jvj (uj � vj)

������
2

= O

 
log ~n

~n

dY
`=1

js [`]� r [`]j+

!
.

Proof. Denote %j = uj � vj . By standard arguments, the left side of (5:3) is
sX
j=r

�2jE
�
vjvj%j%j

	
+

sX
j 6=k=r

�j�kE
�
vjvk%j%k

	
=

sX
j=r

�2j faj1 + aj2g+
sX

j 6=k=r
�j�k fbjk;1 + bjk;2g ,



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

GOODNESS OF FIT FOR LATTICE DATA 17

where

aj1 = E (vjvj)E
�
%j%j

�
+
��E �vj%j���2 + ��E �vj%j���2

aj2 = cum (vj ; vj ; uj ; uj) + cum (vj ; vj ; vj ; vj)

�cum (vj ; vj ; uj ; vj)� cum (vj ; vj ; uj ; vj)
bjk;1 = E (vjvk)E

�
%j%k

�
+ E

�
vj%j

�
E (vk%k) + E (vj%k)E

�
vk%j

�
bjk;2 = cum (vj ; vk; uj ; uk) + cum (vj ; vk; vj ; vk)

�cum (vj ; vk; uj ; vk)� cum (vj ; vk; uj ; vk) .
After observing that E (vjuj) = 1+O

�
~n�2

�
and E

�
vj%j

�
= E (vjuj)�E (vjvj),

we have that Lemma 1 implies that aj1 = O
�
~n�2

�
, whereas Lemmas 1 and 2 imply

that bjk;1 = O
�
c2jk + ~n

�1 log nI (jj [`]� k [`]j = 2; ` = 1; :::; d)
�
, with cjk as de�ned

there. From here it is immediate to conclude that the contribution due to aj1 and
bjk;1 into the left of (5:3) is its right side.
Finally we examine aj2 and bjk;2. Using formulae in Brillinger [(1981), (2:6:3),

page 26, and (2:10:3), page 39], we deduce after standard algebra that

bjk;2 =
�"
N2

Z
�d

Z
�d

�
	(�)

	j
� 1
��

	(�)

	k
� 1
�
DT (�� �j)DT (�+ �k)

�DT (�j � �k � �� �) d�d�.

By the Cauchy-Schwarz inequality, we have that jbjk;2j2 is bounded by CN�1 timesZ
�d

�
	(�)

	j
� 1
�2

KT (�� �j) d�
Z
�d

�
	(�)

	k
� 1
�2

KT (�+ �k)K
T (�j � �k � �� �) d�d�.

Proceeding as in Lemma 2 and by C4, we then obtain that bjk;2 = O
�
~n�2N�1=2�.

Likewise aj2 = O
�
~n�2N�1=2�. From here, the conclusion of the lemma easily

follows by observing that
Yd

`=1
js [`]� r [`]j+ � N . �

Lemma 4. Let � (�) be a function as in Lemma 3. Then, under C1 � C4 ,

E sup
�2[0;�]d

������
[~n�=�]X

j=�[~n�=�]

�j

(
ITx;j

j	j j2
� IT";j

)������ = o
�
N1=2

�
.

Proof. We shall consider the proof in the positive quadrant
P[~n�=�]
j=1 , being the proof

for the remaining 2d�1 � 1 quadrants similarly handled. By the Cauchy-Schwarz
and the triangle inequalities, it su¢ ces to show that

(5.4) E sup
s

������
sX
j=1

�j

(
ITx;j

j	j j2
� IT";j

)������ � E sups
sX
j=1

���j�� ��%j��2 + 2E sup
s

������
sX
j=1

�jvj%j

������
is o

�
N1=2

�
, where we abbreviate �sups=1;:::;~n�by �sups�and %j = uj � vj .

The �rst term on the right of (5:4) is bounded by

C
~nX
j=1

n�
E juj j2 � 1

�
� (E (ujvj)� 1)� (E (ujvj)� 1) +

�
E jvj j2 � 1

�o
= o

�
N1=2

�
,

because
���j�� � C, d < 4 and by Lemma 1, for instance����E�uj � vj
uj

�
� 1
���� � ��2" j	j j�2

�����E�wTx;j � wT";j
wTx;j

�
� �2"

�
	j
j	j j2

����� = O

�
1

~n2

�
.

Next, we examine the second term of (5:4). To that end, let q = 0; : : : ; [~n& ] � 1
for some 0 < & < 1=d. (Recall that

�
~n 
�
=
��
~n [1]

�
; :::
�
~n [d]

��
for any  > 0.)
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Standard inequalities imply that the square of the second term on the right of (5:4)
is bounded by

(5.5) Emax
s

�������
8><>:

sX
j=1

�
q(s)[~n1�& ]X

j=1

9>=>; �jvj%j

�������
2

+ Emax
s

�������
q(s)[~n1�& ]X

j=1

�jvj%j

�������
2

,

where herewith q(s) denotes the value of q = 0; : : : ; [~n& ]� 1 such that q(s)
�
~n1�&

�
is

the largest vector s1 such that s1 � s, and using the convention
Pd
j=c � 0 if d < c.

From now on, we abbreviate (~n [1] = [~n& [1]] ; :::; ~n [d] = [~n& [d]]) by
�
~n1�&

�
.

From the de�nition of q (s) and
�
supp jcpj

�2
= supp jcpj

2 �
P
p jcpj

2, the second

term of (5:5) is bounded by
P[~n& ]�1
q=1 E

����Pq[~n1�& ]
j=1 �jvj%j

����2 = O
�
N1+&~n�1 log2 ~n

�
=

o (N) by Lemma 3 and because & < 1=d.
To complete the proof we need to show that the �rst term in (5:5) is o (N). To

that end, we note that it is bounded by

E max
q=1;:::;[~n& ]�1

max
s=1+q[~n1�& ];:::;(q+1)[~n1�& ]

������
sX

j=1+q[~n1�& ]

�jvj%j

������
2

which is O (N &)Emaxs=1;:::;[~n1�& ]
���Ps

j=1 �jvj%j

���2.
So, we have that the square of the second term on the right of (5:4) is

o (N) +O (N &)E max
s=1;:::;[~n1�& ]

������
sX
j=1

�jvj%j

������
2

.

Observe that the second factor of the second term of the last displayed expression
is similar to the second term on the right of (5:4) but with s = 1; :::;

�
~n1�&

�
instead

of s = 1; :::; ~n. So, repeating the same steps, the last displayed expression, and so
the square of the second term on the right of (5:4), is

o (N) +N &
P��1

p=0(1�&)
p

E max
s=1;:::;([~n1�& ])�

������
sX
j=1

�jvj%j

������
2

= o (N) +O
�
N &

P��1
p=0(1�&)

p
� ~n(1�&)�X

s=1

E

������
sX
j=1

�jvj%j

������
2

= o (N)

after choosing � large enough because & < 1=d. This completes the proof. �

Lemma 5. Let � (�;#) be as in Lemma 3 for all # 2 � � R+, and continuously
di¤erentiable in # for all �. Assuming C1� C4,

(5.6)
1

N
sup

#2��R+

������
~nX

j=�~n
�j (#)

 
ITx;j

j	�0;j j
2 � 1

!������ = op (1) .

Proof. By the triangle inequality, the left side of (5:6) is bounded by
(5.7)

C

N
sup

#2��R+

������
~nX

j=�~n
�j (#)

 
ITx;j

j	�0;j j
2 � I

T
";j

!������+ C

N
sup

#2��R+

������
~nX

j=�~n
�j (#)

�
IT";j � 1

������� .
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Now, because by assumption j� (�;#)j < C, the �rst term of (5:7) is bounded by

C

N

~nX
j=�~n

����� ITx;j

j	�0;j j
2 � I

T
";j

����� � C

N

~nX
j=�~n

��%j��2 + C

N

~nX
j=�~n

��vj%j�� = op (1)

by Markov�s inequality because by the Cauchy-Schwarz inequality E
��vj%j��2 �

E jvj j2 E
��%j��2 and then proceeding as in Lemma 3. Next, we show that the second

term of (5:7) is op (1). But this follows by standard arguments (see also Lemma 15)
and because �j (#) is continuously di¤erentiable in #. �

Lemma 6. Assume C1� C3 and C5� C8. Then, b#� #0 = op (1).

Proof. The proof follows very easily using Lemma 5. Indeed, (3:2) is

(5.8)
1

N

~nX
j=�~n

f#0;j
f#;j

 
ITx;j

(2�)
d
f#0;j

� 1
!
+
1

N

8<:
~nX

j=�~n

f#0;j
f#;j

� log f#0;j
f#;j

+ log f#0;j

9=; .
Now the second term of (5:8) converges using Brillinger (1981, p:15) toZ �

�

�
f#0 (�)

f# (�)
� log

�
f#0 (�)

f# (�)

��
d�+

Z �

�

log f#0 (�) d� �
(2�)

d

2
+

Z �

�

log f#0 (�) d�

with equality when f#0 (�) = f# (�) which is the case only if # = #0 by C7. On
the other hand, the �rst term of (5:8) converges to zero uniformly in # by Lemma
5 because f�1#;jf#0;j satis�es the same conditions as � (�;#) there by C6. From here
the conclusion of the lemma is standard, so we omit its details. �

Lemma 7. Assume C1� C3 and C5� C8. Under H0, uniform in � 2 [0; �]d,
(5.9)

1

N1=2

[~n�=�]X
j=�[~n�=�]

�j

0B@ ITx;j���	b�;j���2 � I
T
";j

1CA = �

0@ 1

N

[~n�=�]X
j=�[~n�=�]

�j'
0
�0;j

1AN1=2
�b� � �0�+op (1) ,

where � (�) is as in Lemma 3.

Proof. The di¤erence between the left side of (5:9) and the �rst term on its right
side is

1

N1=2

[~n�=�]X
j=�[~n�=�]

�j
ITx;j

j	�0;j j
2

264 j	�0;j j2���	b�;j���2 � 1 + '
0
�0;j

�b� � �0�
375

(5.10)

+
1

N1=2

[~n�=�]X
j=�[~n�=�]

�j

 
ITx;j

j	�0;j j
2 � I

T
";j

!
� 1

N1=2

[~n�=�]X
j=�[~n�=�]

�j'
0
�0;j

ITx;j

j	�0;j j
2

�b� � �0� .
First, because each component of the vector � (�)'�0 (�) satis�es the same condi-
tions of � (�) in Lemma 4, Markov�s inequality implies that the second term of (5:10)

is op (1), whereas the third term is N�1P[~n�=�]
j=�[~n�=�] �j'

0
�0;j

N1=2
�b� � �0� + op (1)

by Lemma 4 and because proceeding as in Robinson and Vidal-Sanz (2006)

1

N1=2

~nX
j=�~n

�j'�0;j
�
IT";j � 1

�
= Op (1) .
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Finally, by mean value theorem, the norm of the �rst term of (5:10) is bounded by

(5.11) CN1=2
b� � �02 1

N

[~n�=�]X
j=�[~n�=�]

ITx;j

j	�0;j j
2 = Op

�
N�1=2

�
,

by Theorem 2 and proceeding as with the third term of (5:10). This concludes the
proof. �
We now introduce the following notation. "T (t) = h (t) " (t) and for v1 < v2 2

[0; �]
d,

(5.12) E1;N (v1; v2) =

0@ 1

N

[~nv2=�]X
j=[~nv1=�]

�j

1A N1=2Pn
t=1 h

2 (t)

nX
t=1

�
"T (t)

2 � 1
�!

(5.13) E2;N (v1; v2) =
1

N

[~nv2=�]X
j=[~nv1=�]

�j
N1=2Pn
t=1 h

2 (t)

nX
t1 6=t2=1

"T (t1) "
T (t2) e

i(t1�t2)��j .

Notice that E1;N (v1; v2) + E2;N (v1; v2) = N�1=2P[~nv2=�]
j=[~nv1=�]

�j
�
IT";j � 1

�
.

Lemma 8. Let v1 < v < v2 2 [0; �]dand � (�) as in Lemma 3. Then, assuming
C1� C3, for some � > 0,

(5.14) E
�
jEj;N (v1; v)j� jEj;N (v; v2)j�

�
� C

Yd

`=1
(v2 [`]� v1 [`])2 , j = 1; 2.

Proof. The proof follows proceeding as that of Lemma 6 of Delgado et al. (2005) and

observing that by continuity of � (�),
���N�1P[~nv2=�]

p=[~nv1=�]
�qp

��� � C
Yd

`=1
(v2 [`]� v1 [`])

for any q � 1. �
Next we will show that the processes E1;N (0; �) and E2;N (0; �) are tight. From

Bickel and Wichura (1971) it su¢ ces to show the following lemma.

Lemma 9. Assuming C1, we have that

(5.15) (a) E
Yd

`=1

�
E(`)1;N

�
0; �1[`]

�
� E(`)1;N

�
0; �2[`]

��2
� C

Yd

`=1

�
�2[`] � �1[`]

�2
(5.16) (b) E

Yd

`=1

�
E(`)2;N

�
0; �1[`]

�
� E(`)2;N

�
0; �2[`]

��4
� C

Yd

`=1

�
�2[`] � �1[`]

�2
for all �1[`] < �2[`] 2 [0; �], ` = 1; :::; d, and where, say,

E(`)1;N
�
�1[`]; �2[`]

�
=

0B@ 1

n [`]

[~n�2[`]=�]X
j[`]=[~n�1[`]=�]

�j

1CA N1=2Pn
t=1 h

2 (t)

nX
t=1

�
"T (t)

2 � 1
�!

E(`)2;N
�
�1[`]; �2[`]

�
=

1

n [`]

[~n�2[`]=�]X
j[`]=[~n�1[`]=�]

�j
N1=2Pn
t=1 h

2 (t)

nX
t1 6=t2=1

"T (t1) "
T (t2) e

i(t1�t2)��j .

Proof. The proof follows after observing that E(`)`;N
�
0; �1[`]

�
�E(`)`;N

�
0; �2[`]

�
= E(`)`;N

�
�1[`]; �2[`]

�
for ` = 1; 2 and then by Lemma 8. �
Lemma 10. Under C1� C3 and C5� C8,

b�2" = 1

N

nX
t=1

b"2 (t) and b�4;" = 1

N

nX
t=1

b"4 (t)
are consistent estimators of �2" and �4;", respectively.
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Proof. See Theorem 4 of Robinson and Vidal-Sanz (2006). �
In what follows, we shall abbreviate wTx� (�) =	b� (�) and wT"� (�) by u� (�) and

v� (�) respectively for all � 2 �d.

Lemma 11. Consider j 2 eZd. Then, for �Tx�;j and �Tx�;j equal to u�j or v�j ,
(a) E�

�
�Tx�;j�

T

x�;j

�
� b�2" = Op

�
~n�2

�
; (b) E�

�
�Tx�;j�

T
x�;j

�
= 0.

Proof. We shall handle the case when both �Tx�;j and �
T
x�;j are u

�
j , being the other

cases identically handled. We begin with part (a). By de�nition and using (2:8), it
is easy to show that

wTx�;j =
1

6d=2

~nX
k=�~n

	b�;kw"�;kYd

`=1
I` (j; k) ,

where I` (j; k) = 2I (j [`] = k [`]) � I (j [`]� 1 = k [`]) � I (j [`] + 1 = k [`]). So,
because E� (w"�;jw"�;k) = b�2"I (j = k), the left side of the equality in (a) is

b�2"
 

~nX
k=�~n

���	b�;j����2 ���	b�;k���2�Yd

`=1
I` (j; k)

�2
� 1
!

From here the conclusion is standard because j	� (�)j2 is twice di¤erentiable uni-
formly in � 2 � for all � 2 �d and that b� � �0 = op (1). Next we show part (b).
That follows immediately because, say, E� (w"�;kw"�;k) = 0. �

Lemma 12. Let k � j 2 eZd. Then,under C1� C4,
(a) E�

�
�Tx�;j�

T

x�;k

�
= b�2" �1 +Op �~n�1�� I (jj [`]� k [`]j = 2; ` = 1; :::; d)

(b) E�
�
�Tx�;j�

T
x�;k

�
= 0.

Proof. Again, we shall handle the case when �Tx�;j and �Tx�;j are u
�
j . We shall

examine part (a) only, being part (b) identical. Proceeding as with the proof of
part (a) of the previous lemma, the left side of the equality in (a) is

b�2" ~nX
p=�~n

���	b�;j����2 ���	b�;p���2�Yd

`=1
I` (j; p) I` (k; p)

�
.

From here, we see that the last expression is zero except when jj [`]� k [`]j = 2, for
all ` = 1; :::; d, in which case is

���	b�;j�1���2 = ���	b�;j���2 = 1 + Op
�
~n�1

�
as j	� (�)j2 is

twice di¤erentiable uniformly in � 2 � for all � 2 �d and b� � �0 = op (1). �
Lemma 13. Let � (�) be as in Lemma 3. Under C1 � C4, we have that for all
r � s 2 eZd
(5.17) E�

������
sX
j=r

�jv
�
j

�
u�j � v�j

�������
2

= Op

 
1

~n

dY
`=1

js [`]� r [`]j+

!
.

Proof. Denote %�j = u�j � v�j . By standard arguments, the left side of (5:17) is
sX
j=r

�2jE�
�
v�j v

�
j%
�
j%
�
j

	
+

sX
j 6=k=r

�j�kE
�
v�j v

�
k%
�
j%
�
k

	
=

sX
j=r

�2j
�
a�j1 + a

�
j2

	
+

sX
j 6=k=r

�j�k
�
b�jk;1 + b

�
jk;2

	
,
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where, by Lemmas 11 and 12 part (b),

a�j1 = E�
�
v�j v

�
j

�
E�
�
%�j%

�
j

�
+
��E� �v�j %�j���2 ;

a�j2 = cum� �v�j ; v�j ; u�j ; u�j�+ cum� �v�j ; v�j ; v�j ; v�j �
�cum� �v�j ; v�j ; u�j ; v�j �� cum� �v�j ; v�j ; u�j ; v�j�

b�jk;1 = E�
�
v�j v

�
k

�
E�
�
%�j%

�
k

�
+ E�

�
v�j %

�
j

�
E� (v�k%�k)

b�jk;2 = cum� �v�j ; v�k; u�j ; u�k�+ cum� �v�j ; v�k; v�j ; v�k�
�cum� �v�j ; v�k; u�j ; v�k�� cum� �v�j ; v�k; u�j ; v�k� .

After observing that E�
�
v�ju

�
j

�
= b�2" + Op

�
~n�2

�
and E�

�
v�j %

�
j

�
= E�

�
v�ju

�
j

�
�

E�
�
v�j v

�
j

�
, we have that Lemma 11 implies that a�j1 = Op

�
~n�2

�
, whereas Lemmas

11 and 12 imply that b�jk;1 = Op
�
~n�2 + ~n�1I (jj [`]� k [`]j = 2; ` = 1; :::; d)

�
. From

here it is immediate to conclude that the contribution due to a�j1 and b
�
jk;1 into the

left of (5:17) is its right side.
Finally we examine a�j2 and b

�
jk;2. By de�nition of, for example, w

T
x� (�) and that

cum� ("� (t1) ; :::; "
� (t4)) = b�"I (t1 = ::: = t4), it is obvious that b�jk;2 is

Op
�
n�1I (jj [`]� k [`]j = 2; ` = 1; :::; d)

�
. Notice that b�" = b�4;" � 3b�4" = Op (1) by

Lemma 10. �

Lemma 14. Let � (�) be a function as in Lemma 3. Then, under C1 � C4 ,

E� sup
�2[0;�]d

�������
[~n�=�]X

j=�[~n�=�]

�j

8><>: ITx�;j���	b�;j���2 � I
T
"�;j

9>=>;
������� = op

�
N1=2

�
.

Proof. We shall consider the proof in the positive quadrant
P[~n�=�]
j=1 , being the proof

for the remaining 2d�1 � 1 quadrants similarly handled. By the Cauchy-Schwarz
and triangle inequalities, it su¢ ces to show that
(5.18)

E� sup
s

�������
sX
j=1

�j

8><>: ITx�;j���	b�;j���2 � I
T
"�;j

9>=>;
������� � E� sups

sX
j=1

���j�� ��%�j ��2 + 2E� sup
s

������
sX
j=1

�jv
�
j %
�
j

������
is op�

�
N1=2

�
, where we abbreviate �sups=1;:::;~n�by �sups�and %

�
j = u�j � v�j .

The �rst term on the right of (5:18) is bounded by

C
~nX
j=1

n�
E�
��u�j ��2 � b�2"�� �E� �u�jv�j�� b�2"�� �E� �u�jv�j �� b�2"�+ �E� ��v�j ��2 � b�2"�o = op

�
N1=2

�
,

because
���j�� � C, d < 4 and by Lemma 11, for instance����E��u�j � v�j
u�j

�
� b�2"���� � b��2" ���	b�;j����2

 �����E�
�
wTx�;j

�
wT"�;j
wTx�;j

�
� b�2"

(
	b�;j���	b�;j���2

�����
!
= Op

�
1

~n2

�
.

Next, we examine the second term of (5:18). With same notation as in Lemma
4, the square of the second term on the right of (5:18) is bounded by

(5.19) E�max
s

�������
8><>:

sX
j=1

�
q(s)[~n1�& ]X

j=1

9>=>; �jv
�
j %
�
j

�������
2

+ E�max
s

�������
q(s)[~n1�& ]X

j=1

�jv
�
j %
�
j

�������
2

.
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From the de�nition of q (s) and
�
supp jcpj

�2
= supp jcpj

2 �
P
p jcpj

2, the second

term of (5:19) is bounded by
P[~n& ]�1
q=1 E�

����Pq[~n1�& ]
j=1 �jv

�
j %
�
j

����2 = Op
�
N1+&~n�1 log2 ~n

�
=

op (N) by Lemma 13 and because & < 1=d.
To complete the proof we need to show that the �rst term in (5:19) is op (N).

To that end, we note that it is bounded by

E� max
q=1;:::;[~n& ]�1

max
s=1+q[~n1�& ];:::;(q+1)[~n1�& ]

������
sX

j=1+q[~n1�& ]

�jv
�
j %
�
j

������
2

which is Op (N &)E�maxs=1;:::;[~n1�& ]
���Ps

j=1 �jv
�
j %
�
j

���2. So, we have that the square of
the second term on the right of (5:18) is

op (N) +Op (N
&)E� max

s=1;:::;[~n1�& ]

������
sX
j=1

�jv
�
j %
�
j

������
2

.

Now proceeding as in Lemma 4, the square of the second term on the right of (5:18)
is

op (N) +Op

�
N &

P��1
p=0(1�&)

p
� ~n(1�&)�X

s=1

E�
������
sX
j=1

�jv
�
j %
�
j

������
2

= op (N)

after choosing � large enough because & < 1=d. This completes the proof. �

Lemma 15. Let � (�;#) be is as in Lemma 5. Assuming C1� C4,

(5.20)
1

N
sup

#2��R+

�������
~nX

j=�~n
�j (#)

0B@ ITx�;j���	b�;j���2 � b�
2
"

1CA
������� = op� (1) .

Proof. By the triangle inequality, the left side of (5:20) is bounded by
(5.21)

C

N
sup

#2��R+

�������
~nX

j=�~n
�j (#)

0B@ ITx�;j���	b�;j���2 � I
T
"�;j

1CA
�������+

C

N
sup

#2��R+

������
~nX

j=�~n
�j (#)

�
IT"�;j � b�2"�

������ .
Now, because by assumption j� (�;#)j < C, the �rst term of (5:21) is bounded by

C

N

~nX
j=�~n

�������
ITx�;j���	b�;j���2 � I

T
"�;j

������� �
C

N

~nX
j=�~n

��u�j � v�j ��2 + C

N

~nX
j=�~n

��v�j �u�j � v�j��� = op� (1)

by Markov�s inequality because by the Cauchy-Schwarz inequality E�
��v�j �u�j � v�j���2 �

E�
��v�j ��2 E� ��u�j � v�j ��2 and then proceeding as in Lemma 13. Next, the second

term of (5:21) is op� (1). First, the �nite dimensional distributions of S� (#) =

N�1P~n
j=�~n �j (#)

�
IT"�;j � b�2"� converge to zero in probability. Indeed, the second

bootstrap moment is

1

N2

~nX
j;k=�~n

�j (#) �k (#)E�
n�
IT"�;j � b�2"��IT"�;k � b�2"�o = Op

�
1

N

�
by standard algebra after observing that E� (w"�;jw"�;k) = b�2"I (j = k), E� (w"�;jw"�;k) =
0 and cum� (w"�;j ; w"�;j ; w"�;k; w"�;k) = O

�
N�1� b�"I (j = k). To �nish, we need to
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show the tightness of the process S� (#). But this is immediate because proceeding
as with the last displayed equality

E� jS� (#2)� S� (#1)j2 = j#2 � #1j2Op (1)

because continuous di¤erentiability of � (�;#) for all � 2 �d implies that
���j (#2)� �j (#1)�� �

C j#2 � #1j. �

Lemma 16. Assume C1� C3 and C5� C8. Then, b#� � b# = op� (1).

Proof. The proof follows very easily using Lemma 15. Indeed, (4:5) is

(5.22)
1

N

~nX
j=�~n

fb#;j
f#;j

 
ITx�;j

(2�)
d
fb#;j � 1

!
+
1

N

8<:
~nX

j=�~n

fb#;j
f#;j

� log
fb#;j
f#;j

+ log fb#;j
9=; .

Now, the di¤erence between the second term of (5:22) andZ �

�

�
fb# (�)
f# (�)

� log
�
fb# (�)
f# (�)

��
d�+

Z �

�

log fb# (�) d�
converges to zero in probability using Brillinger (1981, p:15) and that uniformly
in �,

��fb# (�)� f#0 (�)�� = op (1). Moreover, the last displayed expression is greater

than or equal to (2�)d

2 +
R �
�
log fb# (�) d� with equality when fb# (�) = f# (�) which is

the case only if # = b# by C7. On the other hand, the �rst term of (5:22) converges
to zero uniformly in # by Lemma 15 because f�1#;jfb#;j satis�es the same conditions as
� (�;#) there by C6. From here the conclusion of the lemma is standard proceeding
as in Theorem 1 of Hannan (1973), so we omit its details. �

Lemma 17. Assume C1� C8. Under H0, uniform in � 2 [0; �]d
(5.23)

1

N1=2

[~n�=�]X
j=�[~n�=�]

�j

0B@ ITx�;j���	b��;j���2 � I
T
"�;j

1CA = �

0@ 1

N

[~n�=�]X
j=�[~n�=�]

�j'
0b�;j
1AN1=2

�b�� � b��+op� (1) ,
where � (�) is as in Lemma 3.

Proof. The di¤erence between the left side of (5:23) and the �rst term on its right
side is

1

N1=2

[~n�=�]X
j=�[~n�=�]

�j
ITx�;j���	b�;j���2

264
���	b�;j���2���	b��;j���2 � 1 + '

0b�;j
�b�� � b��

375
(5.24)

+
1

N1=2

[~n�=�]X
j=�[~n�=�]

�j

0B@ ITx�;j���	b�;j���2 � I
T
"�;j

1CA� 1

N1=2

[~n�=�]X
j=�[~n�=�]

�j'
0b�;j ITx�;j���	b�;j���2

�b�� � b�� .
First, because each component of the vector � (�)'b� (�) satis�es the same conditions
of � (�) in Lemma 14, Markov�s inequality implies that the second term of (5:24)

is op� (1), whereas the third term is N�1P[~n�=�]
j=1 �j'

0b�;jN1=2
�b�� � b��+ op� (1) by

Lemma 14 and because proceeding as in the proof of Theorem 4

1

N1=2

~nX
j=�~n

�j'b�;j
�
IT"�;j � b�2"� = Op� (1)
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Finally, by mean value theorem, the norm of the �rst term of (5:24) is bounded by

CN1=2
b�� � b�2 1

N

[~n�=�]X
j=�[~n�=�]

ITx�;j���	b��;j���2 = Op�
�
N�1=2

�
,

by Theorem 4 and proceeding as with the second term of (5:24). This concludes
the proof. �

We now introduce the following notation. For v1; v2 2 [0; �]d, denote E�1;N (v1; v2)
and E�2;N (v1; v2) as in (5:12) and (5:13) but with "T (t) there replaced by "�T (t) =
h (t) "� (t) and also let HN = HN (v1; v2) a sequence bounded in probability.

Lemma 18. Let v1 < v < v2 2 [0; �]d. Then, assuming C1 � C3, and for some
� > 0, with � (�) as in Lemma 3,

E�
���E�j;N (v1; v)��� ��E�j;N (v; v2)���� � HN (v1; v2)

Yd

`=1
(v2 [`]� v1 [`])2 , j = 1; 2.

Proof. The proof proceeds as in Lemma 8 but instead of using Delgado et al.�
(2005) Lemma 5 we use Lemma 7.3 of Hidalgo and Kreiss (2006). �

Next we will show that the processes E�1;N (0; �) and E�2;N (0; �) are tight. To
that end, it su¢ ces to show the following lemma.

Lemma 19. Assuming C1 we have that
(5.25)

(a) E�
Yd

`=1

�
E(`)�1;N

�
0; �1[`]

�
� E(`)�1;N

�
0; �2[`]

��2
= HN (�1; �2)

Yd

`=1

�
�2[`] � �1[`]

�2
(5.26)

(b) E�
Yd

`=1

�
E(`)�2;N

�
0; �1[`]

�
� E(`)�2;N

�
0; �2[`]

��4
= HN (�1; �2)

Yd

`=1

�
�2[`] � �1[`]

�2
for all �1[`] < �2[`] 2 [0; �], ` = 1; :::; d, and where

E(`)�1;N

�
�1[`]; �2[`]

�
=

0B@ 1

n [`]

[~n�2[`]=�]X
j[`]=[~n�1[`]=�]

�j

1CA N1=2Pn
t=1 h

2 (t)

nX
t=1

�
"�T (t)

2 � 1
�!

E(`)�2;N

�
�1[`]; �2[`]

�
=

1

n [`]

0B@ [~n�2[`]=�]X
j[`]=[~n�1[`]=�]

�j
N1=2Pn
t=1 h

2 (t)

nX
t1 6=t2=1

"�T (t1) "
�T (t2) e

i(t1�t2)��j

1CA .
Proof. The proof follows after observing that E(`)�`;N

�
0; �1[`]

�
� E(`)�`;N

�
0; �2[`]

�
=

E(`)�`;N

�
�1[`]; �2[`]

�
for ` = 1; 2 and then by Lemma 18. �

6. PROOFS

6.1. Proof of Proposition 1.
We shall be a bit more general. In particular, for a vector function � (�) as in

Lemma 3, we will show that

SN (�) =
1

N1=2

[~n�=�]X
j=�[~n�=�]

�j
�
IT";j � 1

�
) B� (�) , � 2 [0; �]d

where for � � v 2 [0; �]d, Cov (B� (�) ;B� (v)) =
�
2 + �"

�
35
18

�d� R �
�� � (�) �

0 (�) d�,

as n
�Pn

t=1 h
4
t

�
=
�Pn

t=1 h
2
t

�2
= 35

18 .
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To that end, it su¢ ces to show that (a) for all � 2 [0; �]d,
(6.1)

1

N1=2

[~n�=�]X
j=�[~n�=�]

�j
�
IT";j � 1

� d! N
 
0;

 
2 + �"

�
35

18

�d!Z �

��
� (�) � 0 (�) d�

!
.

(b) For � � v, the covariance structure is such that

1

N
E

8<:
[~n�=�]X

j=�[~n�=�]

�j
�
IT";j � 1

� [~nv=�]X
j=�[~nv=�]

�j
�
IT";j � 1

�9=;!
 
2 + �"

�
35

18

�d!Z �

��
� (�) � 0 (�) d�.

(c) the process
n
SN (�) : � 2 [0; �]d

o
is tight.

We begin with (a). Its proof follows directly by that in Robinson and Vidal-
Sanz (2006) and observing that because � (�) is continuously di¤erentiable, then by
Brillinger (1981, p:15), N�1P[~nv=�]

j=�[~nv=�] �j�
0
j�(2�)

�d R v
�v � (�) �

0 (�) d� = Op
�
~n�1

�
,

and thus it is omitted.
Part (b) follows after observing that EIT";j = 1 by C1 and E

�
IT";jI

T
";k

�
is

1

(
Pn
t=1 h

2 (t))
2

nX
t;s;r;u=1

E
�
"T (t) "T (s) "T (r) "T (s)

	
e�i(t�s)��j+i(r�u)��k

= 2I (j � k = 0; n) + I (j + k = 0; n) + 1

N

 
2 + �"

�
35

18

�d!

using that, say
Pn[`]
p[`]=1 h` (t [`]) e

�ip[`](�j[`]�k[`]) = n [`] I (j [`]� k [`] = 0; n [`]) and
that by Brillinger (1981, p.15) we have that N�1P~n

t=1 h
p (t) ! 2d

R
[0;1]d

hp (u) du

for all p � 0. Finally, part (c) follows by Lemma 9.

6.2. Proof of Theorem 3.
Part (a). The proof is identical to that of Theorem 5, but instead of using

Lemmas 14 and 17 we employ respectively Lemmas 4 and 7. Next the proof of
part (b) is identical to that of Theorem 5, but instead of Proposition 1 we employ
Theorem 4 and instead of Lemmas 18 and 19 we employ Lemmas 8 and 9. �

6.3. Proof of Theorem 4.
First, by standard algebra b#� � b# = �Q��1e#;Nq�b#;N , where e#� is an intermediate

point between b# and b#�,
q�#;N =

1

N

~nX
j=�~n

�#;j

(
ITx�;j

�2" j	�;j j
2 � 1

)

and Q
�
#;N is as de�ned in the proof of Theorem 2 but with ITx;j replaced by I

T
x�;j

there. Now, because f#;j is twice continuously di¤erentiable by C6, and b#� � b# =
op� (1) by Lemma 16, we easily conclude that

���Q�e#�;N �Qe#�;N ��� = op� (1), and that���Qe#�;N �Q#0;N ��� = op� (1). On the other hand, by Lemma 14 with �j = �b#;j there,

q�b#;N = N�1=2
~nX

j=�~n
�b#;j

n
IT"�;j=b�2" � 1o+ op� (1) .
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So, to complete the proof it su¢ ces to show

(a)
1

N
E�
8<:

~nX
j=�~n

�b#;j
(
IT"�;jb�2" � 1

)
~nX

j=�~n
�0b#;j

(
IT"�;jb�2" � 1

)9=;
P! 2 + �"

�
35

18

�d Z �

��
�#0 (�)�

0
#0 (�) d�,

and then (b) the Lindeberg�s condition

E�
8<: 1

N

~nX
j=�~n

�����IT"�;jb�2" � 1
�����
2

I

0@�����IT"�;jb�2" � 1
�����
2

> �N�1

1A9=; P! 0.

We begin with (a). By Lemmas 11 and 12, we have that

E�
( 

IT"�;jb�2" � 1
! 

IT"�;kb�2" � 1
!)

= I (j = k � 2)+ cum� (w"�;j ; w"�;j ; w"�;k; w"�;k) .

Now, because cum� ("� (t1) ; "
� (t2) ; "

� (t3) ; "
� (t4)) = b�"I (t1 = ::: = t4), we have

that the left side in (a) is

1

N

~nX
j=�~n

�b#;j�0b#;j
�
2 + b�"�35

18

��
.

From here we conclude (a) by Lemma 10 and that �# (�) is continuous by C6.
We now show (b). By standard inequalities, the left side is bounded by

1

N2

~nX
j=�~n

E�
�����IT"�;jb�2" � 1

�����
4

� C
log2N

N2

~nX
j=�~n

E�
�����IT"�;jb�2"

�����
2

by An et al. (1983) because f"� (t)gnt=1 is a random sample. Now conclude part (b)

since E�
���IT"�;j=b�2"���2 = Op (1) by Lemma 10. This concludes the proof. �

6.4. Proof of Theorem 5.
Part (a). By Lemma 17 with � (�) = 1 there and the de�nitions of G��;N (�) and

G�0N (�), we have that by Theorem 4 uniform in � 2 [0; �]d,

N1=2
�
G�b��;N (�)�G�0N (�)

�
= �

0@ 1

N

[~n�=�]X
j=�[~n�=�]

e'0b�;N (j)
1AN1=2

�b�� � b��+ op� (1)
= �

0@ 1

N

[~n�=�]X
j=�[~n�=�]

e'0b�;N (j)
1A e��1b�;N 1

N1=2

~nX
k=�~n

e'b�;N (k) ITx�;k���	b�;k���2(6.2)

+ op� (1) .

Now because
���G�b�;N (�)�G�0N (�)��� = op�

�
N�1=2� by Lemma 14, by (6:2), we

obtain that uniformly in �, ��b��;N (�) is

��0N (�) +
N1=2

�
G�b��;N (�)�G�0N (�)

�
G�0N (�)

+G�b�;N (�)N1=2

 
1

G�b��;N (�) �
1

G�0N (�)

!

= ��0N (�)�

0@ 1

N

[~n�=�]X
j=�[~n�=�]

e'0b�;N (j)
1A e��1b�;N 1

N1=2

~nX
k=�~n

e'b�;N (k) IT"�;k + op� (1) .



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

28 JAVIER HIDALGO

Now conclude the proof of part (a) by observing that Lemma 10 implies that

E�
���G�0N (�)� b�2� ��� = op (1) and then by Markov�s inequality.

Next part (b). Taking into account part (a), part (b) follows because Theorem
4 guarantees the �nite dimensional distributions convergence of ��0N , whereas its
tightness follows by Lemma 19. Tightness of the second term on the right of the
last displayed equality follows by Lemmas 18 and 19 because '�(u) is continuously
di¤erentiable in � and u. This concludes the proof. �
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