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Abstract

This paper deals with the estimation of the long-run variance of a sta-

tionary sequence. We extend the usual Bartlett-kernel heteroskedasticity and

autocorrelation consistent (HAC) estimator to deal with long memory and an-

tipersistence. We then derive asymptotic expansions for this estimator and the

memory and autocorrelation consistent (MAC) estimator introduced by Robin-

son (2005). We offer a theoretical explanation for the sensitivity of HAC to the

bandwidth choice, a feature which has been observed in the special case of short

memory. Using these analytical results, we determine the MSE-optimal band-

width rates for each estimator. We analyze by simulations the finite-sample

performance of HAC and MAC estimators, and the coverage probabilities for

the studentized sample mean, giving practical recommendations for the choice

of bandwidths.
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1 Introduction and setup

In empirical studies, it is now standard practice to produce robust estimates of stan-

dard errors (SEs). Popular references in econometrics for such procedures include

White (1980), Newey and West (1987), Andrews and Monahan (1992). In statis-

tics, the literature goes further back to Jowett (1955) and Hannan (1957). These

procedures for estimating covariance matrices account for heteroskedasticity and

autocorrelation of unknown form, for short memory models.

There is now an increasing body of evidence suggesting the existence of long

memory in macroeconomic and financial series; e.g. see Diebold and Rudebusch

(1989), Baillie and Bollerslev (1994), Gil-Alaña and Robinson (1997), Chambers

(1998), Cavaliere (2001), Abadir and Talmain (2002). It is therefore of interest to

adapt the most popular of these procedures, the Bartlett-kernel heteroskedastic-

ity and autocorrelation consistent (HAC) estimator, to account for the possibility

of long memory and antipersistence. In addition to HAC, we study the alterna-

tive memory and autocorrelation consistent (MAC) estimator recently introduced

by Robinson (2005). He established the consistency of his MAC estimator of the

covariance matrix, leaving open the issue of its higher-order expansion.

Our first contribution is to derive second order expansions for HAC and MAC

in the univariate case, reducing the problem to the estimation of a scalar (the long

run variance) instead of estimating the covariance matrix. Our derivations give

an insight into the more difficult multivariate case and provide the first step in

understanding this problem.

The second contribution of this paper is to provide a theoretical explanation for

the sensitivity of HAC estimators to the choice of bandwidth, a feature that has

been widely observed in the special case of short memory. Our results show that

the HAC estimator is sensitive because the minimum-MSE bandwidth depends on

the persistence in the series. The theoretical part of this paper explains where the

problem comes from and gives some practical advice for selecting the bandwidth.

We also show that, on the other hand, the MAC estimator is more robust to the

bandwidth selection, since its asymptotic properties are not affected by long memory

or antipersistence.

The final theoretical contribution of this paper is to obtain the distribution

of the estimated normalized spectrum at the origin, by virtue of its link to the

long-run variance. The distribution is Gaussian for MAC, but the one for HAC is
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Gaussian only if the long memory is below some threshold. In the case of short

memory, HAC is the usual Bartlett-kernel estimator of the spectral density at zero

frequency, and its bias and asymptotic distribution are well investigated in the

literature. The asymptotic results for the HAC estimator provide the background

for the development of kernel estimation of a spectral density under long memory

and antipersistence.

The plan of the paper is as follows. In Sections 2 and 3, we derive the bias

and asymptotic expansions for both types of estimators, allowing us to describe the

limiting distributions as well as the asymptotic MSEs. This enables us to determine

the rate of the MSE-optimal bandwidth for each estimator. Section 4 investigates

by simulations the finite-sample performance of HAC and MAC estimators, and

coverage probabilities for the studentized sample mean, giving practical recommen-

dations for the choice of bandwidths. Section 5 concludes. The derivations are given

in the Appendix.

We now detail the setting for our paper. Let {}∈Z be a stationary sequence
with unknown mean  := E (). Let the spectral density of {} be denoted by
() and defined over || ≤ . Suppose that it has the property

() = 0 ||−2 + (||−2) as → 0 (1.1)

where ||  12 and 0  0. Special cases include stationary and invertible

ARIMA(  ): when  and  are finite; but see Abadir and Taylor (1999) for

identification issues when  or  are allowed to be infinite. We shall call  the

memory parameter of {}; with  = 0 indicating short memory, 0    12 long

memory, and −12    0 antipersistence.

To conduct inference on , define the sample mean ̄ := −1
P

=1 which

satisfies

var(12−̄) = −1−2
Z 

−

µ
sin(2)

sin(2)

¶2
()d

As  →∞, we can use assumption (1.1) and a change of variable of integration to
get the convergence

var(12−̄)→ 2 := 0

Z ∞

−∞

µ
sin(2)

2

¶2
||−2d = 0() (1.2)

where we have the continuous function

() :=

⎧⎨⎩2
Γ(1−2) sin()

(1+2)
 if  6= 0

2 if  = 0
(1.3)
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We notice from (1.2) that 2 is just a scaling of 0 by the function (), so in the

usual short memory case of  = 0 we get

2 = 2(0) and 0 = (0)

In general, the problem of the estimation of the long-run variance 2 is closely

related to the estimation of  and 0 ≡ lim→0 ||2 () appearing in (1.1). The
HAC and MAC procedures mentioned at the start of this section hinge on the

estimation of the long run variance 2 .

We will consider the behaviour of the estimators under two alternative sets of

assumptions. The first one is stronger than the second one. It allows the derivation

of asymptotic expansions and the resulting investigation of MSE-optimal bandwidth

rates. The second one is sufficient to establish the consistency of the estimators

for a wide class of stationary sequences. It allows the use of estimates of  for

robust SEs for ̄. The second type of conditions are very weak, so they yield only

consistency and are not sufficient to obtain other asymptotic results. 2 The first set

of assumptions is common for HAC and MAC:

Assumption L. {} is a linear sequence

 = +

∞X
=0

−   ∈ Z

where
P∞

=0 
2
  ∞,  is a real number and {} are i.i.d. random variables with

zero mean and unit variance. Moreover, the spectral density () of {} has the
property

() = ||−2() (1.4)

where  ∈ (−12 12) and (·) is a continuous bounded function such that () =
0(1 +(||2)) as → 0 and 0 = (0)  0.

Let b2 be a consistent estimator of 2 . Under condition (1.4), the t-ratio for

the sample mean ̄ satisfies

t := 12−
(̄ − )b → N(0 1) →∞ (1.5)

so that a consistent HAC or MAC estimator of 2 allows inference on .

For HAC, the second type of assumptions (to establish consistency) is:

Assumption M. {} is a fourth order stationary process such that, for some
 ∈ (−12 12) and  6= 0,

 ∼ 2−1 if  6= 0
∞X

=−∞
| | ∞ if  = 0
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where  := cov(+); and

∞X
=−∞

|(  )| ≤  if   0 sup


X
=−

|(  )| ≤ 2 if  ≥ 0

where  denotes a generic constant and (  ) is a fourth-order cumulant defined

by (  ) := E(+++)− (−+ −+ −). In addition, if

  0, then () ≤ ||−2  ∈ [− ].
For MAC, the second type of assumptions differs from Assumption M and is

straightforward to discuss at the end of Section 3.

2 Asymptotic properties of HAC-type estimators

In this section, we first adapt the HAC estimator to allow for long memory and an-

tipersistence, introducing two HAC-type estimators. Then, we analyze their prop-

erties under Assumption L that {} is a linear process, presenting limiting distrib-
utions and asymptotic expansions for the estimators. To the best of our knowledge,

the asymptotic normality of the HAC estimator was investigated in the literature

only in the short memory case of  = 0 and under the assumption that E(4 ) ∞.
Our Theorem 2.1(a) will require for {} the existence of only a moment of order
2+ (for some   0), which is a new result in the field. It also shows that, under the

strong persistence 14    12, the asymptotic distribution will be non-Gaussian.

Finally, we show that Assumption M guarantees consistency (but not necessarily

the other properties) of the estimators.

Let

e := −1
−X
=1

( − E())(+ − E()) 0 ≤   

be the sample autocovariances of {} centered around E(), and

 := −1
−X
=1

( − ̄)(+ − ̄) 0 ≤   

the sample autocovariances of {} centered around the sample mean ̄.

Define

e2() := −1−2
X

=1

e|−| = −2(e0 + 2 X
=1

(1− )e) (2.1)
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which uses a known (or correctly hypothesized) E(), and

̄2() := −1−2
X

=1

|−| = −2(0 + 2
X

=1

(1− )) (2.2)

where the mean is estimated unrestrictedly, and assume that the bandwidth para-

meter  satisfies

 →∞  = (1−) (2.3)

for some   0. The difference between the stochastic expansions of the two

estimators will reveal just how much is the impact of estimating E(). The

asymptotically-optimal choice of  will arise from the first theorem below. To makee2() and ̄2() operational, we can employ any estimator b that is consistent at the
rate of log or faster, calculating e2(b) and ̄2(

b). This is a very weak condition,
and two such estimators of b will be discussed later in Section 3.

We start by making Assumption L. In addition, to establish the main theorem

of this section, we need to assume that the coefficients  decay as

 = −1+(1 +(−1))  6= 0 if  6= 0;
∞X
=0

 = 0 if   0; and (2.4)

∞X
=

| | = (−2) if  = 0 (2.5)

Such additional requirements are satisfied, for example, by  ∼ ARIMA(  )

where  ∈ (−12 12). We now derive asymptotic expansions for the estimatorse2(b) and ̄2(
b), where the bias will be expressed in terms of

 :=
1

2

Z ∞

−∞

µ
()

sin2(2)
1||≤ −

0||−2
(2)2

¶
d (2.6)

In the case of −12    14, these HAC estimators have Gaussian limit distri-

butions. However, if 14    12, then the limit can be written in terms of a

random variable given by the double Itô-Wiener integral

() :=

Z 00

R2

ei(1+2) − 1
i(1 + 2)

|1|−|2|−(d1)(d2) (2.7)

where (d) is a standard Gaussian complex measure ((−d) is the conjugate of
(d)) with mean zero and variance E(|(d)|2) = d. The limit variable () has
a (non-Gaussian) Rosenblatt distribution and is well-defined when 14    12.

The symbol
R 00
R2 indicates that one does not integrate on the diagonals 1 = ±2.
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Theorem 2.1. Supppose that {} satisfies Assumption L and (2.4)—(2.5), and thatb is an estimator of  such that
(b− ) log = (1) (2.8)

(a) If −12    14 and E(||2+) ∞, for some   0, then, as →∞,

e2(b)− 2 = ()
12 + −1−2 + (()

12) + (
−1−2) (2.9)

and

̄2(
b)− 2 = ()

12 + −1−2 + (()
12) + (

−1−2) (2.10)

where 
→ N(0 2),

2 := 8
2
0

Z ∞

0

µ
sin(2)

2

¶4
−4d =

⎧⎨⎩1620
2(21+4−1)

Γ(4+4 ) cos(2)
 if  6= 0

162203 = 4
4
3 if  = 0

(2.11)

and it is understood that lim→−14(21+4 − 1) cos (2) = log 4.
(b) If 14    12, E

¡
4
¢
 ∞ and () in (1.4) has bounded derivative,

then

e2(b)− 2 = ()
1−2 e + −1−2 + (()

1−2) + (
−1−2) (2.12)

where e := −2
X

=1

(2
 − E(2

 ))
→ 20();

whereas ̄2(
b) has the property

̄2(
b)− e2(b) = 

³
()1−2

´
 (2.13)

Under the additional assumption that E(4 ) ∞, the MSEs of HAC-type esti-
mators exist and are minimized asymptotically by

 ∝
(

1(3+4) −12    14

12− 14    12
(2.14)

where ∝ denotes proportionality. We now list other comments and implications

arising from Theorem 2.1:

Remark 2.1. Since E() = E( e) = 0, the asymptotic bias of the estimators is

given by −1−2. It tends to zero as  (hence ) tends to infinity.
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Remark 2.2. When −12    14, the convergence ̄2(
b) −→ 2 = ()0

implies that 2 can be consistently estimated by replacing 0 by ̄
2
(
b)(b) in (2.11).

Remark 2.3. If   14, then estimates with known and estimated mean have the

same asymptotic properties. However, if   14, then the rate of convergence of

the sample mean to  is rather slow, and replacing  by ̄ leads to an additional

term in the limiting distribution of the HAC estimator whose consistency is nev-

ertheless unaffected. In the context of hypothesis testing about the mean , one

can estimate the long run variance by treating  as unknown and estimating it by

the sample mean. Alternatively, one can compute the long-run variance under the

null hypothesis, treating  as known. This will improve the size but may have an

adverse effect on the finite-sample power of tests based on HAC estimators.

Remark 2.4. As a general rule, convergence in distribution does not necessarily

imply a corresponding convergence for moments such as the MSE. However, our

proofs are based on 2 expansions for which this implication holds if we make the

additional assumption that E(4 ) ∞, hence our stated results for the asymptotic
bias and variance. Note that for the validity of asymptotic expansions (2.9)—(2.10),

only 2 +  moments of {} are needed.

Remark 2.5. If {} is a nonlinear process, then Theorem 2.1 might not hold.

For example, the nonlinear transformation  = e
 of a linear process {} will, in

general, increase the bias of estimators. Therefore, the optimal  minimizing the

MSE might also change in this case.

Relaxing Assumption L, we obtain the following concistency result.

Theorem 2.2. Suppose that  → ∞,  = (12), that Assumption M holds, and

that b−  = (1 log). Then,

̄2(
b) → 2  e2(b) −→ 2  as →∞ (2.15)

3 Robinson’s MAC estimator

In this section, we derive the asymptotic properties of Robinson’s MAC estimator

of 2 = ()0, where () is given by (1.3). We shall show that the asymptotic

properties of the MAC estimator do not depend on the memory parameter , and its

asymptotic distribution is always Gaussian. Hence, it is more robust than HAC to

8
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the bandwidth selection in practice, something that will be illustrated numerically

in the subsequent section. Define

b2() := ()b()
where b() := −1

X
=1

2 ()

is a consistent estimator of 0,

() := (2)
−1
¯̄̄̄
¯
X
=1

ei

¯̄̄̄
¯
2

is the periodogram,  = 2 are the Fourier frequencies, and the bandwidth

parameter  satisfies →∞ and  = ((log)2).

This estimator has a number of features. First, it does not require estimation

of the unknown mean E() since the periodogram is self-centring at the Fourier

frequencies  . Contrast this with HAC estimators; see also Remark 2.3. Second,

as the following theorem will show, the bias and asymptotic distribution of the

estimator do not depend on  ∈ (−12 12), and the asymptotic distribution is
always Gaussian.

In addition to Assumption L, we will need the condition that () :=P∞
=0 e

i satisfies

d

d
() = (|()|) as → 0+ (3.1)

in order to derive the CLT in the following theorem.

Theorem 3.1. Suppose that {} satisfies Assumption L with E(4 ) ∞ and (3.1).

Assume that b is an estimator of  such that b−  = (1 log). Then

b2(b)− 2 = −122 + 2(b− )(log )
2
(1 + (1)) (3.2)

+(()2) + (
−12)

where


→ N(0 1) (3.3)

The parameter  can be estimated, for example, by the local Whittle estimator

b := argmin∈ [−1212]()

9
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which minimizes the objective function

() := log

⎛⎝ 1



X
=1

2 ()

⎞⎠− 2



X
=1

log 

with bandwidth parameter  such that  → ∞ and  = ((log)2). We

use the notation  for the bandwidth of the local Whittle estimator, stressing

that it can be set to values that can differ from the bandwidth  used in b2.
If  = (45), then Robinson (1995b) showed that under the assumptions of

Theorem 3.1
√
(b− )

→ N(0 14) (3.4)

For the estimation of , the log-periodogram estimator can be used as an alternative

to the local Whittle estimator; see Robinson (1995a).

We now turn to the MSE of b2(b), when b is the local Whittle estimator. Let
 = (45) and  = (45), since we only need a consistency rate rather than

a CLT to analyze the decline of the MSE as  increases. Under Assumption L,

E((b− )2) = (−1 ). Therefore,³b2(b)− 2

´2
= 

µ
1


+
(log)2



¶
(3.5)

by (3.2). Since (3.5) is derived using an 2 approximation, a more detailed analysis

shows that the MSE is 
¡
−1 + (log)2−1

¢
, hence decreasing in . The MSE-

optimal bandwidth is therefore the one taking  that grows at the maximal rate of

45.

In general, without recourse to Assumption L, the consistency of Robinson’s

MAC estimator follows immediately from b →  and b(b) → 0. The estimatorsb and b(b) are consistent under very weak general assumptions, which do not
assume Gaussianity or linearity of {}; see Dalla et al. (2006) and Abadir et al.
(2007). For example, if  = 0 and (1.4) holds, then such consistency follows under

the assumption
P∞

=−∞ |(  )| ≤ ; see Corollary 1 of Dalla et al. (2006).

4 Simulation results

The objective of this section is to illustrate the asymptotic results for the HAC and

MAC estimators ̄2(
b) and b2(b), to examine their finite-sample performance, and

to give advice on how to choose the bandwidth parameters in practical applications.

10
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We focus on the MSE because the primary use of these estimators is the consis-

tent estimation of the long-run variance 2 used in various statistics; e.g. in the

denominator b of HAC and MAC robust t-ratios

t := 12−
(̄ − )b → N(0 1) →∞ (4.1)

For this reason, we also consider the closeness of HAC and MAC robust t-ratios to

their limiting normal distributions; see Velasco and Robinson (2001) for expansions

relating to t-ratios using smoothed autocovariance estimates for (0). We study

the coverage probabilities (CPs) of 95% asymptotic confidence intervals (CIs) for ,

considering how the choice of bandwidths affects the closeness of CPs to the nominal

95% level based on the limiting normal distribution of the t-ratio.

We let {} be a linear Gaussian ARIMA(1  0) process with unit standard
deviation, for different values of  (AR parameter) and . We link  to 2 , the object

of our analysis, by means of (1.2)—(1.3). Throughout the simulation exercise, the

number of replications is 5,000. We consider three sample sizes  = 250 500 1000

and we estimate the parameter  using the local Whittle estimator ̂ with bandwidth

 =
¥
065

¦
. We do not report the results for  =

¥
05

¦

¥
08

¦
because they

are dominated by  =
¥
065

¦
.

Table 1 contains the MSE of the HAC estimator ̄2(
b) calculated for different

values of the bandwidth . The minimum-MSE value for each  and  is highlighted

by shaded gray boxes. The results for these optima are so scattered across the table,

that in practice it will be difficult to achieve them.

Table 2 reports the MSEs of the HAC estimator ̄2(
b) when  is chosen according

to the asymptotically-optimal rule (2.14). It gives MSEs comparable to the optimal

MSEs of Table 1, except when  and  are simultaneously large. In this case, the

cost in terms of the MSE can be substantial.

Table 3 contains the MSE of the MAC estimator b2(b) calculated for different
values of the bandwidth . It reveals the accuracy of the simple bandwidth rule

that resulted from (3.5): almost all the optima are for  = (45) and, in the four

exceptions (shaded boxes), there is little loss in nevertheless sticking to = (45).

Both Tables 2 and 3 show that the MSEs of HAC and MAC estimators usually

increase when || or || increase.
Tables 4 and 5 report CPs for  using, respectively, the HAC estimator ̄2(

b)
with  chosen by the rule (2.14) and the MAC estimator with various bandwidths

. HAC and MAC estimators gives comparable CPs, which are slightly better

11
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for MAC. CPs approach the nominal 95% level as sample size increases. They are

close to the 95% level except when  → 05 or when  becomes negative. The

bandwidth  =
¥
08

¦
tends to give better CPs for MAC, and this is in line with

the recommendations of Table 3.

Because of the specificity of MC studies to the generating process that is used, it

is recommended in practice that the user tries also bandwidths that are smaller than

the maximum allowable  =
¥
08

¦
which we recommended. This could be used to

check the stability of the estimator as  varies near its (unknown) optimal value.

For example, data that are not generated by a linear process (such as ARIMA)

require smaller bandwidths like
¥
07

¦
; see Dalla et al. (2006).

5 Concluding Remarks

In this paper, the properties of two alternative types of estimators of the long-run

variance have been derived. The first one is an extension of the widely used Bartlett-

kernel HAC estimator, while the second one is the frequency-based MAC estimator

suggested by Robinson (2005). We give guidance on how to choose the bandwidths

in practice, for each estimator. The calculation of both estimators is numerically

straightforward, and allows for the possibility of long-memory or antipersistence in

the data.

Our theoretical results explain that the HAC estimator is sensitive to the se-

lection of the bandwidth , since the order of  minimizing the MSE depends on

the extent of the memory in the series. This problem often complicates bandwidth

selection in applied work. The MAC estimator is more robust to the choice of the

bandwidth, which does not depend on the memory. The simulation study confirms

this analytical finding.

On the other hand, the paper does not provide a theory of deriving optimal

estimators, e.g. under MSE-optimality or closeness to normality of the Studentized

t-ratio for . We have studied two types of estimators without establishing whether

or not they are dominated by others, but the asymptotic normality of the MAC

estimator for  ∈ (−12 12) is an encouraging sign, and so is the good simulation
performance of the two estimators.

12
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Appendix

A Proofs of the theorems, auxiliary lemmas and propo-

sitions

There are four subsections. The first proves the results relating to the theorems of

Section 2, while the second proves the theorem of Section 3. For the first theorem,

we need lemmas that are derived in the third subsection, and propositions that are

obtained in the fourth one. We require these auxiliary results here, but they can

also be of use beyond our paper.

Throughout this section, we take  ∼  to mean that  → 1 as →∞.

A.1 Proof of Theorems 2.1 and 2.2

proof of Theorem 2.1. By definitions (2.1), (2.2), and (2.8)

e2(b) = e2()(1 + (1)) and ̄2(
b) = ̄2()(1 + (1))

Condition (2.8) and asymptotic results derived for ̄2() and ̄
2
() below then allows

us to replace e2(b) and ̄2(
b) by e2() and ̄2() in the statement of the theorem

without altering the expansions, so we will prove the theorem for e2() and ̄2().

Also, observe that

e = Z 

−
ei()d  =

Z 

−
eī()d 0 ≤   

where

() := (2)
−1
¯̄̄ X
=1

ei( − E())
¯̄̄2
 ̄() := (2)

−1
¯̄̄ X
=1

ei( − ̄)
¯̄̄2

are the corresponding periodograms. Therefore,

e2() = Z 

−
()()d (A.1)

and

̄2() =

Z 

−
()̄()d (A.2)

where

() := −1−2
¯̄̄ X
=1

ei
¯̄̄2
= −1−2

µ
sin(2)

sin(2)

¶2
(A.3)

13



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

is the renormalized Fejér kernel.

By (A.1) and (A.2), we can write ̄2() = e2() +, where

 :=

Z 

−
()(̄()− ())d (A.4)

In Lemma A.4, we will show that E(||) ≤ (()1−2 + ()). Hence,

̄2() = e2() +(()
1−2) (A.5)

If −12    14, then ()1−2 = (()12), and we can write (A.5) as

̄2()− 2 = ()
12 +

³Z 

−
()()d− 2

´
+ (()

12)

where

 := ()
12
³e2()− Z 

−
()()d

´


By Proposition A.1, 
−→ N(0 2), where 

2
 is given by (2.11), whereas by Propo-

sition A.2, Z 

−
()()d = 2 + −1−2 + (−1−2)

which proves (2.9) and (2.10).

In the case 14    12, write

e2()− 2 =
¡e2()− E ¡e2()¢¢+E ¡e2()¢− 2 

Proposition A.3 derives the asymptotic bias E
¡e2()¢−2 = −1−2+(−1−2)+

(()1−2) and shows that the stochastic term exhibits the nonstandard asymp-

totic behavior

()1−2
¡e2()− E ¡e2()¢¢ = −2

X
=1

(2
 − E(2

 )) + (1)
−→ 20()

Thus, the term on the left-hand side above can be approximated by the normalized

sum −2
P

=1(
2
 − E(2

 )) of strongly dependent variables 
2
 which has a non-

Gaussian limit distribution. These relations imply (2.12) and (2.13).

Proof of Theorem 2.2. The condition b− = (1 log) allows us to prove

the theorem for e2() and ̄2() instead of e2(b) and ̄2(
b). For  ≥ 0, convergence

(2.15) was shown in Giraitis et al. (2003, Theorem 3.1). For   0,

2̄2 =
X
||

³
1− ||



´e +X
||

³
1− ||



´
 =: 1 + 2

14
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where

e = −1
−||X
=1

( − )(+|| − )

 =
³
1− ||



´
(̄ − )2 − −1(̄ − )(1−|| + ||+1)

 = E(), and  :=
P

=( − ). It suffices to show that

−21
→ 2 and −22

−→ 0 (A.6)

The verification of the relations −22
→ 0 and −2E(1)→ 2 is the same as

in Giraitis et al. (2003).

To prove the convergence (A.6), it remains to check that E((1 − E(1))2) =
(4) We have E((1 − E(1))2) ≤ ||+0, where

 :=
X

|||0|

³
1− ||



´³
1− |

0|


´
−2

−||X
=1

−|0|X
0=1

( 0  0)

( 0  0) := −0−0+||−|0| + −0−|0| −0+||

and

0 := −2
X

|||0|≤

−||X
=1

−|0|X
0=1

|(|| 0 −  0 − + |0|)|

≤ −2
X
||≤

X
=1

∞X
00=−∞

|(|| 0 0)| ≤ −1 = (4)

by the assumption
P∞

=−∞ |(  )| ∞ for   0, −12    0 and  = ().

To work out , write  =  +0 where

 :=
X

|||0|

³
1− ||



´³
1− |

0|


´
−2

∞X
=−∞

−|0|X
0=1

( 0  0)

whereas 0 can be bounded by

|0| ≤ −2
X

|||0|

X
−||  ≤0

X
0=1

|( 0  0)|

We split summation over  into three regions: − || ≤  ≤ ,   , and  ≤ 0. In
the case of − || ≤  ≤ , the order of this part of the sum is straightforward.

15
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Since | | ≤ −1+2 =:  for all  ≥ 1, then for all || ≤ ,   , and

1 ≤ 0 ≤ , we can bound

|−0 | ≤ −0 and |−0+||| ≤ −0 

and, for all || ≤ ,  ≤ 0, and 1 ≤ 0 ≤ , we bound

|−0 | ≤ 0 and |−0−||| ≤ 0+1

Since
P | | ∞ and

P
 ∞, then

|0| ≤ −2
³X
||

X
=−||

∞X
0=−∞

|0 |
∞X

0=−∞
|0 |+

X
|||0|

∞X
0=1

0

∞X
=−∞

||
´

≤ 2−2 = (4)

because −12    0 and  = ().

To estimate , denote  :=
P∞

=−∞ + = 2
R 
− e

i2()d. Then

0 = −1
X

|||0|

³
1− ||



´³
1− |

0|


´³
||−|0| + ||+|0|

´


It remains to show that

0 = (4) (A.7)

Note that

|0| (A.8)

≤ −1
¯̄̄Z 

−

X
|||0|

³
1− ||



´³
1− |

0|


´
(ei(||−|

0|) + ei(||+|
0|))2()d

¯̄̄

≤ −1
Z 

−

³
|

X
=1

ei(1− 


)|2 + 1

´
2()d

Summation by parts yields
P

=1 e
i(1− ) = −1

P−1
=1

P
=1 e

i, where¯̄̄̄
¯

X
=1

ei

¯̄̄̄
¯ =

¯̄̄̄
¯sin(2)sin(2)

¯̄̄̄
¯ ≤ 

||
1 + || ≤



||
for all  ≥ 1 and || ≤ . Set  = max(4−1 + ) where   0 will be chosen

sufficiently small. Then 2() ≤ ||−4 ≤ ||− and

|0| ≤ −1
³
−1

−1X
=1

Z 

−
2(1 + ||)−2||−d+ 1

´

≤ −1
³
−1

−1X
=1

||1+
Z ∞

−∞
(1 + ||)−2||−d+ 1

´
≤ (() + −1) = (4)

for −12    0, when  = () and   0 is sufficiently small.

16
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A.2 Proof of Theorem 3.1

We show first that

b()− 0 = −120 +(()2−12) + (
−12) (A.9)

where


→ N(0 1) (A.10)

Write b = 0
−1

X
=1

−10 2 () = 0

³
1 + 2

´


where

1 := −1
X
=1

³
−10 2 ()− 2()

´
 2 := −1

X
=1

2()

and () := (2)
−1P

=1 e
i.

Under the assumptions of the theorem, (4.8) of Robinson (1995b) implies that

1 = (
−12) +(()2−12) (A.11)

Note that E(2) = 1. Write

12(2 − E(2)) = 12−1
X

=1

(2 − 1) +
X
=2



where  := 
P−1

=1 − and  := 2
−12−1

P
=1 cos(). Note that

12−1
X

=1

(2 − 1) = 12−1(
12) = (1)

On the other hand, the variables {}=2 form a sequence of martingale differences

and, using same argument as checking conditions (4.12) and (4.13) of the martin-

gale central limit theorem in Robinson (1995b), it follows that
P

=2 
→ N(0 1).

Therefore

12(2 − E(2)) −→ N(0 1)

which, together with (A.11), proves (A.9).

Next, we prove (3.2). By (3.4), b −  = (
−12
 ). The mean value theorem

implies that b2(b) = b2() + (A.12)

17
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where

 := (b− )



b2(e) e ∈ (b )

and

|e− | ≤ |b− | = (1 log) (A.13)

We have that




b2(e) = 


[(e)b(e)] = 0(e)b(e) + (e) 


b(e)

Note that

(e) → () 0(e) → 0()

whereas




b(e) = 2−1 X

=1

2


 log() () = 2
³
log()1 +2

´
where

1 := −1
X
=1

2


 () 2 := −1
X
=1

2


 log() ()

By (A.13) and Lemma 6.2 of Dalla et al. (2006) it follows that

1
→ 0 2

→ 0

Z 1

0

log d = −0 b(e) −→ 0

Thus,

 = (b− )[0()0 + 2 log()()0 − 2()0](1 + (1)) (A.14)

= 2(b− ) log()
2
(1 + (1))

Equation (A.12), together with (A.9) and (A.14), implies (3.2).

A.3 Auxiliary lemmas

Set

() := 2()() (A.15)

where () is an even real function and  is the spectral density of {}. Defining

() :=

X
=1

ei = ei(+1)2
sin(2)

sin(2)
 (A.16)

18
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we have

|()| ≤ (1 + ||)−1 || ≤ 32 (A.17)

Set  := ()
 where   0 is a small number. Then,

 = ()
1− → 0 (A.18)

Lemma A.1. Let  ∈ (−12 14) and () :=
R 
− ( − )()d. Under the

assumptions of Theorem 2.1,

() ≤ (0) (A.19)

(0) ∼ 4220

Z ∞

−∞

µ
sin(2)

2

¶4
||−4d →∞ (A.20)

and, for  satisfying (A.18),

sup
||≤

|()− (0)| = () (A.21)

Proof of Lemma A.1. By Cauchy’s inequality,

() ≤
³Z 

−
2(− )d

´12³Z 

−
2()d

´12
=

Z 

−
2()d = (0)

since (+ 2) = (), proving (A.19).

Using the asymptotic approximation () = 0||−2(1 + (1)) together with

(A.15) and (A.3), we get as →∞

(0) =

Z 

−
2()d = 4

2

Z 

−
−2−4

µ
sin(2)

sin(2)

¶4
2()d

∼ 4220

Z ∞

−∞

µ
sin(2)

2

¶4
||−4d

proving (A.20).

By (A.15) and (A.3),

() = 2()() = 2
−1−2

µ
sin(2)

sin(2)

¶2
||−2()

Let  maximize 
−1|()− (0)| in the set { : || ≤ }. Then,

sup
||≤

−1|()− (0)| ≤
Z 

−
−1|( − )− (−)|()d

≤
Z 

−
−2|( − −1)− (−−1)|(−1)d

=

Z
2||≤||≤

+

Z
0≤||2||

=: 1 + 2

19
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To prove (A.21), it remains show that

 → 0 →∞  = 1 2 (A.22)

We first show (A.22) for  = 1. Observe that, if 2|| ≤ ||, then

| + | ≤ ||+ || ≤ 2|| | + | ≥ ||− || ≥ ||2

This, together with (1.4), (A.15), and (A.17), implies the bound

|−1( − −1)| ≤ (1 + ||)−2||−2 =:()

which holds for all || ∈ [2|| ]. Moreover, for any fixed , as →∞,

−1( − −1)→ 2

µ
sin(2)

2

¶2
0||−2 ≤ ()

since sin2(2)(2)2 ≤ (1 + ||)−2. Therefore, estimating −1|( − −1)| ≤
(), −1|(−−1)| ≤(), and −1|(−1)| ≤(), it follows that

−2|( − −1)− (−−1)|(−1) ≤ (())2

and, for any fixed ,

−2|( − −1)− (−−1)|(−1)→ 0 →∞

Since ()2 is an integrable function, the theorem of majorating convergence im-

plies that 1 → 0.

To work out 2, note that in 2 we integrate over || ≤ 2|| ≤ 2 =:
 → 0, as  → ∞. By (A.17), −1|( + )| ≤  and by (1.4), −2( +

) ≤ |+ |−2. Therefore,

2 ≤ 

Z
0≤||≤2||

(|+ |−4 + ||−4)d ≤ 

Z
0≤||≤2

||−4d→ 0

as →∞, since 4  1 and  → 0.

Lemma A.2. Let  ∈ (14 12) and

() :=

Z 

−
(− )()d (A.23)

where () is periodically extended to R. Then, under the assumptions of Theorem

2.1,

sup
||≤

|()−(0)| = (()1−2) + (−1−2) (A.24)

and

|()−(0)| ≤ (||)1−2 || ≤  (A.25)
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Proof of Lemma A.2. First, we show (A.24). Let || ≤ , where  →∞
is the same as in (A.18). Then,

()−(0) = −1−2
Z 

−
((− )− (−))|()|2d (A.26)

=

Z
0≤||2

+

Z
2≤||≤1

+

Z
1≤||≤

=: 1 + 2 + 3

To work out 1, note that if ||  2, then || ≤ 2 = (1) and therefore

|()|2 =

µ
sin(2)

sin(2)

¶2
=
(2)2(1 +()2)2

(2)2(1 +()2)2

= 2(1 +()2) = 2(1 +(()
2))

for all  ∈ [− ]. Since || ≤  and () ≤ ||−2, we obtain

|1| = 1−2
¯̄̄Z 2

−2
((− )− ())

³
1 +(()

2)
´
d
¯̄̄

≤ 1−2
h
2

Z 2+||

2−||
()d+(()

2)

Z 2+||

−2−||
()d

i
≤ 1−2

h
||()−2 +(()

2)

Z 3

−3
||−2d

i
≤ ()1−2− + ()1−23−2 ()2 = (()1−2)

To work out 2, observe that if  ∈ [2 1] and || ≤ , then | − | ≥
||− || ≥ ||2, as →∞, and therefore

|(− )− (−)| (A.27)

≤
¯̄̄
|− |−2 − ||−2

¯̄̄
(− ) + ||−2|(− )− ()| ≤ || ||−2−1

since, by the mean value theorem,¯̄̄
|− |−2 − ||−2

¯̄̄
≤ || sup

|−|≤≤||
||−2−1 ≤ ||||−2−1

and |d()d| ≤  by the assumption of Theorem 2.1(b). Using

|()|2 ≤ 2 (A.28)

and || ≤ , we obtain that, for || ≤ ,

|2| ≤ 1−2||
Z 1



||−2−1d ≤ ()1−2− = (()1−2)
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Finally, for 1 ≤ || ≤ , (A.17) implies that |()|2 ≤ , and therefore

|3| ≤ −1−2
Z
1≤||≤

|(− )− ()|d = (−1−2)

for all || ≤ → 0 as →∞. Thus,

sup
||≤

|()−(0)| = (()1−2) + (−1−2)

to complete proof of (A.24).

Now we show (A.25). Applying in (A.26) the result (A.28) and, for 2|| ≤ ||,
using the result (A.27), we obtain

|()−(0)| ≤ 1−2
Z 

−
|(− )− (−)|d

≤ 1−2
³Z

2||≤||≤
||||−2−1d+

Z
||≤2||

(|− |−2 + ||−2)d
´

≤ (||)1−2

to prove (A.25).

Lemma A.3. Let −1    1. Then for any   0,  ∈ R and  ∈ Z,

() :=

Z 

−
||− |()(+ )|d ≤ 1+(1 + ||)−1−min{0}+ (A.29)

Proof of Lemma A.3. It suffices to show that (A.29) holds when   0 is

sufficiently small. Write

() :=

Z
||≤2

+

Z
2||≤

=: 1() + 2()

Using (A.17), we obtain that

1() ≤ 

Z 2

−2
||− 

1 + ||


1 + |(+ )|d (A.30)

≤ 1+
Z ∞

−∞
||− 1

1 + ||
1

1 + |+ |d

First, we prove that (A.29) holds for || ≥ 1.
a) Let  ∈ [0 1) and choose   0 such that   1− 2. Then, by (A.30),

1() ≤ 1+
Z ∞

−∞
||−1+2|+ |−1+2d

≤ 1+||−1+
Z ∞

−∞
||−1+2|+ 1|−1+2d ≤ 1+(1 + ||)−1+
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which proves (A.29).

b) Let  ∈ (−1 0) and choose   0 such that  + 1−   0. Then, by (A.30),

1() ≤ 1+
Z ∞

−∞
||−−1|+ |−1+d

≤ 1+ ||−1−+
Z ∞

−∞
||−−1|+ 1|−1+d ≤ 1+(1 + ||)−1−+

which implies (A.29) .

If || ≤ 1, then applying Cauchy’s inequality in (A.30) we obtain that

1() ≤ 1+
³Z ∞

−∞
||−(1 + ||)−2d

´12³Z ∞

−∞
||−(1 + |+ |)−2d

´12
≤ 1+ ≤ 1+(1 + ||)−1−min{0}+

proving (A.29).

If 2 ≤ || ≤ , then ||− |()| ≤ , by (A.17), and therefore

2() ≤ 

Z 

−
|(+ )|d ≤ 

Z 2

−2
|()|d ≤  log

Observing that

1+(1 + ||)−1−min{0}+ ≥ 1+(1 + ||)−1−min{0}+ ≥ 

this implies that 2() satisfies (A.29).

Lemma A.4. Under the assumptions of Theorem 2.1,  :=
R 
− ()(̄() −

())d satisfies

E(||) ≤ [()1−2 + ()] (A.31)

Proof of Lemma A.4. Denote

() := (2)
−12

X
=1

ei( − )

Then,

() = |() + (− ̄)(2)−12()|2

= () + (− ̄)(2)−12[()(−) + (−)()]

+ (− ̄)2(2)−1|()|2

Therefore,

|| ≤ 
³
|− ̄|−12||+ (− ̄)2−1

Z 

−
()|()|2d

´
 (A.32)
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where

 :=

Z 

−
()()(−)d

By (1.2), E((− ̄)2) ≤ −1+2 We shall show below that

E
¡||2¢ ≤ 

⎧⎨⎩2−42 if 0 ≤   12

2−2 if − 12    0
(A.33)

To work out the last term in (A.32), observe that, since () ≤ 1−2, then

−1
Z 

−
()|()|2d ≤ −11−2

Z 

−
|()|2d ≤ 1−2

because Z 

−
|()|2d = 2

Therefore,

E(||) ≤ 
¡
E((− ̄)2)

¢12
−12

¡
E
¡||2¢¢12 +E((− ̄)2)(1−2)

≤ −1+
¡
E
¡||2¢¢12 +(()1−2)

Applying (A.33), we see that for  ≥ 0, E(||) ≤ ()1−2; whereas for   0,

E(||) ≤ (() + ()1−2) ≤ (); proving (A.31).

It remains to show (A.33). Note that

E((1)(−2)) = (2)−1
X

=1

ei(1−2)
Z 

−
ei(−)()d

= (2)−1
Z 

−
(1 + )(−2 − )()d

Thus,

E
¡||2¢ = (2)−1

Z 

−

³Z 

−

Z 

−
(1)(−1)(2)(−2) (A.34)

×(1 + )(−2 − )d1d2

´
()d

= (2)−1
Z 

−

¯̄̄Z 

−
()(−)(+ )d

¯̄̄2
()d

First, let 0 ≤   12. Note that () ≤ 1−2 for  ≥ 0, and () ≤ ||−2
by (1.4). Therefore, applying to (A.34) result (A.29) with  = 0 and 0    12,

we obtain that

E
¡||2¢ ≤ 2−4

Z 

−
(1 + ||)−2+2||−2d

24



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

≤ 2−42
Z ∞

−∞
(1 + ||)−2+2||−2d ≤ 2−42

proving (A.33).

Second, let −12    0. Then,

() ≤ −1−2
¯̄̄̄
sin(2)



¯̄̄̄2+2 ¯̄̄̄
sin(2)



¯̄̄̄−2
≤ ||2 (A.35)

since | sin(2)| ≤  || ≤  Applying to (A.34) result (A.29) with  = −2
and   0 such that 2 + 2− 2  1, we obtain that

E
¡||2¢ ≤ 1−42

Z 

−
(1 + ||)−2−2+2||−2d ≤ −22

to complete the proof of (A.33).

A.4 Propositions

Proposition A.1. Let the assumptions of Theorem 2.1 be satisfied and −12   

14. Then,

()12
³Z 

−
()()d−

Z 

−
()()d

´
−→ N(0 2) (A.36)

where 2 is given by (2.11).

Proof of Proposition A.1. Define the ×  matrix E := (−)=1 with

entries  :=
R 
− e

i()d and  ∈ Z, and denote its Euclidean norm by ||E|| :=
(
P

=1 
2
−)12. If

|()| ≤ ||2− || ≤  (A.37)

where 0 ≤   14,  ≥ 0 and, as →∞,


max{0} log
||E|| → 0 (A.38)

and Z 

−
()d = (−12||E||) (A.39)

where () is defined by (A.15), then Corollary 1.2 of Bhansali, Giraitis and

Kokoszka (2004) implies that

√
2

||E||
³Z 

−
()()d−

Z 

−
()()d

´
→ N(0 1) (A.40)
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Therefore, to verify convergence (A.36), it suffices to check that conditions (A.37)—

(A.39) are satisfied in the case of the function (), defined in equation (A.3).

Suppose that the asymptotic approximation

||E||2 ∼  83 20

Z ∞

−∞

µ
sin(2)

2

¶4
||−4d =  222 (A.41)

is valid for  ∈ (−12 14). We shall prove this at the end of the proposition, but
we first show that it implies the required (A.36).

Assume that  ≥ 0. Then

() ≤ 1−2 =:  (A.42)

and therefore () has property (A.37) with  = 1−2 and  = 2. Then


max{0} log
||E|| ≤ 

1−22 log
()12

≤ ()12−2 log→ 0

since   14 and  satisfies (2.3). Thus (A.38) holds. On the other hand, from the

definitions of , () and assumption (1.4), it follows thatZ 

−
|()|d ≤ 

Z 

−
−1−2

µ
sin(2)

sin(2)

¶2
||−2d (A.43)

≤ 

Z ∞

−∞

µ
sin(2)

2

¶2
||−2d ≤ 

which, together with (A.41), implies (A.39). Hence assumptions (A.37)—(A.39) are

satisfied and (A.40), together with (A.41), implies (A.36).

Assume now that −12    0. Then, (A.35) shows that (A.37) holds with

 =  and  = 0. To check (A.38), observe that


max{0} log
||E|| ≤ 

 log

()12
≤ ()12 log→ 0

by (A.41) and (2.3), whereas (A.39) follows from (A.43) and (A.41). Hence, the

assumptions (A.37)—(A.39) are satisfied, and (A.36) follows from (A.40) and (A.41).

It remains to show (A.41). Write

||E||2 =

X
=1

2− =
Z 

−

Z 

−

¯̄̄ X
=1

ei(+)
¯̄̄2
()()dd

=

Z 

−

¯̄̄ X
=1

ei
¯̄̄2
()d =

Z 

−

µ
sin(2)

sin(2)

¶2
()d
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where

() =

Z 

−
(− )()d (A.44)

and () is periodically extended to R. Then

||E||2 =
Z 

−

¯̄̄ X
=1

ei
¯̄̄2
(0)d+

Z 

−

¯̄̄ X
=1

ei
¯̄̄2
(()− (0))d =: 1 + 2

By (A.20),

1 = 2(0) ∼ 16 320
Z ∞

0

µ
sin(2)

2

¶4
−4d

Finally, we need to show that

2 = () (A.45)

By (A.18) and (A.21),Z
||≤

¯̄̄ X
=1

ei
¯̄̄2
|()− (0)|d = ()

Z
||≤

¯̄̄ X
=1

ei
¯̄̄2
d = ()

whereas by (A.19)—(A.20), |()− (0)| ≤ 2(0) = (), and thereforeZ
≤||≤

¯̄̄ X
=1

ei
¯̄̄2
|()− (0)|d = ()

since Z
≤||≤

µ
sin(2)

sin(2)

¶2
d ≤ 

Z
≤||≤∞

µ
sin(2)

2

¶2
d = ()

because  →∞. This completes the proof (A.45).

Proposition A.2. Assume that the spectral density  has the property

() = 0||−2(1 +(2)) as → 0

with ||  12. Then, as →∞,Z 

−
()()d = 2 + −1−2 + (−1−2) (A.46)

where  is given in (2.6).

proof of Proposition A.2. Set

1() =
0||−2
(2)2

 2() =
()

sin2(2)
− 1()
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Then, we can write

 :=

Z 

−
()()d = −1−2

Z 

−
sin2(2)

()

sin2(2)
d

= −1−2
Z 

−
sin2(2)(1() + 2())d = −1−2(1 − 22 + 3)

where

1 =

Z ∞

−∞
sin2(2)1()d = 1+2

Z ∞

−∞
sin2(2)

0||−2
(2)2

d = 1+22 

and

2 =

Z ∞



sin2(2)1()d 3 =

Z 

−
sin2(2)2()d

Since sin2(2) = (1− cos())2 and |1| is an integrable function in [∞), then

2 =

Z ∞



sin2(2)1()d = (12)

Z ∞



1()d− (12)
Z ∞



cos()1()d

→ (12)

Z ∞



1()d  →∞

Bearing in mind that by assumption (1.4), () = 0||−2(1 + (2)) and

sin() = 1 + (2), as  → 0, it follows that |2()| ≤ ||−2 for all || ≤ .

Since ||−2 is an integrable function in [− ], then

3 =

Z 

−
sin2(2)2()d = (12)

Z 

−
1()d− (12)

Z 

−
cos()2()d

→ (12)

Z 

−
2()d  →∞

Estimates of    = 1 2 3 imply (A.46).

Proposition A.3. Let the assumptions of Theorem 2.1 be satisfied and 14   

12. Define

 := 1−2
Z 

−
()d (A.47)

Then, as →∞,
var(e2()− ) = (()2−4) (A.48)

()1−2( − E())
−→ 20() (A.49)

where () is given by (2.7), and

E
¡e2()¢ = 2 + −1−2 + (()1−2 + −1−2) (A.50)

where  is given by (2.6).
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Proof of Proposition A.3. Proof of (A.48). Set

(1 2) :=

X
=1

(− )−1 −2 

where  are the coefficients of the linear process ,

() :=

Z 

−
ei()d () = |()|2−2 − 1

and () is defined in (A.16). For simplicity, let  = 0  ≤ −1. Then,

e2()−  =

Z 

−
(()− 1−2)()d = 1−2(2)−1

X
12∈Z

(1 2)12 

Note that if

 =
X

12∈Z
(1 2)

¡
12 − E(12)

¢
is a quadratic form with real coefficients (1 2) where {} is a sequence of i.i.d.
random variables with zero mean and finite fourth moment, then

var() ≤ 
X

12∈Z
2(1 2) (A.51)

Therefore, by (A.51),

var(e2()− ) ≤ 2−4−2
X

12∈Z
|(1 2)|2 =: 

Since  ,  ∈ Z, are square summable by Assumption L, there exists functionb() || ≤ , such that  =
R 
−e

ib()d,  ∈ Z. Therefore,
(1 2) =

Z 

−

Z 

−
e−i11e−i12

×
h
ei1ei2b(1)b(2)Z 

−
()( + 1)(− + 2)d

i
d1d2

for 1 2 ∈ Z. By Parseval’s equality,

 = 2−4−2
Z 

−

Z 

−
d1d2|b(1)|2|b(2)|2

×
¯̄̄̄ Z 

−
d ()(1 + )(2 − )

¯̄̄̄2


Set 1 := {|| ≤ −1} and 2 := {−1  || ≤ }, where   0 is such that

−1 → 0. Such  exists because  satisfies (2.3). Since |b()|2 = (22)() ≤
||−2 we obtain that

 ≤ 2−4−2(1 + 2) (A.52)
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where

 :=

Z 

−

Z 

−
d1d2|1|−2|2|−2

¯̄̄̄ Z


d ()(1+)(2−)
¯̄̄̄2
  = 1 2

We show that

 = (4) →∞  = 1 2 (A.53)

which, together with (A.52), proves (A.48). To work out 1, note that if  ∈ 1,

then || ≤ −1 → 0, and therefore

sup
∈1

() = sup
∈1

¯̄̄µ
sin(2)

 sin(2)

¶2
− 1
¯̄̄
= (1)

Applying (A.29) of Lemma A.3, we see that¯̄̄̄ Z
1

d ()(1 + )(2 − )

¯̄̄̄2
= (1)

¯̄̄̄ Z
1

d|(1 + )(2 − )|
¯̄̄̄2

= (1)2(1 + |(1 + 2)|)−2+20 

with some 0  0  14. Then,

1 = (1)

Z 

−

Z 

−
|1|−2|2|−22(1 + |(1 + 2)|)−2+20d1d2

= (1)4
Z ∞

−∞

Z ∞

−∞
|1|−2|2|−2(1 + |1 + 2|)−2+20d1d2 = (4)

since the last integral is finite when 4  1.

To work out 2, recall (A.16) and write

2 =

Z
2

Z
2

d1d2(1)(2)

¯̄̄̄ Z 

−
d ||−2(1 + )(2 − )

¯̄̄̄2


Since () ≤ , we can bound 2 ≤ (1 + 2), where

 =

Z
2

Z
2

d1d2

¯̄̄̄ Z


d ||−2(1 + )(2 − )

¯̄̄̄2
  = 1 2

and 1 := {2−1 ≤ || ≤ }, 2 := {|| ≤ 2−1}.
Now,

1 ≤ 

Z 

−

Z 

−
d1d2

¯̄̄̄ Z
1

d ||−2(1 + )(2 − )

¯̄̄̄2
≤ 

Z
1

Z
1

|1|−2|2|−2|(1 + 2)|2d1d2

≤ 
³Z

2−1≤|1||2|≤1
|1|−2|2|−2|(1 + 2)|2d1d2
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+

Z
1≤|1|≤

Z 

−
|2|−2|(1 + 2)|2d1d2

´
=: (0 + 00)

Using the bound (A.17), we have

0 ≤ 

Z
2−1≤|1||2|≤1

|1|−2|2|−22(1 + |1 + 2|)−2d1d2

≤ 4
Z
2≤|1||2|∞

|1|−2|2|−2(1 + |1 + 2|)−2d1d2 = (4)

since  →∞ and the last integral is finite when 4  1.

On the other hand,

00 ≤ 

Z
0≤|2|≤

|2|−2d2
Z
0≤||≤2

|()|2d = () = (4)

since 4  1. Thus 1 = (4).

It remains to show that 2 = (4). By (A.17),

2 ≤ 

Z
−1≤|1||2|≤

d1d2

¯̄̄̄ Z
||≤2−1

d ||−2(1 + |1 + |)−1(1 + |2 − |)−1
¯̄̄̄2

≤ 4
Z
≤|1||2|∞

d1d2

¯̄̄̄ Z
||≤2

d ||−2(1 + |1 + |)−1(1 + |2 − |)−1
¯̄̄̄2

=: 4

It suffices to show that  → 0. As →∞, in the integral above we can apply the
bound | ± | ≥ ||− || ≥ ||2,  = 1 2. ThereforeZ

||≤2
d ||−2(1 + |1 + |)−1(1 + |2 + |)−1

≤ (1 + |1|)−12−2(1 + |2|)−12−2

×
Z
||≤2

d ||−2
³
(1 + |1 + |)−1+ + (1 + |2 + |)−1+

´
≤ (1 + |1|)−12−2(1 + |2|)−12−2

for 1 2. Thus,

 ≤ 

Z
≤|1||2|≤∞

(1 + |1|)−1−(1 + |2|)−1−d1d2 → 0

to complete the proof of (A.53) and (A.48).

Proof of (A.49). By (A.47),  = ()
1−2−2

P
=1

2
  Therefore,

()1−2( − E()) = −2
X
=1

(2
 − E

¡
2


¢
)
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By Theorem 2.1 in Giraitis, Taqqu and Terrin (1998),

−2
X
=1

(2
 − E

¡
2


¢
)

−→ 0

Z 00

R2
Ψ0(1 2)|1|−|2|−(d1)(d2)

with

Ψ0(1 2) :=

Z
R

ei(1+) − 1
i(1 + )

ei(2−) − 1
i(1 − )

d = 2
ei(1+2) − 1
i(1 + 2)



Hence,

()1−2( − E())
−→ 20()

to prove (A.49).

Proof of (A.50). By (2.1),

E
¡e2()¢ =

Z 

−
()E(())d = (2)

−1
Z 

−

Z 

−
()()|(+ )|2dd

= (2)−1
Z 

−

µ
sin(2)

sin(2)

¶2
()d

where () is defined in (A.23). Then,

E
¡e2()¢ = (2)−1

Z 

−
|()|2(0)d

+(2)−1
Z 

−
|()|2(()−(0))d =: 1 + 2

By Proposition A.2,

1 = (0) = 2 + −1−2 + (−1−2)

To prove (A.50), it remains to show that

2 = (−1−2) + (()1−2) (A.54)

Set  := ()
 where   0 is a small number satisfying (A.18). By (A.24),

−1
Z
||≤

|()|2|()−(0)|d

= [(()1−2) + (−1−2)]−1
Z
||≤

|()|2d = [(()1−2) + (−1−2)]

whereas by (A.25), |()−(0)| ≤ (||)1−2, and therefore

−1
Z
≤||≤

¯̄̄ X
=1

ei
¯̄̄2
|()−(0)|d
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≤ 1−2−1
Z
≤||≤

µ
sin(2)

2

¶2
||1−2d

≤ ()1−2
Z
≤||≤∞

µ
sin(2)

2

¶2
||1−2d = (()1−2)

since  →∞, to prove (A.54).
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Table 1: MSE of HAC estimator ̄2(
b).

  = 250  = 500  = 1000

 = −5  = 0  = 5  = −5  = 0  = 5  = −5  = 0  = 5

 =
¥
02

¦
= 3  =

¥
02

¦
= 3  =

¥
02

¦
= 3

 = −04 6.138 4.992 2.642 6.154 5.033 1.983 6.047 4.865 1.469

 = −02 0.363 0.140 0.422 0.379 0.126 0.740 0.395 0.105 0.954

 = 0 0.149 0.051 1.208 0.158 0.039 1.657 0.162 0.020 2.000

 = 02 0.188 0.053 3.192 0.176 0.037 3.387 0.175 0.033 4.285

 = 04 1.477 0.305 11.284 1.348 0.214 14.489 1.275 0.124 16.188

 =
¥
03

¦
= 5  =

¥
03

¦
= 6  =

¥
03

¦
= 7

 = −04 5.749 4.319 2.048 5.442 4.044 1.082 5.244 3.656 0.722

 = −02 0.358 0.186 0.723 0.357 0.146 1.783 0.391 0.111 2.595

 = 0 0.176 0.080 1.173 0.200 0.061 2.001 0.210 0.056 2.784

 = 02 0.225 0.061 2.990 0.243 0.051 2.636 0.254 0.031 3.586

 = 04 1.681 0.493 7.439 1.669 0.397 9.628 1.625 0.320 12.018

 =
¥
04

¦
= 9  =

¥
04

¦
= 12  =

¥
04

¦
= 15

 = −04 5.472 3.881 2.029 5.211 3.356 1.372 5.030 2.872 1.715

 = −02 0.388 0.234 0.978 0.402 0.176 2.194 0.432 0.154 4.053

 = 0 0.200 0.109 0.908 0.236 0.089 2.006 0.252 0.070 2.929

 = 02 0.285 0.076 2.702 0.293 0.053 1.902 0.296 0.039 2.632

 = 04 1.914 0.726 6.205 1.906 0.664 6.506 1.883 0.560 7.444

 =
¥
05

¦
= 15  =

¥
05

¦
= 22  =

¥
05

¦
= 31

 = −04 5.298 3.547 2.023 5.187 2.909 1.806 5.043 2.376 2.962

 = −02 0.424 0.373 0.910 0.436 0.293 2.652 0.477 0.215 3.740

 = 0 0.230 0.167 0.853 0.256 0.118 1.620 0.269 0.069 2.702

 = 02 0.307 0.116 2.716 0.334 0.075 1.410 0.334 0.052 1.754

 = 04 2.067 1.007 3.617 2.096 0.892 4.817 2.094 0.767 5.556

 =
¥
06

¦
= 27  =

¥
06

¦
= 41  =

¥
06

¦
= 63

 = −04 5.207 3.223 2.593 5.017 2.775 2.316 4.919 2.225 4.341

 = −02 0.436 0.368 0.995 0.467 0.308 1.883 0.515 0.302 3.589

 = 0 0.268 0.209 0.513 0.302 0.128 1.164 0.294 0.107 1.991

 = 02 0.383 0.155 1.774 0.373 0.134 0.842 0.384 0.093 1.068

 = 04 2.333 1.379 3.205 2.362 1.236 3.138 2.324 1.185 3.806

 =
¥
07

¦
= 47  =

¥
07

¦
= 77  =

¥
07

¦
= 125

 = −04 5.113 3.228 2.958 5.022 2.512 3.170 4.845 1.945 6.103

 = −02 0.511 0.463 1.077 0.528 0.499 1.764 0.543 0.314 3.416

 = 0 0.311 0.328 0.535 0.336 0.180 0.844 0.343 0.132 1.552

 = 02 0.452 0.245 1.704 0.427 0.223 0.646 0.452 0.175 0.786

 = 04 2.598 1.762 2.038 2.593 1.672 2.255 2.532 1.614 2.755

 =
¥
08

¦
= 82  =

¥
08

¦
= 144  =

¥
08

¦
= 251

 = −04 4.986 3.072 4.400 4.847 2.687 4.829 4.796 2.102 8.090

 = −02 0.632 0.857 0.954 0.581 0.569 2.606 0.588 0.402 3.847

 = 0 0.406 0.434 0.394 0.423 0.307 0.748 0.415 0.254 1.221

 = 02 0.548 0.373 1.063 0.559 0.338 0.440 0.543 0.314 0.570

 = 04 2.941 2.229 2.006 2.878 2.264 2.290 2.913 2.153 1.976
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Table 2: MSE of HAC estimator ̄2(
b) when  is chosen according to (2.14).

  = 250  = 500  = 1000

 = −5  = 0  = 5  = −5  = 0  = 5  = −5  = 0  = 5

 = −04 5.028 3.101 2.178 4.864 2.516 3.300 4.721 2.046 5.409

 = −02 0.397 0.489 1.133 0.457 0.306 2.068 0.439 0.258 3.808

 = 0 0.189 0.122 1.236 0.219 0.117 2.064 0.242 0.051 2.926

 = 02 0.211 0.065 3.495 0.224 0.049 3.231 0.241 0.029 4.093

 = 04 1.384 0.219 10.275 1.296 0.164 11.480 1.218 0.101 12.527

Table 3: MSE of MAC estimator b2(b).
  = 250  = 500  = 1000

 = −5  = 0  = 5  = −5  = 0  = 5  = −5  = 0  = 5

 =
¥
05

¦
= 15  =

¥
05

¦
= 22  =

¥
05

¦
= 31

 = −04 5.097 2.695 6.667 5.055 2.052 16.202 4.861 1.878 25.473

 = −02 0.650 1.952 2.289 0.557 1.201 6.749 0.548 0.531 5.767

 = 0 0.256 0.249 1.948 0.260 0.158 2.895 0.272 0.081 3.988

 = 02 0.235 0.101 7.623 0.262 0.059 5.787 0.277 0.035 5.144

 = 04 1.127 0.317 32.052 1.110 0.249 35.765 1.089 0.198 36.869

 =
¥
06

¦
= 27  =

¥
06

¦
= 41  =

¥
06

¦
= 63

 = −04 4.814 2.446 7.032 4.632 2.264 15.770 4.641 1.892 28.134

 = −02 0.619 1.182 2.626 0.519 0.656 4.186 0.552 0.494 6.278

 = 0 0.260 0.416 1.781 0.276 0.134 2.866 0.271 0.112 3.973

 = 02 0.246 0.077 6.269 0.260 0.059 5.616 0.280 0.034 5.269

 = 04 1.141 0.264 22.630 1.195 0.231 26.383 1.134 0.155 31.099

 =
¥
07

¦
= 47  =

¥
07

¦
= 77  =

¥
07

¦
= 125

 = −04 4.215 1.987 5.260 4.460 1.913 9.449 4.365 1.668 19.986

 = −02 0.497 0.580 1.174 0.507 0.894 2.453 0.510 0.262 3.939

 = 0 0.204 0.201 1.032 0.241 0.081 1.644 0.263 0.051 2.605

 = 02 0.203 0.057 4.138 0.236 0.027 3.575 0.266 0.018 3.827

 = 04 1.124 0.259 9.757 1.157 0.194 14.549 1.136 0.130 19.078

 =
¥
08

¦
= 82  =

¥
08

¦
= 144  =

¥
08

¦
= 251

 = −04 2.896 1.603 3.176 3.138 1.475 3.044 3.454 1.344 5.342

 = −02 0.316 0.773 0.361 0.329 0.211 0.900 0.364 0.111 1.133

 = 0 0.102 0.065 0.327 0.150 0.072 0.517 0.186 0.021 0.809

 = 02 0.099 0.075 2.133 0.140 0.018 1.682 0.185 0.010 1.381

 = 04 0.696 0.264 3.188 0.769 0.235 4.667 0.840 0.201 6.192

37



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 4: Coverage probabilities for  based on the t-ratio (4.1) and the HAC esti-

mator ̄2(
b) with  chosen according to (2.14).

  = 250  = 500  = 1000

 = −5  = 0  = 5  = −5  = 0  = 5  = −5  = 0  = 5

 = −04 0.984 0.956 0.972 0.970 0.958 0.942 0.984 0.948 0.950

 = −02 0.916 0.912 0.966 0.932 0.918 0.958 0.928 0.922 0.956

 = 0 0.890 0.880 0.964 0.914 0.896 0.962 0.922 0.930 0.958

 = 02 0.904 0.888 0.968 0.890 0.878 0.970 0.926 0.910 0.970

 = 04 0.830 0.802 0.862 0.822 0.830 0.870 0.884 0.870 0.898

Table 5: Coverage probabilities for  based on the t-ratio (4.1) and the MAC esti-

mator b2(b).
  = 250  = 500  = 1000

 = −5  = 0  = 5  = −5  = 0  = 5  = −5  = 0  = 5

 =
¥
05

¦
= 15  =

¥
05

¦
= 22  =

¥
05

¦
= 31

 = −04 0.972 0.984 0.988 0.964 0.984 0.990 0.966 0.970 0.992

 = −02 0.924 0.922 0.980 0.948 0.948 0.968 0.936 0.938 0.968

 = 0 0.866 0.890 0.970 0.884 0.916 0.974 0.892 0.936 0.964

 = 02 0.866 0.896 0.960 0.884 0.924 0.982 0.908 0.910 0.968

 = 04 0.792 0.862 0.904 0.822 0.858 0.934 0.888 0.886 0.932

 =
¥
06

¦
= 27  =

¥
06

¦
= 41  =

¥
06

¦
= 63

 = −04 0.962 0.978 0.986 0.968 0.984 0.992 0.962 0.986 0.980

 = −02 0.912 0.940 0.970 0.924 0.948 0.966 0.922 0.926 0.960

 = 0 0.878 0.898 0.970 0.894 0.912 0.962 0.912 0.922 0.972

 = 02 0.908 0.892 0.968 0.886 0.912 0.974 0.914 0.918 0.984

 = 04 0.786 0.838 0.916 0.838 0.856 0.934 0.844 0.868 0.932

 =
¥
07

¦
= 47  =

¥
07

¦
= 77  =

¥
07

¦
= 125

 = −04 0.970 0.984 0.986 0.982 0.972 0.982 0.976 0.982 0.972

 = −02 0.938 0.928 0.978 0.942 0.940 0.948 0.912 0.934 0.970

 = 0 0.880 0.904 0.960 0.894 0.930 0.966 0.916 0.924 0.942

 = 02 0.866 0.870 0.958 0.880 0.896 0.958 0.896 0.940 0.944

 = 04 0.800 0.806 0.850 0.876 0.870 0.920 0.864 0.866 0.916

 =
¥
08

¦
= 82  =

¥
08

¦
= 144  =

¥
08

¦
= 251

 = −04 0.998 0.976 0.962 0.990 0.984 0.948 0.996 0.974 0.962

 = −02 0.948 0.910 0.922 0.936 0.910 0.934 0.942 0.928 0.902

 = 0 0.890 0.906 0.950 0.916 0.890 0.922 0.936 0.924 0.936

 = 02 0.874 0.878 0.920 0.918 0.922 0.920 0.938 0.920 0.942

 = 04 0.866 0.850 0.792 0.902 0.862 0.828 0.912 0.884 0.852
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