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A LÉVY PROCESS FOR THE GNIG PROBABILITY LAW

WITH 2ND ORDER STOCHASTIC VOLATILITY
AND APPLICATIONS TO OPTION PRICING

ANDERS ERIKSSON†

Abstract. Here we derive the Lévy characteristic triplet for the GNIG probability law.
This characterizes the corresponding Lévy process. In addition we derive equivalent mar-
tingale measures with which to price simple put and call options. This is done under two
different equivalent martingale measures. We also present a multivariate Lévy process where
the marginal probability distribution follows a GNIG Lévy process. The main contribution
is, however, a stochastic process which is characterized by autocorrelation in moments equal
and higher than two, here a multivariate specification is provided as well. The main tool
for achieving this is to add an integrated Feller square root process to the dynamics of the
second moment in a time-deformed Browninan motion. Applications to option pricing are
also considered, and a brief discussion is held on the topic of estimation of the suggested
process.
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Key words and phrases. Lévy process, stochastic volatility, derivative pricing, multivariate Lévy process.
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1. Introduction

Since the outset the research agenda for financial modeling has been characterized by the

usage of the Gaussian probability measure as a first probabilistic building block. One ex-

ample from the field of option pricing is the celebrated article by Black and Scholes (1973),

which can be claimed to have started the area of derivative pricing. An example from fi-

nancial time series analysis is the autoregressive heteroscedastic process, or ARCH by Engle

(1982), which was generalized later in Bollerslev (1986). This process is the fundament of

the research agenda dealing with models with time varying higher moments. Both of these

basic but path breaking models were subsequently improved so that the stochastic properties

more closely resemble the observed financial time series; that is the assumption regarding

Gaussianity is relaxed. For instance, option pricing models with empirically more valid pro-

cesses can be found in Madan and Seneta (1990), Heston (1993) and Carr, Geman, Madan,

and Yor (2004). As far as the literature on financial time series is concerned, examples are

provided by Bollerslev (1987), Andersson (2001) and Eriksson (2005). The features common

to all these extensions are that they allow for either excess kurtosis or skewness, or both.

In this paper we present an option pricing model based on a probability measure that can be

interpreted as an extension of the normal inverse Gaussian probability measure, in particular

it enables us to gain some flexibility in the probability measure by adding another scale pa-

rameter. We choose to call this the generalized normal inverse Gaussian probability measure

(GNIG) to avoid any confusion. This probability measure corresponds to a stochastic jump

process of the Lévy type. This is not the final port of call for this paper since there are over-

whelming evidence that a Lévy process is only a partial solution to the problem of finding

a stochastic process that mimics the behavior of the financial market, since, by definition

it lacks any autocorrelation. Therefore we introduce a stochastic process where autocor-

relation is allowed in the second moments (and higher). The process is defined along the

lines that the so called theory of bi-power variation assumes, Barndorff-Nielsen and Shepard

(2004c), which means that, like these authors, we assume a process for the log-price that

is a sum of a jump process and a continuous stochastic volatility process. However, while

Barndorff-Nielsen and Shepard (2004c) for bi-power variation theory assume a jump process

with large and rare jumps for technical reasons and our suggested jump process assume an

infinite number of jumps in a finite interval for further discussion, see Section 7. Altogether,

the main contribution to the research agenda where bi-power variation is concerned is that

it reveals a method with which to separate the continuous and the jump part of quadratic

variation.
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2 ANDERS ERIKSSON†

In this context, an important question to ask is: Has the exact formulation of the stochastic

process any influence on the option prices, or is this purely a theoretical exercise? The

answer has not yet been answered fully, but some recent empirical evidence suggests that

the answer is: Sometimes. In Schoutens, Simons, and Tistaert (2003) the authors calibrate

a wide variety of option pricing models, mostly of the Lévy process with stochastic volatility

type as presented in Carr, Geman, Madan, and Yor (2004). The pricing differences with

respect to ordinary vanilla options are negligible. However, the differences when pricing

exotic path dependent options is huge, which indicates that in such cases the specification

of the stochastic process is of great importance in such cases. This suggests that when, the

payoff function gets more complicated, the importance of the exact specification of the price

process becomes more important.

This article could be interpreted as an attempt to include results from various areas of

financial modeling. In particular, we consider the findings from financial time series analysis

regarding the autocorrelation pattern for financial returns when we state the stochastic

process for which we intend to price options. That is, we assume that autocorrelation is only

relevant for higher moments (larger than or equal to two). The main contribution consists

of the specification of Lévy processes with stochastic volatility without any autocorrelation

spilling over into the mean dynamics. We also consider a multivariate version of this process.

Applications to the area of option pricing are suggested. A minor contribution is the Lévy

characterization of the GNIG probability measure.

The outline of the paper is as follows: In Section 2 we sets out the basic probabilistic

preliminaries in the paper. In Section 3 the definitions and theorems relevant to the theory

of Lévy processes are presented. In Section 4 we perform the Lévy characterization of the

GNIG stochastic process. Section 5 is devoted to option pricing under the GNIG Lévy

processes, where we suggest two different equivalent martingale measures. This section

also contains some basic concepts of option pricing in general. Next, Section 6 contains a

multivariate extension of the process suggested earlier and an application to option pricing

is considered. In Section 7 we introduce stochastic volatility into the GNIG Lévy processes

within the multivariate setting. The Fourier transforms are calculated for the processes

obtained. A discussion regarding this type of stochastic volatility in Lévy processes is also

provided. Section 8 contains concluding remarks and ideas concerning future work.
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2. Probability spaces, filtration and stochastic processes

We need to make formal statements in the context of probability theory to characterize the

process implied by the generalized normal inverse Gaussian probability law and to apply it

to finance. We begin by defining the general probability space and then defining a stochastic

process in this probability space. Variants of the definitions below can be found in books

like Feller (1966), Karatzas and Shreve (1991), Billingsley (1995) and Protter (2004).

Definition 2.1 (General probability space). Suppose a general probability space (Ω,F ,P),

where Ω is the set of all possible outcomes and F is the sigma field associated with the

probability space containing all relevant sets. P is the probability measure that generates

the probability that such a relevant set in F will occur. Any F set A for which P(A) has

the measure one is support for P.

A sigma field is defined as a family of subsets of Ω closed under any countable collection

of set operations. For a more detailed discussion about the construction of sigma fields, see

Billingsley (1995) pp 30-32. In this paper we also assume that the probability space for

our continuous time process is P-complete. Because otherwise the characterization of the

sample path becomes a problem, see e.g Billingsley (1995) pp 504-508. (For a definition of

P-completeness, see below.)

Definition 2.2 (Filtration). Define a general filtration F = (Ft)t∈T associated with the

above probability space, where T = {0 ≤ t ≤ T : t ∈ [0,∞)}, and where Ft is characterized

by being an increasing sequence of sub sigma fields of F .

Fs ⊂ Ft ⊂ FT ⊂ F for 0 ≤ s < t ≤ T

We assume that the following conditions to apply to the sigma field F .

(1) F is complete (see definition below)

(2) F0 contains all P-null sets of Ω

(3) Ft =
⋂

s>tFs or, alternatively, F is right- continuous.

Definition 2.3 (Complete probability space). If, for each B ⊂ A ∈ F such that P (A) = 0

we have B ∈ F , P is complete.

For more insight on complete probability spaces, see Billingsley (1995) pp 44-45.

Remark 2.1 (P-completion). A a procedure called P-completion. exists. That is if we start

with an incomplete probability space (Ω, F̃ ,P), we can construct a complete probability space
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4 ANDERS ERIKSSON†

(Ω,F ,P) by setting F = σ(F̃ ∪Q)

Q = {B ⊂ Ω : B ⊂ A for some A ∈ F̃ , with P (A) = 0}
where σ(G)denotes the smallest sigma field on Ω that contains G

For greater insight into the above procedure, see Feller (1966) pp 123-124.

Definition 2.4 (Stochastic process). Consider a stochastic process Y = (Yt) defined on the

filtered probability space denoted by the following pentet (Ω,F ,P,F,T). Recall that each

Y (t) is F -adapted if Y (t) is Ft measurable for each t ∈ T. Further, we define the process

Y as F -predictable that is Y (t) is Ft− measurable, which means that Y (t) is known strictly

before time t.

3. Basics of Lévy processes

We need to define infinitely divisible distributions to define a Lévy process. The reason for

this is that, within this class of probability measures, we construct our Lévy process.

Definition 3.1 (Infinitely divisible distribution). A probability distribution F is infinitely

divisible if, for every n. a distribution Fn exists such that F = F n∗
n , where ∗ denotes the

convolution of n Fn random variables.

Another way to express the concept of infinitely divisible distributions is by saying that F

is infinitely divisible if and only if for each n the distribution can be represented as the

distribution of the sum

Ψn = φ1,n + ... + φn,n

of n independent random variables with a common distribution Fn. It is important to

understand that the random variables, φ1,n can be viewed as serving the purpose to simplify

the notation and make things more intuitive. For a fixed n, φ1,n, ..., φn,n are assumed to be

mutually independent, but the variables φj,m and φk,n with m 6= n need not be defined in

the same probability space. In other words, the joint probability measure does not need to

exist.

Definition 3.2 (Lévy processes). The adapted stochastic process

Y (t), t ∈ [0,∞], Y (0) = 0

is a Lévy process if and only if
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(i): Y (t) has increments which are independent of the past, that is Y (t) − Y (s) is

independent of Fs for 0 ≤ s < t < ∞.

(ii): Y (t) has stationary increment, that is Y (t) − Y (s) has the same distribution as

Y (t− s).

One way of describing a Lévy process is to decompose it into two separate parts where

one part is Brownian motion and the other is a mixture of compensated Poisson processes,

see Theorems 40, 41 and 42 on pages 30 and 31 in Protter (2004). This leads the way to

a formal characterization of the Lévy process using the Fourier transform: the celebrated

Lévy-Khintchine formula.

Theorem 3.1 (Lévy-Khintchine formula). Consider ζ ∈ Rd, a positive semi-definite qua-

dratic form Q on Rd and a measure Λ on Rd\{0} such that
∫
Rd min(1, |y|2)Λ(dy) < ∞.

Further, for every u ∈ R define κ(u) = ln E[e−iuY(t )] where

κ(u) = i〈ζ,u〉+
1

2
Q(u)−

∫

Rd

(exp(i〈u,x〉)− 1− i〈u,x〉I|y|<1)Λ(dy)

Then a unique probability measure P exists on Ω under which Y is a Lévy process and the

jump process of Y, ∆Y, is a Poisson point process with characteristic measure Λ. < ·, · >

denotes the standard scalar product on a Euclidean space.

Proof: See Bertoin (1996) pp 13-15.

Remark 3.1 (Univariate Lévy-Khintchine formula). Consider ζ ∈ R , ν ≥ 0 and Λ is a

measure on R\{0} such that
∫
R(1 ∧ y2)Λ(dy) < ∞, κ(u) = ln E[e−iuY(t )],

κ(u) = iζu +
1

2
νu2 −

∫

R
(exp(iuy)− 1− iuyI|y|<1)Λ(dy)

Then a unique probability measure P exists on Ω under which Y is a Lévy process. The jump

process of Y , ∆Y , is a Poisson point process with characteristic measure Λ.

From the above formula we can state what is called the Lévy characteristic triplet. That is,

[ζ, ν, Λ(dy)], where Λ is called the Lévy density of the process if the Lévy measure is of the

form Λ(dy) = Λ(y)dy, i.e. if it is differentiable. The Lévy density has the same mathematical

properties as a standard probability density except for the fact that it can be a divergent

integral and must have no atom at zero. For more on the definition of the characteristic
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6 ANDERS ERIKSSON†

measure in a Lévy process, see Section B in Chapter 6.1 on Poisson random measures in

Karatzas and Shreve (1991).

4. The Lévy characteristic triplet of the GNIG-law

According to Eriksson and Forsberg (2005), we can make an extension of the normal inverse

Gaussian (NIG) distribution (see Barndorff-Nielsen (1978) and Barndorff-Nielsen (1997)) by

adding a parameter that scales the variance in the derivation of the probability measure.

The density function obtained is given in the following proposition.

Definition 4.1 (GNIG (λ, σ, δ, γ, µ) probability law).

(4.1) f(y; λ, σ, δ, γ, µ) =
δ
√

(δ2+(y−µ)2)
(γ2+λ2)

K1(
√

(δ2+(y−µ)2)
σ2

(γ2+λ2)
σ2 ) exp(δγ + λ(y−µ)

σ2 )
√

2πσ2

where y, µ, λ, σ ∈ R and δ, γ ∈ R+. K1(.) denotes the modified Bessel function of third

order and index one.

Remark 4.1 (The Fourier transform GNIG law). The Fourier transform for the GNIG law

is given by:

(4.2) ϕ(s) = exp(δ(γ − (γ2 + σ2s2 − 2iλs)
1
2 ) + µis)

The GNIG law can be described as a normal mean-variance mixing law:

L((µ + λV + σ
√

V Z)|V ) = N(λV + µ, σ2V ) where L(V ) = IG(δ, γ) and L(Z) = N(0, 1)

Denote an inverse Gaussian Lévy process by V (t) with a cumulant generating function

(CGF)1

(4.3) κV (t)(s) = tδ(γ −
√

(γ2 − 2is))

Now can we define the Lévy process corresponding to the GNIG probability law. This is

done using classical subordination of Brownian motion.

Definition 4.2 (GNIG Lévy process).

Y (t) = µ + λV (t) + σW (V (t))

1Here we define the cumulant generating function (CGF) as the natural logarithm of the Fourier transform.
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where W(t)is an standard Brownian motion and V (t) is an inverse Gaussian Lévy process,

µ, λ and σ ∈ R

The Fourier transform for the GNIG Lévy process with µ set to zero, can be expressed in

the following way:

(4.4) ϕY (t)(u) = exp{κV (t)((−i)f(u))} where f(u) = (
1

2
σ2u2 − iλu)

In order to define the process above, we derive the Lévy characteristic triplet. This is the

standard way to characterize this kind of process.

Theorem 4.1 (Lévy characteristic triplet of the GNIG-law). A Lévy characteristic triplet

is said to be generated by a GNIG probability law if it is stated as:

[ζ, ν, Λ]

where

ζ =
δ
√

γ2 + λ2

σ2

π

∫ 1

0

sinh(
λy

σ2
)K1(|y|

√
(
γ2

σ2
+

λ2

σ4
)))dy(4.5)

ν = 0(4.6)

Λ =
e

λy

σ2 δ
√

γ2 + λ2

σ2

π|y| K1(|y|
√

(
γ2

σ2
+

λ2

σ4
))(4.7)

Proof: See Appendix A

Compare the above result with the similar results for the normal inverse Gaussian probability

law, where the Lévy measure, ΛNIG, see Barndorff-Nielsen (1997) is:

ΛNIG =
δγ exp(βy)

π|y| K1(γ|y|)

According to the Lévy decomposition theorem (see Theorem 42 page 31 in Protter (2004)),

the GNIG Levy-process can be expressed as:
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8 ANDERS ERIKSSON†

Y (t) = tζ +

∫

|y|<1

ypt(dy)− t

∫

|y|<1

yΛdy +

∫

|y|≥1

ypt(y)dy

= tζ +

∫

|y|<1

ypt(dy)− E{
∫

|y|<1

ypt(dy)

︸ ︷︷ ︸
Z(1)

}+
∑

s<0≤t

∆Ys1{|∆Ys|>1}

︸ ︷︷ ︸
Z(2)

We define p
{y<a}
t =

∫
{y<a} pt(dy) as a Poisson process with parameter Λ(y) where y < a.

Λ(dy) is defined as the Lévy measure, see Remark 3.1. Z(1) can be interpreted as a jump

martingale Lévy process consisting of a compensated Poisson process and Z(2) is a com-

pounded Poisson process. The processes Z(1) and Z(2) are independent of each other since

they are defined for different Borel sets: {B1 : |y| ≤ 1} {B2 : |y| > 1} , see p. 29 Theorem

39 of Protter (2004). This coincides with the well known general result that a Lévy process

can be expressed as the sum of three independent Lévy processes, as explained on p. 15 in

Bertoin (1996).

5. Option pricing under the GNIG Lévy process

In this section we derive two equivalent (or risk neutral) martingale measures that correspond

to the GNIG Lévy process. The two measures in question are the so called Esscher measure,

originally used in actuarial sciences, and the mean corrected martingale measure. These two

measures can be regarded as standard tools for obtaining an equivalent martingale measure.

We denote the physical measure as P and the corresponding risk neutral measure as Q.

5.1. Risk neutral valuation and market incompleteness. We begin with a definition

of an equivalent martingale measure.

Definition 5.1 (equivalent martingale measure). A probability measure Q defined on (Ω,F)

is an equivalent martingale measure if

• Q is equivalent to P , that is, they have the same null sets.

• The discounted price process S̃(t) = exp (−rt)S(t) is a martingale under Q.

To change our martingale measure the way suggested above implies some profound deep

assumptions for the behavior of the agents on the market. In order to understand this central

but abstract construction, it helps to observe the following: Risk aversion is equivalent to

paying more attention to unpleasant states, that is, more unpleasant states are given an
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increased probability of occurring. For example, people who are afraid of flying and therefore

feel that there is a high probability that planes will crash are not irrational. They are just

expressing their risk neutral probabilities. Thus, when we price options with a risk neutral

measure, we can think of the agents on the market being risk neutral but with another set

of probabilities than the one under the physical measure.

The question of existence of an equivalent martingale measure is strongly related to the

absence of arbitrage on the market, while the issue of uniqueness has to do with whether

the market is complete or not. One way of addressing the issue of market completeness is

in the terms of the topology used to define the market (i.e. the space of cash flows) and

the uniqueness of the state price densities. This can be a rather complicated and technical

issue as is evident in Jarrow, Jin, and Madan (1999). However, we will use a less technical

definition.

Definition 5.2 (Market completeness). A market is said to be complete if, for all integrable

contingent claims, an admissible self-financing strategy that replicates the claim exists. Al-

ternatively, the price of any derivative will be uniquely determined by the an absence of

arbitrage requirement. In probabilistic terms, this means that, if the martingale measure

has the predictable representation property (the measure is unique), then the market in

question is complete.

For more on the predictable representation property of a martingale ,see pp 178-189 in

Protter (2004). This property is delicate and exceptional. Examples of martingales with this

property are Brownian motion and the compensated Poisson process. It is important to be

aware that the uniqueness of the martingale measure implies the predictable representation

property, which implies completeness. The opposite is not true because there are complete

markets without any unique equivalent martingale measure.

5.1.1. The Esscher measure. One way of obtaining an equivalent martingale measure when

the market is incomplete is to use the Esscher transform of the physical probability measure

P to the risk neutral probability measure Q. This particular measure is called the Esscher

measure, and it is denoted QE. The procedure obtain this measure is as follows.

Let Y be a random variable and % ∈ R \ {0} where E(e%Y ) exists. Construct a new positive

random variable
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(5.1) Ỹ =
e%Y

E(e%Y )

Ỹ can be used as a Radon-Nikodym derivative which to define a new probability measure

containing the same null sets as the old measure. Thus one obtains two measures that are

equivalent. Define a measurable function ε. The expectation with respect to the new measure

for the measurable function of the random variable Y , ε(Y ) is:

(5.2) EỸ (ε(Y ); %) = EY (ε(Y )Ỹ )

We derive a risk neutral probability measure with the above results, together with Radon-

Nikodym Theorem, see Royden (1968) pp 276. Let pt(y) denote the probability density

function under the physical measure. Then, for some % (defined above), and using Ỹ as

Radon Nikodym derivative, we can define a new probability law as follows:

(5.3) p̃t(y; %) =
exp(%y)pt(y)∫

R exp(%x)pt(x)dx

The above result can be used to derive a risk neutral probability measure for the GNIG law.

We start out by assuming that we have a continuous dividend yield q and a continuously

compounded short interest rate r. The parameter % has to be chosen so that the discounted

price process S(t) = S(0) exp(−(r − q)t + Y (t)) is a martingale, i.e.,

S(0) = exp(−(r − q)t)ES̃(t)(S(t); %).

From this relation it can be shown (see Section 5 in Gerber and Shiu (1996)) that, in order

for the martingale property of the measure to be fulfilled, the following relation must hold

(5.4) exp(r − q) =
ϕ(−i(% + 1))

ϕ(−i%)

where ϕ denotes the Fourier transform of the P martingale measure. The solution to 5.4 is

denoted %∗. This parameter is used to define the equivalent martingale measure Q.

Assume that the price process is defined as the exponential of the process Y (t), i.e., S(t) =

exp(Y (t)), and that E(exp(%Y (t))) = ϕ(%)t and exp(%Y (t))/E(exp(%Y (t))) = S(t)%/E(S(t)%).

This makes it possible to state the following lemma from Gerber and Shiu (1996):
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Lemma 5.1 (Factorization formula). The expected value of the product of the stock price

process raised to the power k, S(t)k, and a measurable function ε(S(t)) can be expressed as:

E(S(t)kε(S(t)); %) = E(S(t)k; %)E(ε(S(t)); % + k)

Proof: See Gerber and Shiu (1996), p 188.

Continue by using the Esscher measure to derive an equivalent martingale measure for the

GNIG process.

Proposition 5.1 (QE measure for the GNIG Lévy process). The density function, fQ
E
(y),

of the equivalent martingale measure QE (when t=1) can be expressed as:

fQ
E

(y) =
δ
√

(δ2+(y−µ)2)
(γ2+λ2)

K1(
√

(δ2+(y−µ)2)
σ2

(γ2+λ2)
σ2 ) exp(h(y; δ, γ, σ, λ, %∗))

√
2πσ

where y, µ, λ ∈ R and δ, γ σ ∈ R+. K1(.) denotes the modified Bessel function of third order

and index one.

Moreover h(y; δ, γ, σ, λ, %∗) = δ(γ2−σ2%∗2−2λ%∗)
1
2 +y(%∗+ λ

σ2 )−µ(%∗+ λ
σ2 ) and %∗ is defined

to be the solution with respect to % of the following equation:

(r − q) = δ([γ2 − (σ%)2 − 2λ%]
1
2 − [γ2 − (σ(% + 1))2 − 2λ(% + 1)]

1
2 )

Hence %∗ is a function of µ, λ, δ, γ σ, r and q

Proof : See Appendix B

In an attempt to gain an insight the characteristics of the QE measure and to make the

difference between the P and QE measures more clear, we provide the expression for the

cumulant generating function for the QE measure below.

Remark 5.1 (CGF for the QE measure). The log of the Fourier transform (CGF) for the

QE measure described in Proposition 5.1 can be expressed as:

κQ
E

(s; δ, γ, σ, λ, µ, %∗) = χ + δ(γ − (γ2 − σ2(is + %∗)2 − 2λ(is + %∗))
1
2 ) + µ(is + %∗)

where χ is a constant that is not dependent on s.

Proof : See Appendix C

Page 13 of 39

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

12 ANDERS ERIKSSON†

5.1.2. Mean correction of the exponentional of a Lévy process. An alternative way of cal-

culating an equivalent martingale measure is to use a location parameter, µ̃. Denote this

measure Qµ̃. For the discounted exponential of the GNIG Lévy process a mean correction

martingale measure is considered. This procedure will fulfill the conditions specified in Def-

inition 5.1 so that we obtain a risk neutral martingale measure although this measure is

different from the one obtained from the Esscher measure. Stochastic volatility Lévy pro-

cesses are examples of occasions when the Qµ̃ measure has been used to obtain an equivalent

martingale measure, see Carr, Geman, Madan, and Yor (2004).

The effect that adding a location parameter has on the the Lévy characteristic triplet is to

change the drift term. That is, ζ̃ = ζ + µ̃, while all other components remain unchanged.

As in the case of the Esscher measure, continuous dividend yield q and a continuously

compounded short rate r are assumed.

Proposition 5.2 (Qµ̃ measure for the GNIG Lévy process). When the P measure is defined

as a GNIG (λ, σ, δ, γ, µ), then the Qµ̃ measure is: (t=1)

GNIG(λ, σ, δ, γ, µ̃ + µ)

where µ̃ = −µ + (r − q)− δ(γ − (γ2 − σ2 − 2λ)
1
2 ).

Proof: see Appendix D

5.2. Option pricing under the QE and Qµ̃ martingale measures. To use the calculated

equivalent martingale measures to price options, a theorem which establishes how we can use

such a measure to price options is needed. This theorem is called the fundamental theorem

of asset pricing, see for instance Delbaen and Schachermayer (1994). It is important to

understand that the implied risk neutral stock price process is the exponential of the above

discussed process for the log price (returns).

Theorem 5.1 (Fundamental theorem of asset pricing).

Υ(t) = EQ[exp(−r(T − t)g({S(u) 0 ≤ u ≤ T})|Ft]

Denote the arbitrage-free price of the derivative at time t ∈ [0, T ] Υ(t). exp(−r(T − t))

is called the discount factor. The expectation is calculated with respect to the equivalent

martingale measure Q. Further F = {Ft 0 ≤ t ≤ T} is defined as the natural filtration of

S = {S(t) 0 ≤ t ≤ T}. The function g(·) is called the payoff function and specifies which

type of derivative that is priced.
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We clarify the application of the above theorem by using it to price a European call option.

This is done via the derived density function for the QE equivalent martingale measure.

Example 5.1 (Pricing a European call option by means of the QE measure). To price a

European call option with a strike price K at time t = 0 put f = max(S(T ) − K, 0) =

max(S0 exp(Y (T )−K, 0). Using Lemma 5.1, the following is derived:

ΥC(T ) = EQE [exp(−rT ) max(S(T )−K, 0)|Ft]

= exp(−rT )

∫ ∞

0

fQE(y, T ; %∗) max(S(0) exp(Y (T )−K)dy

= exp(−qT )S(0)

∫ ∞

K̃

fQE(y, T ; %∗ + 1)dy −K exp(−rT )

∫ ∞

K̃

fQE(y, T ; %∗))dy(5.5)

where K̃ = ln K − ln S(0) and ΥC(T ) denotes the price of a call option with strike price K.

It is, of course, also possible to use the fundamental theorem of asset pricing to price a

derivative under the Qµ̃ measure.

6. A multivariate stochastic process with GNIG Lévy process marginals

So far we have dealt with the univariate stochastic processes. Now we define a multivariate

process. The basic idea is the same as when deriving a multivariate probability measure with

a one-dimensional marginal for the GNIG law, see Eriksson and Forsberg (2005). In short,

one assign a common subordination to each marginal. The random clock in the marginal

Brownian motion consists of two parts: one part that is unique to the marginal in question

and another part that is the same for all marginals. The sum then generates the actual

subordination for the Brownian motion.

Definition 6.1 (Multivariate process). Define a multivariate process

Y(t) = [Y1(t), ..., Yk(t), ...Ym(t)] where the Yk(t) process is defined as:

Yk(t) = {µz + µk}+ {ωkVz(t) + τkWz(Vz(t))}+ {ωkVk(t) + τkWk(Vk(t))}
= {µz + µk}+ ωk{Vz(t) + Vk(t)}+ τk{Wz(Vz(t)) + Wk(Vk(t))}

and L(Vz(t)) = IG(tδz, γ), L(Vk(t)) = IG(tδk, γ), L(Wk,z(t)) = N(0, t) and τk, ωk ∈ R.

That is, Vz(t) and Vk(t) are inverse Gaussian Lévy processes. Wz(t) and Wk(t) are standard

Brownian motions. All processes are independent.

Define the probability measure for the marginal process to show that it is of Lévy type. It

will be in the GNIG class of probability measures.
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Proposition 6.1 (A probability measure for the marginal process). The probability measure

for the marginal process is

L(Yk(t)) = GNIG(ωk, τk, t(δz + δk), γ, µz + µk).

Hence the marginal process is a well defined Lévy process with the corresponding Lévy char-

acteristic triplet when t=1.

[ζk, νk, Λk]

where

ζk =
(δz + δk)

√
γ2 + ωk

2

τ2
k

π

∫ 1

0

sinh(
ωkyk

τ 2
k

)K1(yk

√
(
γ2

τ 2
k

+
ω2

k

τ 4
k

))dyk(6.1)

νk = 0(6.2)

Λk =
e

ωky

τ2
k (δz + δk)

√
γ2 + ωk

2

τ2
k

|yk|π K1(|yk|
√

(
γ2

τ 2
k

+
ω2

k

τ 4
k

))(6.3)

Proof: The proof follows directly from the definition of the GNIG Lévy process and from

Theorem 4.1.

We will continue to characterize this process by deriving the multivariate Fourier transform

of the process Y(t).

Proposition 6.2 (A multivariate Fourier transform). If the location parameters µz and µk

∀k, are set to equal zero, then the Fourier transform for the multivariate stochastic process

Y(t) is:

ϕY(t)(s) = exp{t[δz(γ − (γ2 − 2is′ω + (s′τ )2)
1
2 ) +

m∑

k=1

δk(γ − (γ2 − 2iskωk + s2
kτ

2
k )

1
2 )]}

where s = [s1, ..., sk, ..., sm]′, τ = [τ1, ..., τk, ..., τm]′ and ω = [ω1, ..., ωk, ..., ωm]′

Proof: See Appendix E

Example 6.1 (Coefficient of correlation, bivariate case). Using the Fourier transform in

Proposition 6.2 it can be shown that the coefficient of correlation for the bivariate case,

here denoted ρ
Y(t)
[Y1(t),Y2(t)] has the following expression.

ρ
Y(t)
[Y1(t),Y2(t)] =

δz(ω1ω2 + τ2τ1γ
2)

{(ω2
2 + τ 2

2 γ2)(δz + δ1)(ω2
1 + τ 2

1 γ2)(δz + δ2)} 1
2
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One conclusion from Example 6.1 is that the sign of the correlation between two marginal

processes is determined by the signs of the products τ1τ2γ
2 and ω1ω2 respectively. That is,

if |ω1ω2| ¿ τ1τ2γ
2, then in order to obtain a negatively correlated processes, τ1 and τ2 must

have opposite signs.

Further, a remark addressing the issue of whether the proposed multivariate process is a

Lévy process can be formulated.

Remark 6.1. The process Y(t) with marginals corresponding to those in Proposition 6.1 is

an m-dimensional Lévy process.

Proof : See Appendix F

A trajectory for a bivariate GNIG Lévy process is illustrated below. With the marginal prob-

ability laws L(Y1(t)) = GNIG(− 1
300

, 37
20

, t(1+ 2
5
), 20, 0) and L(Y2(t)) = GNIG(− 1

350
, 17

20
, t(1+

1
3
), 20, 0) and the Corr[Y1(t), Y2(t)] = 0.732.

[Insert figure 1 somewhere here]

In addition, a figure showing the trajectories for the inverse Gaussian subordinations that

make up the bivariate process is illustrated below .

[Insert figure 2 somewhere here]

6.1. Option pricing in a multivariate Lévy market. It can often be problematic to try

to squeeze an economic interpretation out of a probabilistic model. However, a brief financial

meaning can be given to the probabilistic specification of this Lévy market. Assume that

each marginal process is the process for a financial asset, that is, the log of a stock price.

The price process then consists of two parts, a common factor that influences all assets in

the Lévy market and one part that only has an impact on the asset in question. This partly

coincides with the so called \financial factor pricing models’, see, for instance, Chapter 9

in Cochrane (2001) and Chapter 6 in Campbell, Lo, and MacKinlay (1997). The common

subordination can be interpreted as being a common volatility factor applied to all assets in

the market. That is, information that has an impact on all assets. The subordination that

is unique to the marginal is information unique to the particular asset, in the literature on

factor models this is often referred to as \idiosyncratic’ risk or noise, see, for example, page

72 in Campbell, Lo, and MacKinlay (1997).

The most straightforward way to obtain an equivalent martingale measure for a single asset

in a Lévy market is to adopt the mean correction strategy. This gives an expression for the
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equivalent martingale measure for each marginal, yielding the risk neutral (under the Qµ̃

measure) multivariate Lévy market.

Remark 6.2 (Qµ̃ measure for the Y(t) process). If a multivariate process Ỹ(t) has the

following marginal process, then the process is said to be an equivalent martingale measure

of the multivariate process, Y(t), from Definition 6.1.

L(Ỹk(t)) = GNIG(ωk, τk, t(δz + δk), γ, µ̃k + (µk + µz))

where µ̃k = −(µk + µz) + (r − q)− (δk + δz){γ − (γ2 − τ 2
k − 2ωk)

1
2}

Proof : The proof follows directly from Proposition 5.2

6.1.1. Option pricing using the Fourier transform of the log stock price process. The more

complicated the process we assume for our stock-price process, the more unlikely it is to

have an expression for the probability density function. However it is often the case that

the Fourier transform for the density exists. The question of whether it is possible to price

an option with the help the Fourier transform naturally arises, and the answer is that it is

possible. The following theorem is attribute to Carr and Madan (1998):

Theorem 6.1 (Inversion of the modified call option price).

ΥC
K,T =

exp(−ε) ln K

π

∫ +∞

0

exp (−is ln Kh(s))ds

where

h(s) =
exp(−rT )E[exp(i(s− (ε + 1)i)Y (t))]

ε2 + ε− s2 + i(2ε + 1)s

and where Y (t) is the log of the risk neutral stock price process. Further ε ⊆ R+ r denotes

the short rate, T is the exercise time for the option and K is the strike price.

The parameter ε can be considered to be a damping coefficient in the transform of the

modified call price, and needs to be determined in relation to the Fourier transform for the

log stock price process, see page 69 in Carr and Madan (1998). The fast Fourier transform

can be used to compute the option prices.

7. GNIG process with Stochastic Volatility

In this section when we use the term stochastic volatility process we mean an autoregressive

stochastic volatility process. In a naive we may describe this as σ2
t+1 = σ2

t + ξt, where {ξt}
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is an i.i.d. innovation sequence. Observe that there are always two ways of constructing

such a process. You can either choose a probability measure for ξt, which then implies

the distribution of σ2
t or the other way around, assume a probability measure for the σ2

t

variable, implying the distribution for ξt. For more on the concept and definition of stochastic

volatility, see the excellent article by Ghysels, Harvey, and Renault (1996).

Up to now we have been neglecting the issue of stochastic volatility when modeling financial

data in an empirically valid manner. There is substantial evidence that financial data in

general, and stock returns in particular, exhibit both jumps and stochastic volatility. Two

very good empirical investigations into this matter can be found in Andersen, Benzoni, and

Lund (2002) and Chernov and Ghysels (2000). These papers conclude that both jumps, for

instance using a Lévy subordination and stochastic volatility (SV), for instance with a Feller

square root process (see below). Further, there are some empirical findings that suggest that

autocorrelation is something that has an impact on moments higher than or equal to two

in the asset return probability law Eriksson (2005). At the very least the implied return

process should not contain autocorrelation in the mean dynamics. This is to be interpreted

as a conjecture. These things we will take into consideration when introducing SV in a Lévy

process.

7.1. A Lévy process with Stochastic Volatility. To introduce SV into the Lévy process,

the autocorrelated integrated Feller square root (IFSR) process is used. There are several

advantages in using this process, for instance, both the Fourier transform of the process and

the expression for the conditional probability measure are known. The integrated inverse

Gaussian or the Gamma distribution Ornstein-Uhlenbeck processes would make excellent

alternative candidates, see, for instance Barndorff-Nielsen, Nicolato, and Shephard (2002).

Definition 7.1 (Feller square root process). The Feller square root process is the unique

strong solution (see Karatzas and Shreve (1991) Chapter 5.2) of the following stochastic

differential equation

(7.1) dν(t) = (ψν(t) + ξ)dt + ς
√

ν(t)dW (t)

where ψ ∈ R, ξ, ς ∈ R+ and W (t) is the standard Brownian motion.

Hence the integrated Feller square root process can be defined as:

(7.2) ζ(t) =

∫ t

0

ν(s)ds
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Remark 7.1 (Fourier transform IFSR process).

(7.3) ϕζ(t)(s) =
exp (−ψξ

ς2
+ 2isν0

g(s) coth(
tg(s)

2
)−ψ

)

{cosh[ t
2
g(s)]− ψ

g(s)
sinh[ t

2
g(s)]} 2ξ

ς

where g(s) =
√

ψ2 − 2ς2is

Proof: See Dufresne (2001) or Chapter 9 in Elliott and Kopp (1999).

This process has been used previously to obtain SV in continuous time processes. In the

Heston model (see Heston (1993)) the main topic, was the pricing of options when the

volatility of the asset followed the dynamics as described in Equation 7.1. In an excellent

paper, Carr, Geman, Madan, and Yor (2004), stochastic volatility is introduced to a real

valued Lévy process by making time in the Lévy process stochastic in accordance with

Equation 7.2. However, one drawback of using this type of subordination approach is that

the autocorrelated stochastic volatility process influences the expected value of the implied

return process, which results in autocorrelation in the mean dynamics of the return process.

Believing that autocorrelation in the returns process is only observed in higher moments, we

should try to specify a process where stochastic volatility only has an impact on moments

higher than or equal to two. This type of process we call 2nd order stochastic volatility,

i.e. a process for the log price which implies a process for the log returns without any

autocorrelation in the mean dynamics. An attempt to define such a process follows.

Definition 7.2 (GNIG Lévy process with 2nd order Stochastic Volatility).

Ỹ (t) = λV (t) + W (σ2V (t) + ζ(t))

where W (t) is a standard Brownian motion and V (t) is an inverse Gaussian Lévy process.

ζ(t) is defined according to Equation 7.2 in definition 7.1

Proposition 7.1 (The Fourier transform of the Ỹ (t) process).

ϕỸ (t)(s) = {cosh[
t

2
ǧ(s)]− ψ

ǧ(s)
sinh[

t

2
ǧ(s)]}− 2ξ

ς

× exp{(δtγ − ψξ

ς2
) +

s2ν0

ǧ(s) coth( tǧ(s)
2

)− ψ
− δt[γ2 − 2λsi + σ2s2]

1
2}

where ǧ(s) =
√

ψ2 − ς2s2

Proof: see Appendix G
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Option pricing requires that an we derive an equivalent martingale measure. Below is the

Fourier transform of the Qµ̃ measure presented.

Corollary 7.1 (The Fourier transform of the Ỹ (t) process under the Qµ̃ measure).

ϕỸ (t),Qµ̃(s) = {cosh[
t

2
ǧ(s)]− ψ

ǧ(s)
sinh[

t

2
ǧ(s)]}− 2ξ

ς

× exp{ s2ν0

ǧ(s) coth( tǧ(s)
2

)− ψ
− δt[γ2 − 2λsi + σ2s2]

1
2 + isµ̃}

where ǧ(s) =
√

ψ2 − ς2s2 and

µ̃ =(r − q) +
2ξ

ς
ln{cosh[

t

2

√
ψ2 + 2ς2]− ψ√

ψ2 + 2ς2
sinh[

t

2

√
ψ2 + 2ς2]}+ δt[γ2 − 2λ− σ2]

1
2

+
ν0

√
ψ2 + 2ς2 coth(

t
√

ψ2+2ς2

2
)− ψ

Proof. The proof follows directly from Proposition 7.1 and from the mean correction strategy

given in Proposition 5.2. ¤

The above Fourier transform in conjunction with Theorem 6.1 can be used to price standard

put and call options. Hence, a fairly straightforward formula has been obtained, which can

be used to calibrate the risk neutral parameters.

Remark 7.2 (Implied univariate log return process).

Y (t)− Y (t− 1) = R(t) = λV (1) + W (σ2V (1) + [ζ(t)− ζ(t− 1)])

Proof. The proof follows directly from Definition 7.2 ¤

We wish to determine the way in which this 2nd order stochastic volatility influences the

sample path of the process we proceed in the following manner: First we simulate a log

price process using a normal inverse Gaussian Lévy process with stochastic volatility as

described in Carr, Geman, Madan, and Yor (2004). This is the same as making time in

the NIG process follow an IFSR process. Secondly, the process described in Definition 7.2

is simulated. Then the implied time series for the log price differences is obtained and the

empirical autocorrelation function for both of these series is calculated. This illustrates the

first moment dynamics in the both processes.
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[Insert figure 3 somewhere here]

The parameter space for the process contains the risk neutral parameters corresponding to a

NIG process with stochastic volatility (according to Carr, Geman, Madan, and Yor (2004))

for the Eurostoxx 50 index. These parameters are obtained by means of a calibration pro-

cedure; both parameters and procedure can be found in Schoutens, Simons, and Tistaert

(2003). From the above figures, we see the distinct differences between the mean dynamics

of the two process. For the NIG process with ordinary stochastic volatility, the autocor-

relation is significant. In the case of 2nd order stochastic volatility, the mean dynamics

are characterized by being a non-autocorrelated process. Further, we provide a figure

showing the trajectory for the 2nd order volatility process implied by the log

return process. In order to compare this volatility process with a financial time

series model, we provide the trajectory of the volatility process implied by a

Student-t GARCH 2 Bollerslev (1987) in figure I. A brief comparison reveals

that the two processes have similar dynamics in terms of the superficial behavior

of the processes however an accurate comparison between these two models falls

outside the scope of this paper

[Insert figure 4 somewhere here]

[Insert figure 5 somewhere here]

7.2. Lévy processes with Stochastic Volatility and the Leverage Effect. A desir-

able feature of a process set out to model the stochastic behavior of financial

assets is that it is capable of capturing what is known as the leverage effect in

stock returns. This effect is generally described as a negative correlation be-

tween return and future volatility innovations. Early empirical investigations

of this includes Black (1976) and Christie (1982), these authors attribute this

asymmetry stemming from changes in the debt to equity ratio also called fi-

nancial leverage. Another explanation was put forward by French, Schwert,

and Stambaugh (1987). An anticipated increase in volatility raises the required

return on equity leading to an immediate stock price decline, this phenomena

is sometimes referred to as volatility feedback 3. As was the case of the debt

to equity explanation this approach only provides a partial explanation to the

2the parameter space for this trajectory corresponds to a near IGARCH process
3The interpretation of volatility feedback is the following: if volatility is priced an anticipated increase in
volatility raises the required return on equity leading to an immediate stock decline Wu (2001)
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leverage effect puzzle. In Campbell and Hentschel (1992) a combination of the

two effects was suggested to explain asymmetry in stock market volatility how-

ever their explanation is also only partial. Bekaert and Wu (2000) conducted a

comparison between the two effects and contributed the most of the asymmetry

to the volatility feedback effect.

The process suggested here have a feature that resembles the volatility feedback

effect, although it is the average or expected value of the unanticipated shocks

to volatility multiplied with a real valued parameter (λ) that affect the mean of

the returns. This also constitutes the source of skewness in the process.

In the above defined process feedback from volatility to the mean of the re-

turns is determined by a function of the average shock to volatility, whether

this can be viewed as volatility feedback in the context of the leverage effect is

an open question. If you consider the process employed to obtain figure 3 and

then you calculate the coefficient of correlation between the innovations of the

implied log return and the square of the same sample path you obtain an esti-

mate of the average impact of the volatility has to the mean dynamics. Using a

simulated path of the size of 500000 observations the estimated correlation coef-

ficient becomes approximately -0.175. This indicates that the feedback into the

mean of the unanticipated shocks to volatility also yields a correlation structure

between the first and second moment. However it is important to stress that

this correlation structure is a function of the expected unanticipated shocks to

volatility which differs from the classical definition of volatility feedback. A more

elaborate study on the topic of leverage effect in the context of the suggested

process is beyond the scope of this paper.

7.3. A multivariate Lévy process with 2nd order Stochastic Volatility. Let us now

try to specify a multivariate version of the process from Definition 7.2. As before, we start

by deciding how to define the marginal process. The procedure is quite simple: introduce

an IFSR process into the variance of the common factor for the marginal process (compare

with Definition 6.1).

Definition 7.3 (A multivariate Lévy process with Stochastic Volatility). Define a multi-

variate process
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Ỹ(t) = [Ỹ1(t), ..., Ỹk(t), ...Ỹm(t)]′, where the Ỹk(t) process is defined as:

Ỹk(t) = {µz + µk}+ {ωkVz(t) + τkWz(Vz(t) + ζ(t))}+ {ωkVk(t) + τkWk(Vk(t))}
and L(Vz(t)) = IG(tδz, γ), L(Vk(t)) = IG(tδk, γ), L(Wk,z(t)) = N(0, t) and τk, ωk ∈ R;

that is, Vz(t) and Vk(t) are inverse Gaussian Lévy processes. Wz(t) and Wk(t) are standard

Brownian motions, and ζ(t) is an IFSR process, see Definition 7.1.

Since any explicit expression of the probability measure of this process is unfeasible, we will

provide the second best expression, that is the Fourier transform of the process in question.

Proposition 7.2 (A multivariate Fourier transform). If the location parameters µz and µk

∀k are set to zero, then the Fourier transform for the multivariate stochastic process Ỹ(t) is:

ϕỸ(t)(s) = {cosh[
t

2
g(s)]− ψ

g(s)
sinh[

t

2
g(s)]}− 2ξ

ς

× exp{(δtγ − ψξ

ς2
) +

(s′τ )2ν0

g(s) coth( tg(s)
2

)− ψ
− δt[γ2 − 2is′ω + (s′τ )2]

1
2 + Q(s)}

where Q(s) =
∑m

k=1 δk(γ − (γ2 − 2iskωk + s2
kτ

2
k )

1
2 ) and g(s) =

√
ψ2 − ς2(s′τ )2

and s = [s1, ..., sk, ..., sm]′, τ = [τ1, ..., τk, ..., τm]′ and ω = [ω1, ..., ωk, ..., ωm]′

Proof: See Appendix H.

You can, of course, use the same strategy as in the ordinary Lévy market to obtain an

equivalent martingale measure and then price options with the aid of Proposition 6.1.

7.4. Concerning the specification of the Lévy process with 2nd order Stochastic

Volatility. How should the stochastic process with 2nd order stochastic volatility be inter-

preted? The fact that we have a subordination of the Brownian motion that consists of the

sum of a pure jump process, V (t), and the SV process, ζ(t), coincides partly with the recent

interesting theoretical findings of Barndorff-Nielsen and Shepard (2004c). They derived a

asymptotic theory for a volatility process which is defined as jump part plus a stochastic

volatility part. This yields a powerful tool for analyzing volatility in the financial market.

However Barndorff-Nielsen and Shepard (2004c) assume a finite number of jumps in a finite

time interval in contrast to the general assumption regarding the jump process made in this

paper. We assume that the jump process is an inverse Gaussian Lévy process which exhibits

an infinite number of jumps in a finite time interval, that is, an infinite activity Lévy process.4

4This property is confirmed determined by checking if the integral with respect to the Lévy measure is
divergent or not.
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Although the authors conjecture that the results in their paper are valid for such an infinite

activity process, they do not develop the arguments, instead, this conjecture is supported by

the findings of Woerner (2003). These results are further developed in Barndorff-Nielsen and

Shepard (2004a), Barndorff-Nielsen and Shepard (2004b) and Barndorff-Nielsen and Shepard

(2004d). Altogether this opens up the possibility of the estimation of a Lévy process with

2nd order stochastic volatility using bi-power variation, for the moment it must be regarded

as a conjecture.

When discussing the suggested process it is appropriate to raise the question of the economic

motivation for the process. As mentioned earlier, when trying to interpret a probabilistic

model in economic terms, we always face the risk of finding interpretations that are not really

there. With this in mind, we can examine about how skewness enters the return process.

The existence of asset returns with skewness is supported by, for instance, Simkowitz and

Beedles (1980), Badrinith and Chatterjee (1988) and Peiró (1999).

The skewness that appear in this process is induced by the stochastic mean

dynamics obtained by the inverse Gaussian Lévy process. This implies that

the stochastic volatility process, here a Feller square root processes not directly

contribute to the skewness. It reveals a belief that not the correlated volatility

dynamics but only the unpredictable jumps from the inverse Gaussian Lévy

process generate skewness in the return process.

If we assume that a high volatility period is more likely to have negative returns, then we

obtain a probability measure where the coefficient for the jump process in the mean dynamics

(in this setting denoted λ or ω) is negative. The jumps in volatility create the observed

asymmetry or skewness. Another way to express this is that the jump process models

the occurrence of ’unpredictable events’ which not only have an impact on the volatility

structure, but also have a direct negative impact on the mean dynamics of the return series.

This results in a skewed process. The above mentioned coefficients can be said to measure

the impact of the news arriving at the market. An investigation by Eriksson (2005) made in

a discrete time setting where a GARCH (1,1) framework (see Bollerslev (1986)) is used to

model the autocorrelation in the volatility, discovered a negative mean dynamic coefficient

for the jump process. The parameter σ2 enables the impact of the jump process to be

different in the mean and in the second moment. Further, the impact of the jump process

relative to the stochastic volatility process can also be monitored through this parameter.
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8. Concluding remarks and further work

In this paper we have presented a stochastic process that is a Lévy process with stochastic

volatility, and which does not have any autocorrelation in the mean dynamics. This makes

it possible to state an option pricing model with an underlying price process for which the

implied log return process excludes autocorrelation for the mean dynamics. However, in this

paper, there are two questions left unanswered. First there is the issue of estimation, and

second, which empirical questions are relevant in the context of this kind of process. Should

one concentrate on the calibration of the parameters under the Q process or is the estimation

of the process under P more central?

The estimation of this kind of process is a complex issue. However, what has already been

indicated in the previous section is that the paper by Barndorff-Nielsen and Shepard (2004c)

has opened up the possibility of separating jumps and stochastic volatility under assumptions

similar to the ones made in this paper. In particular, Barndorff-Nielsen and Shepard (2004c)

conjecture that their results also hold for the type of process introduced in this paper. One

interesting path of investigation is to see if their results can be used to estimate the process

suggested in this paper. This should be regarded as future work.

Schoutens, Simons, and Tistaert (2003) raise an important empirical question. The authors

obtain a perfect calibration of a volatility surface for standard call options for a wide range

of complicated processes and they price these types of options fairly accurately, regardless

of the process chosen. However, when they use more complicated payoff functions (so called

exotic options), they get huge pricing errors which also vary with the assumption made

about the process. This indicates that the details of the process assumptions are important

for pricing exotic options, even though they are of minor importance for standard options.

This raises the question: Can a minor adjustment to the autocorrelation in mean dynamics,

such as we suggest in this paper, have a large influence on the pricing of exotic options? The

areas of interest for future work identified in this paper naturally includes such an empirical

investigation.
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Appendix A. Proof of Theorem 4.1

We start off our proof by rewriting the log of the Fourier transform in the form of an integral.

The reason for doing this is that the Lévy-Khintchine theorem is formulated as an integral.

For the sake of simplicity we assume that µ in the GNIG law equals zero, for the same reason

we also assume that t equals one.

Lemma A.1 (Integral representation of the CGF for the IG law).

κ(s) =
δ

π
√

2

∫ ∞

γ2/2

1√
(y − γ2/2)

(− ln(1 +
is

y
))dy

=
δ

π
√

2

∫

R+

t−
1
2{− ln(1 +

is

t + γ2/2
)}dt(A.1)

This lemma is due to Halgreen (1979) page 15.

If we put s = (−i)(1
2
τ 2 − iλτ) in A.1, we obtain as an integral representation of the CGF

for the GNIG. This is given in the Remark A.1.

Remark A.1 (Integral representation of the CGF for the GNIG law).

(A.2) ln ϕ(u) =
δ

π
√

2

∫

R+

t−
1
2{− ln(1 +

1
2
σ2u2 − iλu

t + γ2/2
)}dt

In order to continue we need to establish some way to rewrite Remark A.1 as an expression

that resembles Remark 3.1. Therefore we state the Lemma A.2.

Lemma A.2.

(A.3) − ln(1 +
(1

2
σ2u2 − iλu)

θ
) =

∫

R

1

|y| exp{−(
2θ

σ2
+

λ2

σ4
)

1
2 |y|}(exp(iuy)− 1)e

λy

σ2 dy
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Proof of Lemma A.2. Start by differentiating t0he left hand side of A.3

−d{− ln(1 +
( 1
2
σ2u2−iλu)

θ
)}

du
=

σ2u−iλ
θ

1 +
1
2
σ2u2−iλu

θ

(A.4)

=
2θ
σ2 (

σ2u−iλ
θ

)

2θ
σ2 (1 +

1
2
σ2u2−iλu

θ
)

=
2(u− i λ

σ2 )
2θ
σ2 + u2 − 2ui λ

σ2

=
2(u− i λ

σ2 )

( 2θ
σ2 + λ2

σ4 ) + (u− i λ
σ2 )2

= 2

∫

R+

exp{−(
2θ

σ2
+

λ2

σ4
)

1
2 y}{− sin(y(u− i

λ

σ2
)}dy

Integration of A.4 yields

− ln(1 +
(1

2
σ2u2 − iλu)

θ
)

= 2

∫

R+

exp{−(
2θ

σ2
+

λ2

σ4
)

1
2 y}

∫ u

0

− sin(y(q − i
λ

σ2
))dqdy

= 2

∫

R+

exp{−(
2θ

σ2
+

λ2

σ4
)

1
2 y}cos(y(u− i λ

σ2 ))− cosh( λ
σ2 y)

y
dy

=

∫

R+

1

y
exp{−(

2θ

σ2
+

λ2

σ4
)

1
2 y}{(exp(iuy)− 1)e

λy

σ2 + (exp(−iuy)− 1)e−
λy

σ2 }dy

=

∫

R

1

|y| exp{−(
2θ

σ2
+

λ2

σ4
)

1
2 |y|}(exp(iuy)− 1)e

λy

σ2 dy

¤

Let us now use (A.3), (A.2) and the Lévy Khintchine theorem to obtain a representation of

a Lévy-process that will enable us to calculate the Lévy-triplet.
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30 ANDERS ERIKSSON†

Proof of Theorem 4.1.

ln ϕ(u) =
δ

π
√

2

∫

R+

t−
1
2

∫

R

1

|y| exp{−(
2t + γ2

σ2
+

λ2

σ4
)

1
2 |y|}(exp(iuy)− 1)e

λy

σ2 dydt

=

√
2δ

π

∫

R

exp(iuy)− 1

|y| e
λy

σ2

∫

R+

exp{−|y|
√

2

σ
(s2 +

1

2
(γ2 +

λ2

σ2
))

1
2}dsdy

=
δ
√

γ2 + λ2

σ2

π

∫

R
(exp(iuy)− 1)|y|−1e

λy

σ2 K1(|y|
√

(
γ2

σ2
+

λ2

σ4
))dy

=

∫

R
(exp(iuy)− 1)

Λ︷ ︸︸ ︷
e

λy

σ2 δ
√

γ2 + λ2

σ2

π|y| K1(|y|
√

(
γ2

σ2
+

λ2

σ4
)) dy

=

∫

|y|≥1

(exp(iuy)− 1)Λdy +

∫

|y|<1

(exp(iuy)− 1− iuy)Λdy + iuζ

where

ζ =
δ
√

γ2 + λ2

σ2

π

∫

|y|<1

y

|y|e
λy

σ2 K1(|y|
√

(
γ2

σ2
+

λ2

σ4
))dy

=
δ
√

γ2 + λ2

σ2

π

∫ 1

0

sinh(
λy

σ2
)K1(|y|

√
(
γ2

σ2
+

λ2

σ4
)))dy

¤

Appendix B. Proof of Proposition 5.1

Proof. We start out by deriving the density function for the QE probability measure. Using

Remark 4.1 and the expression (5.3) we get

fQ
E

(y) =
exp(%∗y)f(y; λ, σ, δ, γ, µ)

E(exp(%∗Y ))

=
exp(%∗y)f(y; λ, σ, δ, γ, µ)

exp(δγ − δ(γ2 − σ2%∗2 − 2λ%∗)
1
2 + µ%∗)

=
exp(%∗y)

δ

√
(δ2+(y−µ)2)

(γ2+λ2)
K1(

√
(δ2+(y−µ)2)

σ2
(γ2+λ2)

σ2 ) exp(δγ+
λ(y−µ)

σ2 )
√

2πσ

exp(δγ − δ(γ2 − σ2%∗2 − 2λ%∗)
1
2 + µ%∗)

=
δ
√

(δ2+(y−µ)2)
(γ2+λ2)

K1(
√

(δ2+(y−µ)2)
σ2

(γ2+λ2)
σ2 ) exp(h(y; δ, γ, σ, λ, %∗)))

√
2πσ

(B.1)
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where h(y; δ, γ, σ, λ, %∗) = δ(γ2 − σ2%∗2 − 2λ%∗)
1
2 + y(%∗ + λ

σ2 )− µ(%∗ + λ
σ2 )

Let us continue with the proof for the function related to the %∗ parameter. Start out

by applying 5.4 using the Fourier transform from Remark 4.1.

exp(r − q) =
exp{δ(γ − [γ2 + σ2(−i(% + 1))2 − 2iλ(−i(% + 1))]

1
2 )}

exp{δ(γ − [γ2 + σ2(−i%)2 − 2iλ(−i)%]
1
2 )}

= exp{δ([γ2 − σ2%2 − 2λ%]
1
2 − [γ2 − σ2(% + 1)2 − 2λ(% + 1)]

1
2 )}

⇔
(r − q) = δ([γ2 − (σ%)2 − 2λ%]

1
2 − [γ2 − (σ(% + 1))2 − 2λ(% + 1)]

1
2 )(B.2)

¤

Appendix C. Proof of Remark 5.1

Proof. The first step consists of calculating the Fourier transform of the expression in Propo-

sition 5.1.

ϕQE(s; .) =

∫

R
fQ

E

(y) exp(isy)(dy)

=

∫

R
exp(δ(γ2 − σ2%∗2 − 2λ%∗)

1
2 − δγ) + µ%∗)︸ ︷︷ ︸

χ̃

fP(y) exp((is + %∗)y)(dy)

= χ̃ϕP(−i(is + %∗))

= χ̃ exp(δ(γ − (γ2 − σ2(is + %∗)2 − 2λ(is + %∗))
1
2 ) + µ(is + %∗))(C.1)

Then the expression for the CGF follows directly from: C.1

κQ
E

(s; δ, γ, σ, λ, µ, %∗) = χ + δ(γ − (γ2 − σ2(is + %∗)2 − 2λ(is + %∗))
1
2 ) + µ(is + %∗)

¤
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32 ANDERS ERIKSSON†

Appendix D. Proof of Proposition 5.2

Proof. Denote the GNIG(λ, σ, tδ, γ, µ) process at time t = 1 by Y (1). Now define the

expected value of the discounted stock process as:

Ψ = E[exp{Y (1)− (r − q)}]
In order to change the stock price process in such a way that the price process is still a

martingale, we define a new parameter µ̃ such that:

(D.1) Ψ = e−µ̃

Solving for µ̃ in D.1 yields:

µ̃ = − ln Ψ = (r − q)− ln(ϕ(−i)) = (r − q)− µ− δ(γ − (γ2 − σ2 − 2λ)
1
2 )

Now, we can use the derived parameter µ̃ to change the price process (eY (1)) in such a manner

that it continues to be a martingale. We obtain the following Qµ̃ martingale measure.

exp{Y (1) + µ̃}
Hence the process for the log price under the Qµ̃ measure is GNIG(λ, σ, δ, γ, µ̃ + µ) ¤

Appendix E. Proof of Proposition 6.2

Proof. Let us define Qk(t) = λkVk(t) + τkWk(Vk(t)) and Q′(t) = [Q1(t), ..., Qk(t), ..., Qm(t)]

E[exp{is′Y(t)}] =

E[exp{is′[ω1Vz(t) + τ1Wz(Vz(t)) + Q1(t)), ... , ωmVz(t) + τmWz(Vz(t)) + Qm(t)]′} =

E[exp{is′ωVz(t) + is′τWz(Vz(t))}+ is′Q(t)]

Let us now continue by defining the CGF for the Vz(t) process as κVz(t)(u) and the corre-

sponding function for the Vk(t) process as κVk(t)(u). Both are defined according to Equation

4.3. Then the above expectation can be expressed as:

E[exp(s′Y)(t)] = exp{κVz(t)(−i(is′ω +
(is′τ )2)

2
+

m∑

k=1

κVk(t)(−i(iskωk − τ 2
k s2

k

2
))}

= exp{t[δz(γ − (γ2 − 2is′ω + (s′τ )2)
1
2 ) +

m∑

k=1

δk(γ − (γ2 − 2iskωk + s2
kτ

2
k )

1
2 )]}

¤
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Appendix F. Proof of Remark 6.1

Let us use the Multivariate Fourier transform from Proposition 6.2 to ensure that the criteria

from Definition 3.2 is fulfilled.

Since the Fourier transform can be written in the form:

ϕY(t)(s) = exp{tf(s; θ)}
where θ denotes an m-dimensional parameter vector. We can conclude that criteria (i) in

Definition 3.2 is fulfilled since :

Y (t)−Y (s) = Y (t)−Y (t−ξ) = Y (ξ) ⇔ exp{tf(s; θ)} exp{−(t−ξ)f(s; θ)} = exp{ξtf(s; θ)}
Therefore Y (t)−Y (s) is independent of the filtration Fs, since it only depends on the length

of the interval ξ. Criteria (ii) in Definition 3.2 follows directly from the above.

Hence the process Y(t) is a m-dimensional Lévy process.

Appendix G. Proof of Proposition 7.1

Proof.

ϕỸ (t)(s) =E[exp{is(λV (t) + W (σ2V (t) + ζ(t))}]

=EV (t),ζ(t[exp{isλV (t) +
s2σ2V (t)

2
+

ζ(t)s2

2
}]

=ϕY (t)(s)ϕζ(t)(−i
s2

2
)

where ϕY (t)(s) is given in Remark 4.1 and ϕζ(t)(s) is given in Remark 7.1 ¤

Appendix H. Proof of Proposition 7.2

Proof. Let us define Ψk(t) = λkVk(t) + τkWk(Vk(t)) and Ψ′(t) = [Ψ1(t), ..., Ψk(t), ..., Ψm(t)]

E[exp{is′(Ỹ)}] =

E[exp{is′([ω1Vz(t) + τ1Wz(Vz(t) + ζ(t)) + Ψ1(t)), ... , ωmVz(t) + τmWz(Vz(t) + ζ(t)) + Ψm(t)]′} =

E[exp{is′ωVz(t) + is′τWz(Vz(t) + ζ(t))}+ isΨ(t)]

Let us now continue by defining the CGF for the Vz(t) process as κVz(t)(u) and the corre-

sponding function for the Vk(t) process as κVk(t)(u). Both are defined using Equation 4.3.
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34 ANDERS ERIKSSON†

Let us also recall the Fourier transform for the ζ(t) process ,ϕζ(t)(s), from Remark 7.1. Then

the above expectation can be expressed as:

E[exp(s′Ỹ)(t)]

= exp{κVz(t)(−i(is′ω +
(is′τ )2)

2
) + ln ϕζ(t)(−i(

(is′τ )2)

2
) +

m∑

k=1

κVk(t)(−i(iskωk − τ 2
ks2

k

2
))}

= {cosh[
t

2
g(s)]− ψ

g(s)
sinh[

t

2
g(s)]}− 2ξ

ς exp{(δtγ − ψξ

ς2
) +

(s′τ )2ν0

g(s) coth( tg(s)
2

)− ψ

− δt[γ2 − 2is′ω + (s′τ )2]
1
2 + Q(s)}

where Q(s) =
∑m

k=1 δk(γ − (γ2 − 2iskωk + s2
kτ

2
k )

1
2 ) and g(s) =

√
ψ2 − ς2(s′τ )2 ¤
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Appendix I. figures

Figure 1: Trajectory bivariate GNIG Lévy process
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Figure 2: Trajectories for the individual and common subordinating processes
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Figure 3: ACF for Stochastic Volatility and 2nd Order Stochastic Volatility
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ACF: GNIG process with 2nd order stochastic volatility
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ACF: NIG process with IFSR stochastic volatility

Parameter space: ς = 1.79, ξ = 0.67, ψ = 1.21 further δ = 1.00, γ = 16.00, λ = −3.20 and

σ2 = 0.8.

Where σ2 is only applicable for the process illustrated in the top figure.

Figure 4: Trajectory of the stochastic volatility (with Lévy jumps) process for the log return process:
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Figure 5: Trajectories for the volatility from a Student-t GARCH) process for the log return process:
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