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Abstract. In a dynamic investment situation, the right timing of portfolio revisions

and adjustments is essential to sustain long-term growth. A high rebalancing frequency

reduces the portfolio performance in the presence of transaction costs, whereas a low

rebalancing frequency entails a static investment strategy that hardly reacts to changing

market conditions. This article studies a family of portfolio problems in a Black-

Scholes type economy which depend parametrically on the rebalancing frequency. As an

objective criterion we use log-utility, which has strong theoretical appeal and represents

a natural choice if the primary goal is long-term performance. We argue that continuous

rebalancing only slightly outperforms discrete rebalancing if there are no transaction

costs and if the rebalancing intervals are shorter than about one year. Our analysis also

reveals that diversification has a dual effect on the mean and variance of the portfolio

growth rate as well as on their sensitivities with respect to the rebalancing frequency.
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1 Introduction

Since the pioneering work of Markowitz in 1952 [19] portfolio theory has consti-

tuted a favorite topic of finance researchers and practitioners. Its popularity has

recently been boosted by the revolution in information technology, which makes

it possible to solve large-scale portfolio problems in short time on an ordinary

personal computer. As opposed to the traditional static Markowitz approach,

the present article addresses a dynamic investment situation, in which an agent

periodically rebalances a portfolio in order to maintain a long-term goal for asset

allocation. The right choice of a suitable goal (or objective criterion) has been

— and still is — a subject of considerable dispute. Under the premise that the

agent has a tail preference, thus assessing an investment strategy only on the

basis of its long-term performance, one can argue that the best policy is the

one which maximizes the expected portfolio growth rate. This implies the use

of a so-called log-criterion or log-utility, that is, the agent should maximize the

expected logarithm of period wealth over the set of all admissible investment

strategies. However, the choice of an adequate objective criterion is not the only

critical decision a serious investor must make. Another important choice concerns

the frequency of scheduled portfolio revisions and adjustments, the rebalancing

frequency. Transaction costs, administrative expenses, taxes, and opportunity

costs make frequent rebalancing highly unattractive. Conversely, very infrequent

rebalancing may result in inferior portfolio performance, as too much flexibility

to react to changes in economic circumstances is sacrificed. Finding the right

compromise between the two extremes is a nontrivial problem faced by many

finance practitioners, and it is also tied to a number of interesting theoretical

questions: How accurate is the continuous-time approximation used in most the-

oretical work? In other words, can the optimal growth rate of a continuous-time

model be reasonably approached by a real investor? Under what circumstances is

it admissible to disregard transaction costs? What is the impact of the rebalanc-
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ing frequency on the optimal portfolio composition and the statistical properties

of the portfolio growth rate? In the present article we attempt to address these

questions — and some others which arise on the way — for a log-utility investor

in a Black-Scholes type economy, that is, under the assumption that asset prices

follow geometric Brownian motions. Analytical formulae will be provided for the

limiting cases of extremely high and low rebalancing frequencies. Numerical ex-

periments suggest that the obtained first-order approximations are accurate over

a relatively large range of rebalancing frequencies.

The log criterion was first suggested by Kelly [12] in an information theo-

retical framework and further developed by Latané [14] and Breiman [4]. The

logarithm’s superiority to other possible utility functions has also been advo-

cated by Hakansson and Ziemba [11], Thorp [27, 26], and Algoet and Cover [1].

More recent contributions to the theory of log-optimal portfolio selection are re-

ported in Cover and Thomas [6] and Luenberger [17], while Dempster et. al. [8, 9]

demonstrate that using the log-criterion can — maybe surprisingly — result in

positive portfolio growth even if all assets in the market destroy, rather than

create, value. However, the log-criterion has also been a source of controversy.

Merton and Samuelson [21] criticized the popular idea that any utility function

of distant future wealth could be replaced by the logarithm (even if one was only

interested in short-term decisions). It was shown in Luenberger [16] that the

expected log-criterion is justified if investment opportunities are evaluated only

on the basis of long-term results. A recent survey of the theoretical and practi-

cal aspects of the log-utility approach as well as an extensive list of additional

relevant references can be found in MacLean and Ziemba [18].

Several attempts have been undertaken to solve Merton-type portfolio mod-

els which explicitly include transaction costs; see e.g. [5] or [24] for a survey of

recent developments in this field. Most results are limited to the case of only

one risky asset. Davis and Norman [7], for instance, consider proportional trans-

action costs, while Korn [13] addresses situations in which the transaction costs

3
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consist of fixed and proportional components. There are also a few extensions

to multi-stock problems. For example, Liu [15] solves a portfolio model with

proportional transaction costs in an economy of several stocks with independent

returns, and Morton and Pliska [22] study a multi-asset portfolio problem where

the transaction costs are of the management-fee type, i.e., being proportional to

the investor’s wealth. Moreover, Bielecki and Pliska [3] elaborate a very general

model with both fixed and proportional transaction costs and securities prices

that depend on economic factors.

In spite of impressive theoretical advances in recent years, the problem of ob-

taining optimal rebalancing policies in the presence of transaction costs remains

very difficult if the number of stocks rises to a range compatible with practical

use. We therefore suggest an analysis of portfolio problems in which rebalancing

is free of charge but restricted to certain discrete time points. Such problems are

more tractable than those with transaction costs — especially if the underlying

asset universe is large — and also reveal under what circumstances market fric-

tions can safely be disregarded. The present article adopts the perspective of a

log-utility investor in a frictionless Black-Scholes economy consisting of several

assets with correlated Gaussian returns. The portfolio composition is adjusted at

equally spaced time points whose spacing is denoted by τ (hence, the rebalancing

frequency is given by τ−1). We derive approximate formulae for the optimal in-

vestment strategy as well as the mean and variance of the portfolio growth rate,

which are correct to first order in τ and which can easily be evaluated for an as-

set universe comprising several thousand stocks. Numerical experiments suggest

that these formulae are very precise if τ is smaller than about a year. Subse-

quently, we determine the asymptotic properties of the log-optimal portfolio as τ

tends to infinity. Interpolation of the two extreme solutions gives us a qualitative

understanding of the log-optimal portfolio for all intermediate values of τ . An

examination of several examples suggests that continuous-time rebalancing only

marginally outperforms discrete-time rebalancing (in a frictionless market with-
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out transaction costs) given that the rebalancing intervals are no longer than

about one year. As frequent rebalancing is not necessary to sustain portfolio

growth in frictionless markets, we conclude that transaction costs often have a

marginal effect on portfolio growth in frictional markets. Our analysis further

reveals a dual effect of diversification: even though it hardly improves the port-

folio’s log mean under continuous rebalancing, diversification can virtually offset

performance losses due to infrequent rebalancing. The log variance, in contrast,

is affected by diversification in the exact opposite way.

Notice that this paper elaborates a theoretical result about an important

aspect of portfolio theory, which is valid under the given assumptions. A real

investor might face additional hurdles that are disregarded in our analysis. In

particular, our conclusions may have to be revised if the geometric Brownian

motion model of asset prices is dismissed or if the parameters of the asset price

processes are no longer assumed to be deterministic and perfectly known.

The remainder of this article develops as follows. Section 2 introduces the ba-

sic notation and specifies a probabilistic model for the asset market to be consid-

ered. Subsequently, Section 3 addresses the log-optimal portfolio problem under

continuous rebalancing, which is formulated as a stochastic optimization problem

in continuous time. We prove that this infinite-dimensional mathematical pro-

gram is equivalent to a finite-dimensional single-stage problem. The latter can

be solved by standard techniques. Our main results are presented in Section 4,

where a parametric family of portfolio problems in discrete time is investigated;

the underlying parameter τ characterizes the length of the rebalancing intervals.

Each of these multistage problems has an equivalent myopic reformulation as a

convex one-stage stochastic program. We provide approximate analytical solu-

tions in the limits of very frequent and infrequent rebalancing. When the length

of the rebalancing intervals tends to zero, we recover the exact solution of the

continuous-time problem. Section 5 provides intuitive consistency checks and

outlines how our results can be used in practice. Simple analytical formulae for
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the portfolio weights as well as the mean and variance of the portfolio growth

rate as functions of τ are obtained in important special cases: a two-asset econ-

omy with one risk-free and one risky asset and an n-asset economy with several

identical stocks. Conclusions are presented in Section 6.

2 Market model

All random quantities are defined as measurable mappings on an abstract prob-

ability space (Ω,F , P ), which is referred to as the sample space. As a notational

convention, random objects will be represented in boldface, while their realiza-

tions will be denoted by the same symbols in normal face. The dependence of

the random objects on the samples ω ∈ Ω will be notationally suppressed most

of the time.

Consider a market with n + 1 assets. The price of asset i is denoted by pi,

where i ranges from 0 to n. We assume that the assets are continuously traded,

and their prices are modelled by geometric Brownian motions, that is,

dpi

pi

= µi dt + dzi.

The constant parameter µi characterizes the asset’s drift rate, and zi denotes a

Wiener process whose variance rate may be different from 1. Furthermore, we

impose a time-invariant correlation structure,

cov(dzi, dzj) = E(dzi dzj) = σij dt,

and use the convention σi =
√

σii. By applying Itô’s lemma it can be verified

that each asset has a lognormal distribution at time t,

pi(t) = pi(0) exp(νi t + zi(t)),

that is, the logarithm of pi(t) has expected value νit = (µi − 1
2
σ2

i )t and variance

σ2
i t. The new parameter νi can conveniently be interpreted as the expected

logarithmic growth rate or, in short, growth rate of asset i.

6
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In the remainder, asset 0 will be used as the numeraire, and we will frequently

work with discounted asset prices

pi(t)

p0(t)
=
pi(0)

p0(0)
exp(ν̃i t + z̃i(t)). (2.1)

Here, the constants ν̃i = νi−ν0 denote the excess growth rates over the numeraire,

and the Wiener processes z̃i = zi − z0 have correlation structure

cov(dz̃i, dz̃j) = σ̃ij dt with σ̃ij = σij − σi0 − σ0j + σ2
0.

As before, we will use the convention σ̃i =
√

σ̃ii. The stochastic differential

equations governing the dynamics of the discounted prices can be represented as

d(pi/p0)

pi/p0

= µ̃i dt + dz̃i , where µ̃i = ν̃i +
σ̃2

i

2
= µi − µ0 − σi0 + σ2

0.

For the sake of transparency, we will frequently use matrix notation. Therefore,

we introduce an n-vector µ̃ with entries µ̃i as well as an n × n matrix S̃ with

entries σ̃ij, where the indices i and j range from 1 to n. Moreover, we will often

work with the n-dimensional Wiener process z̃ = (z̃1, . . . , z̃n).

Observe that the covariance matrix S̃ is positive definite if there is at most

one risk-free asset and if the Wiener processes driving the risky assets are linearly

independent; this will always be assumed henceforth. In addition, it should be

emphasized that the numeraire can be chosen freely by permuting the set of

available assets. Thus, the numeraire can (and frequently will) be risky. This

flexibility becomes useful when addressing portfolio selection problems, below, as

it always allows us to choose the numeraire from the portfolio constituents.

3 Continuous-time rebalancing

The information F t
0 available at time t by continuously observing price movements

is conveniently expressed as the σ-algebra induced by the stochastic asset prices

up to time t, that is,

F t
0 = σ(pi(s) | i = 0, . . . , n, s ∈ [0, t]).

7

Page 8 of 40

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

We denote by W0 the space of all F t
0-progressively measurable stochastic processes

taking values in the standard simplex W = {w ∈ R
n
+|
∑n

i=1 wi ≤ 1}. Each process

w = (w1, . . . ,wn) ∈ W0 characterizes an investment strategy in the asset market

under consideration. By convention, wi(t) specifies the percentage of wealth to

be allocated to asset i at time t, where i ranges from 1 to n. It is tacitly assumed

that the residual capital is invested in the numeraire. The specification of W

implies that no asset (including the numeraire) may be sold short at any time.

Consider now a dynamically rebalanced portfolio corresponding to some trad-

ing strategy w ∈ W0 and denote its value process by π. By using (2.1), the real

portfolio return (relative to the numeraire) over an infinitesimal time interval can

be expressed as the weighted average of the real asset returns, i.e.,

d(π/p0)

π/p0

=
n
∑

i=1

wi

d(pi/p0)

pi/p0

= w⊤µ̃ dt +w⊤dz̃.

By the measurability and boundedness properties of w ∈ W0, this stochastic

differential equation has a straightforward solution.

π(t)

p0(t)
=
π(0)

p0(0)
exp

(
∫ t

0

w(s)⊤µ̃ − 1

2
w(s)⊤S̃w(s) ds +

∫ t

0

w(s)⊤dz̃

)

(3.1)

An investor seeking to maximize the expected (annualized) growth rate of his or

her portfolio thus faces the following optimization problem.

maximize
w∈W0

E ln

(

π(1)

π(0)

)

P(0)

Using stationarity of the asset returns and the separability properties of the

logarithmic utility function, we can reformulate problem P(0) as a one-stage

maximization problem over a finite-dimensional space, that is,

maximize
w∈W

ϕ0(w) . P ′(0)

The corresponding objective function is given by

ϕ0(w) = ν0 + w⊤µ̃ − 1

2
w⊤S̃w ,

8
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which is continuous and strictly concave as S̃ is positive definite. Compactness

of the feasible set W thus ensures that problem P ′(0) has a unique solution. The

following proposition makes the relation between P(0) and P ′(0) precise.

Proposition 3.1. The maximization problems P(0) and P ′(0) are equivalent in

the following sense. First, the optimal values coincide,

maxP(0) = maxP ′(0).

Moreover, if w∗ is a solution of P ′(0), then w∗(t) ≡ w∗, t ∈ [0, 1], solves P(0).

Conversely, if w∗ solves P(0), then there is a solution w∗ of P ′(0) such that

w∗(t) ≡ w∗ P -almost surely for Lebesgue almost all t ∈ [0, 1].

Proof. Plugging (3.1) into the objective of problem P(0), we find

max P(0) = max
w∈W0

E

∫ 1

0

ϕ0(w(t)) dt ≤ E

∫ 1

0

max
w∈W

ϕ0(w) dt = maxP ′(0).

The first equality follows from the definition of ϕ0 and the fact that the expec-

tation of an Itô-integral vanishes, while the inequality follows from relaxing the

requirement that w must be progressively measurable. The second equality ex-

ploits the fact that the integrand is deterministic and time-independent. Thus,

we have max P(0) ≤ max P ′(0). By reducing the feasible set of problem P(0) to

the space of time-independent and deterministic trading strategies, we can easily

prove the converse inequality, max P(0) ≤ max P ′(0). Thus, the optimal values

of P(0) and P ′(0) coincide. This reasoning also reveals that P(0) is solvable and

that the maximum is attained by the deterministic strategyw∗(t) ≡ w∗, t ∈ [0, 1],

where w∗ solves P ′(0).1 Next, we must show that every optimal strategy of P(0)

is essentially of this form. To this end, define a random function f on the set of

essentially bounded random variables v, namely,

f(v) = ϕ0(E[v]) + ∇ϕ0(E[v])⊤(v − E[v]) − ϕ0(v) .

1In addition, the use of the ‘max’-operators in the proposition statement is justified.

9
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By construction, we have

f(v)(ω)







= 0 for all ω ∈ Ω with v(ω) = E[v],

> 0 otherwise,

since the quadratic function ϕ0 is strictly concave. Select now a nondeterministic

investment strategy w ∈ W0. By this we mean that the set of all t for which

P (w(t) 6= E[w(t)]) > 0 has nonzero Lebesgue measure. A standard measure-

theoretic result [2, Theorem 1.6.6(b)] implies

∫ 1

0

ϕ0(E[w(t)]) − E[ϕ0(w(t))] dt =

∫ 1

0

E[f(w(t))] dt > 0 ,

that is, the nondeterministic strategy w ∈ W0 is strictly outperformed by the

deterministic strategy E[w] ∈ W0. Thus, if w∗ solves P(0), w∗ must be deter-

ministic (up to almost sure equivalence), and w∗ = E[w∗
t ] must be the unique

solution of P ′(0) for Lebesgue almost all t ∈ [0, 1].

To solve problem P ′(0), we assume without loss of generality that the solution

lies in the interior of W , that is, it characterizes a portfolio in which all assets

(including the numeraire) have strictly positive weight. Otherwise, we may pre-

tend that those assets which do not enter the optimal portfolio are not available

for purchase, and we may neglect them from the beginning. Under this assump-

tion, the optimal solution of the quadratic program P ′(0) is easily seen to be

w = S̃−1µ̃. Plugging this allocation vector back into the objective function shows

that the optimal value of P ′(0) is ν0+ 1
2
µ̃⊤S̃−1µ̃. By Proposition 3.1, this solution

of P ′(0) easily translates to a solution for the original problem P(0). Note that

such a solution was first obtained by Merton via methods of stochastic optimal

control theory [20]. The approach presented here, which reduces P(0) to a finite-

dimensional deterministic equivalent problem P ′(0), relies on less sophisticated

techniques. Its main benefit is that it easily extends to the discrete-time case and

facilitates the analysis of changing rebalancing frequencies.
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Another interesting quantity related to problem P(0) is the variance of the

(annual) portfolio growth rate given that the portfolio is managed according to

the log-optimal investment strategy. A straightforward calculation yields

Var ln

(

π(1)

π(0)

)

= E

[

(
∫ 1

0

µ̃⊤S̃−1dz̃ +

∫ 1

0

dz0

)2
]

= µ̃⊤S̃−1µ̃ + 2 µ̃⊤S̃−1ς + σ2
0,

where the n-vector ς has elements ςi = σi0−σ2
0. Notice that both ς and σ2

0 vanish

if the numeraire is risk-free, in which case the formula for the variance of the

portfolio growth rate simplifies to µ̃⊤S̃−1µ̃.

4 Discrete-time rebalancing

The optimal solution of problem P(0) keeps the portfolio weights constant. Thus,

at any time point the investor must sell (buy) assets that currently grow faster

(slower) than his or her portfolio. High transaction costs and onerous admin-

istrative burdens that go along with each reallocation of assets, however, make

frequent portfolio changes undesirable or even infeasible. Therefore, we now in-

vestigate the log-optimal portfolio problem under the additional premise that

rebalancing is restricted to discrete time points hτ , h ∈ N0; the constant τ > 0

characterizes the length of a rebalancing interval. In this section we will derive

analytical formulae for the sensitivity of the optimal portfolio weights as well

as the expectation and the variance of the portfolio growth rate with respect to

small changes of the parameter τ .

Assume that our investor observes the asset prices only at the start times of

the rebalancing intervals. For notational convenience we define pi,h = pi(hτ) for

every nonnegative integer h and for i between 0 and n. Then, the information

available to the investor at the beginning of the hth rebalancing interval can

11
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conveniently be expressed as the σ-algebra

Fh
τ = σ(pi,g | i = 0, . . . , n, g = 0, . . . , h).

In analogy to the continuous-time case considered before, we denote by Wτ the

space of Fh
τ -adapted discrete-time stochastic processes valued in the closed sim-

plex W . To every w ∈ Wτ we assign a portfolio value process π. By convention,

wh and πh stand for the portfolio weight vector and the portfolio value at the be-

ginning of the hth rebalancing interval, respectively. The (discounted) portfolio

value is determined recursively by means of the dynamic budget constraint

πh+1/p0,h+1

πh/p0,h

= 1 +
n
∑

i=1

wi,h

(

pi,h+1/p0,h+1

pi,h/p0,h

− 1

)

. (4.1)

Here, π0 denotes initial wealth, which is a deterministic random variable. Let

us assume that τ−1 = H ∈ N. Then, the problem of maximizing the portfolio’s

expected growth rate per unit time can be formulated as

maximize
w∈Wτ

E ln

(

πH

π0

)

. P(τ)

Short selling is precluded explicitly in the definition of the set W . However, in the

discrete-time setting under consideration, this restriction is redundant since short

selling involves the risk of losing more money than initially invested. In fact, if

any asset is sold short, there is a nonzero probability of negative terminal wealth,

which is penalized by an infinitely negative utility. The use of a logarithmic

utility function in a discrete-time framework therefore impedes short selling.2

Going from continuous- to discrete-time rebalancing reduces the portfolio

manager’s flexibility. This transition is admittedly somewhat artificial in the

absence of transaction costs, but its analysis can provide insights that are also

valuable for investors in frictional markets. It is intuitively clear that decreas-

ing the rebalancing frequency lowers the achievable portfolio growth rate. Even

though this qualitative result seems obvious, its proof requires a subtle argument.

2Short selling is possible, however, if the rebalancing dates are not predetermined but may

depend on the realized asset price paths.
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Proposition 4.1. Continuous-time rebalancing outperforms discrete-time rebal-

ancing, that is, supP(0) ≥ supP(τ) for all τ > 0.

Proof. Let w ∈ Wτ be a discretely rebalanced strategy with rebalancing intervals

of length τ . Moreover, denote by π the associated discrete-time wealth process,

which is determined by (4.1). Since the asset prices are modelled as continuous-

time stochastic processes, our portfolio can be assigned a unique value π̂(t) at

any time t ∈ R+. In fact, we have

π̂(t) = πh

p0(t)

p0,h

(

1 +
n
∑

i=1

wi,h

(

pi(t)/p0(t)

pi,h/p0,h

− 1

)

)

,

where h is the largest integer smaller or equal to t/τ . Notice that the discrete-

time process π and the continuous-time process π̂ are consistent in the sense that

π̂(t) = πh for t = hτ . Analogously, the assets in our portfolio can be assigned

weights ŵ(t) at all times t ∈ R+. Set

ŵ(t) = (ŵ1(t), . . . , ŵn(t)), where ŵi(t) = wi,h

πh pi(t)

pi,hπ̂(t)
,

and h is the largest integer smaller or equal to t/τ . Again, consistency is guar-

anteed by the relations ŵ(t) = wh for t = hτ . It can easily be checked that ŵ is

contained in W0 and generates the wealth process π̂; thus it is feasible in P(0).

By consistency of the discrete- and continuous-time processes, the objective value

of ŵ in P(0) is the same as the objective value of w in P(τ). As the choice of w

was arbitrary, the optimum of P(0) is no smaller than the optimum of P(τ).

Since the asset prices are governed by geometric Brownian motions, the total

asset returns are independent and identically distributed over all rebalancing

periods. We may write

pi,h+1

pi,h

= eνiτ+εi,h

√
τ , where εi,h =

zi((h + 1)τ) − zi(hτ)√
τ

.

The random variables εi,h are jointly normally distributed with zero mean and

covariances cov(εi,g, εj,h) = σij δgh. When dealing with discounted asset prices,
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we will further need the related random variables ε̃i,h = εi,h − ε0,h, which are

also normally distributed with zero mean and covariances cov(ε̃i,g, ε̃j,h) = σ̃ij δgh.

Using stationarity of the asset returns, the absence of transaction costs, and the

separability properties of the logarithmic utility function, we can reformulate

problem P(τ) as a finite-dimensional one-stage problem, that is,

maximize
w∈W

ϕτ (w). P ′(τ)

The corresponding objective function is given by

ϕτ (w) = ν0 +
1

τ
E

{

ln

(

1 +
n
∑

i=1

wi

[

eν̃iτ+ε̃i

√
τ − 1

]

)}

,

where we use the convention ε̃i = ε̃i,0. It can be shown that ϕτ is finite, con-

tinuous, and strictly concave on W for each parameter τ > 0 (technical details

are provided in Appendix A). Compactness of the feasible set thus ensures that

problem P ′(τ) has a unique solution. The following result, which is an extension

of Proposition 3.1, makes the relation between problems P(τ) and P ′(τ) precise.

Proposition 4.2. The maximization problems P(τ) and P ′(τ) are equivalent in

the following sense. First, the optimal values coincide,

maxP(τ) = maxP ′(τ).

Moreover, if w∗ is a solution of P ′(τ), then w∗
h ≡ w∗, h = 0, . . . , H − 1,

solves P(τ). Conversely, if w∗ is a solution of P(τ), then for each h = 0, . . . , H−
1 there is a solution w∗ of P ′(τ) such that w∗

h ≡ w∗ almost surely.

Proof. The proof is widely parallel to that of Proposition 3.1. The only difference

is that the time integral is replaced by a sum, while the concave quadratic function

ϕ0 is replaced by the strictly concave function ϕτ . Further details are omitted

for brevity.

Proposition 4.3. The unique solution w∗ of problem P ′(τ), τ ≥ 0, satisfies the

following necessary and sufficient optimality condition:

∇ϕτ (w
∗)⊤(w − w∗) ≤ 0 ∀w ∈ W. (4.2)
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Proof. See [25, Theorem 6.12]. Notice that ∇ϕτ (w
∗)⊤(w −w∗) is the directional

derivative of ϕτ at w∗ for w − w∗, and its existence can be proved by means of

the dominated convergence theorem.

Next, we introduce a set S(τ) ⊂ {0, 1, . . . , n} for each τ ≥ 0 which contains

the indices of the (strictly) positively weighted assets in the optimal portfolio

corresponding to problem P ′(τ). We call problem P ′(τ) nondegenerate if its

solution w∗ assigns strictly positive weight to the numeraire, 0 ∈ S(τ), and if the

partial derivatives ∂ϕτ (w
∗)/∂wi are strictly negative for all i /∈ S(τ). Requiring

the numeraire to have positive weight is nonrestrictive as it can be chosen freely,

and since at least one asset must have nonzero weight. With the numeraire having

strictly positive weight, the optimality condition (4.2) reduces to

∂ϕτ (w
∗)/∂wi = 0 i ∈ S(τ) , (4.3a)

∂ϕτ (w
∗)/∂wi ≤ 0 i /∈ S(τ) . (4.3b)

If problem P ′(τ) is nondegenerate, then the inequalities in (4.3b) are strict. No-

tice that nondegeneracy holds generically, whereas degeneracy can always be re-

moved by slightly perturbing the problem data. Without much loss of generality,

we may thus assume that the continuously rebalanced reference problem P ′(0) is

nondegenerate. Proposition A.3 in the appendix then implies that the optimal

portfolio associated with problem P ′(τ) comprises the same assets for all small

values of τ , that is, S(τ) is locally constant at 0. We may therefore pretend that

the assets in the complement of S(0) are not available for purchase, and we may

neglect them in the entire analysis.

For notational convenience, we introduce two n × n matrices Q and M with

entries Qij = σ̃2
ij and Mij = µ̃i δij, respectively. Thereby, the indices i and j range

from 1 to n, and δij stands for the Kronecker delta. We also recall that ς was

defined earlier as the n-vector with entries ςi = σi0 −σ2
0. With these conventions,

we are now ready to state our main result.
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Theorem 4.4. Suppose that problem P ′(0) is nondegenerate and — after a suit-

able reduction of the asset universe — that S(0) comprises all available assets.

Then, we can derive the following estimates.

(i) The unique optimal solution of problem P ′(τ) is representable as

w∗(τ) = w(0) − w(1)τ + o(τ) for τ ↓ 0 ,

where w(0) = S̃−1µ̃ coincides with the optimal portfolio allocation under

continuous rebalancing, and

w(1) = S̃−1

(

1

2
Q − 1

2
MS̃ − S̃M + µ̃µ̃⊤

)

S̃−1µ̃ .

(ii) The maximal value of problem P ′(τ) is representable as

g∗(τ) = g(0) − g(1)τ + o(τ) for τ ↓ 0 ,

where g(0) = ν0 + 1
2
µ̃⊤S̃−1µ̃ coincides with the maximal expected portfolio

growth rate under continuous rebalancing, and

g(1) =
1

4
µ̃⊤S̃−1(Q − MS̃ − S̃M + µ̃µ̃⊤)S̃−1µ̃ .

(iii) The variance of the growth rate of the optimal portfolio in problem P(τ) is

representable as3

v∗(τ) = v(0) − v(1)τ + o(τ) for τ ↓ 0 ,

where v(0) = µ̃⊤S̃−1µ̃ + 2 µ̃⊤S̃−1ς + σ2
0 coincides with the variance of the

growth rate of the optimal portfolio under continuous rebalancing, and

v(1) = µ̃⊤S̃−1

(

1

2
Q − MS̃ − S̃M +

3

2
µ̃µ̃⊤

)

S̃−1µ̃

+µ̃⊤S̃−1

(

Q − MS̃ − S̃M + 2µ̃µ̃⊤
)

S̃−1ς .

3Notice that the maximization problems P(τ) and P ′(τ), τ ≥ 0, have the same optimal value

and (essentially) the same solution. However, the variance of the optimal portfolio’s growth

rate over unit time can only be calculated from the objective function of problem P(τ).
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The proof of Theorem 4.4 is purely technical and thus deferred to Appendix B.

We first observe that Theorem 4.4 is consistent with our findings in Section 3,

that is, the portfolio weights as well as the mean and variance of the portfolio

growth rate converge to Merton’s continuous-time values for τ ↓ 0. Moreover, the

functions w(τ), g(τ) and v(τ) are differentiable at the origin, and the (negative)

derivatives w(1), g(1), and v(1) can be expressed in closed form. Notice that g(1)

must be nonnegative since the expected growth rate of the log-optimal portfolio

is monotonically decreasing in τ , see Proposition 4.1. As a consistency check,

one can directly prove nonnegativity of g(1) by only manipulating its closed form

representation. Technical details are provided in Appendix A. Unlike g(1), the

sensitivities w(1) and v(1) can be either positive or negative, as will be exemplified

in Section 5.1. From the proof of Theorem 4.4(i) in the appendix one sees that

all terms depending on w(1) cancel out in the formula for g(1). Thus, up to

second order in τ , misusing the optimal continuous-time allocation for discrete

rebalancing is not worse than using the optimal discrete-time allocation. The

formulae for v(0) and v(1) look cumbersome, but they become significantly simpler

if the numeraire is riskless, which implies that σ2
0 and ς vanish. The magnitudes of

all Taylor coefficients introduced in Theorem 4.4 will be analyzed more carefully

in Section 5 in a number of interesting special cases.

Remark 4.5. Analytical treatment of problem P ′(τ) is not only possible in the

limit τ ↓ 0 but also for τ ↑ ∞, that is, if rebalancing takes place very infrequently.

In the latter case, the maximum achievable growth rate over all portfolios coin-

cides with the maximum growth rate over all individual assets. Accordingly, in

the limit τ ↑ ∞ it is optimal to invest all money in the asset with the highest

growth rate. Mathematical details are omitted for brevity of exposition.
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5 Examples

In order to make the main results of Section 4 more comprehensive and plausible,

we present a series of analytical and numerical examples. Emphasis is put on

consistency checks and the development of an intuition for the qualitative effects

of discrete-time rebalancing.

5.1 One risk-free and one risky asset

In the case of a two-asset economy with a risk-free numeraire (µ0 = r, σ0 = 0)

and one risky asset (µ1 = µ, σ1 = σ) we find

µ̃ = µ − r, S̃ = σ2, Q = σ4, M = µ − r, ς = 0.

Thus, the optimal weight of the risky asset under continuous rebalancing is w(0) =

S̃−1µ̃ = (µ − r)/σ2. We require 0 ≤ (µ − r) ≤ σ2, which ensures that neither

the risky nor the risk-free asset will be shorted. If the inequalities are strict, the

portfolio problem corresponding to τ = 0 is nondegenerate, and Theorem 4.4(i)

applies. Thus, the portfolio weight of the risky asset changes at rate

w(1) =
1

σ2

(

σ4

2
− 3σ2(µ − r)

2
+ (µ − r)2

)

µ − r

σ2

=
µ − r

2
− 3(µ − r)2

2σ2
+

(µ − r)3

σ4
.

If w(1) is negative (positive), then the amount of money invested in the risky

asset is increased (decreased) as rebalancing becomes less frequent. As easily can

be checked, w(1) is negative for σ2/2 ≤ µ − r ≤ σ2. The second inequality is

redundant since the reference problem for τ = 0 is assumed to be nondegenerate;

the first inequality translates to ν ≥ r, where ν is the risky assets growth rate.

Hence, the weight of the risky asset increases with τ if its growth rate exceeds

that of the numeraire. This result is plausible in light of Remark 4.5, which

asserts that the weight of the fastest growing asset converges to 1 as τ tends to
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infinity. By using Theorem 4.4(ii) we next obtain g(0) = r + (µ − r)2/(2σ2) and

g(1) =
µ − r

4σ2

(

σ4 − 2σ2(µ − r) + (µ − r)2
) µ − r

σ2

=
(µ − r)2

4

(

1 − µ − r

σ2

)2

.

This representation manifests nonnegativity of g(1), which means that the port-

folio growth rate decreases as the the parameter τ is increased, and it is thus

consistent with Proposition A.4 in the appendix. Finally, Theorem 4.4(iii) yields

the coefficients of the variance expansion, i.e., v(0) = (µ − r)2/σ2 and

v(1) =
µ − r

σ2

(

σ4

2
− 2σ2(µ − r) +

3(µ − r)2

2

)

µ − r

σ2

= (µ − r)2

(

1

2
− 2(µ − r)

σ2
+

3(µ − r)2

2σ4

)

.

The sensitivity v(1) is negative if σ2/3 ≤ (µ − r) ≤ σ2 and positive otherwise.

As before, the second inequality is redundant by nodegeneracy of the reference

problem for τ = 0.

5.2 Two no-growth stocks

Consider again the two-asset economy of the previous section, and assume addi-

tionally that r = 0 and µ = σ2/2. Thus, both assets have zero expected growth

rate. If the rebalancing frequency amounts to τ−1, the optimal portfolio growth

rate can be approximated by

g(0) − g(1)τ , where g(0) =
σ2

8
and g(1) =

σ4

64
.

This simple calculation shows that growth can be achieved by combining two no-

growth stocks. Moreover, for reasonable volatility coefficients the loss incurred by

infrequent rebalancing is only marginal. As a numerical example, let us assume

that σ = ln 2. Then, the return of the risky asset has the same mean and variance

as the return of a fictitious ‘digital’ stock whose value in each year either doubles
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or reduces by one-half, each with a probability of 50%. With yearly rebalancing,

our portfolio growth rate becomes g(0)−g(1) ≈ 5.6%. Substituting the risky asset

by the fictitious digital stock, one gets a slightly higher expected growth rate of

5.9%, see [17, Example 15.2].

5.3 Several identical assets (independent case)

Consider a market with n+1 independent assets, all of which have the same drift

rate µ and the same volatility σ. By definition, the parameters of the discounted

price processes are

µ̃i = σ2 and σ̃ij =







2σ2 i = j

σ2 i 6= j
for i, j = 1, . . . , n.

In order to simplify notation, we denote by e the n-vector with identical entries

ei = 1, i = 1, . . . , n. Moreover, we set E = ee⊤, and let I be the n-dimensional

identity matrix. Then, we have

µ̃ = σ2e, S̃ = σ2(I + E), Q = σ4(3I + E), M = σ2I, ς = −σ2e.

Let us first determine the composition of the log-optimal portfolio. By using the

explicit formulae of Theorem 4.4(i) we find

w(0) = (I + E)−1e =
1

n + 1
e

and

w(1) = (I + E)−1

(

σ2

2
(3I + E) − 3σ2

2
(I + E) + σ2E

)

(I + E)−1e = 0.

Thus, the optimal solution allocates the same share of wealth to each asset,

no matter what the rebalancing frequency is. This result merely manifests the

permutation symmetry of the available assets and confirms what we would have

expected in the first place. Theorem 4.4(ii) implies that the maximum expected

growth rate under continuous rebalancing amounts to

g(0) = ν0 +
σ2

2
e⊤(I + E)−1e = ν0 +

σ2n

2(n + 1)
.
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As expected, diversification (i.e. letting n become large) increases the magnitude

of the variance term, thereby increasing the portfolio growth rate to a maximum

of ν0 + σ2/2. See also the discussion of volatility pumping in [17, Chap. 15]. The

sensitivity of the portfolio growth rate with respect to τ can be written as

g(1) =
σ4

4
e⊤(I + E)−1 (3I + E − 2I − 2E + E) (I + E)−1e =

σ4n

4(n + 1)2
,

which is very small for reasonable values of σ. Furthermore, by using Theo-

rem 4.4(iii) and the fact that in the current setting ς = −µ̃, we obtain the

coefficients of the variance expansion, i.e.,

v(0) = −σ2e⊤(I + E)−1e + σ2 =
σ2

n + 1

and

v(1) = e⊤(I + E)−1

(

−σ4 3I + 2E

2

)

(I + E)−1e = −σ4n(2n + 3)

2(n + 1)2
.

These results suggest that diversification reduces the magnitude of the constant

coefficient v(0), whereas the linear term v(1) is generally small but fairly insensitive

to n. In conclusion, we have discovered a duality between growth and volatility

with respect to diversification. Diversification does little to improve growth after

n ≈ 10, but it always lowers g(1) by about 1/n. Conversely, diversification lowers

variance, but it fails to improve v(1).

We conclude this example with a numerical calculation that shows how ineffec-

tive frequent rebalancing is at boosting the portfolio growth rate. For 5 indepen-

dent assets (n = 4) with identical volatilities σ = 0.88 we obtain g(0) = ν0 + 0.31

and g(1) = 0.024. Hence, the excess growth rate over the numeraire amounts to

31% if rebalancing is done continuously. This extraordinary growth rate is low-

ered by as little as 2.4% if the portfolio is rebalanced only once per year. Assume

now that transaction costs are 0.1% of the transaction amount. Then, rebalanc-

ing once a year can degrade the portfolio performance at most by 10 basis points.

In this situation, transaction costs have a negligible effect on portfolio growth

and can safely be disregarded when designing portfolio strategies.
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5.4 Several identical assets (dependent case)

Consider again n + 1 assets with the same drift rate µ and the same volatility

coefficient σ. In contrast to the previous section, however, assume that the assets

are correlated, that is, σij = ̺ σ2 for all 0 ≤ i 6= j ≤ n. For the covariance matrix

of these n+1 assets to be positive definite, we must require −n−1 ≤ ̺ ≤ 1. Then,

we obtain

µ̃i = σ2(1 − ̺) and σ̃ij =







2σ2(1 − ̺) i = j

σ2(1 − ̺) i 6= j
for i, j = 1, . . . , n,

which implies that the results of the previous section carry over to the present

setting if we replace σ2 by σ2(1 − ̺) in the final formulae.

5.5 A simple computational example

If the market model exhibits no symmetries at all, we can tackle the reference

problem P ′(0) numerically by using a quadratic programming algorithm. This

calculation reveals the set of active assets that have strictly positive weight in

the optimal portfolio. Moreover, it allows us to check whether the reference

problem is nondegenerate. In the unlikely case of a degenerate reference problem,

however, we can recover nondegeneracy by slightly perturbing the parameters of

the price processes. After reducing the asset universe to the set of active assets,

Theorem 4.4 become applicable. Calculation of the sensitivities w(1), g(1), and

v(1) is based on simple matrix manipulations, which can conveniently be carried

out in Matlab, say, for an asset universe comprising several thousand titles.

In a market with very few independent assets, however, one may attempt to

directly solve the nonlinear one-stage stochastic programs P ′(τ), τ ≥ 0, without

making reference to the Taylor approximations derived in Section 4. This ap-

proach requires discretization of the joint return distribution, e.g., by means of

Monte Carlo sampling (MC). In addition, it requires the availability of a powerful

nonlinear programming solver.
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Let us now compare the direct MC approach with the semi-analytical ap-

proach based on Taylor approximation. For the sake of transparency and in

order to keep the MC sample size manageable, we consider a market with only

four assets. The numeraire with index 0 is chosen to be the asset with the largest

growth rate. The relevant parameters of the market model are listed in Table 1.

Our parameter choice guarantees that all available assets are active, and that the

results of our test calculations allow for a neat graphical representation. The MC

Table 1: Parameters of the asset price processes

σij 0 1 2 3 µi νi

0 0.04000 0.10000 0.00005 0.00000 0.036 0.0160

1 0.10000 1.00000 0.00002 0.00000 0.240 −0.2600

2 0.00005 0.00002 0.04500 −0.03000 0.020 −0.0025

3 0.00000 0.00000 −0.03000 0.04000 0.014 −0.0060

approach is implemented as follows. For each τ we draw 300,000 samples from

the joint return distribution. Next, the expectation in the objective function ϕτ

is replaced by the sample average. The resulting approximate portfolio problem

is solved by means of the sequential quadratic programming algorithm SNOPT

[10]; observe that this portfolio problem is nonquadratic. Since the optimal port-

folio weights as well as the mean and variance of the portfolio growth rate turn

out to be very insensitive to changes in τ , we solve the MC problem only for

those values of τ which are multiples of 50 days and smaller than 10 years.

Figure 1 displays the dependence of the optimal portfolio weights on the

parameter τ . The MC solution is virtually exact in this low-dimensional example.

Observe that the Taylor approximation based on Theorem 4.4(i) hardly deviates

from the MC solution as long as the rebalancing periods are smaller than half

a year. We thus expect the Taylor approach to be sufficiently precise in many

practical applications. Notice that the numeraire is the only asset whose weight
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Figure 1: Optimal portfolio weights depending on the length of the rebalancing intervals

increases with τ . This observation is consistent with Remark 4.5 which states

that all the money will eventually (for τ ↑ ∞) be invested in the asset with the

highest growth rate.

Figure 2 visualizes the optimal portfolio growth rate as calculated with the

MC and Taylor approaches. Again, the Taylor approximation is very accurate for

short rebalancing intervals (τ < 0.5 years). In accordance with Proposition A.4

and Remark 4.5, the portfolio growth rate is a monotonically decreasing function

of τ which asymptotically approaches the value 1.6%, i.e., the expected growth

rate of the numeraire.4 Notice also that the Taylor approximation globally under-

estimates the achievable portfolio growth rate and thus represents a conservative

approximation.

4In fact, the portfolio growth rate saturates not before τ ≈ 200 years. The saturation regime

is outside the range of Fig. 2 as rebalancing periods longer than a few years are of minor interest.
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Figure 2: Optimal portfolio growth rate depending on the length of the rebalancing

intervals

Finally, Fig. 3 shows the variance of the portfolio growth rate. As before,

the Taylor approximation coincides with the MC solution for small rebalancing

intervals. In the current parameterization, the log variance decreases at τ = 0.

Further numerical experiments have shown that the log variance is not a mono-

tonic function of τ ; it decreases until τ ≈ 50 years, increases again, and eventually

saturates at 4%, which represents the variance of the numeraire.

6 Conclusions

In a log-utility setting, we have studied the influence of the rebalancing frequency

on the portfolio weights and the statistical properties of the portfolio growth rate.

As part of this analysis, we solved the log-optimal portfolio problem to first order

in τ which represents the length of the rebalancing intervals. Based on our
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Figure 3: Variance of the optimal portfolio’s growth rate depending on the length of

the rebalancing intervals

numerical experiments we conjecture that the obtained approximate solution is

very accurate if τ is of the order of one year. The approximation can quickly be

evaluated, even if the underlying asset universe comprises several thousand titles.

In contrast, a purely numerical approach based on Monte Carlo sampling, for

instance, is time-consuming and can only cope with relatively few risk factors. We

have shown in several examples that the loss incurred by infrequent rebalancing

is surprisingly small. In a prototypical market of n + 1 independent identical

assets with drift rate µ and volatility σ, the expected portfolio growth rate (or

log mean) is of the order O(µ), and its sensitivity with respect to τ is of the order

O(σ4/n). Thus, although diversification does hardly improve portfolio growth

for τ = 0, it can virtually offset the negative effects of infrequent rebalancing.

Furthermore, the variance of the portfolio growth rate (or log variance) is of the

order O(σ2/n), and its sensitivity with respect to τ is of the order O(σ4). Unlike
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in the case of the log mean, diversification improves the log variance for τ = 0,

but does hardly mitigate the effects of infrequent rebalancing.

The results of this article can be extended to the important class of power

utility functions U(πH) = (1/γ) πγ
H , γ ∈ R, where πH ≥ 0 denotes final wealth.

Like the logarithm, the limiting case for γ → 0, all functions within this class

exhibit convenient separation properties. Alternative approaches to portfolio

rebalancing should also be investigated in the future. Instead of predetermined

time points, one might want to rebalance the portfolio only when a significant

mismatch between the actual and target states is detected. In such a framework,

τ becomes a randomized stopping time. Furthermore, one could think of more

realistic market models in which drift rates and covariances of the asset price

processes are stochastic and/or unobservable. Then, our conclusion that frequent

rebalancing is often ineffective would have to be carefully reconsidered.

Acknowledgements. Daniel Kuhn thanks the Swiss National Science Foun-

dation for financial support.

A Technical background results

Proposition A.1. Let g(w, λ) = ϕλ2(w) be the objective function of P ′(λ2).

Then, g is continuous on W ×R. Moreover, all higher-order partial derivatives of

g are well-defined and continuous on the interior of W ×R and have a continuous

extension to W × R.

Proof. Consider the auxiliary functional

F : W × R → R, F (w, λ) = E

[

ln

(

1 +
n
∑

i=1

wi

(

eν̃iλ
2+ε̃iλ − 1

)

)]

.

By means of the dominated convergence theorem it can be shown that F has

infinitely many continuous partial derivatives on the interior of W×R, all of which

have a continuous extension to the entire domain W × R. A simple calculation
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shows that F (w, 0) = 0. Moreover, since the ε̃i are normally distributed with

zero mean, F is symmetric around λ = 0. This implies that all odd-order partial

derivatives of F with respect to λ must vanish at λ = 0. In conclusion, the

objective function g(w, λ) of problem P ′(λ2), which can be expressed as ν0 +

F (w, λ)/λ2 for λ 6= 0 and as ν0 + 1
2
∂2F (w, 0)/∂λ2 for λ = 0, is continuous on

W×R and has continuous partial derivatives of all orders on the interior of W×R

with continuous extensions to all boundary points. In particular, note that the

division by λ2 does not produce a pole.

Proposition A.2. The Hessian of ϕλ2 at w ∈ W is negative definite and invert-

ible for all parameters λ ∈ R.

Proof. Consider again the function F introduced in the proof of Proposition A.1.

The Hessian matrix of F with respect to the first argument w is given by

Hw(F )(w, λ) = ∇w∇⊤
wF (w, λ) = −E

[

r(ε̃, λ)r(ε̃, λ)⊤

(1 + w⊤r(ε̃, λ))2

]

,

where r(ε̃, λ) is an n-vector whose i’th entry is eν̃iλ
2+ε̃iλ − 1. We will argue that

Hw(F ) is negative definite and invertible for all w ∈ W and λ 6= 0. To this end,

choose an arbitrary vector ξ 6= 0 in R
n. Then, we find

ξ⊤Hw(F )(w, λ) ξ = −E

[

(ξ⊤r(ε̃, λ))2

(1 + w⊤r(ε̃, λ))2

]

< 0.

The last inequality follows from nonnegativity and continuity of the integrand

and the fact that ε̃ has a strictly positive probability density function (this is

equivalent to the covariance matrix σ̃ having full rank). Moreover, we use that

ξ⊤r(ε̃, λ) cannot be zero for all ε̃ ∈ R
n since the set {r(ε̃, λ)|ε̃ ∈ R

n} has dimension

n for all λ 6= 0. As ξ 6= 0 was arbitrary, Hw(F ) is negative definite for all λ 6= 0.

Fixing w ∈ W , the Hessian matrix of the objective function ϕλ2 is given by

Hw(F )/λ2 for λ 6= 0 and by −S̃ for λ = 0. It is negative definite in any case and

hence invertible. This observation completes the proof.

Proposition A.2 implies that P ′(λ2) has a unique solution for each λ ∈ R.
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Proposition A.3. If problem P ′(λ2
0) is nondegenerate for some λ0 ∈ R, then the

optimal value function λ 7→ maxP ′(λ2) and the single-valued optimizer mapping

λ 7→ arg max P ′(λ2) are infinitely often differentiable on a neighborhood of λ0.

Moreover, S(λ2) is locally constant at λ0.

Proof. By permutation symmetry, we may assume that S(λ2
0) contains all non-

negative integers smaller or equal to n̂, where 0 ≤ n̂ ≤ n. In order to keep

notation simple, we set

ŵ = (w1, . . . , wn̂) and w̌ = (wn̂+1, . . . , wn),

which implies that w = (ŵ, w̌). Moreover, we define an auxiliary function

ĝ(ŵ, λ) = ϕλ2(w)
∣

∣

w̌=0
.

Notice that ĝ and all its higher-order partial derivatives are continuous on the

interior of Ŵ × R, where Ŵ = {ŵ ∈ R
n̂
+|
∑n̂

i=1 ŵi ≤ 1} is the compact standard

simplex in R
n̂; for details see Proposition A.1. Denote by w∗

0 = (ŵ∗
0, w̌

∗
0) the

solution of the reference problem P ′(λ2
0). By construction, ŵ∗

0 lies in the interior

of the simplex Ŵ , while w̌∗
0 vanishes. Next, for some suitable neighborhood U of

λ0 let ŵ∗ : U → R
n̂ be an infinitely often differentiable mapping with ŵ∗(λ0) = ŵ∗

0

such that

∇ŵ ĝ(ŵ∗(λ), λ) = 0 for all λ ∈ U .

The existence of ŵ∗ is ensured by the implicit function theorem [23], which applies

since the Hessian of ĝ with respect to its first argument is negative definite and

invertible at (ŵ∗
0, λ0). Next, introduce a constant mapping w̌∗ : U → R

n−n̂ which

vanishes on its whole domain, and define the product mapping w∗ = (ŵ∗, w̌∗). By

construction of w∗ and nondegeneracy of problem P ′(λ2
0), there is a neighborhood

V ⊂ U of λ0 such that w∗(λ) ∈ W and

w∗
i (λ) > 0, ∂ϕλ2(w∗(λ))/∂wi = 0 i ∈ S(λ2

0)

w∗
i (λ) = 0, ∂ϕλ2(w∗(λ))/∂wi < 0 i /∈ S(λ2

0)







for all λ ∈ V .
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As it satisfies the necessary and sufficient optimality conditions, w∗(λ) is the

unique solution of problem P ′(λ2). By construction, the optimizer mapping w∗(λ)

and the optimal value function ϕλ2(w∗(λ), λ) of problem P ′(λ2) are infinitely often

differentiable on V . Moreover, we have S(λ2) = S(λ2
0) on V , that is, the set of

assets in the optimal portfolio is locally constant.

Proposition A.4. The sensitivity g(1) derived in Theorem 4.4(ii) is nonnegative.

Proof. As usual, define w(0) = S̃−1µ̃ as the vector of optimal portfolio weights

in the continuous-time limit. Since, by assumption, all assets enter the optimal

continuously rebalanced portfolio, each component of w(0) is strictly positive. We

first reexpress g(1) in terms of S̃ and w(0),

4 g(1) =
n
∑

i,j=1

w
(0)
i σ̃2

ij w
(0)
j − 2

n
∑

i,j,k=1

w
(0)
i σ̃ij w

(0)
j σ̃ik w

(0)
k

+
n
∑

i,j,k,l=1

w
(0)
i σ̃ij w

(0)
j w

(0)
k σ̃kl w

(0)
l

=
n
∑

i,j,k,l=1

σ̃ijσ̃kl (w
(0)
i w

(0)
j δik δjl − w

(0)
i w

(0)
j w

(0)
k δjl

−w
(0)
i w

(0)
j w

(0)
l δik + w

(0)
i w

(0)
j w

(0)
k w

(0)
l ).

Symmetry of the covariance matrix S̃ is used to rearrange terms in the second

line. Next, we introduce an n × n matrix A with elements Aij = w
(0)
i σ̃ij w

(0)
j .

Notice that A inherits positivity of the covariance matrix S̃. Furthermore, we

define an n-vector b with elements bi = 1/w
(0)
i , all of whose entries are strictly

positive. Using this new notation, we find

4 g1 =
n
∑

i,j,k,l=1

Aij Akl (bk bl δik δjl − bl δjl − bk δik + 1)

=
n
∑

i,j,k,l=1

Aij Akl (1 − bk δik)(1 − bl δjl).

Now, let C be the upper triangular Choleski decomposition matrix corresponding

to A, that is, A = C⊤C, and define D as the symmetric matrix with entries
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Dij = 1 − bi δij. With these conventions, we can rewrite g(1) as

4 g(1) = Tr(ADAD)

= Tr(C⊤CDC⊤CD)

= Tr(CDC⊤CDC⊤) ≥ 0.

The third equality follows from the fact that the trace of a product of square

matrices is invariant under cyclic permutations, and the last inequality follows

from symmetry of CDC⊤, which implies positivity of CDC⊤CDC⊤. As positive

matrices have nonnegative trace, the claim is established.

B Proof of Theorem 4.4

Proof of Theorem 4.4(i). Denote by w∗(λ) the unique solution of problem P ′(λ2),

λ ∈ R. Since the reference problem for λ = 0 is nondegenerate, the mapping w∗

is infinitely often differentiable on a neighborhood of λ = 0; see Proposition A.3.

Thus, by Taylor’s theorem, w∗ can be expanded in powers of λ, that is,

arg maxP ′(λ2) = w∗(λ) = w(0) − w(1)λ2 + o(λ2) . (B.1)

Symmetry with respect to the origin forbids odd powers of λ in the above expan-

sion. Furthermore, Proposition A.3 and the assumption that S(0) contains all

available assets imply that w∗ fulfills the optimality conditions

∇ϕλ2(w∗(λ)) = 0 , (B.2)

which determine the coefficients of the expansion (B.1). To see this, we first

introduce a random function

ψ(w, λ) = ln

(

1 +
n
∑

i=1

wi

(

eν̃iλ
2+ε̃iλ − 1

)

)

.
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Next, we multiply (B.2) by λ2, differentiate k times with respect to λ, k ∈ N0,

and express the result in terms of ψ. This yields

0 ≡ dk

dλk
λ2 ∂

∂wi

ϕλ2(w∗(λ)) =
dk

dλk

∂

∂wi

E [ψ(w∗(λ), λ)]

= E

[

dk

dλk

∂

∂wi

ψ(w∗(λ), λ)

]

.

Interchanging the differentiation and the expectation operators is allowed by the

dominated convergence theorem. Although the above identity holds for all λ ∈ R,

it is sufficient to consider the point λ = 0. For brevity of notation, we introduce

random variables

ψi,k =
1

k!

dk

dλk

∂

∂wi

ψ(w∗(λ), λ)

∣

∣

∣

∣

λ=0

.

At optimality, the mean values Eψi,k must vanish for all i = 1, . . . , n and for all

nonnegative integers k. When calculating the expectations, we use the fact that

odd monomials of the ε̃i have zero expectation. Moreover, we use the relations

E(ε̃i ε̃j) = σ̃ij and E(ε̃i ε̃j ε̃k ε̃l) = σ̃ij σ̃kl + σ̃ik σ̃jl + σ̃il σ̃jk .

The last identity implies that all 4th-order moments of a Gaussian random vector

can be expressed easily in terms of 2nd-order moments; this useful property

will substantially simplify our calculations below. To begin with, we find that

ψi,0 = 0 and ψi,1 = ε̃i, both of which have zero mean.5 This is consistent with

the underlying optimality conditions. The first nontrivial case is for k = 2, where

ψi,2 = ν̃i +
ε̃2

i

2
−

n
∑

j=1

ε̃i ε̃j w
(0)
j ⇒ Eψi,2 = µ̃i −

n
∑

j=1

σ̃ij w
(0)
j .

Consequently, the requirement that Eψi,2 must vanish implies w(0) = S̃−1µ̃. The

random variables ψi,3 are representable as odd polynomials in the ε̃i, and no

further calculation is necessary to see that they have zero expectation. Hence,

5For small values of k the ψi,k are found by expanding ∂wi
ψ(w∗(λ), λ) in powers of λ.
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we may directly proceed to the case k = 4. A tedious algebraic calculation yields

ψi,4 =
ν̃2

i

2
+

ν̃i ε̃
2
i

2
+
ε̃4

i

24
−

n
∑

j=1

w
(0)
j ε̃j

(

ε̃i ν̃i +
ε̃3

i

6

)

−
n
∑

j=1

w
(0)
j

(

ν̃j +
ε̃2

j

2

)(

ν̃i +
ε̃2

i

2

)

+
n
∑

j,k=1

w
(0)
j ε̃j ε̃k w

(0)
k

(

ν̃i +
ε̃2

i

2

)

−
n
∑

j=1

w
(0)
j

(

ε̃j ν̃j +
ε̃3

j

6

)

ε̃i +
n
∑

j=1

w
(1)
j ε̃j ε̃i −

(

n
∑

j=1

w
(0)
j ε̃j

)3

ε̃i

+2
(

n
∑

j=1

w
(0)
j ε̃j

)(

n
∑

k=1

w
(0)
k (ν̃k +

ε̃2
k

2
)
)

ε̃i .

Taking the expected value, substituting the explicit formula for w(0), and rear-

ranging terms we find

Eψi,4 =
µ̃2

i

2
+

n
∑

j=1

σ̃ij w
(1)
j +

n
∑

j,k=1

(

σ̃ij µ̃j σ̃−1
jk µ̃k − µ̃i µ̃j σ̃−1

jk µ̃k −
σ̃2

ij

2
σ̃−1

jk µ̃k

)

.

As Eψi,4 must vanish for all i = 1, . . . , n, we obtain

w(1) = S̃−1

(

1

2
Q − 1

2
MS̃ − S̃M + µ̃µ̃⊤

)

S̃−1µ̃ .

The proof is completed by plugging the explicit formulae for the coefficients w(0)

and w(1) into (B.1) and replacing λ2 by τ .

Proof of Theorem 4.4(ii). We use the same notation as in the proof of Theo-

rem 4.4(i). Since the reference problem for λ = 0 is nondegenerate, the mapping

w∗ is infinitely often differentiable on a neighborhood of λ = 0, and w∗(0) lies in

the interior of W . Moreover, the parametric objective function (w, λ) 7→ ϕλ2(w)

is infinitely often differentiable on the interior of W × R; see Proposition A.1.

Thus, the composed mapping

λ 7→ λ2 (ϕλ2(w∗(λ)) − ν0) = E[ψ(w∗(λ), λ)]

is locally smooth at the origin, and we may use Taylor’s theorem to write

maxP ′(λ2) = ϕλ2(w∗(λ)) = ν0 +
1

λ2
E[ψ(w∗(λ), λ)]

= ν0 +
1

λ2

( 4
∑

k=0

E[ψk] λ
k + o(λ4)

)

, (B.3)
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where

ψk =
1

k!

dk

dλk
ψ(w∗(λ), λ)

∣

∣

∣

∣

λ=0

.

Note that the derivation of (B.3) uses commutativity of the differentiation and

expectation operators, which follows from the dominated convergence theorem.

Using the Taylor approximation (B.1) from the proof of Theorem 4.4(i), it is easily

seen that ψ0 = 0 and ψ1 =
∑n

i=1 w
(0)
i ε̃i, both of which have zero expectation.

The first random variable with nonzero mean is ψ2. It can be expressed as

ψ2 =
n
∑

i=1

w
(0)
i

(

ν̃i +
ε̃2

i

2

)

− 1

2

n
∑

i,j=1

w
(0)
i ε̃i ε̃j w

(0)
j .

Taking the expected value and substituting the explicit formula for w(0) yields

Eψ2 = 1
2
µ̃⊤S̃−1µ̃. The random variable ψ3, in contrast, is representable as an

odd polynomial in the ε̃i and thus has zero expectation.

ψ3 =
n
∑

i=1

w
(0)
i

(

ε̃i ν̃i +
ε̃3

i

6

)

−
n
∑

i,j=1

w
(0)
i ε̃i w

(0)
j

(

ν̃j +
ε̃2

j

2

)

+
1

3

( n
∑

i=1

w
(0)
i ε̃i

)3

+
n
∑

i=1

w
(1)
i ε̃i

Although the contribution of ψ3 to the expansion (B.3) vanishes, it will be needed

in the proof of Theorem 4.4(iii), below. Next, we evaluate ψ4.

ψ4 =
n
∑

i=1

w
(0)
i

(

ν̃2
i

2
+

ν̃i ε̃
2
i

2
+
ε̃4

i

24

)

−
n
∑

i=1

w
(1)
i

(

ν̃i +
ε̃2

i

2

)

−1

2

n
∑

i,j=1

w
(0)
i w

(0)
j

(

ε̃2
i ε̃

2
j

4
+ ν̃i ν̃j +

ν̃i ε̃
2
j + ν̃j ε̃

2
i

2

)

+
n
∑

i,l,k=1

w
(0)
i

(

ε̃i ε̃j w
(0)
j w

(0)
k (ν̃k +

ε̃2
k

2
) + ε̃i ε̃j w

(1)
j

− ε̃i ε̃j w
(0)
j ν̃j −

w
(0)
j ε̃i ε̃

3
j

6

)

− 1

4

( n
∑

i=1

w
(0)
i ε̃i

)4

It is worthwhile to remark that both terms involving w(1) cancel out after taking

the expected value and substituting w(0) = S̃−1µ̃. This considerably simplifies
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the evaluation of Eψ4. A somewhat lengthy but conceptually simple calculation

shows that

Eψ4 =
1

2

n
∑

i,j=1

µ̃i σ̃
−1
ij µ̃2

j −
1

4

( n
∑

i,j=1

µ̃i σ̃
−1
ij µ̃j

)2

− 1

4

n
∑

i,j,k,l=1

µ̃i σ̃
−1
ij σ̃2

jk σ̃−1
kl µ̃l

=
1

4
µ̃⊤S̃−1(Q − MS̃ − S̃M + µ̃µ̃⊤)S̃−1µ̃ .

The claim finally follows by plugging the formulae for the Eψk into (B.3) and

replacing λ2 by τ .

Proof of Theorem 4.4(iii). Consider problem P(τ), which is well-defined for H =

τ−1 ∈ N. First, we express the variance of the optimal portfolio’s growth rate as

v(τ) = Var ln

(

πH

π0

)

=
H−1
∑

h=0

Var ln

(

πh+1

πh

)

= H Var ln

(

π1

π0

)

.

This is possible since the random variables πh+1/πh, h ∈ N0, are independent

and identically distributed. Independence follows from the fact that the optimal

strategy, which controls the wealth process π, is (essentially) deterministic, and

the increments of Wiener processes are independent. Using the same notation as

in the proof of Theorem 4.4(i), and setting τ = λ2, we find

v(λ2) =
1

λ2
Var

[

ψ(w∗(λ), λ) + ν0 λ2 + ε0 λ
]

=
1

λ2
E
[(

ψ(w∗(λ), λ) + ε0 λ
)2]− 1

λ2

(

E
[

ψ(w∗(λ), λ)
])2

. (B.4)

The second term has already been analyzed in Theorem 4.4(i). For present pur-

poses, a second-order expansion in λ is sufficient, that is,

E
[

ψ(w∗(λ), λ)
]

=
1

2
µ̃⊤S̃−1µ̃ λ2 + o(λ2) .

To evaluate the first term in (B.4), we introduce a new random function

χ(λ) =
(

ψ(w∗(λ), λ) + ε0 λ
)2

, (B.5)

whose expectation is smooth in λ. By using Taylor’s theorem, we may thus write

E[χ(λ)] =
4
∑

k=0

E[χk]λ
k + o(λ4), where χk =

1

k!

dk

dλk
χ(λ)

∣

∣

∣

∣

λ=0

.
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As usual, interchangeability of the differentiation and expectation operators is

ensured by the dominated convergence theorem. The (pointwise) expansion of

the random function χ(λ) around the origin is conveniently obtained by plugging

the well-known expansion of ψ(w∗(λ), λ) into (B.5). As ψ0 vanishes we may

conclude that χ0 and χ1 are zero, as well. The first nontrivial contribution

comes from the second-order coefficient, which is given by χ2 = ψ2
1 +2ψ1ε0 +ε2

0.

Using our knowledge of ψ1 from the proof of Theorem 4.4(ii), we find

Eχ2 = µ̃⊤S̃−1µ̃ + 2 µ̃⊤S̃−1ς + σ2
0 .

The next coefficient χ3 = 2ψ1ψ2 + 2ψ2ε0 has zero expectation, again, as it is

representable as an odd polynomial in the εi. Finally, the last relevant coefficient

in our expansion amounts to χ4 = ψ2
2 + 2ψ1ψ3 + 2ψ3ε0. After a lengthy but

straightforward calculation, which uses our knowledge of ψ1, ψ2, and ψ3 from

the proof of Theorem 4.4(ii), we obtain

Eχ4 = µ̃⊤S̃−1

(

1

2
Q − MS̃ − S̃M +

7

4
µ̃µ̃⊤

)

S̃−1µ̃

+µ̃⊤S̃−1

(

Q − MS̃ − S̃M + 2µ̃µ̃⊤
)

S̃−1ς .

Replacing the expectations in (B.4) by their Taylor approximations, and substi-

tuting τ for λ2, the claim follows.
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