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summary

Since the pioneering work of Embrechts and co-authors in 1999, copula mod-
els have enjoyed steadily increasing popularity in finance. Whereas copulas are
well-studied in the bivariate case, the higher-dimensional case still offers several
open issues and it is far from clear how to construct copulas which sufficiently
capture the characteristics of financial returns. For this reason, elliptical copulas
(i.e. Gaussian and Student-t copula) still dominate both empirical and practical
applications. On the other hand, several attractive construction schemes have ap-
peared in the recent literature promising flexible but still manageable dependence
models. The aim of this work is to empirically investigate whether these models
are really capable of outperforming its benchmark, i.e. the Student-t copula and,
in addition, to compare the fit of these different copula classes among themselves.

Keywords and phrases: KS-copula; Hierarchical Archimedian; Product copulas;
Pair-copula decomposition

1 Introduction

The increasing linkages between countries, markets and companies require an accurate and
realistic modelling of the underlying dependence structure. This applies to financial markets
and, in particular, to the financial assets traded there-on. For a long time both practitioners
and theorists have relied on the multivariate normal (Gaussian) distribution as statistical
foundation, seemingly ignoring that this model assigns too little probability mass to ex-
tremal events. In order to overcome this drawback but still maintain many of the attractive
properties, elliptical distributions (e.g. multivariate Student-t or multivariate generalized
hyperbolic distribution) occasionally have found their way into financial literature. Though
being able to model heavy tails, elliptical distributions fail to capture asymmetric depen-
dence structures. The copula concept, in contrast, which originally dates back to Sklar
(1959) but was made popular in finance through the pioneering work of Embrechts and co-
authors (1999), provides a flexible tool to capture different patterns of dependence. Within
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this work we assume that the reader is already familiar with the notion of copulas. Oth-
erwise, we refer to Nelsen (2006) or Joe (1997). Whereas copulas are well-studied in the
bivariate case, construction schemes for higher dimensional copulas are not. Recently, sev-
eral publications on high-dimensional copulas have appeared (e.g. Morillas, 2005, Palmitesta
& Provasi, 2005, Savu & Trede, 2006, Liebscher, 2006, Aas et al., 2006). Each of them claims
to provide a flexible dependence model, but there is no comprehensive comparison among
these approaches, as far as we know. In particular, no references are found to the Student-t
copula (i.e. the copula associated to the multivariate Student-t distribution) which is known
for its excellent fit to multivariate financial return data.
The outline of this work is as follows: Section 2 overviews and connects several recent
construction schemes of multivariate copulas. A short digression on goodness-of-fit measures
can be found in section 3. Section 4 is dedicated to the description of the underlying data
sets, whereas the empirical results are summarized and discussed in section 5.

2 Constructing multivariate non-elliptical copulas

Among the classes of non-elliptical copulas, Archimedean copulas and its generalizations
(section 2.1) enjoy great popularity. Beyond that, so-called pair-copula constructions are re-
viewed in section 2.2, where the joint distribution is decomposed into simple building blocks,
so-called pair-copulas. Thirdly, we pick up the copulas associated to Koehler-Symanowski
distributions in section 2.3 which have been successfully applied by Palmistesta & Provasi
(2005) as models for financial returns. Finally, Liebscher’s (2006) recent proposal to gener-
alize given d-copulas is reviewed in section 2.4.

2.1 Multivariate Archimedean copulas

2.1.1 Classical multivariate Archimedean copulas

Let ϕ : [0, 1] → [0,∞] be a continuous, strictly decreasing and convex function with ϕ(1) = 0,
ϕ(0) ≤ ∞ and let ϕ[−1] be the so-called pseudo-inverse of ϕ defined by

ϕ[−1](t) ≡

 ϕ−1(t) 0 ≤ t ≤ ϕ(0),

0 ϕ(0) ≤ t ≤ ∞ .

It can be shown (see, e.g. Nelsen, 2006) that

C(u1, u2) = ϕ[−1]
(
ϕ(u1) + ϕ(u2)

)
defines a class of bivariate copulas, the so-called Archimedean copulas. The function ϕ is
called the (additive) generator of the copula. Furthermore, if ϕ(0) = ∞ the pseudo-inverse
describes an ordinary inverse function (i.e. ϕ[−1] = ϕ−1) and in this case ϕ is known as a
strict generator.

2
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Given a strict generator ϕ : [0, 1] → [0,∞], bivariate Archimedean copulas can be extended
to the d-dimensional case. For every d ≥ 2 the function C : [0, 1]d → [0, 1] defined as

C(u) = ϕ−1
(
ϕ(u1) + ϕ(u2) + · · ·+ ϕ(ud)

)
(2.1)

is a d-dimensional Archimedean copula if and only if ϕ−1 is completely monotonic on R+,
i.e. if ϕ−1 ∈ L∞ with

Lm ≡
{
φ : R+ → [0, 1]

∣∣∣φ(0) = 1, φ(∞) = 0, (−1)kφ(k)(t) ≥ 0 , k = 1, . . . ,m,
}
.

The Gumbel copula is derived from the generator ϕ(t) = (− ln t)θ, θ ≥ 1 and the Clayton
copula is generated by ϕ(t) = 1

θ (t−θ − 1), θ > 0. For an overview of further Archimedean
copulas and the properties of the aforementioned ones, we refer the reader to the monographs
of Nelson (2006) and Joe (1997).

2.1.2 Non-exchangeable Archimedean copulas

In order to increase flexibility and to allow for non-exchangeable dependence structures,
several generalizations have emerged in the recent literature: A simple one – the so-called
fully nested Archimedean (FNA) copulas – can be found in Joe (1997, p. 89), Whelan
(2004) and Savu & Trede (2006), and requires d− 1 generator functions ϕ1, . . . , ϕd−1 with
ϕ−1

1 , . . . , ϕ−1
d−1 ∈ L∞ and ϕi+1 ◦ ϕ−1

i (t) = ϕi+1(ϕ−1
i (t)) ∈ L∗∞ for

L∗d =
{
φ : R+ → R+

∣∣∣φ(0) = 0, φ(∞) = ∞, (−1)k−1φ(k)(t) ≥ 0 , k = 1, . . . , d,
}
.

The structure of FNA d-copulas is rather simple: One first couples u1 and u2, then the
copula of u1 and u2 with u3 to a new copula which is coupled afterwards with u4 and so on.
Hence the FNA 4-copula is of the form

C(u) = ϕ−1
3

[
ϕ3

(
ϕ−1

2

[
ϕ2

(
ϕ−1

1 [ϕ1(u1) + ϕ1(u2)]
)

+ ϕ2(u3)
])

+ ϕ3(u4)
]
. (2.2)

Figure 1 illustrates one possible FNA copula for dimension d = 5.

Alternatively, mixing ordinary Archimedean and FNA copulas, partially nested Archi-
medean (PNA) copulas may be used. Again, for ease of notation, we focus on the 4-variate
case

C(u) = ϕ−1
[
ϕ

(
ϕ−1

12 [ϕ12(u1) + ϕ12(u2)]
)

+ ϕ
(
ϕ−1

34 [ϕ34(u3) + ϕ34(u4)]
)]
. (2.3)

Note that ϕ,ϕ12, ϕ34 are generators with ϕ−1, ϕ−1
12 , ϕ

−1
34 ∈ L∞ and ϕ ◦ ϕ−1

12 , ϕ ◦ ϕ
−1
34 ∈ L∗∞.

Obviously, one first couples the pairs u1, u2 and u3, u4 with distinct generators. The resulting
copula pair is then coupled using a third generator ϕ (which in turn might be coupled with
an additional variable u5 using a fourth generator ψ for an extension to the 5-dimensional
case). Another possible structure of a PND copula is illustrated in figure 1.

3
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u1 u2 u3 u4 u5

C1

C2

C3

C4

u1 u2 u3 u4 u5

C1,1 C1,2

C2

C3

Figure 1: FNA copula (left) and PNA copula (right) for d = 5.

Thirdly, copula C from (2.3) is also an example of a so-called hierarchical Archimedean (HA)
copula. Borrowing the notation of Savu & Trede (2006), the basic idea of this approach is
to build a hierarchy of Archimedean copulas with L different levels, indexed by l = 1, . . . , L.
At each level l there are nl distinct objects, indexed by j = 1, . . . , nl. In a first step (i.e.
in level 1), the variables u1, . . . , ud are grouped into n1 ordinary multivariate Archimedean
copulas

C1,j(u1,j) = ϕ−1
1,j

∑
u1,j

ϕ1,j(u1,j)

 , j = 1, . . . , n1.

with (possibly different) generators ϕ1,j and where u1,j denotes the set of elements of
u1, . . . , ud belonging to C1,j . All copulas of the first level are again grouped into copulas at
level l = 2. These copulas C2,j with generator function ϕ2,j , j = 1, . . . , n2 are generalized
Archimedean copulas, whose dependence structure is only of partial exchangeability and
consists of copulas from the previous level (as elements), denoted by

C2,j(C2,j) = ϕ−1
2,j

∑
C2,j

ϕ2,j(C2,j)

 ,

where C2,j represents the set of all copulas from level l = 1 entering copula C2,j . This
procedure continues until only a single hierarchical Archimedean copula CL,1 is achieved at
level L. In order to ensure that CL,1 is a proper copula, we have to proclaim that ϕ−1

l,j ∈
L∞ for l = 1, . . . , L and j = 1, . . . , nl, and that ϕl+1,i ◦ ϕ−1

l,j ∈ L∗∞ for all l = 1, . . . , L and
j = 1, . . . , nl, i = 1, . . . , nl+1 such that Cl,j ∈ Cl+1,i. Moreover, a hierarchy is established if
the number of copulas decreases at each level, if the top level contains only a single object
and if at each level the dimensions of the copulas add up to d. Figure 2 displays the possible
construction of a 5-dimensional HA-copula.
Savu & Trede (2006) also derive the HA-copula density

∂dCL,1

∂u1 . . . ∂ud
=

∑ ∂d−iCL,1

∂Ck1
L−1,1 . . . ∂C

kn,L−1
L−1,nL−1

nL−1∏
r=1

∑
u=υ1,...,υr

∂|υ1|CL−1,r

∂υ1
, . . . ,

∂|υr|CL−1,r

∂υr
,

4
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u1 u2 u3 u4 u5

C1,1 C1,2

C2,1

Figure 2: HA copula for d = 5.

where the outer sum extends over all sets of integers k1, . . . , kn,L−1 ∈ N0 such that maxj

kj ≤ dL−1,j and
∑nL−1

j=1 kj = d − i for all i = 0, . . . , d − nL−1. These terms are the outer
derivatives of the copula with respect to the elements of CL,1, i.e., the nL−1 copulas from
level L− 1. The second part of the formula are the inner derivatives, corresponding to the
derivatives of the copulas at level L− 1 with respect to their arguments uL−1,j .

2.1.3 Generalized multiplicative Archimedean copulas

In this section we focus on methods recently proposed by Morillas (2005) and Liebscher
(2006). Both approaches are based on a second functional representation of Archimedean
copulas via so called multiplicative generators (see Nelsen, 2006). Setting ϑ(t) ≡ exp(−ϕ(t))
and ϑ[−1](t) ≡ ϕ[−1](− ln t), equation (2.1) can be rewritten as

C(u1, . . . , ud) = ϑ[−1]
(
ϑ(u1) · ϑ(u2) · . . . · ϑ(ud)

)
. (2.4)

The function ϑ is called multiplicative generator of C. Due to the relationship between ϕ

and ϑ, the function ϑ : [0, 1] → [0, 1] is continuous, strictly increasing and concave with
ϑ(1) = 1 and ϑ[−1](t) = 0 if 0 ≤ t ≤ ϑ(0) and ϑ[−1](t) = ϑ−1(t) if ϑ(0) ≤ t ≤ 1.
Equation (2.4) can also be expressed using the independence copula C⊥(u) =

∏d
i=1 ui:

C(u1, . . . , ud) = ϑ[−1]
(
C⊥(ϑ(u1), . . . , ϑ(ud))

)
.

Morillas (2005) substitutes C⊥ by an arbitrary d-copula C in order to obtain

Cϑ(u1, . . . , ud) = ϑ[−1]
(
C(ϑ(u1), ϑ(u2), . . . , ϑ(ud))

)
(2.5)

and proves that Cϑ is a d-copula if ϑ[−1] is absolutely monotonic of order d on [0, 1], i.e. if
ϑ[−1](t) satisfies (ϑ[−1])(k)(t) = dkϑ[−1](t)

dtk ≥ 0 for k = 1, 2, . . . , d and t ∈ (0, 1).

Examples of generator functions are stated in Morillas (2005). Notice that not every gen-
erator given there is absolutely monotonic for arbitrary d > 1: As one can easily verify,
the generator ϑ(t) = tr/(2 − tr), r ∈ (0, 1/3] (see table 1, no. 9 in Morillas, 2005) has no
absolutely monotonic pseudo-inverse of order d ≥ 3, because the third derivative of ϑ[−1]

becomes negative. Hence this generator is suitable only for a construction of generalized

5
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bivariate copulas. Concerning the basic properties of such Morillas copulas we refer to Mo-
rillas (2005).

Another way of generalizing Archimedean copulas is the method proposed by Liebscher
(2006) who introduces the following copula representation

C(u1, . . . , ud) = Ψ

 1
m

m∑
j=1

ψj1(u1) · ψj2(u2) · . . . · ψjd(ud)

 , (2.6)

where Ψ and ψjk : [0, 1] → [0, 1] are functions satisfying the following conditions: Firstly,
it is assumed that Ψ(d) exists with Ψ(k)(u) ≥ 0 for k = 1, 2, . . . , d and u ∈ [0, 1], and that
Ψ(0) = 0. Secondly, ψjk is assumed to be differentiable and monotone increasing with
ψjk(0) = 0 and ψjk(1) = 1 for all k, j. Thirdly, Liebscher’s construction requires that

Ψ

 1
m

m∑
j=1

ψjk(v)

 = v for k = 1, 2, . . . , d and v ∈ [0, 1].

The three conditions guarantee that C defined in (2.6) is actual a copula.

It is easily seen that the approaches of Morillas (2005) and Liebscher (2006) coincide for
m = 1, ϑ[−1] = Ψ in (2.6) and Cϑ = C⊥ in (2.5).

Liebscher (2006) also states a general method for deriving appropriate functions ψjk. Let
hjk : [0, 1] → [0, 1], j = 1, . . . ,m, k = 1, . . . , d be a differentiable and bijective function such
that h′jk(u) > 0 for u ∈ (0, 1), hjk(0) = 0, hjk(1) = 1 and m · u =

∑m
j=1 hjk(u), u ∈ [0, 1],

k = 1, . . . , d. Let ψ = Ψ−1 be the differentiable inverse function of Ψ. An appropriate
choice is setting ψjk(u) = hjk(ψ(u)), since ψ′jk(u) = h′jk(ψ(u)) · ψ′(u) > 0 for j = 1, . . . ,m
and u ∈ [0, 1].
Considering m = 2, define

h1k(u) ≡ uδk , h2k(u) ≡ 2u− uδk with δk ∈ [1, 2]. (2.7)

Choosing further

Ψ(t) = −1
θ

ln(1− (1− e−θ)t), and ψ(u) =
1− e−θu

1− e−θ
, θ > 0

and defining ψjk(u) ≡ hjk(ψ(u)) a generalized Frank copula (GMLF) is obtained. Setting
δk = 1 for all but one k, k = 1, . . . , d, it is easily verified that the GMLF copula reduces to
the common Frank copula. Setting m = 2 and hjk as in (2.7) but now choosing (see table
2, no. 2, p. 8 in Liebscher (2006))

Ψ(t) =
(δ − t)−θ − δ−θ

(δ − 1)−θ − δ−θ
, and ψ(u) = δ −

(
δ−θ(1− u) + u(δ − 1)−θ

)− 1
θ , θ > 0, δ > 1

6
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a copula is obtained, which will be termed as GML2 copula henceforth.

In the field of insurance pricing the function ψjk is known as a distortion function (for a
definition see Freez & Valdez, 1998) and the methods proposed by e.g. Freez & Valdez
(1998) or Wang (1998) appear as special cases in (2.6). The same holds for the approach
given by Morillas (2005) where the function ϑ also satisfies the requirements of a distortion
function.

2.2 Pair-copula decompositions

2.2.1 Pair-copula decomposition: The general case

One way of calculating a multivariate density is by decomposing it into a product of marginal
densities and conditional densities. The latter can be replaced stepwise by so-called pair-
copulas. Again, let X = (X1, . . . , Xd)′ have the joint density function

f(x1, . . . , xd) = f(xd) · f(xd−1|xd) · f(xd−2|xd−1, xd) · . . . · f(x1|x2, . . . , xd) (2.8)

which is unique up to a relabelling of the variables. Because of

f(x1, . . . , xd) = c12···d(F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd),

with c12···d(·) being the d-variate copula density, f(xd|xd−1), e.g., may also be expressed
by c12(F1(x1), F2(x2)) · f1(x1), where c12(·, ·) is called pair-copula density for the respecting
transformed variables. Similarly, f(xd−2|xd−1, xd), can be decomposed into

c(d−2)d|d−1

(
Fd−2|d−1(xd−2|xd−1), Fd|d−1(xd, xd−1)

)
· f(xd−2|xd−1).

Using f(xd−2|xd−1) = c(d−2)(d−1)(Fd−2(xd−2), Fd−1(xd−1)) · fd−2(xd−2) results in

f(xd−2|xd−1, xd) = c(d−2)d|d−1(Fd−2|d−1(xd−2|xd−1), Fd|d−1(xd, xd−1))

·c(d−2)(d−1)(Fd−2(xd−2), Fd−1(xd−1)) · fd−2(xd−2)

which is not unique anymore, because one may also condition on xd instead of xd−1. This
leads to a different decomposition. The general formula reads as

f(x|v) = cxvj |v−j
(F (x|v−j , F (vj |v−j)) · f(x|v−j) (2.9)

for a d-dimensional vector v with components vj . The vector v−j denotes v excluding the
component vj . For methods and formulas to calculate F (x|v) we refer to Joe (1996).
As seen above, every (conditional) d-dimensional density can be split up into a pair-copula
and a (d − 1)-dimensional (conditional) density. For d > 2 you can iteratively repeat this
splitting for the (d−1)-dimensional conditional density. Eventually, a product of univariate
densities and pair-copulas is obtained. As shown in the trivariate case, this decomposition
is not unique but there are various ways of doing this.

7
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In order to sort the different decomposition constructs, so-called regular vines (see Bedford
and Cooke, 2001 and 2002) are defined. Vines are graphical models that present complete
decomposition schemes. Following Aas et al. (2006) we choose the structure of the D-vine,
since there is no dominating variable. The joint density f(x1, . . . , xd) can be expressed as

d∏
k=1

f(xk)
d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1(F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)).

The decomposition of a four-dimensional density according to the D-vine scheme is

f(x1, x2, x3, x4) = f(x1) · f(x2) · f(x3) · f(x4)

·c12(F (x1), F (x2)) · c23(F (x2), F (x3)) · c34(F (x3), F (x4))

·c13|2(F (x1|x2), F (x3|x2)) · c24|3(F (x2|x3), F (x4|x3))

·c14|23(F (x1|x2, x3), F (x4|x2, x3)). (2.10)

2.2.2 Pair-copula decomposition of a copula

Originally, the pair-copula decomposition (PCD) decomposes the common density f of d
random variables. Of course, one may also apply the pair-copula decomposition to the
underlying copula density c, as we will show in this subsection. To simplify notation, we
restrict ourselves to d = 4 and the D-vine decomposition. As an immediate consequence of
Sklar’s (1959) theorem,

c(F (x1), F (x2), F (x3), F (x4)) =
f(x1, x2, x3, x4)

f(x1) · f(x2) · f(x3) · f(x4)
.

Substituting the common density by its PCD given in (2.10),

c(F (x1), F (x2), F (x3), F (x4)) = c12(F (x1), F (x2)) · c23(F (x2), F (x3)) · c34(F (x3), F (x4))

· c13|2(F (x1|x2), F (x3|x2)) · c24|3(F (x2|x3), F (x4|x3))

· c14|23(F (x1|x2, x3), F (x4|x2, x3))

with ci|j(·, ·) being a pair-copula density and its indices i, j refer to xi and xj . According
to Joe (1996),

F (x|v) =
∂ Cx,vj |v−j

(F (x|v−j), F (vj |v−j))
∂ F (vj |v−j)

with v−j being the vector v except the element vj . In the univariate case (i.e. v = v),

F (x|v) =
∂ Cx|v(FX(x), FV (v))

∂ FV (v)
≡ h(x, v, θ),

where θ being the parameter vector of the copula Cx|v. The copula density decomposition
can be written as follows: It is obvious that F (x1|x2) = h(x1, x2, θ12) with θ12 being the

8
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parameter (vector) of the of copula C12. Analogously, F (x3|x2) = h(x3, x2, θ23), F (x2|x3) =
h(x2, x3, θ23) and F (x4|x3) = h(x4, x3, θ34). F (x1|x2, x3), again, can be iteratively simplified
to

∂ C13|2(F (x1|x2), F (x3|x2))
∂ F (x3|x2)

= h(h(x1, x2, θ12), h(x3, x2, θ32), θ13|2).

Analogously, F (x4|x2, x3) can be written as

∂ C24|3(F (x4|x3), F (x2|x3))
∂ F (x2|x3)

= h(h(x4, x3, θ43), h(x2, x3, θ23), θ24|3).

Finally, define u1 = F (x1), u2 = F (x2), u3 = F (x3), u4 = F (x4). The formula for the
4-dimensional PCD copula density now reads as

c(u) = c12(u1, u2) · c23(u2, u3) · c34(u3, u4)

· c13|2(h(u1, u2, θ12), h(u3, u2, θ23)) · c24|3(h(u2, u3, θ23), h(u4, u3, θ34))

· c14|23(h(h(u1, u3, θ13), h(u2, u3, θ23), θ13|2), h(h(u4, u3, θ43), h(u2, u3, θ23), θ24|3)).

To summarize, in order to specify a d-dimensional (copula) density, two main steps have
to be taken (see Aas et al., 2006): Firstly, an appropriate decomposition scheme has to
be selected. Secondly, the pair-copulas have to be specified: e.g. Gaussian, Student’s t,
Archimedean or Gumbel copula. It is possible to use one copula model for all pair-copulas
or decide individually.

2.3 Koehler-Symanowski (KS) copulas

Koehler & Symanowski (1995) introduce a multivariate distribution as follows: For the
index set V = {1, 2, . . . , d}, let V denote the power set of V and I ≡ {I ∈ V with |I| ≥ 2}.
Let further X denote a d-dimensional random vector with univariate marginal distributions
Fi(xi), i ∈ V . For all subsets I ∈ I let αI ∈ R+

0 and αi ∈ R+
0 for all i ∈ V such that

αi+ = αi +
∑

I∈I αI > 0 for i ∈ I. Then the common cdf F is defined by

F (x1, . . . , xd) =
∏

i∈V Fi(xi)∏
I∈I

[∑
i∈I

∏
j∈I,j 6=i Fj(xj)αj+ − (|I| − 1)

∏
i∈I Fi(xi)αi+

]αI
. (2.11)

The terms KI =
∑

i∈I

∏
j∈I,j 6=i Fj(xj)αj+ − (|I| − 1)

∏
i∈I Fi(xi)αi+ are called association

terms. Moreover, Koehler & Symanowski (1995) showed that the joint density function
exists if the marginal density functions fi exist for all i ∈ V . Due to the design of the
Koehler-Symanowski distribution the corresponding copula has a similar functional form:
Setting ui = Fi(xi) for all i ∈ V , the KS copula is

C(u1, . . . , ud) =
∏

i∈V ui∏
I∈I

[∑
i∈I

∏
j∈I,j 6=i u

αj+
j − (|I| − 1)

∏
i∈I u

αi+
i

]αI
. (2.12)

9
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In contrast to the cumulative distribution function the functional representation of the
density is quite complicated due to complex factors with additive components. Koehler
& Symanowski (1995) gave an explicit formula for the special case of a so called KS(2)-
distribution (Caputo, 1998), where all parameters αI are set equal to zero for |I| > 2. The
corresponding copula will be termed as KS(2) copula henceforth. Assuming that αij ≡
αji ≥ 0 for all (i, j) ∈ V × V and αi+ = αi1 + αi2 + · · · + αid > 0 for all i ∈ V , the
KS(2)-copula simplifies to

C(u1, u2, . . . , ud) =
d∏

i=1

ui

∏
i<j

∏
K
−αij

ij (2.13)

with Kij ≡ u
1/αi+
i + u

1/αj+
j − u

1/αi+
i u

1/αj+
j = Kji.

Palmitesta & Provasi (2005) apply this particular KS copula to weekly log-returns. They
also argue that this copula has the ability to model complex dependence structures among
subsets of marginal distribution but they do not present any goodness-of-fit measure or any
comparison with other copulas.

2.4 Multiplicative Liebscher copulas

By now, different methods of how to construct d-variate copulas have been reviewed. Lieb-
scher (2006) discusses how to combine or connect a given set of k possibly different d-copulas
C1, . . . , Ck to a new d-copula C in order to increase flexibility and/or introduce asymmetry.
His proposal focuses on multiplicative connections of d-copulas of the form

C(u1, . . . , ud) =
k∏

j=1

Cj(gj1(u1), . . . , gjd(ud)) (2.14)

with a set of k · d admissible functions g11, . . . , g1d, . . . , gk1, . . . , gkd, each of which being
bijective, monotonously increasing or identically equal 1 satisfying

k∏
j=1

gji(v) = v, i = 1, . . . , d. (2.15)

Note that (2.15) reduces to g1i(v) = v for k = 1 and i = 1, . . . , d, and C is recovered. In
accordance to Liebscher (2006), possible choices are

gji(v) ≡ vθji with θji > 0 and
k∑

j=1

θji = 1 for i = 1, . . . , d (2.16)

or g1i(v) ≡ f(v), g2i(v) ≡ v · 1
f(v)

, f(v) =
(

1− e−θiv

1− e−θi

)α

, θ > 0, α ∈ (0, 1). (2.17)

10
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We consider four different generalized Clayton copulas based on (2.14). The ”Generalized
Clayton of Liebscher type I” (L1) is obtained by setting k = 2, choosing the Clayton copula
for C1, the independence copula for C2 and gji(v) as in (2.16). Applying (2.17) rather than
(2.16), the ”Generalized Clayton of Liebscher type II” (L2) copula with d + 2 dependence
parameters is constructed. Similarly, combining two d-variate Clayton copulas and using g
from (2.16) we obtain the d-dimensional copula family with d + 2 parameters, termed as
the ”Generalized Clayton of Liebscher type III” (L3) in the sequel. Finally, applying again
(2.17) rather than (2.16), the ”Generalized Clayton of Liebscher type IV” (L4) is obtained.

3 Goodness-of-fit measures

We now tackle the problem of comparing the goodness-of-fit (GOF) of the different copula
models from section 2, noting that most of them are not nested. As we apply maximum
likelihood (ML) methods to obtain estimators for the unknown parameter vector, the first
choice is the log-likelihood value ` or – in order to take the different numbers of parameters
into account – the Bayesian information criterion BIC = −2`+K ln(N), where K and N

denote the number of parameters to be fitted and the number of observations, respectively.
However, comparing log-likelihood values for non-nested models may produce misleading
conclusions. Therefore, other GOF tests may come to application. Following Breymann,
Dias & Embrechts (2003), Chen, Fan & Patton (2004) or recently Berg & Bakken (2006),
the main idea is to project the multivariate problem onto a set of independent and uni-
form U(0, 1) variables, given the multivariate distribution and to calculate the distance (e.g.
Anderson-Darling, Kolmogorov-Smirnov, Cramér-von Mises) between the transformed vari-
ables and the uniform distribution. In contrast to the authors above, we are not primarily
interested whether the data stem from the specified copula model. Instead, we use these
distances as criterion itself. The proceeding is roughly as follows:

By means of the Rosenblatt (1952) transformation the random vector X = (X1, . . . , Xd)′ is
mapped onto a random vector Z∗ = (Z∗

1 , . . . , Z
∗
d)′ via

Z∗
1 ≡ F1(X1) and Z∗

i ≡ FXi|X1,...,Xi−1(Xi|X1, . . . , Xi−1), i = 2, . . . , d. (3.1)

It can be shown that Z∗ is uniformly distributed on [0, 1]d with independent components
Z∗

1 , . . . , Z
∗
d . Assume that the cumulative distribution function of X admits the decomposi-

tion
FX(x1, . . . , xd) = C(FX1(x1), . . . , FXd

(xd)),

where C(·) denotes a parametric copula which is the common distribution function of U =
(U1, . . . , Ud)′ with Ui ≡ FXi

(Xi). Define C(u1, . . . , uj) ≡ C(u1, . . . , uj , 1, . . . , 1) for j ≤ d.
Furthermore, the conditional distribution of Ui|U1, . . . , Ui−1 is given by

Ci(ui) ≡
∂i−1C(u1, . . . , ui)
∂u1 . . . ∂ui−1

/ ∂i−1C(u1, . . . , ui−1)
∂u1 . . . ∂ui−1

.
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According to (3.1), the variables

Z1 ≡ C(U1) = U1 and Zi ≡ Ci(Ui), i = 2, . . . , d (3.2)

are independent and uniform on [0, 1]. Consequently, the sample X1, . . . ,XN from a para-
metric copula and with marginals given by F1, . . . , Fd can be mapped onto an iid sample
Z1, . . . ,ZN from a uniform distribution on [0, 1]d.

Breymann et al. (2003) suggest transforming each random vector Zi = (Zi1, . . . , Zid)′ into a
(univariate) chi-square variable χj with d degrees of freedom through χj =

∑d
i=1 Φ−1(Zji)2,

j = 1, . . . , N, where Φ−1(u) denotes the standard normal quantile function. If the margins
are unknown, they may be replaced by the corresponding empirical counterparts. Breymann
et al. state that ”we do assume that the χ2-distribution will not be significantly affected by
the use of the empirical distribution functions used to transform the marginal data”.

4 The data set

The data sets we used to compare the different copula models come from three differ-
ent markets (German stock market, foreign exchange (FX) market and commodity mar-
kets). From each market, four typical representatives were selected, provided that the
corresponding sample period is sufficiently large. Instead of analyzing the prices them-
selves, we calculated and considered (percentual) continuously compounded returns (”log-
returns”) Rt = 100(logPt − logPt−1), t = 2, . . . , N . In order to account for possible
time-dependencies (which are common to most financial return series), we also fitted uni-
variate GARCH models of the form Rt = µ + γ1Rt−1 + . . . + γkRt−k + htεt with variance
equations h2

t = α0 + α1R
2
t−1 + . . . + α1R

2
t−p + β1h

2
t−1 + . . . + βqh

2
t−q to each of the series

and considered standardized residuals εt rather than the original returns Rt. Secondly, as
we are not primarily interested in parametric models for the marginal distributions, all ob-
servations (i.e. returns or standardized residuals) were transformed into uniform ones by
means of the (empirical) probability integral transform, i.e.

Ut = FN (Rt) with FN (x) =
{#Rt|Rt ≤ x}

#Rt
and U∗

t = FN (εt).

4.1 German stock returns

From the German stock market, we selected prices of HVB AG, BMW AG, Allianz AG
and Munich Re AG, all of them being part of the German stock market index DAX which
measures the performance of the Prime Standard’s 30 largest German companies in terms
of order book volume and market capitalization. Figure 3 contains the series of prices and
returns. Table 1 summarizes descriptive and inductive statistics. All series feature negative
skewness and high kurtosis (measured by the third and fourth standardized moment S and
K). Morerover, there is empirical evidence for (slight) serial correlation and GARCH effects
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Figure 3: German stock prices and stock returns.

as the Ljung-Box statistic LB and Engle’s Lagrange multiplier statistic LM indicate (the
critical χ2-value is given by 18.307 in both cases for α = 0.05).

Start End N Stocks µ s2 S K LB(10) LM(10)

02-01-90 12-11-03 3486 HVB 0.004 5.61 -0.033 8.16 24.45 621.08

02-01-90 12-11-03 3486 BMW 0.046 4.33 -0.132 7.19 28.96 366.49

02-01-90 12-11-03 3486 Allianz -0.002 4.87 -0.07 8.37 29.74 517.14

02-01-90 12-11-03 3486 MunichRe 0.02 5.06 -0.027 8.75 50.53 508.59

Table 1: German stock returns.

4.2 Exchange rate returns

Data from foreign exchange markets (FX-markets) are available from the PACIFIC Ex-
change Rate Service1. This service offered by Prof. Werner Antweiler at UBC’s Sauder
School of Business provides access to current and historic daily exchange rates through an
on-line database retrieval and plotting system. In contrast to the volume notation, where
values are expressed in units of the target currency per unit of the base currency, the price
notation is used within this work which corresponds to the numerical inverse of the volume
notation. All values are expressed in units of the base currency (here US-Dollar) per unit of
the target currency. Table 2 summarizes the statistics of the four exchanges rates (Canadian
Dollar, Japanese Yen, Swiss Franc, British Pound) which are used later on. Again, prices
and log-returns are shown in figure 4, below.

1Download under the URL-link http://pacific.commerce.ubc.ca.
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Figure 4: Exchange rates: Prices versus Returns.

Start End N FX Rate µ s2 S K LB(10) LM(10)

02-01-90 31-12-04 8054 CAD 0.002 0.09 -0.004 6.75 12.65 912.18

02-01-90 31-12-04 8054 YEN -0.015 0.56 -0.002 6.11 12.5 429.24

02-01-90 31-12-04 8054 SFR 0.003 0.36 0.132 6.84 55.79 485.26

02-01-90 31-12-04 8054 BRP -0.013 0.44 -0.723 13.33 34.48 176.20

Table 2: Exchange rates

4.3 Metal returns

The London Metal Exchange2 (LME) is the world’s premier non-ferrous metals market with
a turnover value of some US$2000 billion per annum. For a detailed introduction on metal
markets with emphasis on the London metal exchange see Crowson & Sampson (2001).
Among the different metals, emphasis is placed on aluminium, copper, lead and nickel.
All prices are quoted in US-Dollar per tonne. Table 3 again contains the basic summary
statistics. Prices and log-returns are displayed in figure 5.

Start End N Metal µ s2 S K LB(10) LM(10)

26-03-99 07-08-06 1093 Lead 0.034 1.22 -0.555 8.72 29.74 161.56

26-03-99 07-08-06 1093 Tin 0.084 4.21 -0.368 5.59 30.11 100.37

26-03-99 07-08-06 1093 Nickel 0.142 2.38 -0.139 5.13 12.95 127.66

26-03-99 07-08-06 1093 Zinc 0.13 4.97 -0.618 7.9 10.72 21.45

Table 3: Metals: Prices versus Returns.

2Download under http://www.lme.co.uk/.
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Figure 5: Metals: Prices versus Returns.

5 Empirical results

The 4-copulas under consideration are the following: Firstly, we selected the Clayton copula
(CLA), the Gumbel copula (GUM) and its rotated version (roGUM) from the Archimedean
class. From the generalized Archimedean copula family, two hierarchical copula models (i.e.
HA-CLA and HA-GUM) are included, based on the Clayton and the Gumbel copula, re-
spectively. Moreover, six representatives of Morrillas’ construction scheme (i.e. MO-CLA1,
MO-CLA2, MO-CLA3, MO-GUM1, MO-GUM2, MO-GUM3) involving the Clayton, the
Gumbel and different generator functions (no. 3, 2, 4 in Morillas, 2005) are included as
well. In addition, two version of Liebscher’s proposal (GMLF, GML2) are used. Beyond
that, representing the ”elliptical copula world”, the Gaussian copula (NORM) and – as
ultimate benchmark – the Student-t (T) copula are also included. From the pair-copula
decomposition we chose five representatives (i.e. PC-NORM, PC-T, PC-CLA, PC-GUM,
PC-roGUM) each of them derived from one single copula model (i.e. we used no decompo-
sitions based on different copulas). Additionally, we fit the KS(2)-copula of Palmitesta &
Provasi (2005) as well as two generalized versions (i.e the augmented KS(2)-copula, denoted
by aKS(2), where the four-dimensional association parameter is added and the fully speci-
fied model, briefly KSC) of Koehler & Symanowski (1995). Finally, four different types of
multiplicative Liebscher copulas from example 2.8 (L1, L2, L3, L4) are considered.

The computer code for the ML-estimation was implemented in Matlab 7.1. For maxi-
mization purposes we used the line-search algorithm of Matlab. We calculated parameter
estimates and their standard errors3 as well as the different goodness-of-fit measures for the

3It should be pointed out that the standard errors in the subsequent tables (which we extracted from the
estimated Fisher information) should be interpreted as ”rough-and-ready” estimators for the true (unknown)
ones. As we make use of the semi-parametric estimation procedure (where the unknown marginals are
replaced by the empirical distribution function), the correct choice would be to adopt the proposal of
Genest, Ghoudi & Rivest (1995). Because we are primarily interested in comparing different goodness-of-fit
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GARCH-residuals and all copula models mentioned above. As stated above, goodness-of-fit
is measured by the Log-likelihood value and the BIC criterion. Above that, three distance
measures,

KS =
√
N max

j=1,...,N

∣∣Fχ2(d)(χj)− FN,χ(χj)
∣∣ ,

AKS =
1√
N

∑
j=1,...,N

∣∣Fχ2(d)(χj)− FN,χ(χj)
∣∣ and L2 =

∥∥Fχ2(d) − FN,χ

∥∥
2

are calculated to quantify the distance after application of the Rosenblatt transformation
(based on the different parametric copula models).

The subsequent tables summarize the estimation results for the different copula models
under consideration. In contrast to table 5,6 and 7 which are dedicated to the parameter es-
timates and their approximate standard error, table 4 displays five goodness-of-fit measures
for every copula and every data set. As already mentioned above, we only presented the
results for the GARCH residuals, emphasizing that using the original data instead doesn’t
change the estimation results substantially. In particular, the ordering of the goodness-of-
fit measures is essentially preserved. Above that, parameter estimates of the dependence
parameters are roughly stable for most of the copulas under consideration. In general, the
results in 4 seem to be rather stable across all data sets and distance measures. The most
important conclusions are the following:
First of all, both Student-t copula (T) and the pair copula built from bivariate Student-
t copulas (PC-T) provide the best fit over all measures. Taking the comparatively large
number of parameters of the PC-T into account, the Student-t copula should be preferred
from a practical point of view.
Secondly, within the class of pair-copulas itself, the pair-copula approach based on different
bivariate rotated Gumbel copulas dominates the approaches based on bivariate Clayton
and bivariate Gumbel copulas, though being outperformed by the above-mentioned PC-t
approach. Among the different construction schemes of multivariate copulas, the pair-copula
approach has to be pointed out.
Thirdly, the Gaussian copula seems to attain more attraction if the number of dimensions
increases. Whereas Archimedean copulas frequently outperform this dependence model in
the bivariate case, the situation seems to reverse for the higher-dimensional case. There is
empirical evidence that the overall goodness-of-fit of the Gaussian copula (measured by the
log-likelihood) seems to be very good, whereas distance measures (with more emphasis on
the tail area) noticeably worsen compared to other copulas.
Fourthly, the KS(2)-copula which was advocated by Palmitesta and Provasi (2005) provides
only a poor fit to the return series. In contrast to the original specification of Koehler and
Symanowski (1995), it neglects three and four-dimensional association parameters. Taking

measures and not in checking significances, this procedure (which requires derivatives of the log-density of
the underlying copula models) is omitted.
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nly
a global (i.e. four-dimensional) association parameter into account, the corresponding aug-
mented KS copula (aKS(2)) clearly improves all goodness-of-fit measures (Note that most of
distance measures cut in half) which can be further improved if the fully specified KS copula
(KSC) is used. The latter proves to be a serious alternative to the elliptical competitors, at
least in the 4-dimensional case.
Fifth, the fit of ”plain” Archimedean copulas significantly improves if a generalized model
based on the proposals of Liebscher and Morillas is taken into consideration. Within both
classes, there seems to be further discussion as to how to choose the underlying generating
functions. Basically, the multiplicative Liebscher copulas L1 − L4 as well as GML2 and
GLMF tend to outperform the representatives of Morillas’ class.
Sixth, focusing on hierarchical Archimedean copula families, we found only slight improve-
ment regarding the goodness-of-fit, at least for our data sets. However, we admit that one
might further improve the results with another hierarchy which might be found on the basis
of cluster algorithms.
To sum up, the 4-variate Student-t distribution still plays a predominant role. Some of
the recently proposed construction schemes are partially competitive while others are more
likely to be overestimated in the relevant literature. Finally, our findings are derived from
4-dimensional data sets. For the higher dimensional case, some results are expected to be-
come still more evident, while some of the models under consideration (e.g. KSC) will be
no longer estimable.
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