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Abstract

As an extension of the standard Gaussian copula model to price CDO tranche swaps
we present a generalization of a one-factor copula model based on stable distributions.
For special parameter values these distributions coincide with Gaussian or Cauchy dis-
tributions, but changing the parameters allows a continuous deformation away from the
Gaussian copula. All these factor copulas are embedded into a framework of stochastic
correlations.

We furthermore generalize the linear dependence in the usual factor approach to a
more general Archimedean copula dependence between the individual trigger variable
and the common latent factor.

Our analysis is carried out on a non-homogeneous correlation structure of the underly-
ing portfolio. CDO tranche market premia, even throughout the correlation crisis in May
2005, can be reproduced by certain models. From a numerical perspective all these models
are simple since calculations can be reduced to one-dimensional numerical integrals.

1 Introduction

Over the recent years, dependence modeling for basket type credit derivatives has evolved
along with the increase in trading volume of such instruments. Among these, Collateralized
Debt Obligations (CDOs) and their tranches still pose a modeling challenge when trying to
reproduce the market observed prices.

After a first approach via binomial expansion techniques and other modeling attempts,
copula based models have become more widely discussed and used for CDOs. Perhaps the
historical starting point was the by now standard Gaussian copula of Li [1]. Since then, various
modifications and extensions thereof have been proposed. In order to replicate the market
observed correlation smile, Andersen and Sidenius [2] investigated extending the Gaussian
one-factor copula model to include random recovery and/or making the factor loading state
dependent as well, thus introducing what has become known as local correlation, while still
keeping the Gaussian distribution of the latent and idiosynchratic random factors. While
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both random recovery and local correlation do induce some correlation smile, this does not
appear to be sufficiently pronounced to always replicate the full market. In a similar spirit
Burtschell et al. [3] have extended the Gaussian copula with state dependent correlation to
produce a market skew.

Instead of generalizing the factor loadings, Kalemanova et al. [4] replace the Gaussian
copula by the copula generated from normal inverse Gaussian distributed factors. Their,
analysis, however, was done using the large homogenous portfolio approximation, rather than
being based on the true individual characteristics of the underlying portfolio. As such their
approach is not suitable to provide a basis for consistently pricing sub-portfolios or delivering
sensitivities w.r.t. individual names. A recent comparison of different copula models such as
Student, Double Student, Clayton, and Marshall-Olkin copulas is given in [5].

An approach not based on factor copulas, but on generalized Archimedean copulas, has
been presented by Rogge and Schönbucher [6], but while this is an interesting idea, which
can be generalized even further, it is not clear at present which, if any, of the generalizations
actually reproduces the observed market tranche prices. Recent work by Hull and White [7]
also takes the direction of generalizing the underlying copula by implying out the distribution
of the hazard rate path from observed market prices.

In this paper we present several approaches based on a combination and extension of
various of the ideas mentioned above and investigate their suitability to reproduce the tranche
market for several dates in 2005, with particular emphasis on the period of the correlation
crisis in May.

We first consider a class of one-factor models based on α-stable distributions for the
factors. This gives rise to α-stable copulas, which include the Gaussian copula as a special
case, but allow for continuous deformation away from the Gaussian case to ones where the
factor distributions have increasingly fatter tails. The parameters of the α-stable distribution
can be determined by calibration to the tranche market and provide a good fit across the full
capital structure. This is along the lines of investigations making use of non-Gaussian factor
distributions which have also been followed by Albrecher et. al. [8], Moosbrucker [9], Baxter
[10], and Guegan and Houdain [?].

Calibration to market can be further enhanced, if these copulas are combined with the
above copula mixing via state dependent correlations as outlined in [3]. This results in a
near perfect fit under normal market conditions and a very good fit for markets during the
correlation crisis. As shown in this paper, these α-stable one-factor models with stochastic
correlations calibrate well to the market observed tranche quotes.

Apart from the α-stable copula, we also present two other generalizations of the one-factor
modeling approach. These are based on a generalization of the dependence structure of the
usual one-factor approach. Their calibration performance will be compared to that of the
α-stable copula for the same markets. To our knowledge, they have not been discussed in the
literature so far and can be summarized as follows.

In what can be viewed as a further generalization of local correlations, we generalize the
factor dependence from merely linear coupling to a two-dimensional coupling between latent
variable and common driver, based on a copula mixture, including a number of Archimedean
copulas.

Lastly, we introduce a piecewise linear generator function for an Archimedean copula such
that the interpolation points for that generator are determined from observed tranche market
data. This is somewhat akin to Hull and White’s search for the “Perfect Copula”.

The paper is organized as follows: In Section 2 we summarize the basic assumptions un-
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derlying one-factor models based on conditional independence. We introduce the extension
to stochastic correlation in Section 2.2. α-stable distributions, their properties and the re-
sulting α-stable copulas are discussed in Section 2.3. In Section 2.4 we generalize the linear
dependence of the latent factor to a two dimensional copula which can be either a mixture of
copulas or an Archimedean copula with a generalized piecewise linear generator. In Section
3 we present the calibration procedure and the results for the iTraXX tranche market from
26 April 2005 until 07 June 2005 which arguably comprises a more difficult period for the
tranche market. The paper then ends with a concluding section.

2 Default Dependencies

2.1 Basic Assumptions and Resulting Dependence Structures

We consider a portfolio U := {1, . . . , u} of u underlyings, where i ∈ U refers to the ith
underlying name. The default time of underlying i is denoted by τi. The following assumptions
form the basis of all conditional independence loss models:

1. A default of the ith underlying taking place on or before t is equivalent to a random
variable Xi falling below a barrier bi(t), i.e.

{τi ≤ t} = {Xi ≤ bi(t)} (1)

which has as a consequence

Pi(t) := P {τi ≤ t} = P {Xi ≤ bi(t)} = FXi(bi(t)) (2)

i.e.
bi(t) = F−1

Xi
(Pi(t)) (3)

where FA(z) := P {A ≤ z} denotes the the cumulative distribution function of a random
variable A.

An alternative way of stating this, which perhaps makes the probabilistic construction
of default times more explicit, is

τi = P−1
i (FXi(Xi)). (4)

Eqn. (4) also shows that each default time τi is a non-decreasing function of Xi.

2. The variables Xi are given by a common risk driver (the latent variable) X and idiosyn-
cratic risks Xi such that

Xi = ciX + ciXi i ∈ U (5)

where X, X1, . . . ,Xu are independent random variables and all Xi have the same dis-
tribution.

The common risk driver X can be one- or d-dimensional (with d > 1), resulting in a
so-called one- or d-factor Model. Here we concentrate on the one-factor case, but this can
easily be generalized1.

1Although it is far from clear, whether more factors will always improve the model.
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Note that it is the joint distribution of the Xi which gives rise to the joint distribution of

defaults via Eqn. (1) (see also Eqn. (12) below). The introduction of X and the X̄i and the
linear relation Eqn. (5) is only one (albeit comfortable) way to induce a dependence structure.
In the case where the second moments of Xi exist one finds from Eqn. (5) that

Cov(Xi, Xj) = cicj Var(X) + δijc
2
i Var(Xi) (6)

where δij denotes the Kronecker delta, which is δij = 1 if i = j and δij = 0 otherwise.
As a consequence of Eqn. (6) the values of the ci are often interpreted as determining “a
correlation” in the portfolio. For the α-stable distributions considered below, these second
(or higher) moments (i.e. the right hand side of Eqn. (6)) no longer exist. Nevertheless these
models give rise to strong dependence features, which now, however, are not determined by
the ci alone.

Moreover, we can replace the linear relation in Eqn. (5) by something more general. Hence,
in Section 2.4 below we will generalize the linear dependence structure encoded in Eqn. (5)
to a dependence structure between X and Xi originating from a two-dimensional copula.

It follows from Eqn. (5) that

Pi(t, x) := P {τi ≤ t|X = x} = FXi

(
F−1

Xi
(Pi(t))− cix

ci

)
(7)

and that, conditional on X, the defaults of the underlyings are independent. Eqn. (7) also
allows to calculate the default density

pi(t, x) := P {τi ∈ [t, t + dt]|X = x} =
dPi(t, x)

dt
= fXi

(
F−1

Xi
(Pi(t))− cix

ci

)
pi(t)

cifXi
(F−1

Xi
(Pi(t)))

(8)
where fA(z) := d

dzFA(z) denotes the probability density function of a random variable A.
The conditional independence can then be used to calculate the full default (and thus

loss) distribution as

P {τ1 ≤ t1, . . . , τu ≤ tu} = E [P {X1 ≤ b1(t1), . . . , Xu ≤ bu(tu)|X = x}] = E

[∏

i∈U

Pi(ti, X)

]

=
∫ ∏

i∈U

Pi(ti, x)dFX(x) (9)

and similarly for the default density. This distribution is required to calculate payoffs which
depend on the identity of the defaulted obligor, like Nth-To-Default Swaps (NTD) with dif-
ferent recoveries.

To obtain the portfolio loss up to time t, which we denote by L(t), it is, however, simpler
to use by now well-known recursive methods as e.g. outlined in [2]. Suppose then, that
P {L(t) = Z|X = x} has been obtained by such a recursive procedure. This yields the full
(unconditional) loss distribution at time t as

P {L(t) = Z} =
∫
P {L(t) = Z|X = x} dFX(x) (10)

4
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and this distribution can be used to calculate expected payoffs for derivatives depending on
the losses in a portfolio such as e.g. NTDs with homogeneous recoveries or CDO portfolio
tranche swaps.

Let
FXU

(a1, . . . , au) := P {X1 ≤ a1, . . . , Xu ≤ au)}
denote the joint distribution of the XU := (X1, . . . , Xu) and

CXU
(a1, . . . , au) := FXU

(F−1
X1

(a1), . . . , F−1
Xu

(au)) (11)

their copula. It follows from their respective definitions and from Eqn. (1) and Eqn. (3) that
this is equal to the copula of default times

CτU (a1, . . . , au) := FτU (F−1
τ1 (a1), . . . , F−1

τu
(au))

= P
{
τ1 ≤ P−1

1 (a1), . . . , τu ≤ P−1
u (au)

}

= P
{
X1 ≤ b1[P−1

1 (a1)], . . . , Xu ≤ bu[P−1
u (au)])

}

= P
{

X1 ≤ F−1
X1

(a1), . . . , Xu ≤ F−1
Xu

(au)
}

= CXU
(a1, . . . , au), (12)

which is a consequence of the fact that the default times τi are monotonic functions of the
Xi, as seen from Eqn. (4).

In the first generation copula model [1] the joint distribution FXU
on the right hand side of

Eqn. (11) was chosen to be a multidimensional Gaussian distribution, i.e. FXU
= ΦGauss

ρ with
a given correlation matrix ρ, thus leading in Eqn. (12) to the Gaussian copula CXU

= CGauss.
Since then other choices for FXU

(see e.g. [5]) have been investigated as well.

2.2 Incorporating stochastic correlation

Since the conditionally independent Gaussian model does not provide any further parameters,
its ability to fit to observed market tranche premia for all tranches is insufficient, such that
the observed premia can only be replicated with different correlation inputs for each tranche,
giving rise to what is now referred to as the correlation smile. Burtschell et al. [3] there-
fore considered to take stochastic correlations into account. We adopt their approach here,
allowing the dependence to be a mixture of co-monotonicity, independence and the original
conditionally independent model. Therefore, we introduce two Bernoulli variables Ba, Bb,
which are independent and independent of the factors Xi, X. Their probabilities are denoted
by ql = P {Bl = 1} , l = a, b, and we set

X̃i = (1−Ba)(1−Bb)Xi + BbX + (1−Bb)BaXi (13)
= [ci(1−Ba)(1−Bb) + Bb]X + [c̄i(1−Ba) + Ba](1−Bb)X̄i

which implies

X̃i =





X, if Bb = 1
X̄i, if Bb = 0 and Ba = 1
ciX + c̄iX̄i, if Bb = 0 and Ba = 0.

(14)

The case Bb = 1 thus corresponds to complete dependence for the X̃i, whereas the case
Bb = 0 and Ba = 1 corresponds to full independence and lastly the case Bb = 0 and Ba = 0

5
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corresponds to the standard copula situation. A somewhat related setup has also been used
by Tavares et al. in [11].

The default event for name i is now triggered by X̃i falling below a barrier, i.e.

{τi ≤ t} = {X̃i ≤ bi(t)}. (15)

The conditional probabilities are given by

P
{

X̃i < z
∣∣∣X = x

}
=

1∑

k=0

1∑

l=0

P
{

X̃i < z
∣∣∣X = x ∧Ba = k ∧Bb = l

}
P {Ba = k}P {Bb = l}

= I{x≤z}qb + FXi
(z)qa(1− qb) + (1− qa)(1− qb)FXi

(
z − cix

c̄i

)
(16)

where

I{A} :=
{

1, if event A is true
0, otherwise

denotes the indicator function. Integrating out the latent variable X in Eqn. (16) leaves us
with

P
{

X̃i ≤ z
}

= qbFX(z) + qa(1− qb)FX(z) + (1− qa)(1− qb)FXi(z) (17)

In what follows, we choose the distributions for X, Xi and thus Xi such that FX = FXi
= FXi .

Note that then Eqn. (17) implies F eXi
= FXi = FX .

2.3 α-Stable Copulas

To obtain a versatile copula structure, we choose the latent and idiosynchratic factors from the
following α-stable distributions (using the notation of Nolan in [12]) X, Xi ∼ S(α, β, γ, δ; 1).
Except for certain α values (see below) these distributions cannot be expressed with known
functions, but it is only their characteristic function which can be given explicitly as follows

χS(α,β,γ,δ;1)(x) =
{

exp
(−γα|x|α[1− iβ(tan πα

2 ) sgn(x)] + iδx
)
, if α 6= 1

exp
(−γ|x|[1 + iβ 2

π sgn(x) log |x|] + iδx
)
, if α = 1.

(18)

The parameter α takes values in ]0, 2] and its decrease leads to fatter tails. The parameter
β ∈ [−1, 1] defines the skewness of the distribution, while γ ∈ R+ is a scale and δ ∈ R is
a location parameter. For our purposes the scale and location parameters γ and δ can be
set to some convenient values, since other scale and location only change the intermediate
bi functions. The term α-stable refers to the fact that the sum of two α-stable random
variables is again an α-stable random variable, albeit with possibly different (skewness, scale,
or location) parameters. This property which sometimes is also referred to as “summation
stability”, can be stated as follows. If for a = 1, 2

Xa ∼ S(α, βa, γa, δa; 1) (19)

and2 ca ≥ 0 then it follows that

c1X1 + c2X2 ∼ S(α, β, γ, δ; 1) (20)
2These distributions are also well defined for ca ∈ R but this only complicates the formulas and is not

necessary for our purposes.
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alpha = 1.7, beta = 0
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Figure 1: α-stable distributions with different values for α. The value α = 2 is the Gaussian
distribution. Fatter tails for α < 2 are clearly visible.

where

β :=
β1(c1γ1)α + β2(c2γ2)α

(c1γ1)α + (c2γ2)α

γ := [(c1γ1)α + (c2γ2)α]
1
α

δ := c1δ1 + c2δ2.

Note that second (and higher) moments of such distributions exist only for α = 2, which
corresponds to a Gaussian distribution. Changing the α parameter, allows us to change
the distribution away from the Gaussian case αGAUSS = 2 in a smooth fashion to other
distributions which have ever increasing fatter tails as α decreases away from αGAUSS = 2. A
value for α ∈]0, 2] may thus be obtained by calibration. Figures 1 and 2 show the distribution
functions for different values of α and β.

Choosing the scale and location parameters as γ = 1, δ = 0, the common risk driver X

7
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alpha = 1.3, beta = -0.8

Figure 2: α-stable distributions with different values for α and β. Changing β away from
β = 0 introduces skewness in the distribution.

and the idiosynchratic risks Xi are then taken from the α-stable distributions

X ∼ S(α, β, 1, 0; 1) (21)
Xi ∼ S(α, β, 1, 0; 1) (22)

and used as in Eqn. (5) together with the following choice of the coefficients ci ∈ [0, 1] and
ci = (1− cα

i )
1
α , such that the random variable

Xi = ciX + (1− cα
i )

1
α Xi ∼ S(α, β, 1, 0; 1) (23)

is again an α-stable distributed random variable with the same α, β and γ = 1, δ = 0.
Denoting the α-stable cumulative probability distribution function by Fα, the conditional
default probabilities are then given by

Pi(t, x) = Fα

(
F−1

α (Pi(t))− cix

(1− cα
i )

1
α

)
. (24)

The stable distribution functions are not explicitly given through combinations of known
functions. Therefore numerical methods have to be used in an implementation. One possi-
ble solution would be to apply Fast-Fourier Transformations (FFT) on (18). Alternatively,
there are numerical libraries available which provide for an implementation of the functions
Fα, F−1

α , fα. 3

3We have chosen the STABLE library by RobustAnalysis for this.
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In the following we will denote the models tested from this group as follows:

STABLE A stable model without stochastic correlation. The free model parameters are
(ci, α, β).

STABLEmix A stable model with stochastic correlation. The free model parameters are
(qa, qb, ci, α, β).

The Gaussian copula is obtained as a special subcase, if in Eqn. (21) and in Eqn. (22) the
values α = 2 and β = 0 are used The conditional default probabilities are then given by

Pi(t, x) = Φ


Φ−1(Pi(t))− cix(

1− c2
i

) 1
2


 . (25)

where Φ denotes the standard cumulative normal distribution function.
For comparison we include the Gaussian case as a separate model denoted as

GAUSSmix A Gaussian model with stochastic correlation. The free model parameters are
(qa, qb, ci).

Choosing α = 1 and β = 0 in Eqn. (21) and in Eqn. (22) gives a special case of the Cauchy
distribution,4 which we denote by FC

FC(x) =
1
π

arctan(x) +
1
2
, (26)

The inverse of FC is explicitly given by: F−1
C (x) = tan

(
π

[
x− 1

2

])
, and the conditional default

probability becomes:

Pi(t, x) =
1
π

arctan

(
tan

(
π

[
Pi(t)− 1

2

])− cix

1− ci

)
+

1
2
. (27)

In order to compare, we also include the Cauchy case as a separate model denoted as

CAUCHYmix A Cauchy model with stochastic correlation. The free model parameters are
(qa, qb, ci).

2.4 Generalizing Latent Variable Dependence to Copula

In the usual conditional loss setup a linear relation between Xi and the latent variable X
(global factor) as given in Eqn. (5) is assumed. This has already been extended in the random
factor loading approach [2] and the stochastic correlation approach [3]. Here we generalize
this further in that, instead of using a linear coupling in Eqn. (5), a general dependence of
X and Xi given through a 2-dimensional copula function C : [0, 1]2 7→ [0, 1] can be assumed.
The auxiliary random variables Xi are not needed in this case.

Hence, we specify a 2-dimensional copula C, which gives the joint distribution of the
variables

X,Xi ∼ U [0, 1], (28)
4The full parameterized class of Cauchy distributions can be obtained as special cases of α-stable distribu-

tions, but is not needed for our copula modeling here.
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such that

FXi(x) = x (29)
FX(y) = y (30)

P {Xi ≤ x,X ≤ y} = C(x, y) (31)

and the corresponding default barriers bi(t) are given by

bi(t) = P {Xi ≤ bi(t)} = P {τi ≤ t} = Pi(t). (32)

Like in the previous Section 2.1, Xi and Xj , conditional on X, are independent. Their
distribution conditional on X is given by:

P {Xi ≤ z|X = x} =
∂

∂x
C(z, x) =: ∂2C(z, x) (33)

such that now

Pi(t, x) = P {τi ≤ t|X = x} = P {Xi < bi(t)|X = x} = ∂2C(Pi(t), x). (34)

The joint default time distribution of the τi is still given by (9) with dFX(x) = I{0<x<1}dx
being the uniform measure:

C(x1, . . . , xn) =
∫ 1

0
dy

u∏

i=1

∂2Ci(xi, y). (35)

This can be regarded as a u-dimensional generalization of the copula ?-product

C1 ? C̃2(x, y) =
∫ 1

0
dt∂2C1(x, t)∂1C̃2(t, y)

with C̃2(x, y) = C2(y, x) see e.g. [13][chapter 6.3]. Since copulas are continuous their first
derivative is non-singular and the right hand side of Eqn. (35) is well defined.

In this copula setup we investigate two approaches:

• Mixture Copula: Any convex combination of copula functions will again be a copula.
We choose as base functions the Frechet–Hoeffding bounds, the independent copula and
an Archimedean copula Cφ with lower generator φ and form the combination:

C(x, y) = w1Cφ(x, y) + w2Π(x, y) + w3M(x, y) + w4W (x, y), with
4∑

i=1

wi = 1

and where

Cφ(x, y) =φ−1(φ(x) + φ(y)) is an Archimedean copula with generator φ,

Π(x, y) = xy the independent copula,
M(x, y) = min(x, y) the co-monotone copula,
W (x, y) = max(x + y − 1, 0) the counter-monotone copula.

There is a lot of freedom for the choice of the generator function in this mixture copula.
From historical and implied data several authors have found a trend for increasing
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correlation in a bad market environment, which in this setup corresponds to a small value
of X. We therefore look for an associated copula with positive lower tail dependence.
Following the notation of Nelsen [13][table 4.1] we use copulas 1, 16, 19 and 20 of which
the last three gave the most convincing results.

Here we report the figures for the Nelsen copula no. 20 which has generator function
φθ(t) = exp(t−θ)− exp(1), θ ∈ (0,∞). For this model we investigate two possibilities:

COPmixHOM A copula mixture model where the Archimedean copula has gener-
ator φθ(x) = exp(x−θ) − exp(1) and flat correlation structure. The free model
parameters are (w1, w2, w3, θ).

COPmixINH An inhomogeneous copula mixture model where the Archimedean cop-
ula has the issuer specific generator φθi(x) = exp(x−θi) − exp(1) leading to a
non-flat correlation. The free model parameters are thus (w1, w2, w3, θi).

• Archimedean copula with non–strict piecewise linear generator: On a set of
nodes 0 = x0 < x1 < · · · < xn = 1 we specify y values 1 = y0 > y1 > · · · > yn = 0, and
the generator φ is defined to be a piecewise linear convex function with φ(xi) = yi. The
points yi, i = 1, . . . , n − 1 must be chosen to satisfy the convexity of φ. This model is
denoted as

ARCHIMpl A homogenous mixture copula with piecewise linear generator. The
free model parameters are the abscissa points xi and the corresponding func-
tion values yi. Together they are used to construct the linearly interpolated grid:
(x0, . . . , xn; y0, . . . , yn−1), where yn = φ(xn) = φ(1) = 0 by construction.

3 Calibration

3.1 Reducing the number of parameters

For the models to provide real world prices, a choice of parameters and functions needs to
be made. We have chosen to determine the parameters by multi-dimensional calibration as
follows.

• qa, qb in all mixture models GAUSSmix, CAUCHYmix, STABLEmix

• α, β in all α-stable models STABLE, STABLEmix

• θ, w1, w2, w3 in the copula mixture models COPmixHOM, COPmixINH

• y1, y2, y3, y4 in the generalized Archimedean copula model ARCHIMpl

It remains, to determine the ci for GAUSSmix, CAUCHYmix, STABLEmix, STABLE,
which we consider next and the θi for COPmixINH, which we consider thereafter. Both will
add one more parameter λ to be calibrated.

In many applications of the conditional default models the ci from Eqn. (5) are set to
the same value, which will be determined by a calibration procedure (e.g. base correlation).
We prefer, however, to retain more specific information as to how each issuer is coupled to
the economy, hence we do not set all ci equal. Rather than determining the ci directly as
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input (e.g. from KMV data), we apply a one-parameter approach that allows to retain the
relative issuer specific character, but at the same time is amenable to a calibration procedure.
Hence, we take couplings βi ∈ [0, 1) from a database (e.g. KMV) which should already express
the dependence of obligor i on a joint global factor. In the spirit of transforming historical
market parameters into implicit ones we then apply a global scaling of these by setting
ci = βλ

i , i = 1, . . . , u and λ ∈ [0,∞), such that for λ > 1 it follows that ci < βi and λ < 1
implies ci > βi. Moreover, limλ→∞ ci = 0 and limλ→0 ci = 1. In such an approach we take
the variability of the couplings into account while keeping their ordering. The boundaries
βi = 0 (corresponding to independence) and βi → 1 (corresponding to co-monotonicity)
remain preserved under this scaling. The single parameter λ is obtained within the multi-
dimensional calibration.

In order to take the inhomogeneity of the dependence for COPmixINH into account, we
chose θi = −λ log (1− βi) with λ ∈ [0,∞). Here βi is again obtained from some database
(as e.g. KMV) such that it reflects the dependence of obligor i on a common economic wide
factor. As before βi = 0 corresponds to independence, βi → 1 corresponds to co-monotonicity,
and the single parameter λ is then obtained within the multi-dimensional calibration.

The inhomogeneity in the couplings is no necessity for the calibration quality of the
models. We have tested GAUSSmix, CAUCHYmix and STABLEmix also for a single coupling
parameter ci = c,∀i, producing the same quality of fit like their inhomogeneous counterparts.

3.2 Calibration procedure and results

In applying the model to the pricing of CDO tranche swaps, we focused on the iTraxx series.
During May 2005 the so-called correlation crisis led to high equity tranche spreads while the
lowest mezzanine kept relatively stable. We investigate the capability to calibrate the models
to weekly quotes starting from 26 April until 07 June.

The calibration is performed by first bootstrapping all 125 individual default probability
curves and using these as inputs for the models. All swaps (single name and tranche) are
quarterly and use Act/360 day-count for the premium leg. Recovery rates are set to 40% for
the single names as well as for the iTraxx loss payments. Since the index does not trade on
the theoretical level, which is completely determined by the 125 default probability curves,
the single name curves are simultaneously adjusted to match the quoted index level.

Parameters for the various models are found by using a multidimensional minimization
routine.5

Below we will thus consider the following models for their suitability to match a tranche
market

GAUSSmix A Gaussian model with stochastic correlation. The model parameters to be
calibrated are (qa, qb, λ).

CAUCHYmix A Cauchy model with stochastic correlation. The model parameters to be
calibrated are (qa, qb, λ).

STABLEmix A stable model with stochastic correlation. The model parameters to be
calibrated are (qa, qb, λ, α, β).

5We use a Levenberg Marquardt algorithm on weighted square deviations.
In case of convergence, the solver usually finds a minimum in less than 50 steps, which on an average pc

takes between 30s for a Gaussian Model with 2 parameters and 2 min for a stable model with 5 parameters.
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STABLE A stable model without stochastic correlation. The model parameters to be cali-

brated are (λ, α, β).

COPmixHOM A copula mixture model where the Archimedean copula has generator φθ(x) =
exp(x−θ)− exp(1) and flat correlation. Instead of finding the convex coefficients wi di-
rectly we parameterized them in form of spherical coordinates ψ, θ, φ according to

w1 = (cosψa)2,

w2 = (sinψa cosψb)2,

w3 = (sinψa sinψb cosψc)2,

w4 = (sinψa sinψb sinψc)2

The model parameters to be calibrated are (ψa, ψb, ψc, θ). In the table of results given
below the parameters are found in the following columns: ψa = qa, ψb = qb.

COPmixINH An inhomogeneous copula mixture model where the Archimedean copula has
the issuer specific generator φθi(x) = exp(x−θi)− exp(1) where θi = λ

(
1

1−βi
− 1

)
. The

model parameters to be calibrated are (ψa, ψb, ψc, λ) and the wi are parameterized as
for COPmixHOM.

ARCHIMpl A homogenous mixture copula with piecewise linear generator. The abscissa
points are chosen to be

x0 = 0.000, x1 = 0.003, x2 = 0.010, x3 = 0.030,
x4 = 0.050, x5 = 0.0150, x6 = 1.000.

Since an overall scaling of the generator function φ → λφ, λ ∈ R+, leads to the same
copula we set y0 = 1. Then the model parameters to be calibrated are the corresponding
function values yi for the linearly interpolated grid: (y1, . . . , y5).6

The calibration results for several dates in the time period from 26 April 2005 to 07 June
2005 are shown in Tables 2 to 3. Tranche market data for the year 2005 is from CreditFlux
whereas that for 2007 is from DKIB Credit Research. Single name credit market data is from
DKIB Credit Research. Values for the 0-3% tranche are upfront prices assuming a running
spread of 500bps7, whereas for all other tranches the par spread is given in bps.

Table 2 shows the market and calibration results for 26 April 2005. This is before the
tranche market turmoil in May 2005 and corresponds more or less to a normal market situ-
ation. All models considered here perform reasonably well, even though STABLEmix seems

6The capability of the model to react sensitively enough to a change of the function values yi depends
strongly on the choice of the parameters xi. Note, that the copula function is called with Pi(t) as arguments,
therefore choosing “more” xi values in a range where the Pi’s are denser turned out to be a good choice. We
found the values by manual experimentation. This procedure turned out to be superior to choosing the xi

values with the help of the solver, i.e. incorporating it into the optimization procedure. Since the curve can be
arbitrarily refined, there is a lot of improvement possible by making use of more advanced parametrizations,
which, however, is not the focus of the current paper.

71bps = 0.01% being one basis point
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26-Apr-05 Parameters
Tranche 0-3% 3-6% 6-9% 9-12% 12-22% qa qb λ α β

GAUSSmix 26.1% 161 50 30 18 0.367 0.183 0.603
CAUCHYmix 26.0% 93 33 33 24 0.981 0.279 0.007
STABLEmix 26.0% 160 47 29 17 0.080 0.128 0.582 1.806 0.203

STABLE 26.1% 159 55 31 18 0.000 0.000 0.439 1.759 -0.040

λ ψ θ φ
COPmixINH 26.5% 171 72 42 20 0.717 0.098 0.100 0.010

COPmixHOM 26.5% 169 74 43 20 0.210 0.566 0.006 0.010

y1 y2 y3 y4 y5

ARCHIMpl 25.9% 155 54 26 15 0.603 0.296 0.223 0.135 0.071

Market 25.9% 156 50 24 14

Table 1: Calibration results for 5 year iTraXX Series 3 for 26 April 2005.

to be slightly better in the upper (so called “mezzanine” and “senior”) tranches. The effect
of introducing stochastic correlations under these market conditions for the α-stable copula
is relatively small, as can be seen by comparing STABLE to STABLEmix.

26-Apr-05 Parameters
Tranche 0-3% 3-6% 6-9% 9-12% 12-22% qa qb λ α β

GAUSSmix 26.1% 161 50 30 18 0.367 0.183 0.603
CAUCHYmix 26.0% 93 33 33 24 0.981 0.279 0.007
STABLEmix 26.0% 160 47 29 17 0.080 0.128 0.582 1.806 0.203

STABLE 26.1% 159 55 31 18 0.000 0.000 0.439 1.759 -0.040

λ ψ θ φ
COPmixINH 26.5% 171 72 42 20 0.717 0.098 0.100 0.010

COPmixHOM 26.5% 169 74 43 20 0.210 0.566 0.006 0.010

y1 y2 y3 y4 y5

ARCHIMpl 25.9% 155 54 26 15 0.603 0.296 0.223 0.135 0.071

Market 25.9% 156 50 24 14

Table 2: Calibration results for 5 year iTraXX Series 3 for 26 April 2005.

Tables ?? to ?? show the market and calibration results for several dates during the
market dislocation in the correlation crisis of May 2005. For these markets the Gaussian and
other copula models do not perform well, whereas the α-stable based models (CAUCHYmix,
STABLEmix, STABLE) capture these markets very well, as is evidenced in particular by the
results of 17 May and 24 May. Note that for these markets the calibration results in α-values
of around 1.3 (for CAUCHYmix it is 1 by definition), which is far away from the normal
distribution value of αGAUSS = 2. The effect of stochastic correlation for the α-stable model
(STABLEmix vs. STABLE) still seems relatively small in this market regime as well, with
STABLEmix showing a slightly better fit.

Table 3 shows the market and calibration results for 07 June 2005. This is now after the
tranche market turmoil in May 2005 and again corresponds to a return to a normal market
situation with upfront prices for the 0−3% tranche having come back considerably from where

14

Page 15 of 22

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
07-Jun-05 Parameters
Tranche 0-3% 3-6% 6-9% 9-12% 12-22% qa qb λ α β

GAUSSmix 31.0% 105 34 26 14 0.826 0.164 0.472
CAUCHYmix 30.9% 81 24 22 17 0.889 0.122 0.085
STABLEmix 31.0% 106 34 23 15 0.193 0.009 0.514 1.631 -0.046

STABLE 31.0% 106 34 24 15 0.000 0.000 0.570 1.671 -0.415

λ ψ θ φ
COPmixINH 31.5% 124 57 38 18 1.478 0.865 0.007 0.010

COPmixHOM 31.5% 126 59 39 17 0.361 0.951 0.003 0.010

y1 y2 y3 y4 y5

ARCHIMpl 30.7% 116 30 19 14 0.596 0.296 0.236 0.170 0.089
Market 31.0% 106 34 24 15

Table 3: Calibration results for 5 year iTraXX Series 3 for 07 June 2005

06-July-07

Tranche 0-3% 3-6% 6-9% 9-12% 12-22%

5 year
STABLEmix 10.56% 44 18 13 9

Market 11.37% 62 17 8 3

7 year
STABLEmix 25.59% 144 42 22 12

Market 25.36% 141 39 19 9

10 year
STABLEmix 39.68% 374 132 60 23

Market 39.10% 365 112 52 17

Table 4: Results for different tenors when calibrated to the 7 year iTraXX Series 7 tranches.

they where in May. Except for CAUCHYmix all models considered here perform fairly well,
with the α-stable models providing the best fit. As can be seen once more from comparing
STABLE to STABLEmix, there is no discernible effect of introducing stochastic correlation
in these markets.

The calibration results show that the stable model with stochastic correlation STABLEmix
performs best throughout this time of market turmoil in the spring of 2005. But even the pure
stable model STABLE (without stochastic correlation), which uses only three parameters (α, β
and λ) to describe the distribution, calibrates reasonably well to these markets. In particular,
these two models show mezzanine tranche and super senior spreads closer to the market than
the other models. Given the market turbulence in May 2005, the deviations for the stable
models from the market (i.e. the calibration error) may well be within the bid/offer spread
at that time, but we were unable to confirm this. During normal markets (e.g. 07 June
2005) the stable model STABLE alone may be sufficient to calibrate to the quoted tranche
spreads. The piecewise linear Archimedean copula ARCHIMpl also yields higher spreads than
a simple first-generation Gaussian copula for the upper tranches, but tends to overprice the
first mezzanine tranche and to remain below the market spread for the 12%-22% tranche.

As the suitability of the α-stable models for tranche modeling is the major focus of this
paper we add two further outputs of the stochastic correlation version (STABLEmix) of this
model. The first concerns the ability to match the market for various tenors and the second
shows the tranchelet spread curve of the model.
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Table 4 displays the performance of the STABLEmix model to replicate the markets for

different tenors, when calibrated only to the market at one tenor. The results in this table
are from 06 July 2007. The STABLEmix model was calibrated to the 7 year iTraxx tranche
market and the spreads for the 5 year 10 year tenors were calculated from the model calibrated
to the 7 year markets. While the fit to the 5 and 10 year markets is not too bad, it is clearly
not good enough to use the model without further adjustments for a tenor structure. Such
adjustments could e.g. consist of “patching” or “bootstrapping” various copula time-slices
together as has recently been proposed by Sidenius [14].

Finally, the prices from STABLEmix for 1% wide 5 year tranchlets on the iTraxx series
are shown in Fig. 3. The spreads show a smooth and rapid decay to zero at detachment of
60%, which is given as the maximal portfolio loss due to an assumed recovery of 40%.

10 20 30 40 50 60
Detachment

0.0025

0.005

0.0075

0.01

0.0125

0.015

Spread

Figure 3: Tranchelet spreads from the STABLEmix model for 5 year 1% wide tranches on
the iTraxx 7 as of 26 July 2007. Detachment is given in % of portfolio notional.

4 Conclusion

We have introduced a two-parameter (α, β) class of distributions closed under addition, so-
called α-stable distributions, which include the standard Gaussian distribution as a special
case (α = 2, β = 0), but allow a continuous deformation of the latter to distributions with
ever fatter tails as α decreases away from 2 and more skewness as β is changed away from 0.
Using these α-stable distributions for the idiosynchratic and latent variables in conditional
independence loss models results in significantly higher tranche spreads for the upper tranches
than those which can be achieved with the standard Gaussian models. Combining the α-stable

16

Page 17 of 22

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
distribution with the framework of stochastic correlation further enhances the ability to match
the market and yields quite good calibration properties for these models, as evidenced by
applying them to the markets during the correlation crisis of 2005.

Furthermore, we have carried out the search for a factor dependence structure given by a
“perfect” Archimedean copula with a generator which is allowed to be piecewise linear and
whose interpolation points are determined by calibration. The resulting class of models also
allow for higher spreads in the upper tranches and a correlation smile, but at the same time
tend to deliver too high spreads for the first mezzanine tranches.

Overall we believe that the α-stable mixture models with stochastic correlation comprise
a class of models capable of capturing the tranche market.
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