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JPL Hatchett† and R Kühn§

† Hymans Robertson LLP, One London Wall, London EC2Y 5EA, UK
§ Department of Mathematics, King’s College London, The Strand, London WC2R
2LS, United Kingdom

Abstract. We study a simple, solvable model that allows us to investigate effects
of credit contagion on the default probability of individual firms, in both portfolios of
firms and on an economy wide scale. While the effect of interactions may be small in
typical (most probable) scenarios they are magnified, due to feedback, by situations
of economic stress, which in turn leads to fatter tails in loss distributions of large loan
portfolios.

PACS numbers: 02.50.-r, 05.40.-a, 89.65.Gh, 89.75.Da

E-mail: jon.hatchett@hymans.co.uk reimer.kuehn@klc.ac.uk

1. Introduction

Modelling credit risk in a coherent yet applicable manner is an important yet challenging

problem. The difficulties arise from the combination of a large, and co-dependent

set of risk parameters such as default rates, recovery rates, or exposures, which are

correlated and non-stationary in time. An additional issue is that of credit contagion

[1, 2, 3, 4, 5, 6, 7, 8, 9], which examines the role of counter-party risk in credit risk

modelling. If a firm is in economic distress, or defaults, this will implications for

any firm which is economically influenced by this given firm, for example, a service

provider to it, purchaser of its goods or a bank with a credit line to the firm. The direct

correlations between firms caused by credit contagion lead to further complications in

modelling the overall, either portfolio or economy wide, level of risk. Davis and Lo

[1] considered a model in which defaults occur either directly, or through infection by

another defaulted firm, with probabilities for direct default or infection taken uniform

throughout the system (or throughout sectors, assuming independence across sectors).

Defaults occurring due to both, endogenous or exogenous causes were not considered

in their set-up. Jarrow and Yu [2] introduced a framework of primary and secondary

firms, the former would default depending on some background stochastic process while

the latter were affected by a stochastic process and the performance of the primary

firms. They argued that this was a reasonable level of detail for their purposes and

it also simplifies matters as there are no feedback loops in the system. Secondary

firms depend only on primary firms whose performance is independent of the secondary
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firms. Rogge and Schönbucher [3] use copula functions to quantify correlations in default

dynamics, and in particular to determine the impacts a defaulting obligor will have on

the hazard rates of other obligors in a portfolio — conditioned on a specification of

the set of countdown levels of surviving obligors and on the set of defaults that have

already occurred at the given time. While the expression of the conditional impact

parameters in terms of a covariance of macro-economic factors is intriguingly simple

at a formal level, the evaluation can, as pointed out in [3], be cumbersome in practice

once a sizeable number of defaults has occurred. Also, actually solving the dynamics of

hazard rates using the impact parameters thus computed is an entirely non-trivial affair.

This is hardly addressed in [3] even for moderately sized portfolios. Another approach

for modelling credit contagion dynamics was provided by Giesecke and Weber [4] who

used the well known voter process [10], from the theory of interacting particle systems,

to model interactions between firms. They assumed a regular structure for their firms

(a regular infinite hyper-cubic lattice) and focussed on the equilibrium properties of the

model. The model is highly idealised. It would seem that both the regularity (and

the symmetry) of the interaction pattern would have to be abandoned, if one were to

calibrate a model of this kind to represent realistic patterns of mutual dependencies.

Egloff et al. [5] model contagion using a linear coupling of asset returns between

business counterparts to describe the micro-structure of mutual dependencies. This

leads to a self-consistent description of mutual dependencies in equilibrium (though an

autoregressive mechanism is mentioned to capture non-equilibrium situations), which

allows analytic solutions even for the case of asymmetric and heterogeneous impacts.

This feature would seem to open the way for a proper calibration of their model,

though it has been argued [11] that feedback mechanisms via rating events rather than

(unobservable) asset returns would be preferable in realistic models of contagion. Frey

and Backhaus [6] and Kraft and Steffensen [9] use continuous time Markov models to

describe the dynamics of transitions of the indicator variables describing rating classes

of the obligors in a portfolio. The major problem here is that the state space of

the system grows exponentially in portfolio-size. Frey and Backhaus circumvent this

problem by using a mean-field approximation for large portfolios, assuming that these

portfolios contain only a small number of different sectors, and that contagion effects

are homogeneous within sectors, whereas Kraft and Steffensen [9] concentrate on small

portfolios (involving 2 or 3 firms), and so-called n-to default baskets with small n chosen

such that the dimension of the state space remains small, allowing them, among other

things, to derive explicit results for loss-distributions, and also to address pricing issues

in some detail.

There are a variety of techniques for modelling the correlations between firms’

default behaviour, which is a major complication in credit risk modelling. The binomial

expansion technique assumes independence between firms so that the number of defaults

in a portfolio is described by a binomial distribution. In order to capture the effects

of correlations a binomial distribution with an “effective” number of firms is assumed

which is smaller than the actual number in the portfolio, but the weight given to each
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firm scaled so as to keep the mean number of defaults constant, while the variance of

the overall number of defaults is increased. The relationship between the true number

of firms and the effective reduced number is a modelling choice that depends on the

diversity of the firms in terms of sectors, geographic locations or any other identifiable

trait that would lead to strong correlations in default behaviour. JP Morgans’

CreditMetrics approach [12] and Credit Suisse First Financial Products CreditRisk+

[13] (see [14] for a detailed comparison between the two) uses the correlations in equity

values as a surrogate for the correlations in credit quality. The structural modelling

approach goes back a long way to work by Merton [15] which directly models the

dynamics of a firm’s assets, with default being triggered by the asset value hitting

some predetermined value (which henceforth we take without loss of generality to be

zero). Correlations between firms are due to correlations in the dynamics of different

firms’ assets. This approach is very general, as it is relatively transparent to identify

different driving forces of asset levels and straightforward to include them in the model

(though the resulting model itself will be non-trivial). However, it suffers from the fact

that the asset level is not an observable quantity [11]. On the other hand, the reduced

form approach gives default rates for a given firm without modelling the underlying

default process. Correlations are then directly introduced between the default rates.

There was some discussion in the literature about whether the reduced form model

could describe the true level of default correlations seen empirically. Yu [16] seems to

have answered this question in the affirmative if a suitable structure between the default

rates is taken into account, while the results of Das et al. [17] seem to imply that the

reduced form model is insufficient to fully account for observed default correlations and

direct contagion would indeed be required for a full explanation.

The approach we take here is a discrete time Markov process (at the microeconomic

level) where the probability of a default of a given firm in a particular time step depends

materially on the state of its economic partners at the start of that time step, as well as

on macro-economic influences. The model we look at was proposed by Neu and Kühn

[7], and initially studied using Monte-Carlo simulations. The model improves upon

[6] by introducing a fully heterogeneous specification, with model parameters given

in terms of unconditional and conditional default probabilities, or alternatively as a

variant of [5] in which a full dynamic description is maintained, and contagion is via

rating events (defaults) rather than via unobservable asset returns. Using techniques

developed in the statistical mechanics of disordered systems [18], and recently applied

to this specific model in [8], we are able to solve the dynamics of our model exactly,

and given our assumptions that we describe shortly, this solution takes a particularly

simple form despite the fact that in principle we have feedback correlations, non-

equilibrium dynamics and in principle non-Markovian behaviour at the macroscopic

(economy/portfolio wide) level. We note that it is possible to frame our model in either

the structural approach or the reduced form approach, depending on requirements and

taste, although the interpretation of the variables in the two approaches will of course

be different. We find that the correlations introduced through credit contagion lead
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to large increases in default rates in times of economic stress, above and beyond those

introduced by simple macro-economic dependencies. This has strong implications for

portfolio risk management.

2. The microeconomic framework

We will analyse an economy of N firms in the large N limit. Generally, we focus on the

characteristic changes in the economy due to interactions between firms, which will be

described in a probabilistic manner.

As mentioned in the introduction we take a discrete time approach. For clarity

we restrict our discussion to a one year time frame split into twelve steps; this is not

essential, but parameters may need rescaling depending on the set-up. We use a binary

indicator variable ni,t to denote whether firm i is solvent at time t (ni,t = 0) or has

defaulted (ni,t = 1). The default process is a function of an underlying stochastic

process for each firm in terms of a “wealth” variable Wi,t, where we assume default if

the wealth drops below zero. We shall assume that recovery from default over the time

horizon of a year is not possible, so that the defaulted state is absorbing. As a function

of the wealth, therefore, the indicator variables evolve according to

ni,t+1 = ni,t + (1− ni,t)Θ(−Wi,t) , (1)

where Θ(. . .) is the Heavyside function.

A dynamic model for the indicator variables is obtained from (1) by specifying the

underlying stochastic process for the wealth variables Wi,t. We shall take it to be of the

form

Wi,t = ϑi −
N∑

j=1

Jijnj,t − ηi,t . (2)

Here ϑi denotes an initial wealth of firm i at the beginning of the risk horizon, and Jij

quantifies the material impact on the wealth of firm i that would be caused by a default

of firm j. This may or may not be a reduction in wealth, depending on whether j has

a cooperative (Jij > 0) or a competitive (Jij < 0) economic relation with i.

We shall assume that the fluctuating contributions ηi,t to (2) are zero-mean

Gaussians. There is still some degree of flexibility concerning the decomposition of

the ηi,t into contributions that are intrinsic to the firm and extrinsic contributions. The

latter describe the influence of economy-wide fluctuations or fluctuations pertaining

to different economic sectors, depending on the level of detail required. We restrict

ourselves to a minimal model containing a single macro-economic factor (assumed to be

constant over a risk horizon of a year), and individual fluctuations for each firm,

ηi,t = σi

(√
ρiη0 +

√
1− ρi ξi,t

)
, (3)

where σi sets the scale of the individual fluctuations, and the {ξi,t} are taken to be

independent N (0, 1) Gaussians; finally, the parameters ρi quantify the correlations of the

ηi,t created via the coupling to economy-wide fluctuations η0, also taken to be N (0, 1).
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It is not necessary to take the ξi,t independent, but it allows us to interpret the wealth

of the firm as being given by ϑi−∑
j 6=i Jijnj which describes the state of the firm (which

evolves as a jump process each time step), and then the fluctuations about that state

give a certain intensity of defaults per time step (given the wealth).

Up to this point the wealth dynamics does not contain an endogenous drift. If

predictions are required over longer time periods then it may also be pertinent to

introduce such a drift, e.g. by using a time-dependent ϑi for example, ϑi,t = ϑi(0)ezit,

where zi denotes an intrinsic growth rate of the average wealth of firm i (with zi > 0

for a firm making profits and zi < 0 for a firm making losses). However, for the current

purposes of examining default rates over the medium term and especially focussing on

the behaviour on the tails, this adjustment does not lead to significant changes in our

overall conclusion.

The model, as formulated above, clearly takes a structural point of view on

the problem of credit contagion. However, we note that the dynamics (1) of the

indicator variables is clearly independent of the scale of the wealth variables Wi,t. By

appropriately rescaling the initial wealths ϑi and the impact parameters Jij we can

thus assume a unit-scale σi ≡ 1 for the noise variables (3). Interestingly, this simple

rescaling, which leaves the dynamics of the system unaffected, amounts to changing to

a reduced-form interpretation of the dynamics.

To see this, note from (2) that the event Wi,t < 0 is equivalent to ηi,t >

ϑi−∑N
j=1 Jijnj,t. With σi ≡ 1, we see that this occurs with probability Φ(

∑
j Jijnj,t−ϑi)

where Φ(·) is the cumulative normal distribution. From a reduced form point of view

this is just the intensity of default of firm i at time step t (in a given economic

environment specified by the set of firms defaulted at time t). This allows us to re-

interpret the (rescaled) initial wealth and impact variables ϑi and Jij in terms of the

bare default probabilities [7, 8, 20]. In other words, if company i has an expected

default probability of pi in a given time unit (e.g. one month in the present set-up) as

predicted from tables from ratings agencies, then ϑi = −Φ−1(pi). Similarly, the expected

default probability pi|j of firm i, given that only firm j has defaulted leads to the value

Jij = Φ−1(pi|j)− Φ−1(pi).

In determining the model parameters by the method suggested above we are

splitting our default probability into terms that come from credit contagion and other

terms such as the bare default probability that come from historical data. It could

fairly be argued that the historical data already incorporate the credit contagion terms

and thus we are double counting. As we will see later in numerical simulations, the

credit contagion terms make very little difference to average behaviour and thus making

estimates based on average historical data is still a reasonable approach.

In choosing the variable ρi we follow the prescription given by BASEL II [19] which

sets

ρi = 0.12
1− e−50PDi

1− e−50
+ 0.24

(
1− 1− e−50PDi

1− e−50

)
≈ 0.12

(
1 + e−50PDi

)
(4)

where PDi gives the probability of default of firm i over one year, ignoring credit
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contagion effects. With pi = Φ(−ϑi) as the monthly default probability, we have

PDi ≈ 12Φ(−ϑi).

We still have to specify the form for the economic interactions. We adopt here a

probabilistic approach, and investigate a ‘synthetic’ portfolio, described by its statistical

properties. Specifically, we take the interactions to be random quantities of the form

Jij = cij

[
J0

c
+

J√
c
xij

]
. (5)

Here, the cij ∈ {0, 1} detail the network (presence or absence) of interactions between

different firms and we choose these to be randomly fixed according to

P (cij) =
c

N
δcij ,1 +

(
1− c

N

)
δcij ,0 , i < j , cji = cij . (6)

We assume that the average connectivity c of each firm is large in the limit of a large

economy; this will allow the influence of partner firms to be described by the central limit

theorem and the law of large numbers. Concerning the values of the (non-zero) impact

parameters, we parametrise them as shown, with xij assumed to be zero-mean, unit-

variance random variables, with finite moments, and which are pairwise independent,

xij = 0 , x2
ij = 1 , xijxji = α , xijxkl = 0 otherwise . (7)

The parameters J0 and J determine the mean and variance of the interaction strengths;

the scaling of mean and variance with c and
√

c respectively in (5) is necessary to allow

a meaningful large c limit to be taken. Taking J0 > 0 would encode the fact that on

average firms have a synergy with their economic partners.

At first sight, specifying the Jij appears to introduce a vast number of parameters

into our model, but in fact only the first two moments of the distribution of interaction

strengths are sufficient to determine the macroscopic behaviour of the system, and so

the model space is not too large.

Let us now turn to the capital required to be held against credit risk. In the BASEL

II document [19] the capital requirement for a unit-size loan given to firm i is

Ki = LGDi

[
Φ

(√
ρi Φ

−1(0.999) + Φ−1(PDi)√
1− ρi

)
− PDi

]
Mi . (8)

The first factor, the loss given default LGDi of firm i, is related to the average fraction

of a loan that can be recovered despite default. The last factor, Mi, is related to the

maturity (long dated loans are inherently riskier). Adjustments related to liquidity (low

liquidity loans are risker) and concentration (fewer, larger loans give a greater variance

in returns for given expected return) are occasionally also included in this factor —

concentration-adjustments, in fact, are a means to account for reduced granularity in a

credit portfolio resulting from the possibility of credit contagion.

The factor inside square brackets in (8) is entirely related to the loss-frequency

distribution. The first term is the value of the loss frequency not exceeded with

probability q = 0.999 under fluctuating macro-economic conditions, with ρi describing

the dependence of the firm’s loss-frequency on the macro-economic factor. The second

term is the average loss frequency. The value of the confidence level q is in principle
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arbitrary, but is related to the target rating of the bank. The risk weighted asset is

then found by further multiplying by terms such as the exposure at default (i.e. size of

the loan). Thus the capital required for firm i can be viewed as the loss at the 99.9th

percentile level of stress, in excess of the expected loss, multiplied by a conversion

factor. From this structure it is clear that a key ingredient for the capital adequacy

requirements is a good model of credit risk that works well into the tail of the loss

frequency distribution.

Returning to our description of default dynamics, let us first focus on the case of

independent firms, with Jij = 0 ∀i, j, and consider a single epoch for our model with

fluctuating forces given by (3) at given macro-economic condition η0. The probability of

a default of firm i with average unconditional monthly default probability pi occurring

during the epoch t → t + 1 in our model is given by

〈ni,t+1|ni,t = 0〉 = Φ

(√
ρi η0 + Φ−1(pi)√

1− ρi

)
(9)

Since the probability of default is increasing with η0, we can find the probability of

default not exceeded at e.g. the 99.9 percent confidence level; it is given by setting

η0 = Φ−1(0.999) in the above equation (recall η0 is distributed as a zero-mean, unit-

variance Gaussian random number). As above, the excess capital required is the loss at

the 99.9th percent level minus the expected loss (multiplied by a risk factor). However,

when we consider the case of an interacting economy with non-zero Jij, we find that in

fact

〈ni,t+1|ni,t = 0〉 = Φ

(
J0mt +

√
ρi η0 − ϑi√

1− ρi + J2mt

)
, (10)

where

mt =
1

N

∑

j

nj,t (11)

is the fraction of firms within the economy that have defaulted up to time t; we also

expressed the expected monthly default rate pi in terms of a ‘rescaled initial wealth’ ϑi,

Φ−1(pi) = −ϑi.

Thus we find that our formulation is very similar to that used in BASEL II. However,

we directly take account of the correlations in defaults caused by credit contagion.

This introduces two extra parameters into the model but it does markedly change the

behaviour in the tails of the loss frequency distribution, and thereby in the tails of the

loss distribution itself. Correlation between firms is essentially a dynamic phenomenon

— if there is no dynamics, there is no way for one’s firms’ performance to influence

the viability of any other firm. Thus rather than considering firms to be independent

over a single epoch which lasts the entire period of any loan, we split the overall time

(e.g. one year) into smaller units (e.g. one month) and let the firms evolve over these

smaller time units with the default probability adjusted (since the default event in 12

monthly epochs is compounded 12 times as opposed to a single epoch). A firm may

default at any point, but will then influence its partner firms for the remainder of the
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time horizon. The complexity of the theory is merely linear in time, thus it is not a

great computational burden to choose this approach.

Following the approach described in [8] it is possible to solve the model in a

stochastic manner. Credit contagion within this model is encoded at each time by a

single number, the fraction of firms that have defaulted thus far, which evolves according

to

mt+1 = mt +

〈(
1− 〈nt(ϑ)〉

)
Φ


J0mt +

√
ρ(ϑ) η0 − ϑ

√
1− ρ(ϑ) + J2mt




〉

ϑ

(12)

where 〈nt(ϑ)〉 denotes the time-dependent monthly default rate of firms with ϑi ≈ ϑ,

as influenced by interactions with the economy, and the larger angled brackets with

subscript ϑ denote an average over the bare monthly probabilities of default for the

ensemble of firms, or equivalently over the distribution p(ϑ) of their rescaled initial

wealth parameters ϑ. A heuristic derivation of this result can be found in the appendix.

For a full justification of the assumptions used in the derivation, we refer to [8].

In (12) the Basel II recommendation which links correlations to macro-economic

factors with (unconditional) default probabilities, ρi = ρ(pi) → ρ(ϑi), via (4) is formally

taken into account. Note that this correlation was not implemented in [8].

Also, note that credit contagion affects the dynamics of defaults only via two

parameters, J0 and J , which characterise the mean and variance of the impact parameter

distribution. Further, the parameter α which quantifies forward-backward correlation

of mutual impacts according to (7) does not appear in the final formulation, nor are

there any memory-effects in the dynamics, as would normally be expected for systems

of this type. The reason for this simplifying feature is in the fact that the defaulted

state is taken to be absorbing over the risk horizon of one year.

3. Results

We now turn to presenting a few key results of our analysis. Our results concerning

default dynamics and loss distributions are obtained for an economy in which the

parameters ϑi determining unconditional monthly default probabilities pi according to

ϑi = −Φ−1(pi), are normally distributed with mean ϑ0 = 2.75, and variance σ2
ϑ = 0.1

so that typical monthly bare default probabilities are in the 10−5 − 10−3 range. The

couplings to the macro-economic factor are chosen to depend on the expected default

probabilities according to the Basel II prescription (4).

In Fig. 1 we we show that renormalisation (with respect to credit contagion)

makes little difference to the typical default dynamics observed for η0 = 0, i.e. for

neutral macro-economic conditions. The evolution of the fraction of defaulted firms

in interacting economies differs hardly from that of the non-interacting economy with

Jij = 0 ⇔ (J0, J) = (0, 0). At least, as the differences are of the order of one percent of

the portfolio after a twelve month period, the differences are smaller than the uncertainty

that would be introduced by using historic default rates to calibrate any model (along
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with other uncertainties by the model choice). If one were concerned by this difference

it would not be unduly taxing (although potentially rather unedifying) to alter the

independent default probability so that the mean number of defaulted firms at the end

of a year (or any chosen epoch) were independent of {J, J0}.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  2  4  6  8  10  12

m
t

t

Figure 1. Typical fraction of defaulted companies as a function of time for (J0, J) =
(0, 0), (1, 0), (0, 1), and (1,1) (bottom to top), realized for a neutral macro-economic
factor η0 = 0.

In marked contrast to this, the tail of loss-frequency distributions is strongly affected

by the presence of interactions in the system, as shown in Fig. 2. We also note that the

tail of the loss-frequency distribution is more pronounced than in our previous study

[8]. This is solely due to the fact that in the present paper we followed the Basel II

suggestion that relates the coupling of a company to macro-economic factors with its

default probability via (4), stipulating that the coupling to the macro-economic factor

decreases with increasing probability of default. As a consequence, companies with

very low unconditional default probabilities will be driven into default mainly in rare

situations of extreme economic distress where interaction generated avalanches of risk-

events are likely to occur.

Let us now look at the economy-wide losses per node. Here we will not only evaluate

end-of-year results, but exploit the dynamical information contained in (12) to also look

at the way losses are accrued as a function of time t.

For a given macro-economic condition η0, the loss per node at time t is given by

Lt(η0) =
1

N

∑

i

ni,t`i . (13)

We assume that the `i are randomly sampled from the loss distribution for node i, are

taken to be independent of the stochastic evolution, but are possibly correlated with

the bare monthly default probability. In the large N limit this gives

Lt(η0) = lim
N→∞

1

N

∑

i

nt(ϑi)`i =
∫

dϑp(ϑ)〈nt(ϑ)〉`(ϑ) (14)
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by the law of large numbers, where ` = `(ϑ) is the mean of the loss distribution for a

node with default probability pd(ϑ).

 0.001

 0.01

 0.1

 1

 10

 100

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

p(
m

12
)

m12

Figure 2. Probability density function of the fraction of defaulted companies at t = 12
months, for (J0, J) = (0, 0) (bottom) and (J0, J) = (1, 1) (top).

The distribution of the economy-wide fraction of defaulted nodes and thereby the

distribution of the losses per node is driven by the distribution of the macro-economic

factor η0. Noting that the fraction of defaulted nodes mt = mt(η0) (and thereby the loss

accrued up to time t) are monotone increasing functions of η0 which is itself assumed to

be N (0, 1), one has

Prob[m ≤ mt(η0)] = Φ(η0(mt)) , (15)

which entails Prob[L ≤ Lt(η0)] = Φ(η0(Lt)) for the loss distribution. The corresponding

probability density functions are obtained via a single numerical differentiation.

A typical result for the loss distribution is shown in Fig. 3, for which we consider

an economy where average losses are inversely proportional to the unconditional default

probabilities pi = pd(ϑi) = Φ(−ϑi),

`(ϑ) =
`0

ε + pd(ϑ)
(16)

with a parameter ε > 0 as a regularizer preventing divergence as pi → 0. In this way, the

contribution to the total losses will be approximately uniform over the bands of different

default probabilities. We make no claim that this choice is in any way singled out on any

form of a-priori grounds and there is a relatively large freedom of modelling choice in (16)

— one just requires a reasonably behaved function of ϑ. Indeed, if we make the simpler

assumption that the loss distributions are independent of default probabilities, and take

`(ϑ) ≡ 1, then the distribution of losses per node simply replicates the distribution of

the fraction of defaulted companies as shown in Fig 2 at t = 12 months. For the results

in Fig. 3 we took `0 = 1 and the regularizer ε = 0.005.
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In Fig. 3 we also show the loss distribution at half term, to illustrate how losses build

up over the full risk horizon of 12 months. Economic interactions are seen to strongly

affect the tail of the loss distribution at large losses, which is due to the possibility of

avalanches of loss events in times of extreme economic stress. Indeed a comparison of

the loss distribution of the interacting system at half term and at full term reveals that

the avalanches that create the mass of the loss distribution at the extreme end have at

half term not yet been able to sweep through the entire economy, while at full term they

have.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

-20  0  20  40  60  80  100  120  140

P
(L

)

L

 0
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 0  1  2  3  4  5

P
(L

)
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Figure 3. Probability density function of losses for the non-interacting system with
(J0, J) = (0, 0) at 6 months (full line) and 12 months (long-dashed), as well as for the
interacting economy with (J0, J) = (1, 1) at 6 months (short-dashed) and 12 months
(dotted). Note the logarithmic scale. The inset reveals (for the 12 months risk horizon)
that the loss distribution of the non-interacting system (full line) is slightly larger than
that of the interacting system (dashes) in the region of small losses.

If one were to consider a finite portfolio of M bonds selected from the economy

(which is still considered large), one would have normal Gaussian fluctuations around

the mean (14) with a variance for the losses per node inversely proportional to the

portfolio size [8].

Note that we have been dealing here with “synthetic” parameter distributions for

averages of loss distributions, as well as for the bare monthly failure probabilities. These

could be replaced by realistic ones without affecting the general set-up.
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4. Conclusion

In this paper we have looked to incorporate the risk due to credit contagion into

the internal ratings based approach discussed in BASEL II. While the mathematical

subtleties are discussed in full detail elsewhere [8], essentially the large number of

neighbours assumed for firms means that the law of large numbers and central limit

theorems apply to the interactions, meaning that our theory requires only two more

parameters than the BASEL II approach. In terms of risk, one of the striking results

is that while the effect of interactions is relatively weak in typical economic scenarios,

it is pronounced in times of large economic stress, which leads to a significant fattening

of the tails of the portfolio loss distribution. This has implications on the fitting of loss

distributions to historical data, where care must be taken not only to fit the average

behaviour but also to take care with the more extreme events.

We have not considered the question of pricing in the current paper. One interesting

facet that immediately drops out of these results is that in terms of expected returns, the

effect of contagion does not affect the outlook much (and if variables are renomalised,

then arguably not at all). By examining figure 3 we can see that in this scenario if the

pricing regime only requires risk tolerance up to the 95th percentile or even the 99th

percentile then the loss distribution will not change things much from the case where

there is no contagion. However, for a bank or other institution that really does require

capital adequacy at the 99.9th percentile, the pricing of risk will change markedly due

to the increased capital requirements to insure against these extreme conditions.

The conclusions concerning loss distributions due to contagion are broadly in line

with those of previous studies, [4, 5, 6, 7, 8, 9]. Detailed comparison is difficult as

setups and underlying assumptions vary significantly between studies. Whereas [5] and

to some extent [9] allow credit quality migration, the other studies do not. Both [5] and

[7, 8] allow fully heterogeneous economies, whereas in other studies [4, 6] there is a large

degree of homogeneity; the small portfolios studied in [9] would hardly allow one to make

a distinction between homogeneity and heterogeneity at all. Clearly the very specific

properties of the voter model studied in [4] including its extreme version of homogeneity

and regularity are crucially responsible for many of the findings in that study, including,

e.g., the anomalous scaling of the variance of loss distributions with portfolio size, which

is related to the fact that the average fraction of low-liquidity vertices in the model is

conserved under its dynamics.

Let us briefly mention the issue of model calibration of the model, which is discussed

in much greater detail in [7]. We note that our model requires bare default probabilities

and conditional default probabilities as inputs. Historical data, however, only contain

interaction-renormalised default probabilities, and thus the problem arises of how to

disentangle the two effects. Concerning typical behaviour, Fig. 1 shows that the effect

of interactions is fairly small, and interaction-renormalised default probabilities can,

to a first approximation within this model, be taken as substitutes for the bare ones.

Concerning conditional default probabilities, these would have to be obtained from
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refined rating procedures as described in [7]. An important lesson to learn from the

many particle perspective, however, is to realize that there is no need to get conditional

default probabilities for individual pairs of companies correct, as only the low order

statistics of these is needed to describe the collective macroscopic dynamics of the

system. Thus the calibration task appears to be much less daunting than expected

at first sight. The effect of interactions manifests itself only in situations of economic

stress, generating fat tails in portfolio loss distributions.

The model we have proposed is relatively simple in two important respects. Firstly,

we do not take into account credit quality migration but have just two states for our

firms, solvent or defaulted. The model could be extended to allow for more states for

each firm, although the full complexity of non-Markovian dynamics would resurface in

an attempt to take credit quality migration along these lines into account. Secondly, the

firms and their environment are still fairly homogeneous — local connectivities being on

average c >> 1, with O(
√

c) fluctuations — which in practical situations is of course an

approximation. This approximation has been made for convenience rather than out of

necessity; the techniques described in [8] can be adapted so as to treat situations with

more heterogeneity in local environments. We intend to work on some of these possible

model generalisations in the future.

One advantage of our simple model is that it is exactly solvable and the solution

itself is not overly involved theoretically or computationally, and we only need to

introduce two extra parameters to quantify the effect of economic interactions —

compared to the BASEL II approach, which ignores credit contagion altogether.
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Appendix A. Probabilistic solution of our model

In this appendix we show how the law of large numbers and the central limit theorem

can be applied to yield a solution to our model. First we note that the complications

arise in the dynamic equations (1) due to interactions between the different firms. The

effect of other firms in the wider economy on firm i is described by the local field:

hi,t(n) =
∑

j 6=i Jijnj,t. The variables nj,t are correlated, indeed, any variables nj,t in the

set with Jij 6= 0 will explicitly depend on ni,t′ for t′ < t. Thus the local field on firm i at

time t will depend on the state of firm i at times t′ < t. However, the model is set up so

that if firm i is solvent, ni,t = 0 and firm i does not effect its neighbours (and hence the
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correlation described above is not present). Further, if firm i defaults and ni,t = 1, then

the firms interacting with i will have correlated states due to them all experiencing i’s

default, but it will no longer have any effect on firm i - the default state is absorbing

over the time horizon we consider. Using the definition (5) the local field defined above

is given by:

hit =
∑

j

Jijnjt =
J0

c

∑

j

cijnjt +
J√
c

∑

j

cijxijnjt , (A.1)

which is a sum of random quantities (with randomness both due to the Gaussian

fluctuating forces, and due to the heterogeneity of the environment). The first

contribution is a sum of terms of non-vanishing average. By the law of large numbers

this sum converges to the sum of averages in the large c limit,

h0
it ≡

J0

c

∑

j

cijnjt → J0

c

∑

j

cij〈njt〉 ' J0

c

∑

j

cij 〈njt〉 = J0
1

N

∑

j

〈njt〉

in which angled brackets 〈. . .〉 denote an average over the fluctuating forces, and the

overbar (. . .) an average over the Jij, i.e., the cij and the xij. An approximation is

made by assuming negligible correlations between the cij and the 〈njt〉 induced by the

heterogeneity of the interactions. The second contribution to (A.1) is a sum of random

variables with zero mean, which we have argued are sufficiently weakly correlated for

the central limit theorem to apply for describing the statistics of their sum. Thus the

sum

δhit ≡ J√
c

∑

j

cijxijnjt

is a zero-mean Gaussian whose variance follows from

〈(δhit)2〉 =
J2

c

∑

jk

cijcikxijxik〈njtnkt〉 ' J2

c

∑

jk

cijcikxijxik〈njtnkt〉

= J2 1

N

∑

j

〈njt〉

An approximation based on assuming negligible correlations has been made as for the

first contributions. Thus the local field hit is a Gaussian with mean h0
it and variance

〈(δhit)2〉 both scaling with the average fraction of defaulted nodes in the economy. By the

law of large numbers this average fraction will be typically realized in a large economy,

i.e. we have

mt =
1

N

∑

j

njt → 1

N

∑

j

〈njt〉 (A.2)

in the large N limit. The dynamics of the fraction of defaulted nodes then follows from

(1),

mt+1 =
1

N

∑

i

nit+1 = mt+
1

N

∑

i

(1−nit)Θ
(
hit−ϑi+

√
ρ(ϑi)η0+

√
1− ρ(ϑi) ξit

)
.(A.3)

The sum in (A.3) is evaluated as a sum of averages over joint nit, hit, and ξit distribution

by the law of large numbers. We exploit the fact that nit, ξit and hit are uncorrelated.
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Noting that the sum hit +
√

1− ρ(ϑi) ξit is Gaussian with mean J0mt and variance

1 − ρ(ϑi) + J2mt, and taking into account that nit-averages, depend on i through ϑi,

〈nit〉 = 〈nt〉(ϑi), we find

mt+1 = mt +
1

N

∑

i

(1− 〈nt〉(ϑi))Φ


J0mt +

√
ρ(ϑi) η0 − ϑi√

1− ρ(ϑi) + J2mt




This version can be understood as an average over the ϑ distribution (i.e. the default

probability distribution)

p(ϑ) =
1

N

∑

i

δ(ϑ− ϑi) ,

which maps onto a distribution of unconditional default probabilities as discussed above.

Denoting that average by 〈. . .〉ϑ we finally get the following evolution equation for the

macroscopic fraction of defaulted companies in the economy

mt+1 = mt +

〈
(1− 〈nt〉(ϑ))Φ


J0mt +

√
ρ(ϑ) η0 − ϑ

√
1− ρ(ϑ) + J2mt




〉

ϑ

(A.4)

which is just the stated result (12). We have thus an explicit dynamic equation for the

macroscopic fraction of defaulted nodes in the economy. It involves first propagating

ϑ-dependent default probabilities via

〈nt+1〉(ϑ) = 〈nt〉(ϑ) + (1− 〈nt〉(ϑ))Φ


J0mt +

√
ρ(ϑ) η0 − ϑ

√
1− ρ(ϑ) + J2mt


 , (A.5)

which depends only on mt, thereafter performing an integral over the ϑ distribution to

obtain the updated fraction mt+1 of defaulted nodes given in (A.4). Note that all the

assumptions and approximations used in this appendix can be fully justified by using

path integral techniques as shown in [8].
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[3] E Rogge and P Schönbucher, Modelling Dynamic Portfolio Credit Risk, Working Paper, Imperial

College, London, ABN Amro Bank, London, and ETH, Zürich (February 2003)
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[8] J P L Hatchett and R Kühn 2006, J. Phys. A 39, 2231-2251
[9] H Kraft and M Steffensen 2006, Bancruptcy, Counterparty Risk, and Contagion, preprint

[10] T M Liggett 1999, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes
Springer-Verlag: Berlin

[11] T K Siu, W K Ching, E S Fung and M K Ng 2005, Quantitative Finance 5, 543-556
[12] J P Morgan Global Research 1997 CreditMetricsTM : The Benchmark for Understanding Credit

Risk Technical Document (New York) (www.creditmetrics.com)

Page 16 of 21

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Credit contagion and credit risk 16

[13] Credit Suisse First Boston 1997 Credit Risk+: A Credit Risk Management Framework Technical
Document (New York) (www.csfb.com/creditrisk)

[14] M B Gordy 2000, J. Bank. Finance 24, 119-149
[15] R Merton 1974, J. Finance 29, 449-470
[16] F Yu 2007, Math. Finance 17, 155-173
[17] S R Das, D Duffie, N Kapadia, and L Saita 2007 Journal of Finance 62, 93-117.
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[20] R Kühn and P Neu 2003, Physica A 322, 650-666

Page 17 of 21

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  2  4  6  8  10  12

m
t

t

Page 18 of 21

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only 0.001

 0.01

 0.1

 1

 10

 100

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

p
(m

1
2
)

m12

Page 19 of 21

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

P
(L

)

L

Page 20 of 21

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

-20  0  20  40  60  80  100  120  140

P
(L

)

L

Page 21 of 21

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


