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Abstract

Numerical algorithms for efficient pricing multidimensional discrete-time

American and Bermudan options are constructed using regression meth-

ods and a new approach for computing upper bounds of the options’

price. Using the sample space with payoffs at the optimal stopping

times, we propose sequential estimates for continuation values, values

of the consumption process, and stopping times on the sample paths.

The approach allows constructing both lower and upper bounds for the

price by Monte Carlo simulations. The algorithms are tested by pricing

Bermudan max-calls and swaptions in the Libor market model.
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1 Introduction

Valuation of high-dimensional American and Bermudan options is one of the most difficult
numerical problems in financial engineering. Besides its practical relevance, this problem
is of great theoretical importance since pricing American-style options is an archetype
for high-dimensional optimal stopping problems. Several approaches have recently been
proposed for pricing such options using the Monte Carlo technique (see, e.g. [1]-[15],
[17]-[21], [25, 26, 28] and references therein). In practice it is often an open question
whether the obtained numerical result is sufficiently accurate. As a rule, any numerical
procedure has errors of various types (e.g., discretization or Monte Carlo errors) and it
is difficult to take all of them into account. That is why in a number of works (see,
e.g. [3, 4, 6, 9, 17, 18, 20, 25, 26]) some procedures are proposed to produce upper
bounds along with lower bounds for the option price. The knowledge of lower and upper
bounds makes it possible to evaluate accuracy of the price estimates. In [3] we developed
an approach for pricing American options applicable both in the case of discrete-time
and continuous-time financial models. The approach is based on the equivalence of an
American option and a European one with consumption process (the so-called Earlier
Exercise Premium representation, see [22]). It allows us, in principle, to iteratively
construct a sequence v1, V 1, v2, V 2, v3, ..., where v1, v2, v3, ..., is an increasing
sequence of lower bounds and V 1, V 2, ..., is a decreasing sequence of upper bounds.
Unfortunately, the construction of the above sequence of bounds requires very laborious
calculations. Even finding V 2 is, as a rule, too expensive. In [4] we proposed to use an
increasing sequence of lower bounds for constructing both upper bound and lower bound
at the initial position (t0, X0). It is assumed that this sequence is not too expensive from
the computational point of view. This can be achieved by using local lower bounds which
take into account the behavior of the process during a small number of steps ahead. The
method of [4] is suitable for getting rough estimates. However, to obtain more accurate
results, one needs rather expensive calculations.

Let us consider a discrete-time financial model

(Bti , Xti) = (Bti , X
1
ti , ..., X

d
ti), i = 0, 1, ..., I,

where Bti is the price of a scalar riskless asset and Xti = (X1
ti , ..., X

d
ti) is the price vector

of risky assets. Along with the index ti, we shall use the index i, writing (ti, Xi) instead
of (ti, Xti). Let fi(x) be a payoff at time ti provided that Xti = Xi = x, x ∈ X ⊂ Rd,

where X is a state space (e.g., X = Rd, X = Rd
+).

We assume that the modelling is based on the filtered space (Ω,F , (Fi)0≤i≤I , P ),
where the probability measure P is the risk-neutral pricing measure for the problem
under consideration, and Xi is a Markov chain with respect to the filtration (Fi)0≤i≤I .

With respect to the probability measure P , the discounted process Xi/Bi is a mar-
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tingale and the price ui(Xi) of the American option is given by

ui(x) = sup
τ∈Ti,I

BiE

(
fτ (X

ti,x
τ )

Bτ

)
. (1.1)

In (1.1) Xti,x
tj

is the value of the Markov chain at instant tj ≥ ti starting at ti from x

and Ti,I is the set of stopping times τ taking values in {i, i + 1, ..., I}.
The value process ui (Snell envelope) can be determined by induction as follows:

uI(x) = fI(x), (1.2)

ui(x) = max
{

fi(x), BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)}
, i = I − 1, ..., 0.

We see that theoretically the problem of evaluating u0(X0), the price of the discrete-
time American option at the initial position (t0, X0), can be easily solved using dynamic
programming algorithm (1.2). However, if X is high dimensional and I is large, this
algorithm is not practical.

In order to use regression methods for sequential evaluation of ui, one can consider
(see, e.g., [28] and [15]) the (d + 1)-dimensional sample

(
mXi,

Bi

Bi+1
ui+1(mXi+1)

)
, m = 1, ...,M, i = 0, ..., I − 1, (1.3)

from
(
Xi,

Bi
Bi+1

ui+1(Xi+1)
)

, where (ti, mXi) are M independent trajectories all starting
from the point (t0, X0). The use of the procedure (1.2) and sample (1.3) for sequential
evaluating ui(Xi) together with modern methods of multidimensional approximation (see
e.g., [13], [29] and references therein) can give effective algorithms for pricing American
and Bermudan options (see e.g. [5], [19]).

The samples with optimal stopping times τ ti,x = τ i,x were first introduced in [23] (see
also [12] and [15]). Applying (1.3), one needs an estimate ûi+1(Xi+1) of ui+1(Xi+1) while
applying the samples with stopping times, we can employ an estimate τ̂ = τ̂ ti+1, Xi+1 of
τ ti+1, Xi+1 . In the latter case the corresponding estimate for fτ (Xτ ) is fbτ (Xbτ ) and the
inequality

E

(
fbτ (Xbτ )

Bbτ

∣∣∣∣Xi

)
≤ E

(
fτ (Xτ )

Bτ

∣∣∣∣ Xi

)

obviously holds. This inequality opens the possibility to construct a lower bound for
continuation value (lower continuation value). In turn, this allows us (see Section 2.3) to
construct an upper bound for consumption process (upper consumption process). Thus,
in contrast to other works using regression methods for pricing American and Bermudan
options (see, however, [6]), we construct not only an estimate for continuation value but
also an estimate for upper consumption process making it possible to find effectively
lower and upper bounds for the price of the option.

In Section 2, we recall the approach (see [3], [4]) to pricing American and Bermudan
options using consumption processes in the form suitable for our purposes. Furthermore,
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we give a comparison with the dual approach (see [25], [17]) for the first time. In Section
3, we propose a number of algorithms for subsequent estimating optimal stopping times
and continuation values using various regression methods. Special attention is paid to
linear regression methods (see [23] and [12]). Section 4 gives formulas for the Monte
Carlo construction of lower and upper bounds at the initial position (t0, X0). Section 5
is devoted to numerical experiments with Bermudan max-call and Bermudan swaption
in a full factor Libor market model, which confirm efficiency of the proposed algorithms.

2 The approach based on consumption processes

To be self-contained, let us briefly recall the approach to pricing American and Bermudan
options using consumption processes [3].

2.1 The continuation value, the continuation and exercise regions.

For the considered American option, let us introduce the continuation value

Ci(x) = BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)
, i = 0, ..., I − 1; CI(x) = fI(x), (2.1)

the continuation region C and the exercise (stopping) region E :

C = {(ti, x) : fi(x) < Ci(x)} , (2.2)

E = {(ti, x) : fi(x) ≥ Ci(x)} .

Clearly, (tI , x) ∈ E for any x.
Let Xi,x

j , j = i, i+1, ..., I, be the Markov chain starting at time step i from the point
x : Xi,x

i = x, and mXi,x
j , m = 1, ..., M, be independent trajectories of the Markov chain.

The Monte Carlo estimator ûi(x) for ui(x) (in the case when E is known) has the form

ûi(x) =
1
M

M∑

m=1

Bi

Bτ
f(mXi,x

τ ), (2.3)

where τ is the first time at which Xi,x
j enters E (of course, τ in (2.3) depends on i, x, and

m : τ =m τ i,x). Thus, for estimating ui(x), it is sufficient to check at each time step
tj for j = i, i + 1, ..., I whether the position (tj , mXi,x

j ) is in E . Given a lower bound
v, a simple sufficient condition for the continuation can be formulated. Introduce the
following subset of the continuation region

Cv =
{

(tk, x) : fk(x) < BkE

(
vk+1(Xk+1)

Bk+1
|Xk = x

)}
.

Since Cv ⊂ C, the condition (tj , mXi,x
j ) ∈ Cv is sufficient. It follows from (1.2) that fi(x) is

a lower bound and if v1
i , ..., v

l
i are lower bounds then the function vi(x) = max1≤k≤l v

k
i (x)

is a lower bound as well. Henceforth we consider lower bounds satisfying the inequality
vi(x) ≥ fi(x).
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2.2 Equivalence of American options to European ones with consump-

tion processes involved

For 0 ≤ i ≤ I − 1 the equation (1.2) can be rewritten in the form

ui(x) = BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)
+

[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)]+

. (2.4)

Introduce the functions

γi(x) =
[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)]+

, i = I − 1, ..., 0. (2.5)

Due to (2.4), we get (see [3])

ui(Xi) = BiE

(
fI(XI)

BI
|Fi

)
+ Bi

I−(i+1)∑

k=1

E

(
γI−k(XI−k)

BI−k
|Fi

)
(2.6)

+γi(Xi), i = 0, ..., I − 1.

Putting X0 = x and assuming B0 = 1, we obtain

u0(x) = E

(
fI(XI)

BI

)
+ γ0(x) +

I−1∑

i=1

E

(
γi(Xi)

Bi

)
. (2.7)

Formula (2.7) gives the value of the European option with payoff function fI(x) and
consumption process γi defined by (2.5).

2.3 Upper and lower bounds using consumption processes.

Formula (2.7) cannot be used directly to value the discrete-time American option as the
process γi(x) is not known. In this section we describe how to construct lower and upper
bounds for ui(x) (see [3] for more details).

Let vi(x) be a lower bound for the true option price ui(x). We introduce the functions
(upper consumption processes):

γi,v(x) =
[
fi(x)−BiE

(
vi+1(Xi+1)

Bi+1
|Xi = x

)]+

, i = 0, ..., I − 1. (2.8)

Clearly,
γi,v(x) ≥ γi(x).

Hence the price Vi(x) of the European option with payoff function fI(x) and upper
consumption process γi,v(x) is an upper bound: Vi(x) ≥ ui(x).

Remark 2.1. Application of Jensen’s inequality shows that if the expectation in (2.8)
is estimated by the Monte Carlo method then the resulting estimate γ̂i,v(x) is upper
biased, i.e., Eγ̂i,v(x) ≥ γi,v(x) .
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Indeed, let mXti,x
i+1 , m = 1, . . . , M, be a set of one step trajectories all starting from

(ti, x). Defining

γ̂i,v(x) :=

[
fi(x)− Bi

M

M∑

m=1

vi+1(mXti,x
i+1)

Bi+1

]+

, (2.9)

we get by Jensen’s inequality that Eγ̂i,v(x) ≥ γi,v(x).
Conversely, if Vi(x) is an upper bound for the true option price ui(x) and

γi,V (x) =
[
fi(x)−BiE

(
Vi+1(Xi+1)

Bi+1
|Xi = x

)]+

, i = 0, ..., I − 1, (2.10)

then
γi,V (x) ≤ γi(x),

and the price vi(x) of the European option with lower consumption process γi,V (x) is a
lower bound: vi(x) ≤ ui(x). The same reasoning that led to (2.9) implies now that the
Monte Carlo estimate γ̂i,V (x) of γi,V (x) is biased up. Therefore, for γ̂i,V (x) to be a lower
bound, M must be large.

Thus, starting from a lower bound v1
i (x), one can construct the upper bound V 1

i (x) as
the European option with consumption process γi,v1(x) and so on. This procedure gives
us the sequences v1

i (x) ≤ v2
i (x) ≤ v3

i (x) ≤ ... ≤ ui(x), and V 1
i (x) ≥ V 2

i (x) ≥ ... ≥ ui(x).
All the bounds vk and V k can, in principle, be evaluated by Monte Carlo simulations.
However, each further step of the procedure requires time-consuming calculations, and
in practice it is possible to make only a few steps of this procedure. In this connection,
much attention was given in [3] to variance reduction techniques and some constructive
methods reducing statistical errors were proposed.

2.4 Comparison with the dual approach

Without loss of generality, we assume in this section that Bi ≡ 1. The dual approach,
developed in [25] and [17], is based on the following observation. For any 0 ≤ i ≤ I and
any supermartingale (Sj)i≤j≤I with Si = 0, we have

ui(Xi) = sup
τ∈Ti,I

E (fτ (Xτ )|Fi) ≤ sup
τ∈Ti,I

E (fτ (Xτ )− Sτ |Fi) (2.11)

≤ E

[
max
i≤j≤I

(fj(Xj)− Sj) |Fi

]
.

Hence the right-hand side of (2.11) provides an upper bound for ui(Xi). It can be
shown that the equality in (2.11) is attained at the martingale part of the Doob-Meyer
decomposition of the price process ui:

Mi = 0, Mj =
j∑

l=i+1

(ul(Xl)−E (ul(Xl)|Fl−1)) , i < j ≤ I.
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The duality representation provides a simple way to estimate the Snell envelope from
above, using a lower approximation process {vi(Xi)}. Let Mv be the martingale

Mv
0 = 0; (2.12)

Mv
j = Mv

j−1 + vj(Xj)− E (vj(Xj)|Fj−1)

=
j∑

l=1

vl(Xl)−
j∑

l=1

E (vl(Xl)|Fl−1) , 1 ≤ j ≤ I.

Then for any 0 ≤ i ≤ I the process M̃ij = Mv
j −Mv

i , j = i, . . . , I, is a martingale with
M̃ii = 0 and according to (2.11)

V D
i (Xi) := E

[
max
i≤j≤I

(
fj(Xj)− M̃ij

)
|Fi

]
≥ ui(Xi).

In particular, for i = 0

V D
0 (X0) = v0(X0)

+ E

[
max

0≤j≤I

(
fj(Xj)− vj(Xj) +

j−1∑

l=0

(E (vl+1(Xl+1)|Fl)− vl(Xl))

)]
. (2.13)

The upper bound V0(X0) obtained in Section 2.3 can be transformed to

V0(X0) = E (fI(XI)) + E
I−1∑

i=0

[fi(Xi)− E (vi+1(Xi+1)|Fi)]
+

= v0(X0) + E
I−1∑

i=0

(max {fi(Xi), E (vi+1(Xi+1)|Fi)} − vi(Xi)) , (2.14)

where it is assumed that

fi(Xi) ≤ vi(Xi), i = 0, . . . , I − 1, vI(XI) = fI(XI).

It is interesting to compare V0 and V D
0 starting from the same lower bound vi. A

comprehensive comparison of V0(X0) and V D
0 (X0) seems to be difficult and we restrict

ourselves to some examples. First, we construct examples where V0(X0) ≤ V D
0 (X0). Let

us define
τ := min {0 ≤ i ≤ I − 1 : fi(Xi) ≥ E (vi+1|Fi)} ,

and τ = I if fi(Xi) < E (vi+1|Fi) for all i. We see that if τ = I or

fi(Xi) ≥ E (vi+1(Xi+1)|Fi) , i ≥ τ,

with probability 1, then

V0(X0) = v0(X0) + E
τ−1∑

i=0

(E (vi+1(Xi+1)|Fi)− vi(Xi))

+ E(fτ (Xτ )− vτ (Xτ )) + E

I−1∑

j=τ+1

(fj(Xj)− vj(Xj)) ≤ V D
0 (X0).
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The strict inequality V0 < V D
0 is achieved in the following simple example with I = 3.

Due to (2.11), the dual price at time 0 can be computed via the formula

V D
0 = E max{f0, f1 − v1 + Ev1, max{f2, E(u3|F2)}+ Ev1 + E(v2|F1)− v1 − v2}

= E max{f0, f1 − v1 + Ev1, E(v2|F1) + u2 − v2 − v1 + Ev1}
= E max{f0, max{f1, E(v2|F1) + u2 − v2} − v1 + Ev1}, (2.15)

where we use the equality u2 = max{f2, E(u3|F2)} and the dependence of quantities
involved on the underlying process Xi is not shown explicitly for the sake of simplicity.
Formula (2.14) gives

V0 = E max{f0, Ev1}+ E(max{f1, E(v2|F1)} − v1)

+ E(max{f2, E(v3|F2)} − v2). (2.16)

Let us take constant payoffs satisfying

f0 < f1 < f2 < f3, f1 + f2 < f0 + f3.

Clearly, ui = f3, i = 0, . . . , 3 and any lower bound vi satisfies

f0 ≤ v0 ≤ f3, f1 ≤ v1 ≤ f3, f2 ≤ v2 ≤ f3, v3 = f3.

Formula (2.16) gives V0 = f3 and (2.15) implies

V D
0 = E max{f0, E(v2|F1) + f3 − v2 + Ev1 − v1}.

Clearly,
V D

0 ≥ E[E(v2|F1) + f3 − v2 + Ev1 − v1] = f3.

If v1 and v2 are such that the inequality

E(v2|F1) + f3 − v2 + Ev1 − v1 ≥ f0

is fulfilled with probability 1, then V D
0 = f3. However, if

E(v2|F1) + f3 − v2 + Ev1 − v1 < f0 (2.17)

with positive probability, then

max{f0, E(v2|F1) + f3 − v2 + Ev1 − v1} > E(v2|F1) + f3 − v2 + Ev1 − v1

with the same probability and consequently V D
0 > V0. The inequality (2.17) is achieved,

for example, if Ev1 is close to f1, E(v2|F1) is close to f2 and v1 and v2 are equal to f3

with positive probability.
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At the same time it is possible to construct examples when V D
0 ≤ V0. Indeed, let us take

vi(Xi) = fi(Xi) for all i = 0, . . . , I − 1, then according to (2.11)

V D
0 = f0 + E

[
max

0≤j≤I

j−1∑

l=0

(E (fl+1|Fl)− fl)

]

and due to (2.14)

V0 = f0 +
I−1∑

i=0

(E (fi+1|Fi)− fi)
+ ≥ V D

0 .

However, the method based on the representation (2.6) has some advantages over the dual
approach. First, V0(X0) depends on vi monotonically, i.e., if we have two lower bounds
v and ṽ such that vi(Xi) ≤ ṽi(Xi) for all i then V0(X0) ≥ Ṽ0(X0). This immediately
follows from the first line in (2.14). This is not always the case for the dual method.
Indeed, with three exercises (I = 2) formula (2.11) gives

V D
0 = E max{f0, E(v1|F0) + u1 − v1}.

Consider the case when the probability of event A := {Ev1−u1−v1 ≥ f0} is positive and
v1 < u1 − θ with some constant θ > 0.. Then taking ṽ1 = v1 + θ/2 on A and ṽ1 = v1 + θ

outside A, we obtain

Ṽ D
0 := E max{f0, E(ṽ1|F0) + u1 − ṽ1} > V D

0 ,

though ṽ1 > v1. Second, adaptive local lower bounds of the form

vi(x) = max
1≤k≤l

vk
i (x), i = 0, . . . , I − 1,

where v1(x), . . . , vl(x) are lower bounds at x ordered according to their complexity and
l may depend on x, can be used to construct V0(X0) (see [4]). It is also worthwhile
mentioning that our approach allows us to construct lower bounds using upper ones.

2.5 Bermudan options

As before, we consider the discrete-time model

(Bi, Xi) = (Bi, X
1
i , ..., Xd

i ), i = 0, 1, ..., I.

However, now the holder can exercise his right only at time belonging to the set of
stopping times S = {s1, ..., sl} within {0, 1, ..., I}, where sl = I. The price ui(Xi) of the
Bermudan option is given by

ui(Xi) = sup
τ∈TS∩[i,I]

BiE

(
fτ (Xτ )

Bτ
|Fi

)
,

where TS∩[i,I] is the set of stopping times τ taking values in {s1, ..., sl} ∩ {i, i + 1, ..., I}.
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The value process ui is determined as follows:

uI(x) = fI(x),

ui(x) =





max
{

fi(x), BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)}
, i ∈ S,

BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)
, i /∈ S.

Thus, we obtain that the Bermudan option is equivalent to the European option with
payoff function fi(x) and consumption process γi defined by

γi(x) =





[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)]+

, i ∈ S

0, i /∈ S.

From here, all the results for discrete-time American options obtained in this section can
be carried over to the Bermudan options. For example, if vi(x) is a lower bound of the
true option price ui(x), the price Vi(x) of the European option with payoff function fI(x)
and consumption process

γi,v(x) =





[
fi(x)−BiE

(
vi+1(Xi+1)

Bi+1
|Xi = x

)]+

, i ∈ S,

0, i /∈ S,

is an upper bound: Vi(x) ≥ ui(x).

3 Optimal stopping times and algorithms with lower con-

tinuation values

The samples with optimal stopping times have been first introduced in [23] (see also
[12]). In this section we first recall some basic relations for optimal stopping times in the
form suitable for our purposes. Then we show that subsequent estimating these times
amounts to evaluation of continuation values by regression. There are many nonpara-
metric regression methods available (see, e.g., [16]). In Subsection 3.3 we propose some
algorithms based both on local modelling and least squares estimation. Using the regres-
sion approach for pricing American options, we construct not only an estimate for the
continuation value but also an upper consumption process.
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3.1 Basic relations for optimal stopping times

The optimal stopping time τ i,x = τ ti,x depends on the initial position (ti, x). It is defined
recurrently by the dynamic programming principle in the following way. We set

τI,x = τT,x = T, (3.1)

τ i,x = tiχ{Ci(x)≤fi(x)} + τ i+1,Xi,x
i+1χ{Ci(x)>fi(x)}

= tiχ{ui(x)=fi(x)} + τ i+1,Xi,x
i+1χ{ui(x)>fi(x)},

i = I − 1, ..., 0.

Thus, for any position (ti, x), the optimal stopping time τ i,x is either equal to ti : τ i,x =
ti, or τ i,x > ti. Hence

τ i,x = τ i+1,Xi,x
i+1 , if τ i,x > ti. (3.2)

It is also clear that (ti, x) is a stopping point (i.e., τ i,x = ti) if and only if (ti, x) ∈ E
(i.e., (ti, x) belongs to the exercise region). The instant τ i,x is the first one at which the
trajectory (tj , X

i,x
j ) either enters E during i ≤ j ≤ I − 1 or stops at the final time I. So,

(τ i,x, Xi,x
τ i,x) ∈ E (see (2.2)). Let us give some recurrence relations for ui(x) and Ci(x) :

ui(Xi) = max{fi(Xi), Ci(Xi)}, uI(x) = f(x), (3.3a)

Ci(Xi) =
Bi

Bi+1
E(ui+1(Xi+1)|Xi), CI(x) = f(x), (3.3b)

Ci(Xi) =
Bi

Bi+1
E(max{fi+1(Xi+1), Ci+1(Xi+1)}|Xi), (3.3c)

ui(Xi) = max{fi(Xi),
Bi

Bi+1
E(ui+1(Xi+1)|Xi)}. (3.3d)

We note that

ui+1(Xi+1) = Bi+1E

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi+1

)
, (3.4)

E(ui+1(Xi+1)|Xi) = E

(
Bi+1E

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Fi+1

)
|Fi

)
(3.5)

= Bi+1E

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi

)
,

where
τ = τ ti+1,Xi+1 .

Hence, due to (3.3b), we get

Ci(Xi) = BiE

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi

)
. (3.6)

Page 12 of 29

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

belomestny, d., milstein, g. and spokoiny, v. 12

We emphasize that for any stopping time τ̃ ≥ ti+1 the function

vi+1(x) = Bi+1E

(
feτ (X

ti+1,x
eτ )

Beτ

)
(3.7)

is a lower bound for ui+1(x).
Since

Ci(x) = sup
τ∈Ti+1,I

BiE

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi = x

)
= sup

τ∈Ti+1,I
BiE

(
fτ (X

ti,x
τ )

Bτ

)
, (3.8)

the function

ci(x) = BiE

(
feτ (X

ti,x
eτ )

Beτ

)
(3.9)

is a lower continuation value for any stopping time τ̃ ≥ ti+1.

3.2 Estimating optimal stopping times

Considering Ci(x) as a regression function (see (3.6)), it is natural to introduce (after
[23] and [12]) the sample

(mXi,
Bi

Bτ
fτ (mX

ti+1, mXi+1
τ )) = (mXi,

Bi

Bτ
fτ (mXti, mXi

τ )), (3.10)

τ = τ ti+1, mXi+1 , m = 1, ..., M,

from (Xi,
Bi
Bτ

fτ (X
ti+1,Xi+1
τ )) = (Xi,

Bi
Bτ

fτ (X
ti,Xi
τ )), where τ = τ ti+1,Xi+1 .

We are about to use (3.10) for subsequent constructing an estimate τ̂ ti, mXi for the
optimal stopping time τ ti, mXi . Clearly, τI, mXI = τ̂I, mXI = I. Let τ ti+1, mXi+1 , i =
I − 1, ..., 1, (in reality τ̂ ti+1, mXi+1) be already estimated. Using the sample (3.10) at the
step ti, we evaluate Ci(mXi) by regression. Let Ĉi(mXi) be an estimate of Ci(mXi). If
fi(mXi) ≥ Ĉi(mXi) then τ̂ ti, mXi = ti, otherwise τ̂ ti, mXi = τ̂ ti+1, mXi+1 (see (3.1)). As a
result, we obtain a sample like (3.10) at the previous time step ti−1:

(mXi−1,
Bi−1

Bτ
fτ (mXti, mXi

τ )) = (mXi−1,
Bi−1

Bτ
fτ (mX

ti−1, mXi−1
τ )), (3.11)

τ = τ ti, mXi , m = 1, ..., M.

This allows us to construct the estimate Ĉi−1(mXi−1) of Ci−1(mXi−1) and the estimate
τ̂ ti−1, mXi−1 of τ ti−1, mXi−1 and so on. Upon estimating τ t1, mX1 , we can evaluate u0(X0)
via

u0(X0) = max{f0(X0),
1

B1
E(u1(X

t0,X0
1 )} = max

{
f0(X0), E

(
fτ (X

t1,X1
τ )

Bτ

)}
, τ = τ t1,X1 .

(3.12)
So, we construct continuation values and stopping times simultaneously by the back-

ward procedure and our main problem is to evaluate the continuation value Ci(mXi)
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using the sample (3.10). To this aim, we use nonparametric regression methods. In the
next subsection we propose some algorithms based both on local modelling and least
squares estimation.

The most appropriate are methods for which the estimate Ĉi(mXi) is a lower contin-
uation value. If the payoff at (ti, mXi) is less than or equal to a lower continuation value,
then first, the position (ti, mXi) belongs to the continuation region (consequently, it is
natural to take τ̂ ti, mXi = τ̂ ti+1, mXi+1) and, second, the consumption process at (ti, mXi)
is equal to zero. Otherwise the position (ti, mXi) can belong either to the exercise region
or to the continuation region. In the latter case we compute the upper consumption
process at (ti, mXi) as a difference between the payoff and the lower continuation value
and set τ̂ ti, mXi = ti. As a result all positions (ti, mXi) are equipped with the stopping
times and the upper consumption processes. In such a situation we are able to construct
both lower and upper bounds for the price of the option under consideration.

3.3 Algorithms with the local Monte Carlo approach

For every position (ti, mXi), m = 1, ...M, let us construct N = Ni,m additional inde-
pendent trajectories on [ti, ti+1], i.e., the trajectories with the length of one step. At the
instant ti+1 we obtain N + 1 points nXti, mXi

ti+1
, n = 0, 1, ..., N, where we put 0X

ti, mXi
ti+1

=m Xi+1. Introduce the notation m,nXi+1 :=n Xti, mXi
ti+1

, τm,n :=n τ ti+1, m,nXi+1 . It fol-
lows from the semigroup property for the Markov chain Xti, x

ti+j
that if τ ti, mXi ≥ ti+1,

then τ ti, mXi = τ ti+1, Xi+1(ti, mXi), where the notation Xi+1(ti, mXi) = Xti, mXi
ti+1

is
used. This is true for the n-th independent copy nXti, mXi

ti+1
of Xti, mXi

ti+1
as well, i.e.,

nτ ti, mXi =n τ ti+1, m,nXi+1 = τm,n, if τ ti, mXi ≥ ti+1. Due to (3.6), we have

Ci(mXi) = BiE

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi =m Xi

)
' Bi

N + 1

N∑

n=0

fτm,n(Xti+1, m,nXi+1
τm,n )
Bτm,n

.

(3.13)
Let us stress that the sum in (3.13) is an estimate of Ci(mXi) in a theoretical sense only
because we do not simulate the trajectory X

ti+1, m,nXi+1

tj
for tj > ti+1. That is why for

every point m,nXi+1 =n Xti, mXi
ti+1

, we find the nearest one among kXi+1, k = 1, ...M,

denoted by k(m,n)Xi+1. For the position (ti+1, k(m,n)Xi+1), the estimate τ̂k(m,n) of the
optimal stopping time τ ti+1, k(m,n)Xi+1 is known. To avoid confusion, let us emphasize
that the points m,nXi+1 lie on the trajectories starting from the same position (ti, mXi)
and for the positions (ti+1, m,nXi+1) estimates of the optimal stopping times are in
general unknown, while the points k(m,n)Xi+1 lie on the trajectories which have different
starting positions (ti, k(m,n)Xi).

For the continuation value Ci(mXi), we introduce the estimate

Ĉi(mXi) =
Bi

N + 1

N∑

n=0

fbτk(m,n)
(X

ti+1, k(m,n)Xi+1

bτk(m,n)
)

Bbτk(m,n)

. (3.14)

Page 14 of 29

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

belomestny, d., milstein, g. and spokoiny, v. 14

In distinction to (3.13), this estimate is simulated. We intend to prove that in a sense
Ĉi(mXi) is a low continuation value. To this aim, we consider an auxiliary low contin-
uation value C̃i(mXi) (which is not simulated) and then prove that Ĉi(mXi) is close to
C̃i(mXi).

For any point Xi+1 = Xti, mXi
ti+1

, one can define the stopping time τ̃ = τ̃(Xi+1) ≥ ti+1

analogously to τ̂k(m,n), i.e., first, we find the nearest point to Xi+1 among kXi+1, k =
1, ...M, say ekXi+1, and, second, for the position (ti+1, ekXi+1) we know the estimate τ̂ek
of the optimal stopping time τ ti+1, ekXi+1 , which we take as τ̃ : τ̃ = τ̃(Xi+1) = τ̂ek. Clearly,
for the points m,nXi+1 this stopping time τ̃ = τ̃(m,nXi+1) := τ̃m,n coincides with τ̂k(m,n).

Introduce

C̃i(x) = BiE

(
feτ (X

ti+1,Xi+1

eτ )
Beτ

|Xi = x

)
.

It follows from (3.8) and (3.9) that

Ci(x) = C̃i(x) + ri(x), (3.15)

where ri(x) ≥ 0, i.e., C̃i(x) is a lower continuation value at the position (ti, x). Further,
we have

C̃i(mXi) =
Bi

N + 1

N∑

n=0

feτm,n
(Xti+1, m,nXi+1

eτm,n
)

Beτm,n

+ αi(mXi) (3.16)

=
Bi

N + 1

N∑

n=0

fbτk(m,n)
(Xti+1, m,nXi+1

bτk(m,n)
)

Bbτk(m,n)

+ αi(mXi),

where αi(mXi) is the Monte Carlo error which becomes small with increasing N. Let us
note that in general the points X

ti+1, m,nXi+1

eτm,n
do not belong to the considered sample of

M independent trajectories all starting from the initial point (t0, X0). That is why the
sum in (3.16) cannot be taken as an estimate for the continuation value Ci(mXi).

Let us note that in (3.14) and in (3.16) we consider the trajectories X
ti+1, k(m,n)Xi+1
s

and X
ti+1, m,nXi+1
s starting from the different positions (ti+1, k(m,n)Xi+1) and (ti+1, m,nXi+1)

but with the same sources of randomness. If M is large, the points m,nXi+1 and

k(m,n)Xi+1 are close to each other and we get

Ĉi(mXi) =
Bi

N + 1

N∑

n=0

fbτk(m,n)
(Xti+1, m,nXi+1

bτk(m,n)
)

Bbτk(m,n)

− βi(mXi) (3.17)

= C̃i(mXi)− αi(mXi)− βi(mXi),

where the approximation error βi is small.
From (3.15) we obtain

Ĉi(mXi) = Ci(mXi) + ρi(mXi)− ri(mXi), (3.18)

where ρi = −αi − βi.
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Because ri ≥ 0, the quantity Ci(mXi) − ri(mXi) is a lower continuation value. The
estimate Ĉi(mXi) differs from this quantity for ρi, i.e., Ĉi(mXi) is a lower continuation
value within the accuracy ρi. We emphasize that ρi becomes small with increasing N and
M . Thus the following proposition is justified.

Proposition 3.1. The estimate Ĉi(mXi) is a lower continuation value within the accu-
racy depending on N (the accuracy determined by the Monte Carlo error) and M (the
accuracy determined by the approximation error).

Corollary 3.2. Consider the consumption

γ̂i(mXi) = [fi(mXi)− Ĉi(mXi)]+. (3.19)

Since
γ̂i(mXi) = [fi(mXi)− Ci(mXi) + ri(mXi)− ρi(mXi)]+

and γi(mXi) = [fi(mXi)− Ci(mXi)]+ , we have

γi(mXi) ≤ γ̂i(mXi), if ri ≥ ρi, (3.20)

[γi(mXi)− ρi(mXi) + ri(mXi)]+ = γ̂i(mXi) ≤ γi(mXi), if ρi > ri.

We see that γ̂i(mXi) is an upper consumption in the most typical case ri ≥ ρi, otherwise
γ̂i(mXi) is close to γi(mXi). Thus, γ̂i(mXi) is an upper consumption within the accuracy
depending on M and N .

3.4 Independence of estimates of future information

The continuation value Ci(mXi) due to (3.13) does not depend on any future information.
The right-hand side of (3.13) is close to Ci(mXi) for large N and this implies closeness
of the estimate Ĉi(mXi) to Ci(mXi) for large M . This fact is the most important one for
the quality of a consumption’s estimate. As to the independence of future information,
it is intuitively clear that, e.g., for large N the right-hand side of (3.13) can only weakly
depend on the future behavior of the trajectories (tj ,m Xj) for tj > ti. At the same time,
it is not difficult to rigorously construct independent estimates for the continuation values
(of course, with higher simulation cost). To this aim, along with the old set of trajectories,
let us simulate M̆ new independent trajectories (ti,m X̆i), i = 0, ..., I−1, m = 1, ..., M̆ , all
starting from the point (t0, X0). Further, the points m,nX̆i+1, m = 1, ..., M̆ , n = 1, ..., N̆ ,

are simulated instead of m,nXi+1, and then for every point m,nX̆i+1 we find the nearest
point k̆(m,n)Xi+1among kXi+1, k = 1, ...,M (hence, we find τ̂k̆(m,n)). Clearly, the estimate

C̆i(mX̆i) =
Bi

N̆

N̆∑

n=1

fbτk̆(m,n)
(X

ti+1, k̆(m,n)Xi+1

bτk̆(m,n)
)

Bbτk̆(m,n)

(3.21)

does not depend on the future behavior of the trajectories (tj ,m X̆j) for tj > ti. So,
every new position (ti,m X̆i) is equipped with the lower continuation value C̆i(mX̆i). It
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can be equipped with the estimate τ̆ ti,mX̆i of the optimal stopping time τ ti,mX̆i as well
using the rule: τ̆I,mX̆I = I for i = I; τ̆ ti,mX̆i = ti if fi(mX̆i) ≥ C̆i(mX̆i), otherwise
τ̆ ti,mX̆i = τ̆ ti+1,mX̆i+1 for i = I − 1, ..., 1. This allows us to effectively find lower and
upper bounds for the price of the option at the initial position (t0, X0) without using any
future information (see Section 4). Nevertheless, we prefer the estimate (3.14), which is
of lower simulation cost and which uses very little future information. Additionally, let
us emphasize that the estimates like (3.14) give in practice almost the same results as
their counterparts of the form (3.21) (see Section 5).

3.5 Algorithms with the local Monte Carlo approach, continuation

In the estimate (3.14) we use the points k(m,n)Xi+1 which are chosen among mXi+1, m =
1, . . . , M, as the nearest ones to m,nXi+1 . Now for every point m,nXi+1 =n Xti, mXi

ti+1
let us

find a few (say Km,n) nearest ones among mXi+1. Let us denote them by k[m,n]Xi+1, k =
1, ..., Km,n (in contrast to k(m, n), the function k[m,n] is a multifunction). The estimates
τ̂k[m,n] of the optimal stopping times τk[m,n] := τ ti+1, k[m,n]Xi+1 are known. Then the
following expression

vi+1(nXti, mXi
ti+1

) =
Bi+1

Km,n

Km,n∑

k=1

f(X
ti+1, k[m,n]Xi+1

bτk[m,n]
)

Bbτk[m,n]

(3.22)

is a lower bound for ui+1(x) at the position (ti+1, nXti, mXi
ti+1

) (of course, within accuracy
of the approximation).

Clearly,

Ĉi(mXi) =
Bi

Bi+1
· 1
N + 1

N∑

n=0

vi+1(nXti, mXi
ti+1

) =
Bi

N + 1

N∑

n=0

1
Km,n

Km,n∑

k=1

f(X
ti+1, k[m,n]Xi+1

bτk[m,n]
)

Bbτk[m,n]

(3.23)
is a lower continuation value at (ti, mXi) (of course, within accuracy depending on M

and N). The estimate (3.14) is the particular case of (3.23), when Km,n = 1. Let us note
that for the estimate (3.23), analogues of Proposition 3.1, Corollary 3.2, and Subsection
3.4 hold as well.

3.6 Algorithms with k-NN estimates

In the previous algorithms we construct Ni,m additional trajectories for every point mXi,

m = 1, ..., M. Let us consider N = Ni,m nearest points m,1Xi, ...,m,N Xi to the point

mXi instead of constructing the additional trajectories. All the points m,1Xi, ...,m,N Xi

belong to the set { mXi, m = 1, ..., M}. We have m,nX
(ti, m,nXi)
i+1 =m,n Xi+1, n =

0, 1, ..., N, m,0Xi =m Xi, m,0Xi+1 =m Xi+1, with known τ̂m,n = τ̂ ti+1, m,nXi+1 and
f(X(ti+1, m,nXi+1)

bτ ti+1, m,nXi+1
) (let us note that we use another notation in this subsection and, in
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particular, we emphasize that the points m,nXi+1 belong to the set { mXi+1, m =
1, ...M}). Then analogously to (3.14), we evaluate

Ĉi(mXi) =
Bi

N + 1

N∑

n=0

fbτm,n(Xti+1, m,nXi+1

bτm,n
)

Bbτm,n

. (3.24)

To get an analogue of (3.23), let us find a few (say Km,n) points among mXi+1, m =
1, ...M, which are nearest to m,nXi+1 =m,n X

(ti, m,nXi)
i+1 . Denote them by m,n,kXi+1, k =

1, ..., Km,n. Then

Ĉi(mXi) =
Bi

N + 1

N∑

n=0

1
Km,n

Km,n∑

k=1

f(Xti+1, m,n,kXi+1

bτm,n,k
)

Bbτm,n.k

, (3.25)

where τ̂m,n,k are known estimates of the optimal stopping times τm,n,k := τ ti+1, m,n,kXi+1 .
Note that m,n,kXi+1 in (3.25) are different from k[m,n]Xi+1 in (3.23).

In the case of (3.25), analogues of Proposition 3.1, Corollary 3.2, and Subsection 3.4
hold as well.

Remark 3.1. The k-NN estimates belong to the class of local averaging estimates (see
[16]). The proper choice of Km,n is important and is, e.g., discussed in [7]. One can use
other estimates of this class, e.g., kernel estimates and local polynomial kernel estimates.
Note that the latter type of estimates can be helpful for estimating deltas.

3.7 Linear regression

Regression-based methods approximate the continuation value using a basis function
expansion:

Ci(x) ≈
K∑

r=1

βirψr(x), i = 0, 1, . . . , I − 1,

where {ψr(x)}K
r=1 is a set of basis functions each mapping X to R. Following the notation

in [15], we have
Ci(x) ≈ β>i ψ(x)

with
β>i = (βi1, . . . , βiK), ψ(x) = (ψ1(x), . . . , ψK(x))>.

The vector βi can be estimated using the sample

(mXi,
Bi

Bbτm

fbτm(mX
ti+1, mXi+1

bτm
)), τ̂m = τ̂ ti+1, mXi+1 , m = 1, . . . , M,

as
β̂i = Â−1

ψ α̂ψV .

Here Âψ is the K ×K matrix with qr entry

1
M

M∑

m=1

ψq(mXi)ψr(mXi)
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and α̂ψV is the K-vector with r-th entry

1
M

M∑

m=1

ψr(mXi)
Bifbτm(Xti+1, mXi+1

bτm
)

Bbτm

.

The estimate β̂i then defines an estimate

Ĉi(x) = β̂>i ψ(x)

of the continuation value at an arbitrary point x in the state space X. Now, if fi(mXi) ≥
Ĉi(mXi) then τ̂ ti, mXi = ti, otherwise τ̂ ti, mXi = τ̂ ti+1, mXi+1 (see (3.1)). As a result, at
the step ti−1 we obtain the sample

(mXi−1,
Bi−1

Bbτm

fbτm(mXti, mXi

bτm
)) = (mXi−1,

Bi−1

Bbτm

fbτm(mX
ti−1, mXi−1

bτm
)),

τ̂m = τ̂ ti, mXi , m = 1, ..., M.

Proposition 3.3. The estimate

Ĉi(mXi) = β̂>i ψ(mXi) (3.26)

is a lower continuation value within the accuracy depending on K and M.

Proof. Having Ĉj(x), x ∈ X, j = 0, ..., I − 1, one can define a stopping time τ̃ for
every trajectory Xti, x

tj
, j = i, ..., I, in the following way. If Ĉi(x) ≤ fi(x), then we put

τ̂ ti, x = ti. If Ĉi(x) > fi(x), then we put τ̂ ti, x > ti. Further, if Ĉi+1(X
ti, x
ti+1

) ≤ fi+1(X
ti, x
ti+1

),
then we put τ̂ ti, x = ti+1, and so on. If Ĉj(X

ti, x
tj

) > fj(X
ti, x
tj

) for all j = i, ..., I − 1,

then we put τ̂ ti, x = I. Clearly, τ̃ ti, mXi = τ̂ ti, mXi , m = 1, ..., M, i.e., τ̃ is an extension
of τ̂ . Let us introduce the value

C̃i(x) = BiE

(
feτ (X

ti+1,Xi+1

eτ )
Beτ

|Xi = x

)
, τ̃ = τ̃ ti+1, Xi+1 . (3.27)

Due to (3.8) and (3.9), C̃i(x) is a lower continuation value, i.e.,

C̃i(x) = Ci(x)− ri(x), (3.28)

where ri(x) ≥ 0. But in the conditional expectation (3.27), Ĉi(x) can be considered as
an estimate by the linear regression method. Therefore

C̃i(x) = Ĉi(x) + αi(x), (3.29)

where αi(x) is the regression error which depends on K and M. It follows from (3.28)
and (3.29):

Ĉi(mXi) = Ci(mXi)− αi(mXi)− ri(mXi). (3.30)

Proposition 3.3 is proved.
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Let us note that for the estimate (3.23), analogues of Corollary 3.2, and Subsection
3.4 hold as well.

Remark 3.2. In fact, Proposition 3.3 states that Ĉi(mXi)− | αi(mXi) | is a lower
continuation value (see also (3.30)). I.e., the proposition is true even if the error αi(mXi)
is large and, in particular, is larger than ri(mXi), but its significance manifests itself only
if αi(x) is rather small. In principle, this can be accomplished with a successful choice of
ψ1(x), . . . , ψK(x) and sufficiently large M . The importance of Proposition 3.3 consists in
the fact that the error ri(mXi), which is the most difficult to control, does not prevent
Ĉi(mXi) from being a lower continuation value.

If αi are not sufficiently small then the gap between simulated lower and upper bounds
is usually large. However, the possibility that the true price lies significantly outside the
constructed bounds cannot be completely ruled out. In this case it is hardly possible to
judge about αi on the basis of the gap between lower and upper bounds. Nevertheless,
we believe that in most cases the tightness of the bounds do imply a successful estimation
of the price. Note, that another regression-based approach suggested in [6] leads always
to a “true” upper bound, it does not matter how bad was the choice of basis functions.

In fact, the success of any regression-based approach clearly depends on the choice
of basis functions. This is a rather complicated problem, both in practice and in theory.
Polynomials (sometimes damped by functions vanishing at infinity) are popular choices
(see, e.g., [23] and [28]). Through Taylor expansion, any sufficiently smooth function can
be approximated by polynomials. However, the number of monomials of a given degree
grows polynomially in the number of variables, so without further assumptions about the
structure of the value function the number of basis functions required could grow quickly
with the dimension of the underlying state vector. This is why some authors proposed
to use special basis functions tailored to the particular problem (see, e.g., [1] or Section
5, where values of European options are employed).

4 Formulas for global lower and upper bounds

Aiming to estimate the price of the American option at a fixed position (t0, x0), we
simulate the independent trajectories mXi, i = 1, ..., I, m = 1, ..., M, of the process Xi,
starting at the instant t = t0 from x0 : X0 = x0.

To construct the global lower bound, we use the formula (3.12). Indeed, (3.12) gives
the following estimate

û0(X0) = max

{
f0(X0),

B1

M

M∑

m=1

fbτm(Xt1, mX1

bτm
)

Bbτm

}
, τ̂m = τ̂ t1, mX1 . (4.1)

We note that (4.1) is always a lower bound for u0(X0) even if τ̂m is not equal to the
optimal stopping time τ t1, mX1 . This estimate weakly depends on the future of the set of
trajectories (ti,m Xi) (see Subsection 3.4). To construct an independent estimate ŭ0(X0),
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we use (3.21) and the estimates τ̆ ti,mX̆i of the optimal stopping times τ ti,mX̆i introduced
in Subsection 3.4:

ŭ0(X0) = max



f0(X0),

B1

M̆

M̆∑

m=1

fτ̆m(Xt1, mX̆1

τ̆m
)

Bτ̆m



 , τ̆m = τ̆ t1, mX̆1 . (4.2)

To construct a global upper bound, we use lower continuation values from Section 3.
Let Ĉi(mXi) be a lower continuation value. Then

γ̂i(mXi) = [fi(mXi)− Ĉi(mXi)]+ (4.3)

is an upper consumption value and the corresponding global upper bound is given by the
formula

V̂0(x0) =
1
M

M∑

m=1

fI(mXI)
BI

+
1
M

I−1∑

i=0

M∑

m=1

γ̂i(mXi)
Bi

. (4.4)

The independent of future counterpart of (4.4) is the formula

V̆0(x0) =
1
M̆

M̆∑

m=1

fI(mX̆I)
BI

+
1
M̆

I−1∑

i=0

M̆∑

m=1

γ̆i(mX̆i)
Bi

, with γ̆i(mX̆i) = [fi(mX̆i)−C̆i(mX̆i)]+.

(4.5)
The estimates (4.1) and (4.4) are of lower computational cost than (4.2) and (4.5).

Due to only weak dependence on the future, (4.1) gives the same results in simulation as
(4.2), correspondingly (4.4) gives the same results as (4.5) (see Section 5). That is why
we prefer the estimates (4.1) and (4.4) in practice.

Let us recall that the true consumption at (ti, x) is equal to

γi (x) = [fi (x)− Ci (x)]+ (4.6)

and γ̂i(mXi) ≥ γi(mXi) within the accuracy of Ĉi(mXi) (the accuracy depends on N and
M in the case of the local Monte Carlo approach and on K and M in the case of the
linear regression approach). If

fi(mXi) < Ĉi(mXi), (4.7)

then (ti, mXi) ∈ C (see (2.2)) and we move one step ahead along the trajectory to the
next position (ti+1, mXi+1). Otherwise, if

fi(mXi) ≥ Ĉi(mXi), (4.8)

then we cannot say definitely whether the position (ti, mXi) belongs to C or E . In spite
of this, we make one step ahead in this case as well. In the case (4.7) we have γ̂i(mXi) =
γi(mXi) = 0 and there is no error. If (4.8) holds and besides Ĉi(mXi) < Ci(mXi), an
error can occur. If γ̂i(mXi) is small, the error is small as well. But if γ̂i(mXi) is large,
then it is, in general, impossible to estimate this error. Note that for the construction of
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an estimate V̂0(x0) of the upper bound V0 (x0) one can use different local lower bounds
depending on the position. This opens various opportunities for adaptive procedures (see
[4]). For instance, if γ̂i(mXi) is large, then it is reasonable to use a more powerful local
instrument at the position (ti, mXi).

Remark 4.1. In reality (see (3.20)), the global upper bound is equal to V̂0(x0) + ∆,
where ∆ → 0 when M, N →∞. Therefore we have û0(X0) ≤ u0(X0) ≤ V̂0(x0) + ∆, i.e.,
the accuracy is estimated by the difference V̂0(x0)+∆− û0(X0) (not by V̂0(x0)− û0(X0)).
In practice, it may happen that V̂0(x0) ≤ û0(X0). Clearly, in this case the accuracy is
bounded by ∆.

5 Simulations

5.1 Bermudan max-calls on d assets

This is a benchmark example studied in [10], [17] and [25] among others. Specifically,
the model with d identically distributed assets is considered, where each underlying has
dividend yield δ. The risk-neutral dynamic of assets is given by

dXk
t

Xk
t

= (r − δ)dt + σdW k
t , k = 1, ..., d,

where W k
t , k = 1, ..., d, are independent one-dimensional Brownian motions and r, δ, σ

are constants. At any time t ∈ {t0, ..., tI} the holder of the option may exercise it and
receive the payoff

f(Xt) = (max(X1
t , ..., Xd

t )−K)+.

We take ti = iT/I, i = 0, ..., I, with T = 3, I = 9 and apply the local Monte Carlo
method with kernel interpolation scheme as described in Section 3.3. The number of
outer Monte Carlo simulations is M = 10000 and the number of inner Monte Carlo
simulations is N = 100. The results are presented in Table 1 depending on x0 with
X0 = (X1

0 , . . . , Xd
0 )T , X1

0 = ... = Xd
0 = x0. The dual upper bounds presented in the

third column are computed by the primal-dual algorithm (see [1]), hence by the nested
Monte Carlo, with 10000 outer and 100 inner simulations. An initial lower approximation
is constructed by the Longstaff-Schwartz method, where all monomials (in Xt) up to
order 2 plus the immediate payoff are used in the regression basis (see, [15, p. 476] for
comparison). The true values in the last column are quoted from [15] as well. As we
can see in this example, the dual method performs slightly better than the local Monte
Carlo approach. However, the need for an initial approximation at each point makes the
dual approach more expensive. Note that the values of upper bound lie outside 95%
confidence interval around the true value. This can be cured by increasing the number
of inner simulations N . Figure 5.1, showing bounds û0(X0) and V̂0(X0) as functions of
N (d = 2, x0 = 90), indicates that the lower approximation converges much faster than
the upper approximation as N increases.
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Table 1: Bounds (with 95% confidence intervals) for the Bermudan max-call with pa-
rameters K = 100, r = 0.05, σ = 0.2, δ = 0.1 and different d and x0.

d x0 Lower Bound Upper Bound Dual True Value
û0(X0) V̂0(X0) Upper Bound

90 7.965±0.239 8.417±0.082 8.2311 8.08
2 100 13.644±0.300 14.493±0.113 14.182 13.90

110 20.875±0.370 22.014±0.165 21.681 21.34

90 16.795±0.315 19.012±0.153 17.163 16.71
5 100 26.265±0.379 29.340±0.183 27.216 26.21

110 36.790±0.437 40.630±0.208 38.577 36.84

Let us finally note that the quality of the upper bounds becomes worse as d increases.
The reason for this is the sparsity of data in Rd for large d. In such a situation the
choice of an interpolating scheme becomes crucial. In the above example we employ the
simplest kernel interpolation which is known to be effective for rather small dimensions.
For high dimensional spaces, k-nearest neighbors interpolation with an adaptive choice
of k (see, [7] for examples and discussions) should be preferred.

5.2 Bermudan swaptions in the Libor market model

Let us consider the Libor market model with respect to a tenor structure 0 = T0 <

T1 < . . . < TI in the spot Libor measure P ∗. The dynamics of the forward Libor
Li(t), 0 ≤ t ≤ Ti, i = 1, . . . , I − 1, is governed by the SDE (e.g., see [15] and [26])

dLi =
i∑

j=η(t)

δjLiLjγ
>
i γj

1 + δjLj
dt + Li γ

>
i dW ∗, Li(0) = L0

i , t ∈ [0, Ti], (5.1)

where δj = Tj+1 − Tj are day count fractions, t 7→ γi(t) = (γi,1(t), . . . , γi,d(t)) are deter-
ministic volatility vector functions defined in [0, Ti] (called factor loadings), and η(t) :=
min{m : Tm > t} denotes the next reset date at time t. In (5.1) W ∗(t), 0 ≤ t ≤ TI−1, is a
standard D-dimensional Wiener process under the measure P ∗ with D, 1 ≤ D < I, being
the number of driving factors. The spot Libor measure P ∗ is induced by the numeraire

B∗(t) :=
Bη(t)(t)
B1(0)

η(t)−1∏

i=1

(1 + δiLi(Ti)), (5.2)

where Bi(t), i = 1, . . . , I, is the value of a zero coupon bond with face value 1 at Ti, i.e.,
Bi(Ti) = 1. At a tenor date Ti, i = 1, ..., I − 1, we have (see [15])

Bn(Ti) =
n−1∏

j=i

1
1 + δjLj(Ti)

, n = 1, . . . , I. (5.3)
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Figure 5.1: Dependence of the local Monte Carlo bounds for the two-dimensional Bermu-
dan max-call on the number of inner Monte Carlo paths N ; the number of outer paths
M is equal to 10000, d = 2, and x0 = 90.

Note that in (5.2) and (5.3) we set by definition
∏l

k = 1 for k > l. It is also worth
mentioning that Bn(t), n = 1, . . . , I −1, are uniquely defined by Libors on the tenor grid
only (we need values of B∗(t) only there as well).

A European swaption with maturity Ti and strike θ gives the right to contract at Ti for
paying a fixed coupon θ and receiving floating Libor at the settlement dates Ti+1, . . . , TI .
The corresponding payoff at maturity Ti is given by

fi(Li(Ti), . . . , LI−1(Ti)) :=



I−1∑

j=i

Bj+1(Ti)δj(Lj(Ti)− θ)




+

.

A Bermudan swaption issued at t = 0 gives the right to obtain

fi(Li(Ti), . . . , LI−1(Ti))

at an exercise date i ∈ {s1, . . . , sl} ⊂ {1, . . . , I − 1}, sl = I − 1, to be decided by the
option holder. Its risk-neutral price is given by

u0(L0(0), . . . , LI−1(0)) = sup
τ∈TS

E

(
fτ (Lτ (Tτ ), . . . , LI−1(Tτ ))

B∗(Tτ )

∣∣∣∣F0

)
,

where TS is the set of stopping times τ taking values in {s1, ..., sl}. The risk-neutral
price at a future position (Ti, Li(Ti), . . . , LI−1(Ti)) provided that the option has not be

Page 24 of 29

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

belomestny, d., milstein, g. and spokoiny, v. 24

exercised before is given by

ui(Li(Ti), . . . , LI−1(Ti)) = sup
τ∈TS

T
[i, I−1]

B∗(Ti)E
(

fτ (Lτ (Tτ ), . . . , LI−1(Tτ ))
B∗(Tτ )

∣∣∣∣Fi

)
.

(5.4)
Note that the right-hand side of (5.4) depends only on (Li(Ti), . . . , LI−1(Ti)) due to the
Markov property of the underlying process and the identity

B∗(Ti)
B∗(Tτ )

=
1∏τ−1

k=i (1 + δkLk(Tk))
, τ > i.

Hence, the continuation value

Ci(Li(Ti), . . . , LI−1(Ti)) = B∗(Ti)E
(

ui+1(Li+1(Ti+1), . . . , LI−1(Ti+1))
B∗(Ti+1)

∣∣∣∣Fi

)
(5.5)

is a function of state vector at time Ti as well. Thus, the results of Sections 3 and 4
remain valid for the considered model though the numeraire is not deterministic.
In our simulation study we use the Libor volatility structure

γi(t) = cig(Ti − t)ei, (5.6)

where g(s) = g∞+(1− g∞+as)e−bs, ei are D-dimensional unit vectors, decomposing an
input correlation matrix of the rank D, and g∞ ≥ 0, a ≥ 0, b ≥ 0, ci > 0 are constants
(see [26]). To generate Libor models with different numbers of factors D, we take as a
basis a correlation structure of the form

ρij = exp(−φ|i− j|), i, j = 1, . . . , I − 1,

which has full rank for φ > 0. Then for a particular choice of D a rank-D correlation
matrix ρ(D) with decomposition ρ

(D)
ij = e>i ej , 1 ≤ i, j < I, is obtained from ρ by

principal component analysis. As the model parameters, we take a flat 10% initial Libor
curve (i.e. L0

i = 0.1 for i = 0, 1, . . . , I −1) over a 40 period quarterly tenor structure and

I = 41, δi = 0.25, ci = 0.2, a = 1.5, b = 3.5, g∞ = 0.5, φ = 0.0413.

We consider Bermudan swaptions with yearly exercise opportunities, hence (δi are equal
to a quarter year) si = 4i, i = 1, . . . , 10. For a “practically exact” numerical integration
of the SDE, we use the log-Euler scheme with ∆t = δ/5 = 0.05.
Now we apply the regression method described in Section 3.5. At each exercise date
Tsi , i = 1, . . . , l−1, the set of basis functions includes the value of the European swaption

Si(Lsi(Tsi), . . . , LI−1(Tsi)) = B∗(Tsi)E
(

fsi+1(Lsi+1(Tsi+1), . . . , LI−1(Tsi+1))
B∗(Tsi+1)

∣∣∣∣Fsi

)
,

which we can be exercised at the next exercise date Tsi+1 , and the immediate payoff fsi

with its second-order powers. Although closed form expressions for European swaptions
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do not exist in a Libor market model, there exist very accurate (typically, better than
0.3% relative error) formulas (see [26]), which we use for the computation of Si.
The resulting lower bound û0 and upper bound V̂0 are given in Table 2 for different
numbers of factors D and different coupons θ. The true values (computed with less than
1% relative error) are quoted from [21].

D θ û0 V̂0 True Value

0.08 1108.1±1.5 1110.5±2.4 1109.2

1 0.10 381.7±1.2 384.7±1.6 382.1

0.12 121.2±0.7 123.1±0.8 121.3

0.08 1096.3±1.3 1096.6±2.0 1096.5

10 0.10 344.3±1.0 346.7±1.3 344.7

0.12 101.7±0.6 104.9±0.7 101.3

0.08 1094.8±1.2 1096.1±2.0 1096.1

40 0.10 338.2±1.0 341.2±1.3 339.3

0.12 96.4±0.5 100.0±0.6 97.2

Table 2: Prices of Bermudan swaptions ×104
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