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1 Introduction

Valuation of high-dimensional American and Bermudan options is one of the most difficult
numerical problems in financial engineering. Besides its practical relevance, this problem
is of great theoretical importance since pricing American-style options is an archetype
for high-dimensional optimal stopping problems. Several approaches have recently been
proposed for pricing such options using the Monte Carlo technique (see, e.g. [1]-[15],
[17]-[21], [25, 26, 28] and references therein). In practice it is often an open question
whether the obtained numerical result is sufficiently accurate. As a rule, any numerical
procedure has errors of various types (e.g., discretization or Monte Carlo errors) and it
is difficult to take all of them into account. That is why in a number of works (see,
e.g. [3,4, 6,9, 17, 18, 20, 25, 26]) some procedures are proposed to produce upper
bounds along with lower bounds for the option price. The knowledge of lower and upper
bounds makes it possible to evaluate accuracy of the price estimates. In [3] we developed
an approach for pricing American options applicable both in the case of discrete-time
and continuous-time financial models. The approach is based on the equivalence of an
American option and a European one with consumption process (the so-called Earlier
Exercise Premium representation, see [22]). It allows us, in principle, to iteratively
construct a sequence v', V1 w2 V2 o3 ... where v!, v2 3, .., is an increasing
sequence of lower bounds and V', V2, ..., is a decreasing sequence of upper bounds.
Unfortunately, the construction of the above sequence of bounds requires very laborious
calculations. Even finding V2 is, as a rule, too expensive. In [4] we proposed to use an
increasing sequence of lower bounds for constructing both upper bound and lower bound
at the initial position (tg, Xo). It is assumed that this sequence is not too expensive from
the computational point of view. This can be achieved by using local lower bounds which
take into account the behavior of the process during a small number of steps ahead. The
method of [4] is suitable for getting rough estimates. However, to obtain more accurate
results, one needs rather expensive calculations.

Let us consider a discrete-time financial model
(By,, X1,) = (B, Xy, X1, i =0,1,..,T,

where By, is the price of a scalar riskless asset and X;, = (thi, v Xg) is the price vector
of risky assets. Along with the index ¢;, we shall use the index i, writing (¢;, X;) instead
of (t;, X3,). Let fi(x) be a payoff at time ¢; provided that Xy, = X; =2, z € X C R,
where X is a state space (e.g., X = R? X = Ri).

We assume that the modelling is based on the filtered space (£2,F, (F;)o<i<z, P),
where the probability measure P is the risk-neutral pricing measure for the problem
under consideration, and X; is a Markov chain with respect to the filtration (F;)o<i<7 -

With respect to the probability measure P, the discounted process X;/B; is a mar-
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tingale and the price u;(X;) of the American option is given by

X‘f_izx
ui(x) = SEqu B,E <fT(B)> :
T i, T T

(1.1)

In (1.1) Xf;’x is the value of the Markov chain at instant ¢; > ¢; starting at t; from «
and 7; 7 is the set of stopping times 7 taking values in {,7 + 1,...,7}.

The value process u; (Snell envelope) can be determined by induction as follows:

uz () = fz(x), (1.2)

u;(x) = max {fl(:c),BzE (uZH(XlH)\XZ = x> } ,i=7-1,..,0.
Bit1

We see that theoretically the problem of evaluating ug(Xy), the price of the discrete-
time American option at the initial position (tg, Xo), can be easily solved using dynamic
programming algorithm (1.2). However, if X is high dimensional and Z is large, this
algorithm is not practical.

In order to use regression methods for sequential evaluation of u;, one can consider
(see, e.g., [28] and [15]) the (d + 1)-dimensional sample

B.
<mXi Blum(me)) ,m=1,...M,i=0,..7—1, (1.3)
i+1

from (XZ-, %Ui+1(Xi+1)) , where (t;, »X;) are M independent trajectories all starting
from the point (o, Xo). The use of the procedure (1.2) and sample (1.3) for sequential
evaluating u;(X;) together with modern methods of multidimensional approximation (see
e.g., [13], [29] and references therein) can give effective algorithms for pricing American
and Bermudan options (see e.g. [5], [19]).

The samples with optimal stopping times 7t = 7%% were first introduced in [23] (see
also [12] and [15]). Applying (1.3), one needs an estimate @;y1(X;+1) of w;1(X;+1) while
applying the samples with stopping times, we can employ an estimate 7 = 7ti+1, Xit1 of

rli+ts Xi+1 In the latter case the corresponding estimate for f(X;) is fp(Xp) and the

) <542

:
obviously holds. This inequality opens the possibility to construct a lower bound for

inequality

b

B <fb(Xb)

continuation value (lower continuation value). In turn, this allows us (see Section 2.3) to
construct an upper bound for consumption process (upper consumption process). Thus,
in contrast to other works using regression methods for pricing American and Bermudan
options (see, however, [6]), we construct not only an estimate for continuation value but
also an estimate for upper consumption process making it possible to find effectively
lower and upper bounds for the price of the option.

In Section 2, we recall the approach (see [3], [4]) to pricing American and Bermudan

options using consumption processes in the form suitable for our purposes. Furthermore,
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we give a comparison with the dual approach (see [25], [17]) for the first time. In Section
3, we propose a number of algorithms for subsequent estimating optimal stopping times
and continuation values using various regression methods. Special attention is paid to
linear regression methods (see [23] and [12]). Section 4 gives formulas for the Monte
Carlo construction of lower and upper bounds at the initial position (¢g9, Xo). Section 5
is devoted to numerical experiments with Bermudan max-call and Bermudan swaption

in a full factor Libor market model, which confirm efficiency of the proposed algorithms.

2 The approach based on consumption processes

To be self-contained, let us briefly recall the approach to pricing American and Bermudan

options using consumption processes [3].

2.1 The continuation value, the continuation and exercise regions.

For the considered American option, let us introduce the continuation value

wit1(Xit1) 1X; = x) i

5 =0,...Z —1; Cz(z) = fr(x), (2.1)
i+1

the continuation region C and the exercise (stopping) region & :

C={(ti,z): filx) < Ciy(x)}, (2.2)
E=A(ti,x): fi(zx) > Ci(z)}.

Clearly, (tz,x) € £ for any z.
Let X]Z-’m, j=1i,1+1,...,Z, be the Markov chain starting at time step ¢ from the point
x: sz =z, and mX;’x, m =1, ..., M, be independent trajectories of the Markov chain.

The Monte Carlo estimator u;(z) for u;(z) (in the case when & is known) has the form

- B

m=1

m XY, (2.3)

w@

where 7 is the first time at which X]m enters £ (of course, 7 in (2.3) depends on i, 2, and
m: T =p 7°%). Thus, for estimating w;(x), it is sufficient to check at each time step
tj for j = 4,0+ 1,...,7 whether the position (¢;, ij“c) is in £. Given a lower bound
v, a simple sufficient condition for the continuation can be formulated. Introduce the
following subset of the continuation region

¢, ={(to): fio) < B (P o)L

By 11

Since C,, C C, the condition (¢ J, mX ¥} € C, is sufficient. It follows from (1.2) that f;(z) is
a lower bound and if v}, ..., v} are lower bounds then the function v;(z) = max;<j<; v¥(x)

is a lower bound as well. Henceforth we consider lower bounds satisfying the inequality

vi(z) = fi().
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2.2 Equivalence of American options to European ones with consump-
tion processes involved

For 0 <i <7 —1 the equation (1.2) can be rewritten in the form

wi(z) = B;E (W'X" = a;) + [fi(x) — BE <W+}3(ﬁ“)\X¢ - xﬂ . (2.4)

Introduce the functions

~i(z) = [fi(m) — BiE (Wm = :U)]+ i=T—1,..,0. (2.5)

Due to (2.4), we get (see [3])

T—(i+1)

ui(X;) = B;E <ﬁg§1)|ﬂ> + B; ; E (”I‘g(;i““) \fi) (2.6)
+7i(X;), i=0,...,.7 — 1.
Putting Xy = x and assuming By = 1, we obtain
up(z) = F (fI(XI)> + vo(z) —i—IZ_:l E <%(XZ>> : (2.7)
Br po B;

Formula (2.7) gives the value of the European option with payoff function f7(z) and
consumption process y; defined by (2.5).

2.3 Upper and lower bounds using consumption processes.

Formula (2.7) cannot be used directly to value the discrete-time American option as the
process v;(x) is not known. In this section we describe how to construct lower and upper
bounds for u;(z) (see [3] for more details).

Let v;(z) be a lower bound for the true option price u;(x). We introduce the functions
(upper consumption processes):

Vip(@) = [fi(x) — B,E (ZMM\XZ- = x>]+ i=0,..,7—1. (2.8)
Bit1

Clearly,
Yiw(T) 2 i)

Hence the price Vj(z) of the European option with payoff function fr(x) and upper

consumption process 7; () is an upper bound: V;(x) > w;(z).

Remark 2.1. Application of Jensen’s inequality shows that if the expectation in (2.8)
is estimated by the Monte Carlo method then the resulting estimate 7;,(z) is upper
biased, i.e., E7;(z) > vio(z).
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t; . . :
Indeed, let mXiif, m =1,..., M, be a set of one step trajectories all starting from

(t;, ). Defining

M tian] T
~ Bi — Vit1(mX;}7)

() = [fz-(w) Sy Rl (29)

m—1 i+1

we get by Jensen’s inequality that E7; ,(z) > v, (2).
Conversely, if Vj(z) is an upper bound for the true option price u;(x) and

Vig1 (X, *

Yiv(z) = [fi(x) ~ B,E (W\Xi = x>] ,i=0,..,7 -1, (2.10)
it

then
Yi,v(2) < 7il@),

and the price v;(z) of the European option with lower consumption process ;v (x) is a
lower bound: v;(z) < u;(z). The same reasoning that led to (2.9) implies now that the
Monte Carlo estimate 7; v () of 7; v (z) is biased up. Therefore, for 7; v (x) to be a lower
bound, M must be large.

Thus, starting from a lower bound v} (), one can construct the upper bound V;!(x) as
the European option with consumption process 7; ,1(z) and so on. This procedure gives
us the sequences v} (z) < vi(z) < v3(z) < ... < wi(x), and V(z) > V2(z) > ... > ui(w).
All the bounds v* and V* can, in principle, be evaluated by Monte Carlo simulations.
However, each further step of the procedure requires time-consuming calculations, and
in practice it is possible to make only a few steps of this procedure. In this connection,
much attention was given in [3] to variance reduction techniques and some constructive

methods reducing statistical errors were proposed.

2.4 Comparison with the dual approach

Without loss of generality, we assume in this section that B; = 1. The dual approach,
developed in [25] and [17], is based on the following observation. For any 0 < i <7 and

any supermartingale (S;)i<;j<z with S; = 0, we have

ui(X;) = sup E(fr(X:)|Fi) < sup E(fr(X;)— S:|Fi) (2.11)

T€Ti 1 7€Ti 1

<FE LISHJ%XI(JCJ‘(XJ) - 5j) |1 Fif -

Hence the right-hand side of (2.11) provides an upper bound for w;(X;). It can be
shown that the equality in (2.11) is attained at the martingale part of the Doob-Meyer

decomposition of the price process u;:

i
My =0, Mj= > (u(X)—EwX)|F1), i<j<T.
l=i+1
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The duality representation provides a simple way to estimate the Snell envelope from

above, using a lower approximation process {v;(X;)}. Let M" be the martingale

M = 0; (2.12)

Then for any 0 < ¢ < Z the process ]\Zj =M} -M; j=1i,....T,isa martingale with
M;; = 0 and according to (2.11)

VP(X,) = E [max (fj(Xj) ) |}“] > wi(X;).

i<j<T
In particular, for ¢ = 0

VoY (Xo) = vo(Xo)

+F

Joax, <f]( ) + Z (Vi1 (Xig)|F2) — Ul(Xl))>] - (213)

The upper bound Vp(Xy) obtained in Section 2.3 can be transformed to

-1

Vo(Xo) = E (fz(X1)) +EZ fi(Xi) = E (vip1 (Xis1) | Fi)] T

0(Xo) —i—EZ (max { fi(X:), B (vig1(Xit1)|Fi) } —vi(X5)), (2.14)
=0

where it is assumed that
fz(Xz) E Ui(Xi)v i = O, . ,I — 1, ’Uz(XI) = fI(XI)

It is interesting to compare Vj and VOD starting from the same lower bound v;. A
comprehensive comparison of Vp(Xg) and ViP(Xo) seems to be difficult and we restrict
ourselves to some examples. First, we construct examples where Vo(Xo) < ViP(Xo). Let
us define

7:=min{0<i<Z—-1:fi(X;) > E (vit1|F)},

and 7 =T if f;(X;) < E (vi41]F;) for all i. We see that if 7 =7 or
filXi) 2 E (v (Xi1)|Fi), iz,

with probability 1, then

T7—1

Vo(Xo) = w0(Xo) + E Y (E (vip1(Xi1)|F) — vi( X))
=0

-1
B(f+(X7) —v-(X:)+ E Y (£i(X)) —v;(X;)) < VP (Xo).

Jj=7+1
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The strict inequality Vy < VOD is achieved in the following simple example with Z = 3.

Due to (2.11), the dual price at time 0 can be computed via the formula

VOD = Fmax{ fo, fi — v1 + Evy,max{ fo, E(usg|F2)} + Fvi + E(va|F1) — v1 — ve}
= Emax{fg, fi— v+ Evy, E(’Ug|f1) + U9 — vy — v + E’Ul}
= Emax{fo, max{fl, E(UQ’]:l) —+ U9 — ’1)2} — V1 + EUl}, (2.15)

where we use the equality us = max{fs, E(uz|F2)} and the dependence of quantities
involved on the underlying process X; is not shown explicitly for the sake of simplicity.

Formula (2.14) gives

Vo = Emax{ fo, Evi} + E(max{f1, E(ve|F1)} — v1)
+ E(max{ f2, E(vs3|F2)} — v2). (2.16)

Let us take constant payoffs satisfying
fo<h<fo<fs, fitfa<fot/[s
Clearly, u; = f3, 1 =0,...,3 and any lower bound v; satisfies
fo<wvw <fs, Hi<v<[fs, fao<va<[f3, wv3=fs
Formula (2.16) gives Vj = f3 and (2.15) implies
V¥ = Emax{fo, E(v2|F1) + f3 — v2 + Bv; — vy }.

Clearly,
VP > E[E(v2| F1) + f3 — va + Bvy — v1] = fs.

If v1 and vy are such that the inequality
E(v2| F1) + f3 —v2 + Evi —v1 > fo
is fulfilled with probability 1, then VOD = f3. However, if
E(va] F1) + f3 —v2 + Evi —v1 < fo (2.17)
with positive probability, then
max{ fo, E(v2|F1) + f3 —va + Evy — o1} > E(v2|F1) + f3 —ve + Evp — vy

with the same probability and consequently VOD > Vp. The inequality (2.17) is achieved,
for example, if Ev; is close to fi, E(va|F1) is close to fa and v; and vy are equal to f3

with positive probability.
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At the same time it is possible to construct examples when VOD < Vp. Indeed, let us take
vi(X;) = fi(X;) for all ¢ =0,...,Z — 1, then according to (2.11)

—_

=fo+FE ,ySXIl (E (fis1lF1) — f1)

.

Il
o

and due to (2.14)

Vo= 0+Z (fir1lF) = fi)" = V.

However, the method based on the representation (2.6) has some advantages over the dual
approach. First, V5(Xp) depends on v; monotonically, i.e., if we have two lower bounds
v and v such that v;(X;) < v;(X;) for all ¢ then Vp(Xg) > %(XO). This immediately
follows from the first line in (2.14). This is not always the case for the dual method.
Indeed, with three exercises (Z = 2) formula (2.11) gives

VP = Emax{f, E(v1|Fo) + u1 — v1}.

Consider the case when the probability of event A := {Ev; —uy —v; > fp} is positive and
v] < up — 0 with some constant 6 > 0.. Then taking v; = v +60/2 on A and v1 = v; + 6

outside A, we obtain
%D = EmaX{fQ, E(f171|.7:0) +up — 51} > VOD,

though v1 > v1. Second, adaptive local lower bounds of the form

k .
v;i(x) :1122%% (x), i=0,...,7—-1,
where vy (z),...,v(z) are lower bounds at = ordered according to their complexity and

[ may depend on z, can be used to construct Vp(Xp) (see [4]). It is also worthwhile
mentioning that our approach allows us to construct lower bounds using upper ones.
2.5 Bermudan options

As before, we consider the discrete-time model
(Bi, Xi) = (B, X}, .., X1, i=0,1,..,T.

However, now the holder can exercise his right only at time belonging to the set of
stopping times S = {s1, ..., s;} within {0, 1,...,Z}, where s; = Z. The price u;(X;) of the

Bermudan option is given by

u;(X;) = sup BZ-E<fT(XT)|J-'Z->,

TE€T5A[i, 1] B

where Tgn; 7) is the set of stopping times 7 taking values in {s1,...,s;} N {i,i +1,...,Z}.
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The value process u; is determined as follows:

uz(z) = fr(z),
max {fi(m), B,E <W+1(Xi+1)yxi = x> } i€ S,

Bia
u;(z) = . T
B,E <“Z+119(X’+1)\Xi - a:) i dS.
i+1

Thus, we obtain that the Bermudan option is equivalent to the European option with

payoff function f;(x) and consumption process 7; defined by

) - o () =) e s
i+1

0,i¢S.

vi(z) =

From here, all the results for discrete-time American options obtained in this section can
be carried over to the Bermudan options. For example, if v;(x) is a lower bound of the
true option price u;(x), the price V;(z) of the European option with payoff function fz(x)

and consumption process

Bi1
0,i¢S,

Nio(@) = [fz’(x) — BE (”Z'H(Xi“)‘Xi _x)r’ ics

is an upper bound: V;(x) > u;(z).

3 Optimal stopping times and algorithms with lower con-

tinuation values

The samples with optimal stopping times have been first introduced in [23] (see also
[12]). In this section we first recall some basic relations for optimal stopping times in the
form suitable for our purposes. Then we show that subsequent estimating these times
amounts to evaluation of continuation values by regression. There are many nonpara-
metric regression methods available (see, e.g., [16]). In Subsection 3.3 we propose some
algorithms based both on local modelling and least squares estimation. Using the regres-
sion approach for pricing American options, we construct not only an estimate for the

continuation value but also an upper consumption process.
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3.1 Basic relations for optimal stopping times

tl:

The optimal stopping time 7% T depends on the initial position (¢;, x). It is defined

recurrently by the dynamic programming principle in the following way. We set
Tt =TT =T, (3.1)

T =X <hi@) T T X ) i)

= tiX(u(@)=fi@)} F T X (@) (@)
i=T—1,..0.

Thus, for any position (¢;, ), the optimal stopping time 757 is either equal to t; : 75% =
ti, or 79% > t;. Hence

T = il X1+1 if 707 > ;. (3.2)

It is also clear that (¢;, ) is a stopping point (i.e., 7%% = t;) if and only if (¢;,7) € &
(i.e., (t;, ) belongs to the exercise region). The instant 7% is the first one at which the
trajectory (t;, X?’x) either enters £ during ¢ < j <Z — 1 or stops at the final time Z. So,

(7%, X5" ) € € (see (2.2)). Let us give some recurrence relations for u;(z) and Cj(z) :

ui(X;) = max{ f;(X;), Ci(Xi)}, uz(z) = f(z), (3.3a)
CH(X0) = 5 Blui(Xe) X2), Orle) = [(a), (3.3b)
i+1
B;
Ci(X;) = B'+1E(maX{fi+1(Xi+1),Ci+1(XZ'+1)}|XZ'), (3-3¢)
B;
wi(X;) = max{ fi(X;), p—E(uir1(Xi+1)| Xi)}- (3.3d)
+1
We note that
v \_R fxm ey o
uerl(Xerl) = Bi1E B |X2+1 ) (34)
Bluss1(Xis)|Xi) = B (BME (JC(B)m) m) (35)
pE (fT( B i )|Xi> |
where
= Tti+17Xi+1_
Hence, due to (3.3b), we get
Ci(X;) = BiE <”B)|X> . (3.6)
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We emphasize that for any stopping time 7 > t;,1 the function

f, Xti+17$
Ui+1(£€) = Bi+1E <e(Be) (37)
e
is a lower bound for u;41(x).
Since
; Xti+1,Xi+1 A Xtufc
Ci(r)= sup B;E MDQ =x|= sup BE F(X7) . (3.8)
Te’Ti+1,Z BT Tez+171 BT

the function

fe<Xi“"”>> (3.9)

CZ({L') = Bl‘E <Be

is a lower continuation value for any stopping time 7 > t;41.

3.2 Estimating optimal stopping times

Considering C;(x) as a regression function (see (3.6)), it is natural to introduce (after
[23] and [12]) the sample

B;

. ; B; . .
FrlmXe 0 m ) = (X, B X X)), (3.10)

T = rlitt mX”l, m=1,..,.M,
from (X;, %fT(Xii“’X"“)) = (X, %fT(Xff’Xi)), where 7 = rli+1Xi+1,

We are about to use (3.10) for subsequent constructing an estimate 7% m%i for the
optimal stopping time 7% m%Xi Clearly, 77 mX7 = 7L mXz = T Let rtitt, mXit1 4§ =
T —1,...,1, (in reality 7t+1> mXi+1) be already estimated. Using the sample (3.10) at the
step t;, we evaluate C;(,, X;) by regression. Let Cz(le) be an estimate of C;(,, X;). If
fi(mXi) > Ci(mX;) then 7t mXi = ¢; otherwise 7t mXi = Fti+1 mXit1 (see (3.1)). As a

result, we obtain a sample like (3.10) at the previous time step t;_;:

B4
B,

. ) B;_
fT(mX?’ sz)) = (mXi-1, él

r=rtmXi =1, M.

(X 1, Fr(mXpmt mXimtyy - (3.11)

This allows us to construct the estimate @i,l(mXi,l) of Ci—1(mXi—1) and the estimate

Ftio1, mX ti—1, mX

=1 of 1 i-1 and so on. Upon estimating 7/ mX1 we can evaluate ug(Xo)

via

B;

Page 13 of 29

t1,X1
’LL(](X(]) = maX{fo(Xo), BéllE(ul (XfO’XO)} = max {fo(Xo), FE (fT(AXT)> } s T = Ttl’Xl.

(3.12)
So, we construct continuation values and stopping times simultaneously by the back-

ward procedure and our main problem is to evaluate the continuation value C;(,,X;)
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using the sample (3.10). To this aim, we use nonparametric regression methods. In the
next subsection we propose some algorithms based both on local modelling and least
squares estimation.

The most appropriate are methods for which the estimate d(sz) is a lower contin-
uation value. If the payoff at (¢;, ,,X;) is less than or equal to a lower continuation value,
then first, the position (¢;, ,,X;) belongs to the continuation region (consequently, it is
natural to take 7ti» mXi = Fti+1, mXi+1) and, second, the consumption process at (t;, ;,X;)
is equal to zero. Otherwise the position (¢;, »X;) can belong either to the exercise region
or to the continuation region. In the latter case we compute the upper consumption
process at (t;, m,X;) as a difference between the payoff and the lower continuation value
and set 7t mXi = ¢, As a result all positions (ti;, mX;) are equipped with the stopping
times and the upper consumption processes. In such a situation we are able to construct

both lower and upper bounds for the price of the option under consideration.

3.3 Algorithms with the local Monte Carlo approach

For every position (t;, »X;), m = 1,...M, let us construct N = N, ,, additional inde-
pendent trajectories on [t;,t;11], i.e., the trajectories with the length of one step. At the
Xt mXi

tit1
. t; X; ) .
=m Xiy1. Introduce the notation ,,, X1 =5, Xt;;lm L Tmon =n rtitt, mnXit1 Tt fol-

instant t;41 we obtain N + 1 points anZilmXi, n =20,1,..., N, where we put ¢

lows from the semigroup property for the Markov chain Xttiijz that if 7t mXe > ¢,
then 7ti> mXi — glit1, Xipa(ti, ’"Xi), where the notation X;i1(t;, mX;) = XZH’”XZ is

used. This is true for the n-th independent copy anZJ’rl’"Xi of Xf;rl’"Xl as well, i.e.,

ot mXi = plivt maXipn — Ty if T mXi > ¢;,1. Due to (3.6), we have

B, “N+t1 B

o’
n=0 m,n

th_i+17X2‘+1 B, N : Xti+1, m,nXit1
Cz(sz):BzE (fT( )‘Xz = Xz) ) me,n( Tm,n )

(3.13)
Let us stress that the sum in (3.13) is an estimate of C;(,,X;) in a theoretical sense only

because we do not simulate the trajectory Xf?“’ mon Xt for t; > ti+1. That is why for
J
xto mXi
tit1
denoted by j(mn)Xi+1. For the position (tiy1, p(mn)Xit1), the estimate 7y, ) of the
t

every point ,, ,Xit1 =p , we find the nearest one among ;X;4+1, &k = 1,...M,

optimal stopping time 7"+b k(m.m)Xit+1 ig known. To avoid confusion, let us emphasize
that the points ,,,X;+1 lie on the trajectories starting from the same position (¢;, ,X;)
and for the positions (ti+1, mnXit1) estimates of the optimal stopping times are in
general unknown, while the points ,, ,)Xi+1 lie on the trajectories which have different
starting positions (ti, j(m,n)Xi)-

For the continuation value C;(,,X;), we introduce the estimate

ti X;
N i+1s k(m,n)<*i+1

~ B; fbk(m,n) ( b, mon )

Ci(mX;) = N; - > B: ) . (3.14)
n=0 k(m,n)
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In distinction to (3.13), this estimate is simulated. We intend to prove that in a sense
@ (mX;) is a low continuation value. To this aim, we consider an auxiliary low contin-
uation value Cy(,,X;) (which is not simulated) and then prove that Ci (mXi) is close to
Ci(mXi).

For any point X, 1 = X/ m X

t,.. ', one can define the stopping time 7 = 7(X;41) > tiy1

analogously t0 Tj(mn), i-e., first, we find the nearest point to X;y; among ;X;1, k =
1,...M, say ¢X;1, and, second, for the position (tiv1, ng‘+1) we know the estimate ?ﬁ
of the optimal stopping time 7fi+1> &Xi+1_ which we take as 7 : 7 = 7(X;41) = 7g. Clearly,

for the points y, , Xi11 this stopping time 7 = 7(;,,, Xi11) := Tyn,n coincides with Ty, -

_ Xti+1,Xi+1
Cl(l‘) = BiE <fQ(eB)|X¢ = l‘) .
e

Introduce

It follows from (3.8) and (3.9) that
Ci(z) = Ci(x) + ri(z), (3.15)

where r;(z) > 0, i.e., Ci(z) is a lower continuation value at the position (;, ). Further,

we have

N Jemn (X;:i m’nXiH)

~ B
Ci(mX;) = Ni - > Be. + i (mX;) (3.16)
n=0 "
N ti+17 7rL,nXi+l
- ey P D ()
N+1 n=0 Bbk(m,n) e

where a;(,,X;) is the Monte Carlo error which becomes small with increasing N. Let us
ti+1v m,nX
€m,n

M independent trajectories all starting from the initial point (¢g, Xo). That is why the

note that in general the points X “! do not belong to the considered sample of

sum in (3.16) cannot be taken as an estimate for the continuation value C;(;,, X;).

. . . . . t; ’ m,n Xi
Let us note that in (3.14) and in (3.16) we consider the trajectories X ™' *™m 7!

Page 15 of 29

and XL+b mnXit1 starting from the different positions (ti1 1, k(mn)Xi+1) and (tit1, mnXit1)

but with the same sources of randomness. If M is large, the points ,,,X;+1 and

k(m,n)Xi+1 are close to each other and we get

N Xti+1, m,nXH—l)
CilmXi) = —— : (m.m) — Bi(mXi 3.17

= él(le) - az(sz) - ﬁl(mX1)7

where the approximation error 3; is small.
From (3.15) we obtain

Ci(mXs) = CilmXi) + pi(mXs) — ri(mXi), (3.18)

where p; = —a; — f;.

E-mail: quant@tandf.co.uk URL://http.manuscriptcentral.com/tandf/rquf



Page 16 of 29

©CoO~NOUTA,WNPE

Quantitative Finance

BELOMESTNY, D., MILSTEIN, G. AND SPOKOINY, V. 15

Because r; > 0, the quantity C;(,,X;) — 7i(,mX;) is a lower continuation value. The
estimate @(le) differs from this quantity for p;, i.e., @(mXZ-) is a lower continuation
value within the accuracy p;. We emphasize that p; becomes small with increasing N and

M. Thus the following proposition is justified.

Proposition 3.1. The estimate @(sz) is a lower continuation value within the accu-
racy depending on N (the accuracy determined by the Monte Carlo error) and M (the

accuracy determined by the approximation error).

Corollary 3.2. Consider the consumption
Fi(mXi) = [filmX) — CilmXa)] T (3.19)

Since
Yi(mXi) = [fi(mXi) — CilmXs) + 7i(mXi) — pi(mX3)] "
and v;(mX:) = [fi(mX;) — Ci(mX:)]T, we have

Yi(mXs) < Fi(mXs), if ri > pi, (3.20)
[Yi(mXi) = pi(mXi) + i X))t = 3i(nXi) < Yi(mXi), if pi > 73

We see that 7;(1,m X;) is an upper consumption in the most typical case r; > p;, otherwise
i(mX;) is close to vi(;mX;). Thus, 7i(mXi) is an upper consumption within the accuracy
depending on M and N.

3.4 Independence of estimates of future information

The continuation value C;(,,X;) due to (3.13) does not depend on any future information.
The right-hand side of (3.13) is close to C;(,,X;) for large N and this implies closeness
of the estimate @(mXZ) to Cj(;mX;) for large M. This fact is the most important one for
the quality of a consumption’s estimate. As to the independence of future information,
it is intuitively clear that, e.g., for large N the right-hand side of (3.13) can only weakly
depend on the future behavior of the trajectories (;,m, X;) for t; > t;. At the same time,
it is not difficult to rigorously construct independent estimates for the continuation values
(of course, with higher simulation cost). To this aim, along with the old set of trajectories,
let us simulate M new independent trajectories (¢;,m X’l), i=0,...2—1, m=1,.., M,all
starting from the point (¢g, Xo). Further, the points mm)z}qu, m=1,..,M, n=1,...,N,
are simulated instead of ,, ,X; 1, and then for every point m7nXZ'+1 we find the nearest

point F(m n)XZ-Hamong Xit1, k=1,..., M (hence, we find ?12( . Clearly, the estimate

m,n))

o Lit s Ji(m,n) Xit1
N n=1 Bbf@(m,n)

o

does not depend on the future behavior of the trajectories (t;,m X;) for t; > t;. So,

every new position (t;,m )v(Z) is equipped with the lower continuation value Cv'l(m)v(l) It
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can be equipped with the estimate FtimXi

i of the optimal stopping time rtimXi ag well
using the rule: FImX1 — T for j = T FtimXi t; if fl(m)ufz) > Cu’z(m)v(z), otherwise
FtomXi — gtivtmXit1 for j = 7 — 1,...,1. This allows us to effectively find lower and
upper bounds for the price of the option at the initial position (o, Xo) without using any
future information (see Section 4). Nevertheless, we prefer the estimate (3.14), which is
of lower simulation cost and which uses very little future information. Additionally, let
us emphasize that the estimates like (3.14) give in practice almost the same results as

their counterparts of the form (3.21) (see Section 5).

3.5 Algorithms with the local Monte Carlo approach, continuation

In the estimate (3.14) we use the points ;(,, ,,)X;+1 which are chosen among , X1, m =
1,..., M, as the nearest ones to ,,, , X;4+1 . Now for every point ,,, , X;41 =y Xtil’"Xz let us
find a few (say Ky, n) nearest ones among ,, Xi11. Let us denote them by 1, nj Xit1, kb =
1,..., Ky (in contrast to k(m,n), the function k[m, n] is a multifunction). The estimates
%\k[m,n} of the optimal stopping times Ty, n = rlitls kimnXi+1 are known. Then the
following expression
i mXi Bit1 RS f(X;anmjnI]c[m,n]XiH)
vit1(n XH_1 )= Ve

myn

(3.22)

is a lower bound for u;41(x) at the position (;+1, an; lmXi) (of course, within accuracy

of the approximation).

Clearly,
N Km,n tit1, k[m,n]Xi+1
O B; 1 f(X b, )
Ci X)_ Vi1 (n X Xy = 2 [m.n]
ilm<As By N +1 Z ( tit1 N+1 7;) Km,n P Bbk[m,n]
(3.23)

is a lower continuation value at (t;, ,»X;) (of course, within accuracy depending on M
and N). The estimate (3.14) is the particular case of (3.23), when K,, , = 1. Let us note
that for the estimate (3.23), analogues of Proposition 3.1, Corollary 3.2, and Subsection
3.4 hold as well.

3.6 Algorithms with k-NN estimates

In the previous algorithms we construct N;,, additional trajectories for every point ,,, X,
m = 1,...,M. Let us consider N = N;,, nearest points ,,1Xj;,...,;m v X; to the point
mX; instead of constructing the additional trajectories. All the points ,, 1.X5, ...,m,n Xi
belong to the set { ,,X;, m = 1,..., M}. We have mnXZ(_tﬁl mnXi) =mn Xit1, n =

0,1.....N mOXi =m Xz mOXi 1 —=m )(Z 1 with known 7, Tmn — ’/7'\ti+1’ mnXit1 and
) Ly ) ) s ) , + +1 s

f( (tit1, mnXit1)

plii1. monXit1 ) (let us note that we use another notation in this subsection and, in
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particular, we emphasize that the points ,,,X;11 belong to the set { ,X;11, m =
1,...M}). Then analogously to (3.14), we evaluate

N tit1, mnXit1
CilmXi) = ——=> — . . (3.24)
N+1 e Bm’n
To get an analogue of (3.23), let us find a few (say K, ) points among , X1, m =
1,...M, which are nearest to ,, nXit+1 =mn Xi(—ts—ii m’”Xi). Denote them by ,, 1 Xit1, k=
1,.... Kmn. Then
N Ko Lit1, myn,kXit1
). B, 1 D f( Xy )
Ci(mXi) = — ok , (3.25)
VSR & e

where 7,, ,, ; are known estimates of the optimal stopping times 7, ,, , := rlitts monkXit1,
Note that ,, n xXit1 in (3.25) are different from p, ) Xi+1 in (3.23).

In the case of (3.25), analogues of Proposition 3.1, Corollary 3.2, and Subsection 3.4
hold as well.

Remark 3.1. The k-NN estimates belong to the class of local averaging estimates (see
[16]). The proper choice of K, , is important and is, e.g., discussed in [7]. One can use
other estimates of this class, e.g., kernel estimates and local polynomial kernel estimates.

Note that the latter type of estimates can be helpful for estimating deltas.

3.7 Linear regression

Regression-based methods approximate the continuation value using a basis function

expansion:
K
Ci(x) =Y Bithp(z), i=0,1,....,T—1,
r=1

where {1, () }££, is a set of basis functions each mapping X to R.. Following the notation

in [15], we have
Ci(z) ~ B ¥()
with
87 = B, k), ¥(@) = (W), k()T

The vector §; can be estimated using the sample

B; , . ~ s .
(m X, 73;,1 Fon (Xt X)) Ry = Rl Xk gy =

as
ﬂi = A;lawv.

Here 21/, is the K x K matrix with gr entry

1 M
17 2 YalmXi)tr (m X)
m=1

E-mail: quant@tandf.co.uk URL://http.manuscriptcentral.com/tandf/rquf



©CoO~NOUTA,WNPE

Quantitative Finance

BELOMESTNY, D., MILSTEIN, G. AND SPOKOINY, V. 18

and gy is the K-vector with r-th entry

LS x Bl (X )
M r\m (2 Bbm .
m=1

The estimate BZ then defines an estimate
Ci(x) = B (=)

of the continuation value at an arbitrary point x in the state space X. Now, if f;(;, X;) >
Ci(mX;) then 7ti» mXi = ¢, otherwise 7t mXi = 7+t mXit1 (gee (3.1)). As a result, at
the step t;_1 we obtain the sample
B; 1 ti, mXi Bi_1 ti—1, mXi—1
mfm(mXbm ) = (X1, %fm(mXbm )

?m = ?t“ mXi7 m = 1, ...,M.

(mXi-1,

Proposition 3.3. The estimate
Ci(mXi) = B ¥ (mXi) (3.26)
s a lower continuation value within the accuracy depending on K and M.

Proof. Having aj(x), r e X, j=0,..,7 —1, one can define a stopping time 7 for
every trajectory Xtt; ¥ j=14,..,7,in the following way. If @(:L') < fi(z), then we put
7t ® — ¢, It Cj(x) > fi(z), then we put ?ti’j > t;. Further, if CA’iH(XfZJ’rlx) < le(XffJ’rlx),
then we put 7% * = t;,1, and so on. If Cj(Xf;’ > fj(XZ;’ ) for all j =4,...,7 — 1,
then we put 7% ¢ = 7. Clearly, 7t m%Xi = 7t mXi =1 ... M, i.e., T is an extension

of 7. Let us introduce the value

_ Xti+1,Xi+1
Ci(z) = BiE (‘MfB)pQ = x) , 7 = 7l Xirt (3.27)
e

Due to (3.8) and (3.9), Ci(z) is a lower continuation value, i.c.,
Ci(z) = Ci(x) — ri(x), (3.28)

where r;(z) > 0. But in the conditional expectation (3.27), Ci(z) can be considered as

an estimate by the linear regression method. Therefore

Ci(z) = Ci(z) + oy (), (3.29)
where «a;(z) is the regression error which depends on K and M. It follows from (3.28)
and (3.29):

~

Cz(sz) = Cz(sz) — OéZ(le) — TZ(sz) (3.30)

Proposition 3.3 is proved. O

E-mail: quant@tandf.co.uk URL://http.manuscriptcentral.com/tandf/rquf

Page 19 of 29



Page 20 of 29

©CoO~NOUTA,WNPE

Quantitative Finance

BELOMESTNY, D., MILSTEIN, G. AND SPOKOINY, V. 19

Let us note that for the estimate (3.23), analogues of Corollary 3.2, and Subsection
3.4 hold as well.

Remark 3.2. In fact, Proposition 3.3 states that Ci(,nX;)— | ai(mX;) | is a lower
continuation value (see also (3.30)). Le., the proposition is true even if the error a;(,, X;)
is large and, in particular, is larger than r;(,, X;), but its significance manifests itself only
if () is rather small. In principle, this can be accomplished with a successful choice of
P1(z), ..., YK (x) and sufficiently large M. The importance of Proposition 3.3 consists in
the fact that the error r;(,,X;), which is the most difficult to control, does not prevent
@ (mX;) from being a lower continuation value.

If «; are not sufficiently small then the gap between simulated lower and upper bounds
is usually large. However, the possibility that the true price lies significantly outside the
constructed bounds cannot be completely ruled out. In this case it is hardly possible to
judge about «; on the basis of the gap between lower and upper bounds. Nevertheless,
we believe that in most cases the tightness of the bounds do imply a successful estimation
of the price. Note, that another regression-based approach suggested in [6] leads always
to a “true” upper bound, it does not matter how bad was the choice of basis functions.

In fact, the success of any regression-based approach clearly depends on the choice
of basis functions. This is a rather complicated problem, both in practice and in theory.
Polynomials (sometimes damped by functions vanishing at infinity) are popular choices
(see, e.g., 23] and [28]). Through Taylor expansion, any sufficiently smooth function can
be approximated by polynomials. However, the number of monomials of a given degree
grows polynomially in the number of variables, so without further assumptions about the
structure of the value function the number of basis functions required could grow quickly
with the dimension of the underlying state vector. This is why some authors proposed
to use special basis functions tailored to the particular problem (see, e.g., [1] or Section

5, where values of European options are employed).

4 Formulas for global lower and upper bounds

Aiming to estimate the price of the American option at a fixed position (tg,zg), we
simulate the independent trajectories ,,, X;, i = 1,...,Z, m = 1,..., M, of the process X;,
starting at the instant ¢ = ¢y from zg : Xo = xp.

To construct the global lower bound, we use the formula (3.12). Indeed, (3.12) gives

the following estimate

M t1, mX1

_ B Jo (X ™) o

up(Xo) = maX{fO(XO)ijl > # | T = T mX1 (4.1)
m=1

We note that (4.1) is always a lower bound for ug(Xp) even if 75, is not equal to the

t1, mX1

optimal stopping time 7 . This estimate weakly depends on the future of the set of

trajectories (;,m X;) (see Subsection 3.4). To construct an independent estimate (X)),
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we use (3.21) and the estimates FimXi of the optimal stopping times rtimXi introduced

in Subsection 3.4:

M t1, mX1
B . (XL .
’[20( XO) — max fO(XO), 7\/1 E M , 7V-m — 7“-tl7 le. (42)
m= B'F’"

To construct a global upper bound, we use lower continuation values from Section 3.

Let @(mXZ) be a lower continuation value. Then
Yi(mXi) = [fi(mXs) — Ci(mXi)]T (4.3)

is an upper consumption value and the corresponding global upper bound is given by the

formula u 1y
> 1 ftmX1) 1 Yi(mXi)
< __ RS A — — . 4.4
W= ar 2 Te T2 n 0

The independent of future counterpart of (4.4) is the formula

M o -1 M o
- 1 fr(mX7) 1 Yi(m X Y v 5
Vo(zo) = Y; E (BI )—i-M E (B- ), with % (mXs) = [fi (mXi) — Ci(m X;)] "
m=1 =0 m=1 v

(4.5)

The estimates (4.1) and (4.4) are of lower computational cost than (4.2) and (4.5).

Due to only weak dependence on the future, (4.1) gives the same results in simulation as

(4.2), correspondingly (4.4) gives the same results as (4.5) (see Section 5). That is why
we prefer the estimates (4.1) and (4.4) in practice.

Let us recall that the true consumption at (¢;, z) is equal to

i (x) = [fi (x) = Ci ()" (4.6)

and 7; (1 X;) > 7i(mX;) within the accuracy of @(le) (the accuracy depends on N and
M in the case of the local Monte Carlo approach and on K and M in the case of the

linear regression approach). If
Ffi(mXi) < Ci(mXa), (4.7)

then (t;, mX;) € C (see (2.2)) and we move one step ahead along the trajectory to the
next position (tj+1, mXi+1). Otherwise, if

FilmXs) = Ci(mXa), (4.8)

then we cannot say definitely whether the position (¢;, ,,X;) belongs to C or £. In spite
of this, we make one step ahead in this case as well. In the case (4.7) we have 7;(,, X;) =
7i(mX;) = 0 and there is no error. If (4.8) holds and besides @(mXZ) < Ci(mX;), an
error can occur. If 4;(,,X;) is small, the error is small as well. But if 7;(,,X;) is large,

then it is, in general, impossible to estimate this error. Note that for the construction of
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an estimate Vo(:vo) of the upper bound Vj (xg) one can use different local lower bounds
depending on the position. This opens various opportunities for adaptive procedures (see
[4]). For instance, if 7;(,,X;) is large, then it is reasonable to use a more powerful local

instrument at the position (¢;, ,X;)-

Remark 4.1. In reality (see (3.20)), the global upper bound is equal to 170(550) + A,
where A — 0 when M, N — oo. Therefore we have @g(Xo) < uo(Xo) < Vo(zo) + A, i.e.,
the accuracy is estimated by the difference Vo () + A —1o(Xo) (not by Vo(wo) —tio(Xo)).-
In practice, it may happen that \70(330) < up(Xp). Clearly, in this case the accuracy is
bounded by A.

5 Simulations

5.1 Bermudan max-calls on d assets

This is a benchmark example studied in [10], [17] and [25] among others. Specifically,
the model with d identically distributed assets is considered, where each underlying has
dividend yield 0. The risk-neutral dynamic of assets is given by

X} b
Tf:(r—é)dt+adwt, k:].,...,d,
where Wtk, k = 1,...,d, are independent one-dimensional Brownian motions and r,d, o
are constants. At any time ¢t € {to,...,t7} the holder of the option may exercise it and
receive the payoff

f(Xt) = (maX(tha oo Xlgi) - K)+

We take t; = iT/Z,1 = 0,...,Z, with T'= 3, Z = 9 and apply the local Monte Carlo
method with kernel interpolation scheme as described in Section 3.3. The number of
outer Monte Carlo simulations is M = 10000 and the number of inner Monte Carlo
simulations is N = 100. The results are presented in Table 1 depending on zy with
Xo = (X¢,..., XHT, X} = ... = X§ = 29. The dual upper bounds presented in the
third column are computed by the primal-dual algorithm (see [1]), hence by the nested
Monte Carlo, with 10000 outer and 100 inner simulations. An initial lower approximation
is constructed by the Longstaff-Schwartz method, where all monomials (in X;) up to
order 2 plus the immediate payoff are used in the regression basis (see, [15, p. 476] for
comparison). The true values in the last column are quoted from [15] as well. As we
can see in this example, the dual method performs slightly better than the local Monte
Carlo approach. However, the need for an initial approximation at each point makes the
dual approach more expensive. Note that the values of upper bound lie outside 95%
confidence interval around the true value. This can be cured by increasing the number
of inner simulations N. Figure 5.1, showing bounds %io(Xg) and Vo(Xo) as functions of
N (d =2, xog = 90), indicates that the lower approximation converges much faster than

the upper approximation as IN increases.
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Table 1: Bounds (with 95% confidence intervals) for the Bermudan max-call with pa-
rameters K = 100, »r = 0.05, 0 = 0.2, § = 0.1 and different d and x.

d | x¢9 | Lower Bound | Upper Bound Dual True Value
uo(Xo) YA/O(XO) Upper Bound

90 | 7.965+0.239 | 8.4174+0.082 8.2311 8.08

2 | 100 | 13.64440.300 | 14.493+0.113 14.182 13.90
110 | 20.875+0.370 | 22.0144+0.165 21.681 21.34
90 | 16.795+0.315 | 19.01240.153 17.163 16.71

5 | 100 | 26.265+0.379 | 29.340+0.183 27.216 26.21
110 | 36.790+0.437 | 40.630+0.208 38.577 36.84

Let us finally note that the quality of the upper bounds becomes worse as d increases.
The reason for this is the sparsity of data in R% for large d. In such a situation the
choice of an interpolating scheme becomes crucial. In the above example we employ the
simplest kernel interpolation which is known to be effective for rather small dimensions.
For high dimensional spaces, k-nearest neighbors interpolation with an adaptive choice

of k (see, [7] for examples and discussions) should be preferred.

5.2 Bermudan swaptions in the Libor market model

Let us consider the Libor market model with respect to a tenor structure 0 = Ty <
T7 < ... < T7 in the spot Libor measure P*.
Li(t),0<t<T;,i=1,...,7—1,is governed by the SDE (e.g., see [15] and [26])

The dynamics of the forward Libor

¢ 8§;LiL;v v

L; = it MR A L; *  Li(0)=1L9 T; 1

d Z%t) iy dt+ Lin dW*,  Li(0) = L, t€[0,T}, (5.1)
J=n

where 0; = Tj41 — T are day count fractions, ¢t — 7;(t) = (vi,1(t),...,7,4(t)) are deter-
ministic volatility vector functions defined in [0, T;] (called factor loadings), and n(t) :=
min{m : T,, > t} denotes the next reset date at time ¢. In (5.1) W*(¢),0 <t <T7_1,isa
standard D-dimensional Wiener process under the measure P* with D, 1 < D < 7, being

the number of driving factors. The spot Libor measure P* is induced by the numeraire
() n(t)—-1

)

B*(t) : (14 6, L;(Ty)), (5.2)

—_

1=

where B;(t), i =1,...,Z, is the value of a zero coupon bond with face value 1 at Tj, i.e.,

B;(T;) = 1. At a tenor date T;, i = 1,...,Z7 — 1, we have (see [15])

n—1

H;, n=1,...,7. (5.3)

B,(T}) =
(&) iy L+ 0;L5(T)
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Figure 5.1: Dependence of the local Monte Carlo bounds for the two-dimensional Bermu-
dan max-call on the number of inner Monte Carlo paths IV; the number of outer paths
M is equal to 10000, d = 2, and x¢ = 90.

Note that in (5.2) and (5.3) we set by definition ch =1 for k > [. Tt is also worth
mentioning that By, (t), n = 1,...,Z — 1, are uniquely defined by Libors on the tenor grid
only (we need values of B*(t) only there as well).

A European swaption with maturity 7; and strike 6 gives the right to contract at T; for
paying a fixed coupon 6 and receiving floating Libor at the settlement dates T4 1,...,7T7.
The corresponding payoff at maturity 7; is given by

-1 +
filLi(Ty), .., L1 (Th)) = ZBjJrl(Ti)éj(Lj(Ti) —0)

A Bermudan swaption issued at ¢t = 0 gives the right to obtain

filLi(Ty), -, Lz (T3))

at an exercise date i € {s1,...,5} C {1,...,Z — 1}, s; = Z — 1, to be decided by the

option holder. Its risk-neutral price is given by

uo(Lo(0), ..., Lz_1(0)) = Tsél?P E <fT(LT(TT)Bé;k%T§JI_1(TT)) ‘ ]:0) ’

where 7Tg is the set of stopping times 7 taking values in {si,...,s;}. The risk-neutral

price at a future position (7;, L;(T;),. .., L7—1(T;)) provided that the option has not be
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exercised before is given by

fe(Lo(Ty). .. Ly (T7)) ‘ .’F) .
TGTS [7;71—_1]

B(T;)
(5.4)
Note that the right-hand side of (5.4) depends only on (L;(T;),. .., Lz—1(T;)) due to the
Markov property of the underlying process and the identity
B(Ty) 1

= , T >
B*(T7) T (1 + 6, Li(Ty))

Hence, the continuation value

i+1 (L1 (T; ooy L 1 (T
C’L<L’L(E>77LI—1(E)):B*(ﬂ)E<UZ+1( Z+1( ’H‘i)v s LT 1( H_l))‘j:i) (55)
B*(Ti41)
is a function of state vector at time T; as well. Thus, the results of Sections 3 and 4
remain valid for the considered model though the numeraire is not deterministic.

In our simulation study we use the Libor volatility structure
7i(t) = cig(Ti — t)es, (5.6)

where g(5) = goo + (1 — goo +as)e™, e; are D-dimensional unit vectors, decomposing an
input correlation matrix of the rank D, and go > 0,a > 0, b > 0, ¢; > 0 are constants
(see [26]). To generate Libor models with different numbers of factors D, we take as a

basis a correlation structure of the form

pij:eXp(—¢’i—j’), i,jzl,...,I—l,

which has full rank for ¢ > 0. Then for a particular choice of D a rank-D correlation
(D) l(»jD) = eiTej, 1 < 4,7 < Z, is obtained from p by

principal component analysis. As the model parameters, we take a flat 10% initial Libor

matrix p'*~) with decomposition p

curve (i.e. LY =0.1fori=0,1,...,7—1) over a 40 period quarterly tenor structure and
T=41,6; =025 ¢ =02 a=15b=3.5, goo = 0.5, ¢ = 0.0413.

We consider Bermudan swaptions with yearly exercise opportunities, hence (4; are equal
to a quarter year) s; = 4i, i =1,...,10. For a “practically exact” numerical integration
of the SDE, we use the log-Euler scheme with At = §/5 = 0.05.

Now we apply the regression method described in Section 3.5. At each exercise date

T,,,t=1,...,1—1, the set of basis functions includes the value of the European swaption
(L (T )y e oy L1 (T,
Si(LSi(TSi)7 o LI—l(Tsl-)) _ B*(Tsi)E (fsl+1( 81+1( 81:1) T 1( 81+1)) ‘ f51> 7
B (T5i+1)

which we can be exercised at the next exercise date T, _,,

and the immediate payoft f,

with its second-order powers. Although closed form expressions for European swaptions
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do not exist in a Libor market model, there exist very accurate (typically, better than

0.3% relative error) formulas (see [26]), which we use for the computation of S;.

The resulting lower bound %y and upper bound ‘70 are given in Table 2 for different

numbers of factors D and different coupons §. The true values (computed with less than

1% relative error) are quoted from [21].

D 0 | ug % True Value
0.08 | 1108.1+£1.5 | 1110.5+2.4 1109.2
1 0.10 | 381.7%1.2 384.7+1.6 382.1
0.12 | 121.240.7 123.14+0.8 121.3
0.08 | 1096.34+1.3 | 1096.6+2.0 1096.5
10 | 0.10 | 344.3+1.0 | 346.7+1.3 344.7
0.12 | 101.740.6 104.940.7 101.3
0.08 | 1094.8+1.2 | 1096.1+2.0 1096.1
40 | 0.10 | 338.2+1.0 | 341.2+1.3 339.3
0.12 | 96.44+0.5 100.040.6 97.2

Table 2: Prices of Bermudan swaptions x10%
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