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A Two-Factor Model for the Electricity Forward
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Rüdiger Kiesel (Ulm University)
Gero Schindlmayr (EnBW Trading GmbH)

Reik H. Börger (Ulm University)

August 30, 2007

Abstract

This paper provides a two-factor model for electricity futures, which captures the main
features of the market and fits the term structure of volatility. The approach extends
the one-factor-model of Clewlow and Strickland to a two-factor model and modifies it to
make it applicable to the electricity market. We will especially take care of the existence
of delivery periods in the underlying futures. Additionally, the model is calibrated to
options on electricity futures and its performance for practical application is discussed.

Keywords: Energy derivatives, Futures, Option, Two-Factor Model, Volatility Term
Structure

1 Introduction

Since the deregulation of electricity markets in the late 1990s, power can be traded on
spot and futures markets at exchanges such as the Nordpool or the European Energy
Exchange (EEX). Power exchanges established the trade of forwards and futures early
on and by now large volumes are traded motivated by risk management and speculation
purposes.

Spot electricity is not a tradable asset which is due to the fact that it is non-storable.
Thus, the spot trading and prices in electricity markets are not defined in the classical
sense. Similarly, electricity futures show contract specifications, that are different to
many other futures markets. In addition to the characterisation by a fixed delivery
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price per MWh and a total amount of energy to be delivered, power forward and
futures contracts specify a delivery period, which will directly influence the price of the
contract.

While much of the research in electricity markets focuses on the spot market (cp. Geman
and Eydeland [1999] for an introduction, Ventosa et al. [2005] for a survey of modelling
approaches, the monographs Eydeland and Wolyniec [2003], Geman [2005] for detailed
overviews, Weron [2006] for a discussion of time-series characteristics and distributional
properties of electricity prices), only few results are available for electricity futures and
options (on such futures).

For commodity futures modelling approaches can broadly be divided into two cate-
gories. The first approach is to set up a spot-market model and derive the futures as
expected values under a pricing measure. The best-known representative is the two-
factor model by Schwartz and Smith [2000], which uses two Brownian motions to model
short-term variations and long-term dynamics of commodity spot prices. The authors
also compute futures prices and prices for options on futures. However, electricity fu-
tures are not explicitly modelled. In particular, the fact that electricity futures have
a delivery over a certain period (instead of delivery at a certain point in time) is not
taken into account. Thus, the applicability to pricing options on electricity futures is
limited.
Several models more specific to electricity spot markets have extended the approach
by Schwartz and Smith [2000] during the last few years. The typical model ingre-
dients are a deterministic seasonality function plus some stochastic factors modelled
by Lévy processes. Typical representatives are Geman and Eydeland [1999], who use
Brownian motions extended by stochastic volatilities and poisson jumps, Kellerhals
[2001] and Culot et al. [2006], who use affine jump-diffusion processes, Cartea and
Figueroa [2005], in which a mean-reverting jump-diffusion is suggested, Benth and
Saltyte-Benth [2004], who apply Normal Inverse Gaussian processes, which is extended
to non-Gaussian Ornstein-Uhlenbeck processes in Benth et al. [2005]. Furthermore, a
regime-switching factor process has been used in Huisman and Mahieu [2003]. All of
these models are capable of capturing some of the features of the spot price dynamics
well and imply certain dynamics for futures prices, but these are usually quite involved
and difficult to work with. Especially, these models are not suitable when it comes to
option pricing in futures markets, since the evaluation of option pricing formulae is not
straightforward. In particular, none of the models has been calibrated to option price
data.

The other line of research is to model futures markets directly, without considering
spot prices, using Heath-Jarrow-Morton-type of models (HJM). Here Chapter 5 of the
monograph by Eydeland and Wolyniec [2003] provides a general summary of the mod-
elling approaches for forward curves, but it does not apply a fully specified model to
electricity futures data. They rather point out that the modelling philosophy coming
from the interest rate world can be applied to commodities markets in a refined ver-
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sion as well. The paper by Hinz et al. [2005] follows this line of research and provides
arguments to justify this intuitive approach.

More direct approaches start with the well-known one-factor model by Clewlow and
Strickland [1999] for general commodity futures. In principle, they can capture roughly
term-structure features, which are present in many commodities markets, but their
emphasis is on the evaluation of options such as caps and floors, the derivation of spot
dynamics within the model and building of trees, which are consistent with market
prices and allow for efficient pricing routines for derivatives on spot prices. Again, they
do not apply their model to the products of electricity markets and do not discuss
an efficient way of estimating parameters. A general discussion of HJM-type models
in the context of power futures is given in Benth and Koekebakker [2005] (which can
be viewed as an extension of Koekebakker and Ollmar [2005]). They devote a large
part of their analysis to the relation of spot-, forward and swap-price dynamics and
derive no-arbitrage conditions in power future markets and conduct a statistical study
comparing a one-factor model with several volatility specifications using data from Nord
Pool market. Among other things, they conclude that a strong volatility term-structure
is present in the market. The main empirical focus of both papers is to assess the fit of
the proposed models to futures prices. While there are further studies using variants
of HJM-type model, e. g. Vehviläinen [2002], a successful application to the pricing of
options on electricity futures is still lacking.

One of the contributions of this paper is to address the issue of this pricing problem.
In order to obtain an option pricing formula, we will follow the second line of research,
that is, we will model the futures directly. We extend Clewlow and Strickland [1999]
and Benth and Koekebakker [2005], in that we propose an explicit two-factor model
and fit it to option price data. Our main objective is to formulate a model and specify a
certain volatility function, so that we are able to resemble the volatility term-structure.
Thus, we will not use an Heath-Jarrow-Morton-type model, but rather set up a market
model in the spirit of LIBOR market models in the interest rate world. We regard
that as the second main contribution of the paper, since this approach enables us to
model one-month futures as building blocks and derive prices of futures with different
delivery period as portfolios of the building blocks. With this model we are not only
able to price standardized options in the market but also to provide consistent prices
for non-standard options such as options on seasonal contracts. In order to provide
pricing formulae for options on futures with a variety of delivery periods, we use an
approximation of the portfolio distribution and assess the quality of this approximation.
We then provide option pricing formulae for all options in the market and use the
market-observed option prices to infer the model parameters. General two-factor model
specification can be found in Schwartz and Smith [2000], Benth and Koekebakker [2005]
and Lucia and Schwartz [2002] as well, but the parameter estimation uses time series
techniques. By inferring risk-neutral parameters we avoid all complications related to
the specification of the market price of risk.
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We will show, that our model is robust, captures the term-structure of volatility and in-
cludes the delivery over a period in futures and option prices. Thus, after the model has
been calibrated to plain-vanilla calls it can be used to price exotic options consistently
(as soon as such options are traded).

The remainder of the paper is organised as follows. The following section describes
the EEX Futures and Option market to which our model is eventually calibrated.
Section 3 develops our general modelling approach, while in section 4 a specific model is
formulated. In section 5 we calibrate our model to market data and discuss the quality
of the fit. Section 6 concludes.

2 The EEX Futures and Options market

An electricity future is the obligation to buy or sell a specified amount of power at
a predetermined delivery price during a fixed delivery period. The contract (i.e. the
delivery price) is set up such that initially no payment has to be made. While the
delivery price is fixed, the price which makes the contract have zero value will change
over time. This price is called futures price and is quoted at the exchanges.

The futures are standardized by the following characteristics: Volume, delivery period
and settlement.

The volume is fixed to a rate (energy amount per hour) of 1 Megawatt (MW). For a
delivery period of e.g. September, this means a total of 1MW x 30days x 24h/day =
720MWh. Quoted is the futures price per 1MWh. Smallest tick size is 0.01EUR per
MWh.

The delivery periods are fixed to each of the 12 calendar months, the four quarters of
the calendar year or the whole calendar year. When a year-contract comes to delivery,
it is split up into the corresponding four quarters. A quarter, which is at delivery, is
split up into the corresponding three months and only the month at delivery will be
settled either physically or financially.

Additional to these baseload contracts, there are peakload contracts, which deliver
during the day from 8am to 8pm Monday to Friday in the delivery period only. These
are not considered in this paper.

At any fixed point in time, the next 6 months, 7 quarters and 6 years can be traded, but
usually only the next 4 or 5 months, 5 quarters and 2 or 3 years show activity. Figure
1 shows the available forward prices at September 14, 2005. (This represents a typical
trading day and will be used throughout the text.) One might observe seasonalities in
the maturity variable T (not the time variable t), especially in the quarterly contracts:
Futures during winter months show higher prices than comparable contracts during the
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Figure 1: Forward prices of futures with different maturities and delivery periods

summer

All options under consideration are European call options on baseload futures described
above, which can be exercised only on the last day of trading, which coincides with the
options maturity. The maturity is fixed according to a certain scheme, but usually it
is on the 3rd Thursday of the month before delivery. The options are settled by the
opening of a position in the corresponding future. The option prices are quoted in EUR
per MWh and the smallest tick size is 0.001EUR.

Available are options on the next five month-futures, six quarter-futures and three
year-futures.

Especially the length of the delivery period and the time to maturity determine the
value and statistical characteristics of the futures and options vitally. One can observe,
that contracts with a long delivery period show less volatile prices than those with
short delivery. This is called term structure of volatility and is present in most power
futures markets. The term structure has to be modelled accurately in order to be able
to price options on futures. Figure 2 gives an example of such a term structure for
futures traded at the EEX. The figure shows the volatility of futures contracts, which is
obtained by inverting the Black-formula that evaluates options on these futures. From
an economic point of view it is clear, that futures with long delivery period are less
volatile than those with short delivery, since the arrival of news such as temperature,
outages, oil price shocks etc. influence usually only certain months of the year and
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Figure 2: Option-implied volatilities of futures with different delivery periods and de-
livery starting dates

will average out in the long run with opposite news for other months. Only if all
one-months contracts move in the same direction, the corresponding year contract will
move as well. Furthermore, the arrival of news will accelerate when a contract comes
to delivery, since temperature forecasts, outages and other specifics about the delivery
period become more and more precise. Thus, the volatility increases.

We will show, that our modelling approach using one-month contracts as building
blocks, will enable us to capture the term-structure of volatility and the influence of
the period of delivery.

3 Description of the Model and Option Pricing

3.1 General Model Formulation

In energy markets we observe futures with different delivery periods. In the following,
energy futures with 1-month delivery are the building blocks of our model. Note,
that futures with other delivery period are derivatives now, i.e. a future with delivery
of a year is a portfolio of 12 appropriate month-futures. For a full treatment of no-
arbitrage conditions and the relations between electricity futures compare Benth and

6
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Koekebakker [2005].

Let F (t, T ) denote the time t forward price of 1MWh electricity to be delivered con-
stantly over a 1-month-period starting at T . Then, assuming a deterministic and flat
rate of interest r, the time t value of this futures contract with delivery price D is given
by

V future(t, T ) = e−r(T−t) (F (t, T )−D) .

D is the price for 1MWh electricity delivered constantly during the 1-month-period
agreed upon at the time of signing the forward contract. Assuming the existence of
a risk-neutral measure, discounted value processes have to be martingales under this
measure, which in this case is equivalent to forward prices being martingales.

Thus, in the spirit of LIBOR market models, we model the observable forward prices
directly under a risk-neutral measure as martingales via the stochastic differential equa-
tion

dF (t, T ) = σ(t, T )F (t, T )dW (t),

where σ(t, T ) is an adapted d-dimensional deterministic function and W (t) a d-dimensional
Brownian motion. The initial value of this SDE is given by the condition to fit the ini-
tial forward curve observed at the market. This takes care of the seasonality in the
maturity variable T .

The solution of the SDE is given by

F (t, T ) = F (0, T ) exp

(∫ t

0

σ(s, T )dW (s)− 1

2

∫ t

0

||σ(s, T )||2ds

)

where || · || is the standard Euclidean norm on Rd.

3.2 Option Pricing

A European call option on F (t, T ) with maturity T0 and strike K can be easily evaluated
by the Black-formula

V option(t) = e−r(T0−t) (F (0, T )N (d1)−KN (d2)) , (1)

where N denotes the normal distribution and

d1 =
log F (0,T )

K
+ 1

2
Var(log F (T0, T ))√

Var(log F (T0, T ))

d2 = d1 −
√

Var(log F (T0, T ))

We now use month-futures to describe futures with longer delivery period. In particular,
options on year-futures are the most heavily traded products in the option market. To

7
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price such options, year-futures (i. e. futures with delivery period 1 year) are a portfolio
of the building blocks, the month-futures. Thus, the pricing of an option on such a
portfolio is not straightforward and a closed form formula is not known in general. The
issue is closely related to the pricing of swaptions in the context of LIBOR market
models and is discussed in Brigo and Mercurio [2001].

The value of a portfolio of month-futures (e. g. a year-future) with delivery starts at
Ti, i = 1, . . . n normalized to the delivery of 1 MWh and delivery price D is given by

V portfolio(t, T1, . . . , Tn) =
1

n

n∑
i=1

e−r(Ti−t) (F (t, Ti)−D) .

In the context of interest rate swaps, the value of a swap is expressed in terms of a
swap rate Y , which is here:

V portfolio(t, T1, . . . , Tn) =
1

n

n∑
i=1

e−r(Ti−t) (YT1,...,Tn(t)−D) ,

where

YT1,...,Tn(t) =

∑n
i=1 e−r(Ti−t)F (t, Ti)∑n

i=1 e−r(Ti−t)
.

In case the portfolio represents a 1-year-future, the swap rate is the forward price of
the 1-year-future, which can be also observed in the market.

Evaluating an option on this 1-year-forward price (i. e. on the swap par rate) poses
the problem of computing the expectation in

e−rT0E
[
(Y (T0)−K)+]

,

where the distribution of Y as a sum of lognormals is unknown. We use an approxima-
tion as suggested by e. g. Brigo and Mercurio [2001], which assumes Y to be lognormal.
Formally, we can approximate Y by a random variable Ŷ , which is lognormal and co-
incides with Y in mean and variance. Then,

log Ŷ ∼ N (m, s)

with s2 depending on the choice of the volatility functions σ(t, Ti).

Using this approximation, it is possible to apply a Black-option formula again to obtain
the option value as

V option = e−rT0E
[
(Y (T0)−K)+]

≈ e−rT0E
[(

Ŷ (T0)−K
)+

]
= e−rT0 (Y (0)N (d1)−KN (d2)) (2)

8
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with

d1 =
log Y (0)

K
+ 1

2
s2

s
d2 = d1 − s

The approximation has been proposed by Lévy [1992] in the context of pricing options
on arithmetic averages of currency rates. This density approximation competes mainly
with Monte Carlo methods and modifications of the price of the corresponding geometric
average option. The advantage of the approximation to Monte Carlo simulation is
clearly the difference in speed in which an option evaluation can be carried out, which
becomes even more dramatic when turning the focus to calibration. The main drawback
of the manipulation of arithmetic average options is that it yields pricing formulae,
which do not satisfy the put-call parity in general.

An empirical discussion of the goodness of the approximation in the context of cur-
rency exchange rates is also provided by Lévy [1992]. A comparison of second moments
leads to errors that are usually much smaller than 1%, especially when the underlying’s
volatility is below 50%. While skewness is present in the true but not in the approx-
imated distribution, kurtosis is matched very well. Another study emphasizing the
applicability of this approximation in interest rates markets can be found in Brigo and
Liinev [2005]. A simulation study done by us in the case of electricity futures shows,
that the difference between the true distribution of the sum and the approximating
distribution is very small and becomes negligible considering other uncertainties in the
application such as quality of market quotes.

4 The Special Case of a Two-Factor-Model

As motivated in the introductory part, a special choice of the volatility function is
needed to resemble market observations of the term structure of volatility in the futures
contracts. In this section we will use a two-factor model given by the SDE

dF (t, T )

F (t, T )
= e−κ(T−t)σ1 dW 1

t + σ2 dW 2
t , (3)

for a fixed T . The Brownian motions are assumed to be uncorrelated.

This is a special case of the general setup in the previous section with

σ(t, T ) =
(
e−κ(T−t)σ1, σ2

)
and W (t) a 2-dimensional Brownian motion.

9
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For ease of notation assume in the following that today’s time t = 0.

This choice of volatility is motivated by the shape of the term structure of volatility (cp.
Figure 2). The strong decrease will be modelled by the first factor with an exponentially
decaying volatility function. Thus, futures maturing later will have a lower volatility
than futures maturing soon. Finally, as T −t becomes very large, the volatility assigned
to the contract by this factor will be close to zero. As this is not the case in practice,
we introduce a second factor, which will keep the volatility away from zero.

Another way of viewing the two factors comes from the economic interpretation: The
first factor captures the increased trading activity as knowledge about weather, unex-
pected outages etc. becomes available. The second factor models a long-term uncer-
tainty, that is common to all products in the market. This uncertainty can be explained
by technological advances, political changes, price developments in other commodity
markets and many more.

Within this two-factor model, the variance of the logarithm of the future contract at
some future time T0 can be computed easily (see the Appendix):

Var(log F (T0, T )) =
σ2

1

2κ
(e−2κ(T−T0) − e−2κT ) + σ2

2T0 (4)

This quantity has to be used to price an option on month-futures with maturity T0

with the option formula (1).

In the case of options on quarter- or year-futures, it is necessary to compute the quantity
s2 of the lognormal approximation in equation (2). The derivation of s2 in this two-
factor model can be found in Appendix and is given by

exp(s2) =

∑
i,j e−r(Ti+Tj)F (0, Ti)F (0, Tj) · exp (Covij)

(
∑

e−r·TiF (0, Ti))
2 (5)

Covij = Cov(log F (T0, Ti), log F (T0, Tj))

= e−κ(Ti+Tj−2T0) σ
2
1

2κ
(1− e−2κT0) + σ2

2T0

5 Fitting the model

5.1 Calibration procedure

In order to calibrate the two-factor model to market data, we need to estimate the
parameters φ = (σ1, σ2, κ) such that the model fits the market behaviour. Since we
have modelled under a risk-neutral measure, we need to find risk-neutral parameters,
which can be observed using option-implied parameters.
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Given the market price of a futures-option (month-, quarter- or year-futures), we can
observe its implied variance Var(log(F (T0, T )) for month-future or s2 for quarter- or
year-futures.

Furthermore, we can compute the corresponding model implied quantities, which de-
pend on the choice of the parameter set φ = (σ1, σ2, κ) as described in the previous
section. We will estimate the model parameters such that the squared difference of
market and model implied quantities is minimal, i. e.∑

i

(
Varmarket(log YT1i

,...Tni
(T0i

))− Varφ
model(log YT1i

,...,Tni
(T0i

))
)2

→ argmin
φ

, (6)

where i represents an option with maturity T0i
and delivery covering the months

T1i
, . . . , Tni

. Depending on the delivery period, which of course may be longer than
one month, the model variance is either the true model implied variance according to
equation (4) or the approximated variance according to equation (5). The minimum is
taken over all admissible choices of φ = (σ1, σ2, κ), that means σ1,2, κ > 0.

Since our model is not capable of capturing volatility smiles, which can be observed in
option prices very often, we will use at-the-money options only.

The minimization can be done with standard programming languages and their imple-
mented optimizers. The objective function (6) is given to the optimizer, which has to
compute the model implied variances of all options for different parameters. The worst
case (the computation of the variance of a year-contract) involves the evaluation of all
covariances Covij between the underlying month-futures in equation (5), which is a 12
by 12 matrix, thus computationally not too expensive. As there are usually not more
than 15 at-the-money options available (e. g. at the EEX), the optimization can be
done within a few minutes.

Additionally, it is possible to use the gradient of the objective function for the optimiza-
tion. The gradient can be computed explicitly, which makes the numerical evaluation
of the gradient in the optimizers unnecessary. Usually, there is a smaller number of
function calls necessary to reach the optimal point within a given accuracy using the
gradient than using a numerical approximation. But, the explicit calculation again in-
volves matrices up to size 12 by 12. We found, that the time saved by less function calls
is eaten up by the increased complexity of the problem. Both methods end up with
about the same optimization time, though the gradient method finds minima, which
usually give slightly smaller optimal values than methods without gradient.

5.2 Calibration to Option Prices

In the following we will apply the two-factor model introduced in Section 4 to the
German market, i. e. we will calibrate it to EEX prices. We repeated the procedure
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Product Delivery Start Strike Forward Market Price Implied Vola

Month October 05 48 48.90 2.023 43.80%
Month November 05 49 50.00 3.064 37.66%
Month December 05 49 49.45 3.244 34.72%
Quarter October 05 48 49.44 2.086 35.15%
Quarter January 06 47 48.59 3.637 28.43%
Quarter April 06 40 40.71 3.421 26.84%
Quarter July 06 42 41.80 3.758 27.19%
Quarter October 06 43 43.71 4.566 25.35%

Year January 06 44 43.68 1.521 20.19%
Year January 07 43 42.62 3.228 19.14%
Year January 08 42 42.70 4.286 17.46%

Table 1: ATM calls and implied Black-volatility

Method Constraints σ1 σ2 κ Time

Function calls and numeri-
cal gradient

yes 0.37 0.15 1.40 <1min

Least Square Algorithm no 0.37 0.15 1.41 <1min

Table 2: Parameter estimates with different optimizers

on different days with similar estimates, but the results will be discussed exemplary
using a typical day. Properties of the term structure of volatility on this day have been
discussed in the introductory part (cp. Figure 2). The data set is shown in Table 1.

The column implied volatility in Table 1 shows the implied volatility by the Black76-
formula. After filtering out data points, where the option price is only the inner value
of the option, these 11 options are left out of 15 observable in the EEX data set. Now,
one can observe a strong decreasing term structure with increasing time to maturity
(there are two outliers, which do not confirm the hypothesis) and a decreasing volatility
level with increasing delivery period.

The optimizers converge in less than a minute and optimizing with and without gradient
delivers the same results up to two decimal places. Even not restricting the parameters
does not change the estimates (see Table 2).

The calibration leads to parameter estimates σ1 = 0.37, σ2 = 0.15, and κ = 1.40. This
implies, that options, which are far away from maturity, will have a volatility of about
15%, which can add up to 40%, when time to maturity decreases. A κ value of 1.40
indicates, that disturbances in the futures market halve in 1

κ
· log 2 ≈ 0.69 years.

The model-implied volatility term structure is shown in Figure 3 together with the
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option-implied volatilities (lines) for different delivery periods and starting dates
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Delivery Start Market
Price

Model
Price

Market
Volatility

Model
Volatility

M-October 05 2.023 1.844 43.80% 38.52%
M-November 05 3.064 3.000 37.66% 36.70%
M-December 05 3.244 3.279 34.72% 35.13%
Q-October 05 2.086 2.089 35.15% 35.25%
Q-January 06 3.637 3.865 28.43% 30.82%
Q-April 05 3.421 3.539 26.84% 27.88%
Q-July 06 3.758 3.520 27.19% 25.51%

Q-October 06 4.566 4.315 25.35% 23.83%
Y-January 06 1.521 1.746 20.19% 22.92%
Y-January 07 3.228 3.074 19.14% 18.28%
Y-January 08 4.286 4.131 17.62% 16.93%

Table 3: Comparison between market and model quantities

observed market values. One can see, that, qualitatively, most of the desired properties
are described by the model. Futures with a long delivery period show a lower level
of volatility compared to those with short delivery. The volatility term structure is
decreasing as the time to maturity increases, but it does not go down to zero. Yet,
quantitatively, there are some drawbacks. Especially the month-futures show a volatility
term structure, that has a much steeper slope than the model implies. Also, the level of
volatility is mostly higher than observed in the market, which seems to be the trade-off
between fitting all options well at the short end and at the long end. Yet, the model
implies reasonable values for all contracts. Absolute values in terms of volatilities and
option prices can be taken from Table 3.

5.3 Parameter Stability

In the following we discuss parameter stability. Common procedures are to recalibrate
the model frequently on several days and analyze the stability of parameters over time,
for different strikes and infer confidence intervals for the parameters. All this requires a
liquid options market. This is still not the case for the EEX electricity market. Almost
simultaneously to the introduction of option trading, electricity prices increased sharply.
This left the market with deep in-the-money call options, which are not suitable for
testing the model introduced above. More recently, decreasing prices at the EEX in
some products lead to many options which are deep out-of-the-money. Only during
the last couple of months, it seems as if the market has stabilized and there are quotes
for (almost) ATM options and a preliminary analysis of parameter stability is possible.
Yet, we want to point out that the longer we go back into recent history, options on
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month-futures are more and more out-of-the-money.

We estimated parameters daily using the valid forward curves and market prices of
options that are closest to at-the-money. We use a history of 52 trading days from June
1 to August 13. Figure 4 shows the evolution of parameters over time.

We can clearly identify very stable estimates for the parameter σ2, which reflects the
volatility at the long end of the term-structure. It is mainly determined by options
on year-futures, which are available at many strike levels, in particular we observe
every day at-the-money option prices. The stability of this estimate is in line with the
intuition that long-delivery futures are less sensitive to market changes which should
result in low volatility and a low variability of the volatility estimates.

σ1 and κ describe the volatility level at the short end of the term-structure and the
speed of decrease of the term-structure, respectively. The estimate of σ1 fluctuates more
than that of σ2 but changes are not substantial. The changes can be explained by the
sensitivity of option prices to the changes in the underlying. Especially the one-month
options are rarely exactly at-the-money, the change in one underlying can change the
volatility term-structure drastically, in particular when considering that the volatility
smile can be quite steep in electricity markets. This forces the estimate σ1 to react to
the changed condition.

Besides the high volatility of the month-futures, the imperfectness of the at-the-money-
assumptions contributes to the changes of the estimate for κ. Futures prices at the short
end of the curve have moved constantly to the smallest strike level of the corresponding
options from below. In other words, options, that have been out-of-the-money at the
beginning of the period, are less so at the end. These options have an increased volatility
compared to ATM options, which leads to a bigger gap between the short end of the
term-structure (mostly options on one-month futures) and the long end of the term-
structure (options on year-futures). A large value of κ is required to induce a steep
term-structure within in the model. Since the steepness in the market is decreasing
over time, κ is decreasing, too.

Considering the correlation of parameter estimates, we find support for the argumenta-
tion above (cp. Table 4). The correlation between κ and σ1 of about 0.64 is substantial,
which coincides with the argument that both are driven by the moneyness of the short-
end volatilities.

Computing standard deviations from the estimates yields Table 4, which allows to
compute asymptotic confidence intervals for each parameter. While standard deviations
are rather low for σ1 and σ2 as one might expect from Figure 4, it is much higher for κ.
Yet, constructing standard confidence intervals for each parameter leads to a decisive
rejection of the hypothesis of zero values for any of the parameters at a 99% level of
confidence.
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Figure 4: Change in parameter estimates over a 10 week period

Correlation σ1 σ2 κ Mean Std

σ1 1.00 0.16 0.63 0.57 0.052
σ2 1.00 -0.41 0.16 0.012
κ 1.00 1.96 0.536

Table 4: Correlation, mean and standard deviation of parameter estimates
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6 Conclusion

We have presented a two-factor-model for the electricity futures market. It is embedded
in a bigger class of market models, which are similar to the very popular market models
in the interest rate markets. We have developed pricing formulae for relevant products
in the market and shown a procedure to fit the market data.

The main results of the work are, firstly, a very good overall fit of the model to option
implied volatilities, especially for options on futures with long delivery period and not
too close to maturity. Secondly, an excellent incorporation of the length of delivery
period into the option pricing. Thirdly, we showed that the model and the calibration
procedure work fast and reliable and are ready to use for day-to-day application.

Nevertheless, we have to mention an unsatisfactory fit at the very short end of the
volatility term-structure for one-month futures. This might be due to the assumption
of lognormal returns. While this assumption is acceptable for some futures contracts in
the electricity market for practical applications, it breaks down as the delivery period
is short (i. e. one month) and the contract is close to maturity (i. e. last two months
of trading), in other words, the more the futures contract approximates the spot price.
Possible solutions to this shortcoming might be the inclusion of jumps into the model
or another specification of Levy-process driving the background noise. Additionally,
this can broaden the data basis for fitting purposes, in that we can price and use other
than at-the-money options only.
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7 Appendix

All following results will be derived under the assumption of correlated Brownian mo-
tions, i. e. dW

(1)
t dW

(2)
t = ρdt (in contrast to the independence assumption in the

article). The results of the article will be obtained by setting ρ = 0.

Derivation of the Variance of a Month-Futures Contract
We will derive equation (4), i. e. Var(log F (T0, T ). The SDE describing the futures
dynamics in equation (3) can be solved by

F (t, T ) = F (0, T ) exp

{
−1

2

∫ t

0

σ̃2(s, T )ds +

∫ t

0

e−κ(T−s)σ1dW (1)
s +

∫ t

0

σ2dW (2)
s

}
σ̃2(s, t) = σ2

1e
−2κ(t−s) + 2ρσ1σ2e

−κ(t−s) + σ2
2.

Now

Var(log F (T0, T )) =
σ2

1

2κ
(e−2κ(T−T0) − e−2κT ) + σ2

2T0 + 2
ρσ1σ2

κ
(e−κ(T−T0) − e−κT )

Derivation of the Variance of Quarter- and Year-Futures Contracts
We will derive equation (5), i. e. s2 at time T0. We have

E(Y ) = E(Ỹ ), Var(Y ) = Var(Ỹ ), log Ỹ ∼ N (m, s2).

Moments of normal and lognormal distributions are related via

E(Y ) = exp(m +
1

2
s2), Var(Y ) = exp(2m + 2s2)− exp(2m + s2)

Solving this system, we get exp(s2) = Var(Y )

(E(Y ))2
+ 1 = E(Y 2)

E(Y )2
. It can be seen easily that

E(FT0,Ti
) = F0,Ti

, E(YT1,...Tn(T0)) =

∑
e−r(Ti−T0)F0,Ti∑

e−r(Ti−T0)

Further

E(YT1,...Tn(T0)
2) =

1

(
∑

e−r(Ti−T0))
2 · ...∑

i,j

e−r(Ti+Tj−2T0)F0,Ti
F0,Tj

· exp Covij

Covij = Cov(log F (T0, Ti), log F (T0, Tj))

The covariance can be computed directly from the explicit solution of the SDE

Cov(log F (T0, Ti), log F (T0, Tj)) = e−κ(Ti+Tj−2T0) σ
2
1

2κ
(1− e−2κT0) + σ2

2T0 + ...

+
ρσ1σ2

κ
(1− e−κT0)(e−κ(Ti−T0) + e−κ(Tj−T0))
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