
www.ssoar.info

Investment strategies in the long run with
proportional transaction costs and HARA utility
function
Dostal, Petr

Postprint / Postprint
Zeitschriftenartikel / journal article

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with:
www.peerproject.eu

Empfohlene Zitierung / Suggested Citation:
Dostal, P. (2009). Investment strategies in the long run with proportional transaction costs and HARA utility function.
Quantitative Finance, 9(2), 231-242. https://doi.org/10.1080/14697680802039873

Nutzungsbedingungen:
Dieser Text wird unter dem "PEER Licence Agreement zur
Verfügung" gestellt. Nähere Auskünfte zum PEER-Projekt finden
Sie hier: http://www.peerproject.eu Gewährt wird ein nicht
exklusives, nicht übertragbares, persönliches und beschränktes
Recht auf Nutzung dieses Dokuments. Dieses Dokument
ist ausschließlich für den persönlichen, nicht-kommerziellen
Gebrauch bestimmt. Auf sämtlichen Kopien dieses Dokuments
müssen alle Urheberrechtshinweise und sonstigen Hinweise
auf gesetzlichen Schutz beibehalten werden. Sie dürfen dieses
Dokument nicht in irgendeiner Weise abändern, noch dürfen
Sie dieses Dokument für öffentliche oder kommerzielle Zwecke
vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder
anderweitig nutzen.
Mit der Verwendung dieses Dokuments erkennen Sie die
Nutzungsbedingungen an.

Terms of use:
This document is made available under the "PEER Licence
Agreement ". For more Information regarding the PEER-project
see: http://www.peerproject.eu This document is solely intended
for your personal, non-commercial use.All of the copies of
this documents must retain all copyright information and other
information regarding legal protection. You are not allowed to alter
this document in any way, to copy it for public or commercial
purposes, to exhibit the document in public, to perform, distribute
or otherwise use the document in public.
By using this particular document, you accept the above-stated
conditions of use.

Diese Version ist zitierbar unter / This version is citable under:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-221213

http://www.ssoar.info
https://doi.org/10.1080/14697680802039873
http://www.peerproject.eu
http://www.peerproject.eu
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-221213


For Peer Review
 O

nly

 
 
 

 
 

 
 

Investment strategies in the long run with proportional 

transaction costs and HARA utility function 
 
 

Journal: Quantitative Finance 

Manuscript ID: RQUF-2006-0268.R1 

Manuscript Category: Research Paper 

Date Submitted by the 

Author: 
20-Jun-2007 

Complete List of Authors: Dostal, Petr; Charles University in Prague, Faculty of Mathematics 
and Physics, Department of Probability and Mathematical Statistics 

Keywords: 
Utility Functions, Trading Strategies, Portfolio Optimization, 
Transaction Costs 

JEL Code: 
G11 - Portfolio Choice < G1 - General Financial Markets < G - 
Financial Economics 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 
to PDF. You must view these files (e.g. movies) online. 

QF_Dostal_final.tex 
harvard.sty 

 
 

 

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance



For Peer Review
 O

nly
INVESTMENT STRATEGIES IN THE LONG RUN
WITH PROPORTIONAL TRANSACTION COSTS

AND HARA UTILITY FUNCTION

Petr Dostál

Charles University
Faculty of Mathematics and Physics

Department of Probability and Mathematical Statistics

e-mail: dostal@karlin.mff.cuni.cz

Abstract. We consider an agent who invests in a stock and
a money market in order to maximize the asymptotic behaviour
of expected utility of the portfolio market price in the presence of
proportional transaction costs. The assumption that the portfolio
market price is a geometric Brownian motion and the restriction
to utility function with hyperbolic absolute risk aversion (HARA)
enable us to evaluate interval investment strategies. It is shown
that the optimal interval strategy is also optimal among a wide
family of strategies and that it is optimal also in a time changed
model in case of logarithmic utility.

Key words: Trading strategies, transaction costs, asymptotic
utility

Mathematics Subject Classification (1991): 60H30, 60G44, 91B28

1. Introduction

One of possible approaches to the problem of investment is to max-
imize the expected value of certain transformation of investor’s wealth
at a certain time in the future. It is reasonable to assume that such
a transformation should be strictly increasing and concave and it is
referred as a utility function. One of the most desirable such a func-
tion is the logarithmic one and it dates at least to Daniel Bernoulli in
the eighteen century. It is known as Kelly criterion, see Kelly (1956),
whose objective was to maximize the exponential growth rate rather
than to use any utility function. Breiman (1961), Algoet and Cover
(1988) showed that maximizing logarithmic utility leads to asymptoti-
cally maximal growth rate and asymptotically minimal expected time

The work is a part of the research project MSM 0021620839 financed by
MSMT and partly supported by the Czech Science Foundations under grant GAČR
201/04/P257.
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to reach a presigned goal. Bell and Cover (1988) showed that the ex-
pected log-optimal portfolio is also game theoretically optimal in a sin-
gle play or in multiple plays of the stock market for a wide variety of
pay off functions. Browne and Whitt (1996) used Bayesian approach
in order to derive optimal gambling and investment policies for cases in
which the underlying stochastic process has parameter values that are
unobserved random variables. For further properties of Kelly criterion
see Bell and Cover (1980), Rotando and Thorp (1992), Thorp (1997),
Janeček (1999). Although this criterion has a lot of desirable prop-
erties, Samuelson (1971) and Thorp (1975) showed that maximizing
geometric mean does not mean to end with a higher utility after a long
time of investment. It is sufficient to consider other than logarithmic
utility function with hyperbolic absolute risk aversion (HARA).
This paper is devoted to the simplest problem of investment in the

presence of proportional transaction costs. We assume that the stock
market price behaves as a geometric Brownian motion and we consider
an investor who does not consume, but he/she withdraw from the mar-
ket at the end of a very large time horizon. The classical approach to
the problem of investment is to maximize the expected “present value”
of future consumption over a finite or infinite horizon. This is the ap-
proach chosen by Merton (1971) in case of zero transaction costs and it
leads to the strategy that keeps a constant proportion of total wealth
held in the stock. This proportion is called Merton proportion and it is
denoted by θγ here. For more general problems see Karatzas, Lehoczky,
Sethi and Shreve (1986), Karatzas (1989). Magill and Constantinides
(1976) formulated the problem in the presence of transaction costs and
conjectured that the proportion of the total wealth invested in the stock
should be kept within a certain interval. This problem was solved un-
der restrictive conditions by Davis and Norman (1990) and analyzed by
Shreve and Soner (1994). Constantinides (1986) numerically computed
the effect of transaction costs on the value function for the problem and
the width of the no-transaction region. His conjecture has been made
precise by formal power series expansions in a variety models. A rig-
orous justification for the leading term in the expansion is given in
Janeček and Shreve (2004). Morton and Pliska (1995) studied optimal
portfolio management policies for an investor who must pay a trans-
action cost equal to a fixed fraction of his portfolio value each time
he trades. Atkinson and Wilmott (1995) analyzed this model for the
case of small transaction costs. The model with fixed and proportional
transaction costs and multiple risky assets is studied in Liu (2004) from
the point of view of a constant absolute risk aversion (CARA) investor.
Another approach is to consider a model without consumption and

to maximize the expected utility at a certain time in the future. This
problem leads to a variational inequality studied by Zhu (1991), Zhu
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(1992) and solved numerically by Akian, Sulem and Séquier (1995) and
Akian, Sulem, Séquier and A. Aboulalaa (1995).
Finally, the third approach is to maximize the asymptotic behaviour

of expected utility as the end of the time horizon goes to infinity. This
approach was chosen by Akian, Sulem and Taksar (2001) in case of log-
arithmic utility function. They also showed that such a problem can be
interpreted as a limiting case of the classical investment-consumption
problem and provide an explicit solution of one-risky-asset problem in
case of logarithmic utility function in subsection 9.2.
Our approach is the third one and it is based on our ability to eval-

uate interval strategies in case of HARA utility functions. We find
the optimal one and show that the restriction to certain strategies has
not excluded the best one. The corresponding optimization problem is
maximization of the growth rate of certainty equivalent CE of investor’s
wealth, see (2.3) for its specification.

2. Notation and model set-up

Suppose that the stock market price Xt is a geometric Brownian
motion, driven by a Brownian motion (Wt, t ≥ 0), with

(2.1) dXt = µXt dt+ σXt dWt, X0 = x0 > 0,

where µ ∈ R and σ > 0. Denote by Yt the portfolio market price
at time t ≥ 0 and by Gt the position of our investor in the market,
i.e. Gt is the proportion of total wealth held in the stock at time t ≥ 0.
The investor may invest in a risky and non-risky asset. The amount
of money invested in non-risky asset is equal to Yt(1 − Gt). Further,
denoting Ht the number of shares present in the portfolio, we can
express the stock part of the portfolio market price in two following
forms GtYt = HtXt.
We assume that the deposit part is not discounted. We suppose that

we pay (1 + b)-multiple of the stock market price in order to obtain
the stock. On the other hand, we obtain (1 − c)-multiple of the stock
market price, when we sell it. We consider b ∈ (0,∞) and c ∈ (0, 1).
When we buy or sell the stock, the following value remains the same,

Yt(1 + bGt) = Yt + bHtXt, Yt(1− cGt) = Yt − cHtXt,

respectively. In particular, the investor is able to withdraw from the
market with positive portfolio market price after withdrawing if and
only if the position Gt ∈ (−1/b, 1/c). We require a little bit more, we
restrict ourselves to such strategies that Gt does not leave a compact
set in (−1/b, 1/c) and that EY δ

t < ∞ holds for every δ < 0 and t ≥ 0.
This can be viewed as technical assumption and these conditions deter-
mine the class of admissible strategies. The controls are the processes
describing the amount of shares bought and sold on [0, t) denoted by
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H+1 (t) and H−
1 (t), respectively. Then the portfolio market price can be

computed by (3.2).
We will consider only utility functions with hyperbolic absolute risk
aversion (HARA) Uγ(x) = 1

γ
xγ if γ < 0 and U0(x) = lnx. The case

γ ∈ (0, 1] is omitted, since it leads to a utility function bounded from
below. Further denote eγ(x) := Uγ(ex), then Uγ(y) = eγ(ln y). For
simplicity, we assume that Y0 = y0 > 0 is a deterministic random
variable.
The aim of this paper is to find f ∈ C2(−1/b, 1/c), ν ∈ R and

a special strategy such that (2.2) is a supermartingale when considering
any admissible strategy and such that

(2.2) eγ(lnYt − f(Gt)− νt) is a martingale,

if we consider the special one. It follows from the moreover part of
theorem 5.7 that the special strategy is admissible. Our approach is
associated with the following optimization problem

(2.3) max lim inf
t→∞

1
t
ln CEt, where CEt := U−1γ EUγ(Yt)

over all admissible strategies, where lim inf can be replaced also by
lim sup . The approach (2.2) enable us to prove a little bit more, than
that the special strategy solves (2.3), see (2.5),(2.4) and (2.6).

Remark 2.1 Let us consider two admissible strategies with the port-
folio market prices Yt and Ŷt such that the second one is special in sense
(2.2). Since we assume that f is a continuous function on (−1/b, 1/c)
and that Gt does not leave a compact set in (−1/b, 1/c), we get that
f(Gt) is a bounded process, which balances the infinitesimal increment
of expected utility corresponding to different current positions Gt. In
what follows, we show that ν is the desired maximum (2.3) reached by
the special strategy. Moreover, we will see that

EUγ(Yt) ≤ Uγ(exp{νt+O(1)}) = eγ(νt+O(1))(2.4)

EUγ(Ŷt) = Uγ(exp{νt+O(1)}) = eγ(νt+O(1))(2.5)

as t →∞, i.e. the certainty equivalent of the portfolio market price Ŷt

corresponding to the special strategy is exp{νt+O(1)} as t →∞ and
ν is the rate of this exponential trend.
The certainty equivalent corresponding to a random variable V and
a utility function U is a value v giving the same expected utility as V,
i.e. U(v) = EU(V ).
Let Ĝt stand for the position corresponding to the special strategy.

If γ = 0 or if γ < 0, then the martingale property (2.2) with Ût :=
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ln Ŷt − f(Ĝt)− νt gives that

E ln Ŷt = νt+ E[f(Ĝt)− f(Ĝ0)] + ln y0 = νt+O(1),

EUγ(Ŷt) = Eeγ(ln Ŷt − f(Gt))e
O(1) = exp{γ[νt+O(1)]}Eeγ(Ût)

= exp{γ[νt+O(1)]}Eeγ(Û0) = eγ(νt+O(1))

respectively, and it is nothing else but (2.5). Similarly, the supermartin-
gale property gives (2.4). In particular, we have that

(2.6) lim sup
t→∞

1
t
lnU−1γ EUγ(Yt) ≤ lim

t→∞

1
t
lnU−1γ EUγ(Ŷt) = ν.

See corollary 6.5 and theorem 4.4 that there are α < β such that
0, 1 /∈ [α, β] ⊆ (−1/b, 1/c) and f ∈ C2(−1/b, 1/c), ν ∈ R such that
eγ(lnYt − f(Gt) − νt) is a supermartingale when considering any ad-
missible strategy and that it is a martingale in case that we just keep
the position Gt within the interval [α, β], i.e. we do not trade when
Gt ∈ (α, β), but we trade in order to ensure that Gt ∈ [α, β] holds for
every t > 0.
The values α, β can be obtained from (6.7), the corresponding func-
tions ξ± are defined in remark 4.2 and the parameter ωγ is the unique
root of the equation I(ωγ) + ln 1+b

1−c
= 0 on certain interval (0, ω̃γ),

where I is defined by (6.4). The rate ν of the exponential trend of the
certainty equivalent is given by the formula ν = 1−γ

2 σ2(θ2γ − ω2γ).

The following section is devoted to the dynamics in a model, where
the agent can invest into one or more risky assets, but pays the trans-
action costs only for the first one, which of cause covers the case of this
paper and also of the forthcoming one.
Section 4 is devoted to the optimality conditions in terms of the

balancing function f and it culminates by theorem 4.4. In section 5,
we evaluate interval strategies and we prove the main theorem of this
section, theorem 5.7. In section 6, we prove existence of certain value
of parameter ωγ, which determine by (6.7) the optimal strategy. The
last section contains concluding remarks.

3. Dynamics in multidimensional model

We are going to consider the case when we have more than one stock
in the market and we pay the transaction costs only for the first one
in order to ensure that the statements are so general that they can be
used also in Dostál (2006). We write xT for the transposition of x and
f ′ for the derivative of f. We refer the reader, who is not familiar with
stochastic integration, to Chapter 3 in Karatzas and Shreve (1991) for
the corresponding theory.
We switch to the n-dimensional model of stock market price given by

(3.1). Let Ft be an augmented filtration andW (t) be an n-dimensional
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Ft-Wiener process. Further, we assume that the stock market price is
an n-dimensional Ft-semimartingale with stochastic differential

(3.1) dX(t) = X(t)µ dt+ X(t)Σ
1
2 dW (t), X(0) = x ∈ (0,∞)n,

where X(t) := diag X(t) and Σ1/2 ∈ Rn×n is a positively definite ma-
trix such that Σ

1
2Σ

1
2 =: Σ and µ ∈ Rn. Further, denote by H(t) =

(H1(t), · · · , Hn(t))
T the vector of numbers of shares of each stock and

by G(t) = (G1(t), · · · , Gn(t))
T the vector of the positions of our in-

vestor in the market. Put G(t) := diag G(t), H(t) := diag H(t). Then
Y (t)G(t) = H(t)X(t) = X(t)H(t).
We restrict ourselves to the strategies such that Y (t) > 0 and G1(t) ∈
(−1/b, 1/c) hold for every t ≥ 0 almost surely and we always assume
that the transaction costs at time t are paid at the next moment after t.
Let H+1 (t) and H−

1 (t) denote the sum of shares of the first stock bought
and sold on the time interval [0, t), respectively. These processes will
be referred to as the control processes. We assume that these processes
are non-decreasing Ft-adapted left-continuous with right-hand limits.
Further, we assume that Hi(t), Gi(t) and Y (t) are locally bounded Ft-
progressive measurable processes for 1 ≤ i ≤ n. We are going to show
some basic facts such as H+1 (t), H

−
1 (t) are finite almost surely.

Lemma 3.1 Let Y (t) > 0, G1(t) ∈ (−1/b, 1/c) hold for every t ≥ 0
almost surely. Then H+1 (t), H

−
1 (t) < ∞ and

(3.2) Y (t) = y0 +
∫ t

0 H(s)T dX(s)− bX1(s) dH+1 (s)− cX1(s) dH−
1 (s)

hold for every t ≥ 0 almost surely, provided that L :=
∫

X(t)−1dX(t)
is a continuous Ft-semimartingale. We do not assume (3.1) now.

Proof. Obviously, Ỹ := y0 +
∫

H(t)TdX(t) ≥ Y hold at each t ≥ 0
almost surely and Ỹ (t) is the portfolio market price at time t corre-
sponding to zero transaction tax. Further, T (t) :=

∫ t

0 X1(s)[b dH+1 (s)+
c dH−

1 (s)] denotes the total transaction costs on [0, t). By definition of
the portfolio market price Y (t) = Ỹ (t)−T (t) and therefore (3.2) holds
for every t ≥ 0 almost surely, since we pay the transaction costs cor-
responding to time t at the next moment after t. Since Ỹ (t) < ∞
and Y (t) > 0 hold for every t ≥ 0, we obtain that T (t) = Ỹ (t) −
Y (t) < ∞ holds for every t ≥ 0 almost surely and therefore H+1 (t) ≤
T (t)/[bmins∈[0,t]X1(s)] < ∞ and H−

1 (t) ≤ T (t)/[cmins∈[0,t]X1(s)] <
∞ hold for every t ≥ 0 almost surely. �

Remark 3.2 We are going to compute with stochastic differentials
as every integrator is a continuous process. It happens in case that
the control processes H1(t)+ and H1(t)− have no jumps. If this is
not the case, we denote ∆± := {s ∈ [0,∞), H±

1 (s) 6= H±
1 (s+)} the

set of all points, where H+1 (t) and H−
1 (t) jumps, respectively. We
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restrict ourselves to the strategies that do not sell and buy the first
stock at the same time. In particular, we assume that ∆+ and ∆−

are disjoint sets. If we buy or sell the stock, then Y (t)(1 + bG1(t)) or
Y (t)(1 − cG1(t)) remains the same before and after the transaction,
respectively. Further, we put

X(s, u) := X(s), G(s, u) := (1− u)G(s) + uG(s+)(3.3)

Hi(s, u) :=
Y (s, u)Gi(s, u)

Xi(s, u)
, Y (s, u) := Y (s)

ϑ±(G1(s, u))
ϑ±(G1(s))

(3.4)

if s ∈ ∆± and u ∈ [0, 1], where ϑ+(x) := b/(1 + bx) and ϑ−(x) :=
c/(1 − cx). We have chosen formula (3.4) to define Y (s, u) in order
to ensure that the values Y (s, u)/ϑ±(G1(s, u)) remain constant in u if
s ∈ ∆± in order to be able to interpret Y (s, u) as the portfolio market
price at time s provided that we have executed only those transactions
at time s that change the first position G1 from G1(s, 0) to G1(s, u)
and provided that we pay the transaction costs immediately.
If M is one of the processes X, Y, G1, H1 or their function and f :

R3n+2 → R is a Borel measurable function, we define the following
integral

∫ t

s
f(v, X(v), Y (v), G(v), H(v)) dM(v) as

(3.5)
∫ t

s

f(X (v)) dM c(v) +
∑

v∈[s,t)∩∆±

∫ 1

0
f(X (v, u))M(v, du),

whenever (3.5) is defined, whereM c denotes the continuous part of M,
X (v, u) := (v, X(v, u), Y (v, u), G(v, u), H(v, u)) and where X (v) stands
for X (v, 0). Further, we define

G+1 (t) :=
∫ t

0 Y (s)−1(1 + bG1(s))X1(s) dH+1 (s)

G−
1 (t) :=

∫ t

0 Y (s)−1(1− cG1(s))X1(s) dH−
1 (s)

and we extend the definition (3.5) also to the case when M = G+1 or
M = G−

1 . To justify using Itô formula for continuous semimartingales,
we are to show that

∆F (X (v)) := F (X (v+))− F (X (v)) =
∫ 1
0 ∇F (X (v, u))X (v, du)T

if v ∈ ∆± and F ∈ C1(X (v, u), u ∈ [0, 1]), but it follows immediately
since the components of X (v, u) are continuous processes on [0, 1] in
u with finite variation. Note that this definition of integration is con-
sistent with the usual definition if the integrand is the stock market
price or its function, since it does not change during transactions, and
therefore we have not changed the meaning of the statement and of the
proof of lemma 3.1. Further, we will abbreviate the notation

h±(G1(t)) ∗ dG±
1 (t) := h+(G1(t)) dG+1 (t) + h−(G1(t)) dG−

1 (t)
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whenever h+ and h− are continuous functions on (−1/b, 1/c). Then we
obtain from (3.2) and the definition of G±

1 that

(3.6) Y (t)−1dY (t) = G(t)TX(t)−1dX(t)− ϑ±(G1(t)) ∗ dG±
1 (t).

Further, denote e1 ∈ R the column vector consisting of 1 in the first
row and 0 in the remaining ones.

Lemma 3.3 Let Y (t) > 0, G1(t) ∈ (−1/b, 1/c), let L(t) be a contin-
uous Ft-semimartingale such that X(t)−1dX(t) = dL(t). Then

dG1(t) = e
T

1[G(t)−G(t)G(t)T ][dL(t)−
n∑

j=1

Gj(t) d〈L, Lj〉]± dG±
1 (t).

In particular, if (3.1) holds, we have that

(3.7) dG1(t) = B1(G(t)) dt+ S1(G(t)) dW (t) + dG+1 (t)− dG−
1 (t),

where B1(x) := e
T

1B(x), S1(x) := e
T

1S(x) and

B(x) = [xx− xxT ][µ− Σx], S(x) = [xx− xxT ]Σ
1
2 .

Proof. By Itô formula, we obtain from (3.6) that

Y (t) dY (t)−1 =− Y (t)−1dY (t) + Y (t)−2d〈Y 〉(t)(3.8)

= −G(t)T [dL(t)−
n∑

j=1

Gj(t) d〈L, Lj〉(t)] + ϑ±(G1(t)) ∗ dG±
1 (t).(3.9)

Further, we obtain from the definition of G±
1 (t) that

(3.10) X1(t) dH1(t) = ±Y (t)[1∓G1(t)ϑ±(G1(t))] ∗ dG±
1 (t)

and therefore G1(t)Y (t) dY (t)−1 + Y (t)−1X1(t) dH1(t) is equal to

−G1(t)G(t)
T [dL−

n∑
j=1

Gj(t) d〈L, Lj〉] + dG+1 (t)− dG−
1 (t).(3.11)

Further, Y (t)−1H1(t) dX1(t) = e
T

1G(t) dL(t) and therefore

(3.12) H1(t) d〈X1, Y −1〉(t) = −eT1G(t)
n∑

j=1

Gj(t) d〈L, Lj〉(t).

Since G1(t) = Y (t)−1H1(t)X1(t) and H1(t) is of locally finite variation,
we obtain by Itô formula that

dG1(t) = Y (t)−1X1(t) dH1(t) + Y (t)−1H1(t) dX1(t)(3.13)

+G1(t)Y (t) dY (t)−1 +H1(t) d〈X1, Y −1〉(t)(3.14)

= eT1[G(t)−G(t)G(t)T ][dL(t)−
n∑

j=1

Gj(t) d〈L, Lj〉]± dG±
1 (t).(3.15)

�
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Lemma 3.4 Let f ∈ C2(−1/b, 1/c) and ν ∈ R. Let Y (t) > 0, G1(t) ∈
(−1/b, 1/c) hold for every t ≥ 0 almost surely. Then Ut := lnYt −
f(Gt)− νt is an Ft-semimartingale with

(3.16)
deγ(U(t))
exp{γUt}

= dν
f (G(t)) dt+vf (G(t)) dW (t)+δf

±(G1(t))∗dG±
1 (t),

where vf (x) := x
TΣ1/2 − f ′(x)S1(x), x := e

T

1x, δ
f
±(x) := −ϑ±(x)∓ f ′(x)

dν
f (x) := d(x)− ν − f ′(x) eT1B̃(x)−

1
2
[f ′′(x)− γf ′(x)2]S1(x)S1(x)

T

B̃(x) := [xx− xxT ][µ− (1− γ)Σx], d(x) := µ
Tx− 1− γ

2
xTΣx.

Proof. By Itô formula, e−γU(t) deγ(U(t)) = dU(t) + γ
2 d〈U〉(t) equals to

deγ(lnY (t))
Y (t)γ

− df(G1(t))− ν dt+
γ

2
d〈f(G1)〉(t)− γ d〈lnY, f(G1)〉(t).

By Itô formula, we easily obtain from (3.6) that

Y (t)−γdeγ(lnY (t)) = d(G(t)) dt+G(t)TΣ1/2 dW (t)−ϑ±(G1(t))∗dG±
1 (t)

and therefore it is seen from (3.7) that the terms containing dW (t)
agree. Similarly, we can see that the terms containing dG±

1 (t) also
agree. Now, it is sufficient to compute

γ〈lnY, f(G1)〉(t) = γf ′(G1(t)) e
T

1S(G(t))Σ
1
2G(t) dt

= f ′(G1(t)) e
T

1[B̃(G(t))−B(G(t))] dt

in order to verify that the terms containing dt also agree. �

Lemma 3.5 Let K ⊆ (−1/b, 1/c) × Rn−1 be a compact set. Let
Y (t) > 0 and G(t) ∈ K hold for every t ≥ 0 almost surely and f ∈
C2(−1/c, 1/b).
(i) Let −1/b < α < β < 1/c and ν ∈ R. Further assume that

G1(t) ∈ [α, β], dν
f (G(t)) = 0 and∫ t

0 δf
+(G1(s)) dG+1 (s) =

∫ t

0 δf
−(G1(s)) dG−

1 (s) = 0

hold for every t ≥ 0 almost surely. Then EY (t)δ < ∞ holds for every
δ < 0 and t ≥ 0. Further, eγ(U(t)) = V (t) holds for every t ≥ 0 almost
surely, where V is given by (3.17).
(ii) Let EY (t)δ < ∞ hold for every δ < 0 and t ≥ 0. Then

(3.17) V := eγ(U(0)) +
∫
exp{γU(s)} vf (G(s)) dW (s)

is an Ft-martingale.

Proof. (i) By lemma 3.4, we get that deγ(U(t)) = eγU(t)dZ(t), where
Z := U(0)+

∫
vf (G(s)) dW (s) and therefore eγ(U(t)) = V (t) holds for

every t ≥ 0 almost surely. If γ = 0, we obtain that U = eγ(U) = V = Z
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hold almost surely. If γ < 0, we get that exp{γU(t)} = exp{γZ(t) −
γ2

2 〈Z〉(t)} holds for every t ≥ 0 almost surely. Hence, we obtain that
(3.18) exp{δU(t)} = exp{δZ(t)− δ2〈Z〉(t)/2} exp{δ(δ − γ)〈Z〉(t)/2}
holds for every t ≥ 0 almost surely and (3.18) is a product of an ex-
ponential martingale and a process which is bounded on [0, t] for every
t ≥ 0 almost surely, since vf (G(t)) vf (G(t))

T is a bounded process. It
follows from definition of U(t) = lnY (t)− f(G1(t))− νt that

EY (t)δ ≤ EeδU(t) exp{δ(min[α,β] |f |+ νt)} < ∞.

(ii) Obviously, We obtain from assumption and the inequality eδ(x) ≤
x that −∞ < Eeδ(lnY (t)) ≤ E lnY (t) hold for every δ < 0 and
therefore lnY (t) integrable from below. Since 2G(t)Tµ−G(t)TΣG(t) ≤
µTΣ−1µ holds for every t ≥ 0, we obtain from Itô formula that
(3.19) d lnY (t)− ν̃ dt ≤ G(t)TΣ

1
2dW (t), where ν̃ := µ

TΣ−1µ/2.

By assumption G(t)TΣ
1
2 is a bounded process almost surely and there-

fore
∫

G(t)TΣ
1
2dW (t) is a martingale. Hence, we get by (3.19) that

lnY (t) − ν̃ t is a supermartingale and Jensen inequality gives that
eδ(lnY (t) − ν̃ t) = 1

δ
Y (t)δe−δν̃ t is also a supermartingale for every

δ < 0, since it is integrable by assumption. In particular, EY (s)2γ ≤
EY (t)2γeη(t−s) holds for every s ∈ [0, t], where η := −2γ ν̃ ≥ 0. Further,
E〈V 〉(t) = E

∫ t

0 e2γU(s) vf (G(s)) vf (G(s))
T ds ≤ tKt · EY (t)2γeηt < ∞,

whereKt is an upper bound of the following process vf (G(s)) vf (G(s))
T ·

exp{−2γ[f(G1(s)) + νs]} on [0, t]. Hence, Vt is an L2-martingale as
eγ(U(0)) is a bounded random variable. �

Remark 3.6 We are going to rewrite the main formulas of this
section that are used later on into the one-dimensional form. First, we
put G±

t := G±
1 (t). Then (3.6) and (3.7) can be rewritten into the form

Y −1
t dYt = Gt[µ dt+ σt dWt]− ϑ+(Gt) dG+t − ϑ−(Gt) dG−

t ,(3.20)

dGt = Gt(1−Gt)[(µ− σ2Gt) dt+ σ dWt] + dG+t − dG−
t ,(3.21)

respectively. In lemma 3.4, we get vf (x) = σx[1− (1− x)f ′(x)] and

−dν
f =
1
2

S2(x)[f ′′(x)− γf ′(x)2] + B̃(x)f ′(x)− d(x) + ν(3.22)

with d(x) = µx− 1−γ
2 σ2x2 and

S(x) = σx(1− x), B̃(x) = x(1− x)[µ− (1− γ)σ2x].(3.23)
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4. Dynamics of interval strategies in one-dimensional
model

We focus on such strategies that do not trade, when the position Gt

is inside the interval (α, β) and such that buy or sell the stock in order
to keep the position Gt within the interval [α, β]. These strategies are
called interval strategies here and denoted as [(α, β)]. Their existence
is an indivisible part of the investment-consumption theory, since the
optimal strategies are of this type in this theory in case of proportional
transaction costs, see also theorem 6.4 in Dostál (2006). In this section,
we use only one-dimensional processes and so we can use the lower index
for the time argument.
Let us look at the case when the transaction costs are zero. Let us

recall that θγ :=
σ−2µ
1−γ
denotes the Merton proportion. It can be easily

verified that eγ(lnYt− 1−γ
2 σ2θ2γ) is a supermartingale when considering

any strategy that keeps the position within a compact interval in R and
it is a martingale when applying the strategy [(θγ, θγ)]. The strategy
[(θγ, θγ)] is no-trading if θγ = 0 or θγ = 1. In these two cases, the above
mentioned strategy is also optimal in the presence of transaction costs
and this is the reason why we consider only strategies [(α, β)] such that
α < β and 0, 1 /∈ [α, β] ⊆ (−1/b, 1/c) and the case θγ /∈ {0, 1}.

Theorem 4.1 Let −1/b < α < β < 1/c, ν ∈ R be such that there
exists f ∈ C2[α, β] such that dν

f (x) = 0 holds for every x ∈ [α, β] and

δf
+(α) = δf

−(β) = 0, then eγ(Ut) is an Ft-martingale and

ν(α, β) := lim
t→∞

1
t
e−1γ Eeγ(lnYt) = ν

when applying the strategy [(α, β)]. In particular, if α ≤ π+ < π− ≤ β

are such that δf
+(π+) = δf

−(π−) = 0, then ν(π+, π−) = ν(α, β).

Proof. Obviously, f can be extended to an element of C2(−1/b, 1/c).
By lemma 3.5, the process eγ(Ut) is an Ft-martingale and therefore
e−1γ Eeγ(Ut) = e−1γ Eeγ(U0) = o(t) as t →∞. Hence,

lim
t→∞

1
t
e−1γ Eeγ(lnYt) = lim

t→∞

1
t
e−1γ Eeγ(lnYt − f(Gt)− νt) + ν = ν.

�

Remark 4.2 Further, we introduce

ξ+(x) := x
1 + b

1 + bx
, ξ−(x) := x

1− c

1− cx
.

If x > 0, then ξ+(x) denotes the proportion between total costs and
the initial capital necessary for reaching the position x > 0 and ξ−(x)
denotes the proportion between the income and final wealth of the
investor when he/she withdraws from the market provided that his/her
initial position was x > 0.
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Lemma 4.3 Let 0, 1 /∈ [α, β] ⊆ (−1/b, 1/c) be such that ξ+(α) <
θγ < ξ−(β) and such that ν(u, β) 6= ν(α, β) 6= ν(α, u) whenever u ∈
(α, β). Let f ∈ C2(−1/b, 1/c) and ν ∈ R be such that

(4.1) δf
+(y) = δf

−(z) = dν
f (x) = 0

hold for every y ∈ (−1/b, α], z ∈ [β, 1/c) and x ∈ [α, β]. Then

(4.2) δf
+(y) < 0, δf

−(z) < 0, dν
f (x) < 0

hold for every y ∈ (α, 1/c), z ∈ (−1/b, β) and x ∈ (−1/b, 1/c)\[α, β].

Proof. Let x ∈ (−1/b, 1/c)\[α, β]. It follows from the assumptions that
f ′′(x) = f ′(x)2. Then

(4.3) −dν
f (x) =

1− γ

2
σ2[θγ − x(1− (1− x)f ′(x))]2 + ν − 1− γ

2
σ2θ2γ.

If y ∈ (−1/b, α) and z ∈ (β, 1/c), then

ξ(y, f ′(y)) = ξ+(y) < ξ+(α) < θγ < ξ−(β) < ξ−(z) = ξ(z, f ′(z)),

where ξ(x, h) := x[1 − (1 − x)h], and therefore dν
f (y) < dν

f (α) = 0 =
dν

f (β) > dν
f (z), i.e. dν

f (x) < 0 holds for every x ∈ (−1/b, 1/c)\[α, β].
Obviously, x ∈ (−1/b, 1/c) 7→ −ϑ+(x)−ϑ−(x) is a negative function

and it is equal to δf
− on (−1/b, α] and to δf

+ on [β, 1/c). Hence, we are
now only to show that δf

+, δf
− are negative also on (α, β). As we know,

δf
+(β) < 0 and δf

−(α) < 0. Since δf
+, δf

− are continuous functions, it is
sufficient to show that there exists no x ∈ (α, β) such that δf

+(x) = 0 or
δf
−(x) = 0. If such an x exists, then f ′(x) = −ϑ+(x) or f ′(x) = ϑ−(x).
Then ν(α, β) is by theorem 4.1 equal to ν(x, β) or ν(α, x), respectively,
which is not possible by assumption. �

Theorem 4.4 Let −1/b < α < β < 1/c, ν ∈ R, f ∈ C2(−1/b, 1/c)
be such that (4.1) hold for every y ∈ (−1/b, α], z ∈ [β, 1/c) and x ∈
[α, β] and (4.2) for every x ∈ (−1/b, 1/c)\[α, β], y ∈ (α, 1/c) and
z ∈ (−1/b, β). Let us consider a strategy that keeps Gt within a compact
interval in (−1/b, 1/c) such that EY δ

t < ∞ holds for every δ < 0, t ≥ 0.
Then eγ(Ut) is an Ft-supermartingale and it is an Ft-martingale if the
strategy [(α, β)] is applied. Moreover, if γ = 0, then

(4.4) ν = lim
t→∞

1
t
ln Ŷt ≥ lim sup

t→∞

1
t
lnYt

holds almost surely, where Ŷt denotes the portfolio market price at time
t corresponding to strategy [(α, β)] here.

Proof. If [(α, β)] is applied, then eγ(Ut) is an Ft-martingale by theo-
rem 4.1. Let us consider a strategy that keeps Gt within a compact
interval in (−1/b, 1/c) and such that EY δ

t < ∞ holds for every δ < 0
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and t ≥ 0. By lemma 3.5, V = eγ(U0) +
∫

eγUsvf (Gs) dWs is an Ft-
martingale. By lemma 3.4

(4.5) eγ(Ut)− Vt =
∫ t

0 eγUs [dν
f (Gs) ds+ δf

±(Gs) ∗ dG±
s ]

holds for every t ≥ 0 almost surely. By assumption, the right-hand
side of (4.5) is a non-increasing process starting from 0. In particular,
eγ(Ut) is an integrable from above for all t ≥ 0 also in case γ = 0. If
γ < 0, eγ(Ut) is by definition of eγ bounded from above. If γ < 0, it
follows from assumption that EY (t)δ < ∞ holds for every δ < 0 ≤ t.
If γ = 0, we obtain that EUt ≥ eδ(Ut) > −∞ by the same assumption
and the following inequality x ≥ eδ(x) whenever δ < 0. Now, we are
going to prove the moreover part of the statement. Since vf (Gs) is
a bounded process, we get by BDG-inequality, see Proposition 15.7 in
Kallenberg (1997), that there exists C2 ∈ (0,∞) such that

P (max
s≤t

|Vs| ≥ εt) ≤ Emaxs≤t |Vs|2

ε2t2
≤ C2

ε2t2

∫ t

0
v2f (Gs) ds → 0

as t → ∞ whenever ε > 0. Hence, Vt/t → 0 as t → ∞ almost surely.
Then (4.4) follows from (4.5) and the definition of Ut = lnYt−f(Gt)−
νt, since the right-hand side of (4.5) is a non-decreasing process gener-
ally and it is zero when applying the strategy [(α, β)]. �

5. Evaluation of interval strategies

In this section, we assume that α < β are fixed and satisfy 0, 1 /∈
[α, β] ⊆ (−1/b, 1/c). Further, we put ρ := (1 − γ)θγ − 1

2 = σ−2µ − 1
2 .

First, we introduce two lemmas whose verification is left to the reader.

Lemma 5.1 Let γ < 0. In case that ν 6= −σ2

2
ρ2

γ
, the equation (5.1)

(5.1)
1
2

g′′(x)S2(x) + B̃(x)g′(x) + γ

[
µx− 1− γ

2
σ2x2 − ν

]
g(x) = 0

has the fundamental system

(5.2) g1,2(x) = |1/x− 1|ρ∓∆ |1− x|γ

where ∆ ∈ C is such that ν = σ2

2
∆2−ρ2

γ
, on intervals that do not contain

the points 0 and 1. In case that ν = −σ2

2
ρ2

γ
, the equation (5.1) has the

following fundamental system

(5.3) g2(x) = g1(x) ln

∣∣∣∣ x

1− x

∣∣∣∣ , where g1(x) =

∣∣∣∣1x − 1
∣∣∣∣ρ |1− x|γ

on intervals not containing 0 and 1.
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Lemma 5.2 Let ρ1 < ρ2, denote [l, r] := {x2, x ∈ [ρ1, ρ2]}. Then
the following function

D : D 7→
∫ ρ2

ρ1

dx

x2 −D

is a bijection with domain R\[l, r] and range R\{0}.

Remark 5.3 If γ < 0, we will employ the following notation ρα :=
ρ+ γξ+(α), ρβ := ρ+ γξ−(β) and define D(α, β) as the unique solution
(see lemma 5.2) to the equation

ln
1/α− 1
1/β − 1

=
∫ ρα

ρβ

dx

x2 −D(α, β)

if ρα 6= ρβ, i.e. ξ+(α) 6= ξ−(β), and as ρ2α = ρ2β if ρα = ρβ, i.e. ξ+(α) =
ξ−(β). Further, we put u(α, β) = (D(α, β)−ρ2)/γ. Then u(α, β) is the
unique solution to the equation

(5.4) ln
1/α− 1
1/β − 1

=
∫ ξ+(α)

ξ−(β)

dz

γz2 + 2ρz − u(α, β)

if ξ+(α) 6= ξ−(β) and u(α, β) = γξ2 + 2ρξ if ξ := ξ+(α) = ξ−(β).
If γ = 0, we define u(α, β) as the unique solution to (5.4) if ξ+(α) 6=

ξ−(β) and u(α, β) := 2ρξ if ξ := ξ+(α) = ξ−(β). In case γ = 0, the
right-hand side of (5.4) is equal to

1
2ρ
ln
2ρ ξ+(α)− u(α, β)
2ρ ξ−(β)− u(α, β)

if ρ 6= 0, to
ξ−(β)− ξ+(α)

u(α, β)
if ρ = 0.

Hence,

u(α, β) =

∣∣∣ β
1−β

∣∣∣2ρ ξ−(β)−
∣∣ α
1−α

∣∣2ρ ξ+(α)

1
2ρ

[∣∣∣ β
1−β

∣∣∣2ρ − ∣∣ α
1−α

∣∣2ρ] if ρ 6= 0(5.5)

=
ξ−(β)− ξ+(α)

ln
∣∣∣ β
1−β

∣∣∣− ln ∣∣ α
1−α

∣∣ if ρ = 0.(5.6)

Lemma 5.4 Let γ < 0, then there exists f ∈ C2[α, β] such that
equation (5.1) and the boundary conditions

(5.7) g′(α) = γϑ+(α)g(α), g′(β) = −γϑ−(β)g(β)

are satisfied with g(x) := eγ(−f(x)) and ν := σ2

2 u(α, β), where u is
given by formula (5.4).

Proof: We will show that there exists h ∈ C2[α, β] positive on [α, β]
such that

(5.8) g(x) := |x|−ρ|1− x|ρ+γh(x)/γ
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is a solution to (5.1) and (5.7). By lemma 5.1, the condition (5.1) will
be verified if we show that g is a linear combination of g1, g2 defined by
(5.2) or (5.3), respectively. The condition (5.7) can be rewritten into
the condition for the logarithmic derivative of function g

g′(x)
g(x)

= − ρ+ γx

x(1− x)
+

h′(x)
h(x)

in the form f ′(α) = − 1
γ

g′(α)
g(α) = −ϑ+(α) and f ′(β) = − 1

γ
g′(β)
g(β) = ϑ−(β).

These conditions are now of the form

(5.9)
h′(α)
h(α)

=
ρ+ γα[1 + ϑ+(α)(1− α)]

α(1− α)
=

ρα

α(1− α)

and h′(β)
h(β) =

ρ+γξ−(β)
β(1−β) =

ρβ

β(1−β) . Further, denote D := D(α, β).

If ρα = ρβ, define h(x) :=
∣∣ 1
x
− 1

∣∣−ρα =
∣∣ 1
x
− 1

∣∣−ρβ . If ρα 6= ρβ and
D = 0, then we put s := sign ρα = sign ρβ 6= 0 and

(5.10) h(x) := s ·
(
1
ρα

+ ln
1/α− 1
1/x− 1

)
= s ·

(
1
ρβ

+ ln
1/β − 1
1/x− 1

)
.

If D = −a2 < 0, we define h(x) := 2 sin(A(x)), where

A(x) := arccotg
(ρα

a

)
+ a ln

1/α− 1
1/x− 1

= arccotg
(ρβ

a

)
+ a ln

1/β − 1
1/x− 1

.

Further, we denote by coA the convex hull of a set A ⊆ R. If ρα 6= ρβ

and 0 < D < x2 holds for every x ∈ co{ρα, ρβ}, put ∆ :=
√

D· sign ρα 6=
0 and define h(x) := 2 sinh(B(x)), where B(x) is defined as

arccotgh
(ρα

∆

)
+∆ ln

1/α− 1
1/x− 1

= arccotgh
(ρβ

∆

)
+∆ ln

1/β − 1
1/x− 1

.

If ρα 6= ρβ andD > x2 holds for every x ∈ co{ρα, ρβ}, put ∆ :=
√

D > 0
and define h(x) := 2 cosh C(x), where

C(x) = arctgh
(ρα

∆

)
+∆ ln

1/α− 1
1/x− 1

= arctgh
(ρβ

∆

)
+∆ ln

1/β − 1
1/x− 1

.

In case ρα = ρβ, the logarithmic derivative of h obviously satisfies (5.9)
and function g1 is by lemma 5.1 a solution to (5.1).
If ρα 6= ρβ and D = 0, then 0 /∈ co{ρα, ρβ} and therefore sign ρα =
sign ρβ 6= 0. By definition of D in this case, ln 1/α−1

1/β−1 =
∫ ρα

ρβ

dx
x2
= 1

ρβ
−

1
ρα
and therefore (5.10) correctly defines function h, which obviously

satisfies (5.9). It is also obviously a positive function on [α, β], since
it is monotone and positive at both extreme points α and β. It is also
seen that function g defined by (5.8) is a linear combination of g1 and
g2, see (5.2) and (5.3).
In case D = −a2 < 0,

ln
1/α− 1
1/β − 1

=
∫ ρα

ρβ

dx

x2 + a2
=
1
a

[
arccotg

(ρβ

a

)
− arccotg

(ρα

a

)]
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and therefore function A is defined correctly. Applying the chain rule,
we easily verify that function h(x) = 2 sin(A(x)) satisfies (5.9). To
show that the function h is positive, we need to show that A(x) ∈
(0, π) holds for every x ∈ [α, β]. Since A(x) is a monotone function,
we have to verify only that A(α),A(β) ∈ (0, π), which is obviously
satisfied as arccotg attains values only in (0, π). Function g defined
by (5.8) is a (complex) linear combination of functions g1 and g2 with
∆ := ia if and only if h is a (complex) linear combination of functions
|1/x− 1|±ia = cos

(
a ln

∣∣ 1
x
− 1

∣∣)± i sin
(
a ln

∣∣ 1
x
− 1

∣∣) which obviously is,
by formula sin(u+ v) = sinu cos v + cosu sin v.

In case ρα 6= ρβ and D = ∆2 > 0, ln 1/α−1
1/β−1 is equal to∫ ρα

ρβ

dx

x2 −∆2
=
1
∆

[
arccotgh

(ρβ

∆

)
− arccotgh

(ρα

∆

)]
if x2 > ∆2 for every x ∈ co{ρα, ρβ} and to∫ ρα

ρβ

dx

x2 −∆2
=
1
∆

[
arctgh

(ρβ

∆

)
− arctgh

(ρα

∆

)]
if x2 < ∆2 for every x ∈ co{ρα, ρβ}. Therefore, the functions B or C
are defined correctly in these cases, respectively. Again by the chain
rule, we easily obtain that h satisfies (5.9). In case that D > x2 for
every x ∈ co{ρα, ρβ}, h is defined as 2 cosh(C(x)), which is obviously
a positive function. In case that D < x2 for every x ∈ co{ρα, ρβ}, h
is defined as 2 sinh(B(x)). Hence, h(x) is positive if and only if B(x)
is positive. Since B(x) is a monotone function, we only need to show
that B(α),B(β) > 0. This condition is satisfied, since the function
arccotgh is positive on (0,∞) and ∆ is defined so that ρα

∆ ,
ρβ

∆ > 0.
We have used sign ρα = sign ρβ, which follows from the condition that
0 < D < x2 for every x ∈ co{ρα, ρβ}, i.e 0 /∈ co{ρα, ρβ}. By defini-
tion of sinh and cosh, function h is a linear combination of functions
exp {±∆ ln |1/x− 1|} = |1/x− 1|±∆ and therefore function g defined
by (5.8) is a linear combination of functions g1 and g2. �

Remark 5.5 (a) The function h∞(x) := 1
1−x
is a solution to

(5.11) B(x)h(x) +
1
2

S2(x)h′(x) = µx− 1
2
σ2x2 − ν

with ν := 0 on intervals not containing 0 and 1. (b) The function

h(x) =

∣∣∣∣1x − 1
∣∣∣∣2u 1

x(1− x)
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satisfies 12h
′(x)S2(x) + h(x)B(x) = σ2(ρ− u)

∣∣ 1
x
− 1

∣∣2u on intervals not
containing 0 and 1. In particular, the function

h0(x) =

∣∣∣∣1x − 1
∣∣∣∣2ρ 1

x(1− x)

is a solution to (5.11) with the right-hand side zero. (c) Further,

h1(x) :=
k(x)

x(1− x)
, where k(x) =

1
2ρ

if ρ 6= 0

k(x) = ln

∣∣∣∣ x

1− x

∣∣∣∣ if ρ = 0

is a solution to (5.11) with the right-hand side σ2

2 .

Lemma 5.6 Let a0 ∈ R and ν + σ2

2 a1 = 0, then

h(x) := a0h0(x) + a1h1(x) + h∞(x)

is a solution to (5.11). Moreover, if

a0 = −
ξ−(β)− ξ+(α)∣∣∣ 1β − 1∣∣∣2ρ − ∣∣ 1

α
− 1

∣∣2ρ , a1 = −

∣∣∣ β
1−β

∣∣∣2ρ ξ−(β)−
∣∣ α
1−α

∣∣2ρ ξ+(α)

1
2ρ

[∣∣∣ β
1−β

∣∣∣2ρ − ∣∣ α
1−α

∣∣2ρ]
in case that ρ 6= 0 and

a0 =
ξ−(β) ln

∣∣ α
1−α

∣∣− ξ+(α) ln
∣∣∣ β
1−β

∣∣∣
ln

∣∣∣ β
1−β

∣∣∣− ln ∣∣ α
1−α

∣∣ , a1 = −
ξ−(β)− ξ+(α)

ln
∣∣∣ β
1−β

∣∣∣− ln ∣∣ α
1−α

∣∣ ,
in case ρ = 0, respectively, then h also satisfies the boundary conditions
h(α) = −ϑ+(α), h(β) = ϑ−(β).
In particular, there exists f =

∫
h(x) dx ∈ C2[α, β] such that

(5.12) B̃(x)f ′(x)+
1
2
S2(x)[f ′′(x)− γf ′(x)2] = µx− 1

2
σ2(1− γ)x2− ν

and

(5.13) f ′(α) = −ϑ+(α), f ′(β) = ϑ−(β).

hold in case that ν = σ2

2 u(α, β).

Proof: The first part of the statement immediately follows from re-
mark 5.5. The boundary conditions hold if and only if(

h0(α) h1(α)
h0(β) h1(β)

) (
a0
a1

)
+

( 1
1−α
1
1−β

)
=

(
− b
1+bα

c
1−cβ

)
.
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Multiplying the first row by α(1− α) and the second one by β(1− β),
we obtain  ∣∣ 1

α
− 1

∣∣2ρ k(α)∣∣∣ 1β − 1∣∣∣2ρ k(β)

  a0

a1

 =
 −ξ+(α)

−ξ−(β)

 .

Therefore the boundary conditions are satisfied if and only if a0

a1

 = 1
D

 k(β) −k(α)

−
∣∣∣ 1β − 1∣∣∣2ρ ∣∣ 1

α
− 1

∣∣2ρ
  −ξ+(α)

−ξ−(β)

 ,

where D :=
∣∣ 1
α
− 1

∣∣2ρ k(β)−
∣∣∣ 1β − 1∣∣∣2ρ k(α). The remaining part of the

statement follows from remark 5.3, which says that u(α, β) = −a1. �

Theorem 5.7 Suppose that the strategy [(α, β)] is applied, then

ν(α, β) := lim
t→∞

1
t
e−1γ Eeγ(lnYt) =

σ2

2
u(α, β),

where u(α, β) is defined by (5.4). Moreover, EY δ
t < ∞ holds for every

δ < 0.

Proof. By lemma 5.2, u(α, β) is defined well by (5.4). By lemma 5.4
there exists f ∈ C2[α, β] such that (5.12) and (5.13) hold with ν =
σ2

2 u(α, β) in case γ < 0. By lemma 5.6, such a function f exists in case
γ = 0. By theorem 4.1, ν(α, β) = ν, which is equal to σ2

2 u(α, β) and
eγ(lnYt − f(Gt)− νt) is an Ft-martingale. In particular, if γ < 0, and
t ≥ 0, we get that

EY γ
t = γEeγ(lnYt) ≤ γeγ(νt+m̂)Eeγ(lnYt − f(Gt)− νt)

= γeγ(νt+m̂)Eeγ(ln y0 − f(G0)) ≤ eγ(νt+m̂−m̌)yγ
0 < ∞,

where

m̂ := min{f(x);x ∈ [α, β]}, m̌ := max{f(x);x ∈ [α, β]}.

Since we only assume that α < β are such that 0, 1 /∈ [α, β] ⊆
(−1/b, 1/c) and that γ < 0, we immediately obtain that the more-
over part of the statement holds. It is sufficient to put γ := δ < 0 and
to apply the first part of the statement. �

6. Properties of function u

In this section, we are going to show that there exist α < β, ν ∈
R, f ∈ C2(−1/b, 1/c) such that 0, 1 /∈ [α, β] ⊆ (−1/b, 1/c) and such
that assumptions of theorem 4.4 are satisfied.
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Lemma 6.1 Let α < β and 0, 1 /∈ [α, β] ⊆ (−1/b, 1/c), let ωγ ∈
(0, |θγ| ∧ |1− θγ|) be such that

(6.1) ξ+(α) = θγ−ωγ, ξ−(β) = θγ+ωγ, u(α, β) = (1−γ)(θ2γ−ω2γ).

Then u(α, x) 6= u(α, β) 6= u(x, β) hold for every x ∈ (α, β).

Proof. Let x ∈ (α, β).We are going to show that u(α, x) 6= u(α, β). The
proof of the remaining part of the statement would be similar. First, we
show that ξ−(x) ≥ ξ+(α). If −1/b < α < β < 0 or if 1 < α < β < 1/c,
then it follows from the following inequalities ξ+(α) < α < x < ξ−(x).
If 0 < α < β < 1, then we obtain from the definition of u(α, β) that

(6.2) 0 > − ln 1/α− 1
1/β − 1

=
∫ ξ−(β)

ξ+(α)

dz

γz2 + 2ρz − u(α, β)
.

Since the right-hand side has to be defined correctly and finite, we
get that the function γz2 + 2ρz − u(α, β) does not change the sign
on [ξ+(α), ξ−(β)]. Then it follows from (6.2) and from the inequality
ξ+(α) = θγ − ωγ < θγ + ωγ = ξ−(β) that u(α, β) > γz2 + 2ρz holds for
every z ∈ [ξ+(α), ξ−(β)]. We obtain from the definition of u(α, x) that
(6.2) holds also when β is replaced by x. Since the integrand cannot
change the sign between ξ+(α) and ξ−(x) and it is negative at ξ+(α), we
obtain from (6.2) with β replaced by x that ξ−(x) ≥ ξ+(α). It follows
from the definition of ξ− that ξ−(x) < ξ−(β), since x < β < 1/c.
Now, we are going to show that the case u(α, x) = u(α, β) leads to

a contradiction. Let u(α, x) = u(α, β), then the definition of u(α, x)
and u(α, β) gives us that

(6.3) − ln 1 + b

1− c
=

∫ ξ−(β)

ξ+(α)
λ(z) dz =

∫ ξ−(x)

ξ+(α)
λ(z) dz,

where λ(z) is defined as

1
z(1− z)

+
1

γz2 + 2ρz − u(α, β)
=

(1− γ)[ω2γ − (θγ − z)2]

z(1− z)[γz2 + 2ρz − u(α, β)]
.

In particular,
∫ ξ−(β)

ξ−(x)
λ(z) dz = 0. Since this integral has to be well de-

fined and finite, the function λ(z) cannot have a pole on [ξ−(x), ξ−(β)].
Obviously, λ is a continuous function on a non-degenerate interval
[ξ−(x), ξ−(β)] with the mean value zero. Hence, there exists z ∈
(ξ−(x), ξ−(β)) such that λ(z) = 0, but it follows from the definition of λ
that λ(z) 6= 0 holds for every z ∈ (θγ−ωγ, θγ+ωγ) ⊇ (ξ−(x), ξ−(β)). �

Lemma 6.2 Let α < β and 0, 1 /∈ [α, β] ⊆ (−1/b, 1/c), let ωγ ∈
(0, |θγ| ∧ |1 − θγ|) be such that (6.1) is satisfied. Then there exists
f ∈ C2(−1/b, 1/c) such that assumptions of theorem 4.4 are satisfied
with ν = 1−γ

2 σ2(θ2γ − ω2γ).
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Proof. We are going to find f ∈ C2(−1/b, 1/c) such that (4.1) hold
for every y ∈ (−1/b, α], z ∈ [β, 1/c) and x ∈ (α, β). Then the last
equality in (4.1) will hold also for x ∈ {α, β}. By lemma 5.6, there
exists f ∈ C2[α, β] satisfying (5.12) and (5.13) in case γ = 0. By
lemma 5.4, such a function exists also if γ < 0. We obtain from the
boundary conditions (5.13) that we can extend f to (−1/b, 1/c) so that

δf
+(y) = δf

−(z) = 0, i.e. f ′(y) = −ϑ+(y), f ′(z) = ϑ−(z)

hold for every y ∈ (−1/b, α] and z ∈ [β, 1/c). Obviously, (5.12) is
satisfied for every x ∈ (α, β) and therefore dν

f = 0 holds on (α, β).
To show that f ∈ C2(−1/b, 1/c) means to show that f ′′(α+) = f ′(α)2

and f ′′(β−) = f ′(β)2, since f ′′(α−) = f ′(α)2 and f ′′(β+) = f ′(β)2. We
are going to show the first equality, the second one could be obtained
similarly.
Since S2(α) 6= 0, we are only to show that (5.12) holds if we re-
place f ′(x) by f ′(α) = −ϑ+(α) and f ′′(x) by −ϑ′+(α) = ϑ+(α)2. Since
f ′′(x) = f ′(x)2 in that case, we obtain (5.12) in the form that the right-
hand side of (4.3) has to be zero, but it follows from the assumptions,
since

ν =
1− γ

2
σ2(θ2γ−ω2γ), [θγ−x(1−(1−x)f ′(x))]2 = [θγ−ξ+(α)]

2 = ω2γ.

Obviously, the condition ξ+(α) < θγ < ξ−(β) is satisfied, since ωγ > 0
and u(α, x) 6= u(α, β) 6= u(x, β) hold for every x ∈ (α, β) by lemma 6.1
and theorem 5.7. Further, we obtain from theorem 5.7 the same in-
equalities with u replaced by ν. By lemma 4.3, (4.2) hold for every
y ∈ (α, 1/c), z ∈ (−1/b, β) and x ∈ (−1/b, 1/c)\[α, β]. �

Lemma 6.3 Let θγ /∈ {0, 1}, then

(6.4) I : ωγ 7→
∫ θγ+ωγ

θγ−ωγ

(1− γ)[ω2γ − (θγ − x)2]

x(1− x)[γx2 + 2ρx− (1− γ)(θ2γ − ω2γ)]
dx

is a continuous decreasing function on (0, ω̃γ) and it attains all negative
values on this interval, where ω̃γ := |θγ| ∧ |1− θγ| if θγ /∈ [0, 1] and

ω̃γ := |θγ| ∧ |1− θγ| ∧ sup{ωγ ≥ 0 : supDωγ < 0} > 0

if θγ ∈ (0, 1), where

Dωγ : x ∈ [θγ − ωγ, θγ + ωγ] 7→ γx2 + 2ρx− (1− γ)(θ2γ − ω2γ)

is positive in case θγ /∈ [0, 1] and it is negative in case θγ ∈ (0, 1)
provided that ωγ ∈ (0, ω̃γ).

Proof. The function Dωγ is obviously concave and it attains the value
−(θγ ± ωγ)(1 − θγ ∓ ωγ) at the extreme points θγ ± ωγ. If θγ /∈ [0, 1],
such values are positive and therefore Dωγ (x) > 0 holds for every x ∈
[θγ − ωγ, θγ + ωγ]. In particular, I(ωγ) is defined correctly by (6.4).
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Let θγ ∈ (0, 1). Obviously, ωγ 7→ supDωγ is a continuous increasing
function with the value θγ[θγ − 1] < 0 at zero and therefore ω̃γ > 0.
Since Dωγ (x) < 0 holds by definition of ω̃γ for every x and ωγ such that
|θγ − x| < ωγ < ω̃γ, we get that the integrand in (6.4) is a continuous
function on [θγ − ωγ, θγ + ωγ] and therefore I(ωγ) is well defined by
(6.4) on [0, ω̃γ).
Now, we are going to show that I(ωγ) is a continuous decreasing
function on (0, ω̃γ). Obviously, the integrand in (6.4) attains the value
zero at both extreme points θγ ± ωγ and therefore

d

dωγ

I(ωγ) =
∫ θγ+ωγ

θγ−ωγ

d

dωγ

dx

Dωγ (x)
= −

∫ θγ+ωγ

θγ−ωγ

2ωγ(1− γ) dx

Dωγ (x)2
< 0

whenever ωγ ∈ (0, ω̃γ). Obviously, I(0) = 0 and I is continuous at
zero. We are to show that I(ωγ)→ −∞ as ωγ ↑ ω̃γ, but it follows from
Fatou’s lemma, since the integrand in (6.4) is always non-positive and
the limiting integrand is not integrable. �

Lemma 6.4 Let θγ /∈ {0, 1} and ωγ ∈ (0, ω̃γ) be such that I(ωγ) =
− ln 1+b

1−c
. Then there exist α < β such that 0, 1 /∈ [α, β] ⊆ (−1/b, 1/c)

and ξ+(α) = θγ − ωγ, ξ−(β) = θγ + ωγ.

Proof. If θγ ∈ (0, 1), then θγ ± ωγ ∈ (0, 1) and therefore
α := ξ−1+ (θγ − ωγ) ∈ (0, 1) 3 ξ−1− (θγ + ωγ) =: β.

Obviously, α < ξ+(α) = θγ − ωγ < θγ + ωγ = ξ−(β) < β.
Now, we are going to show that there exist −1/b < α < β < 0

satisfying (6.1) in case θγ < 0. The proof of existence 1 < α < β < 1/c
satisfying (6.1) in case θγ > 1 would be similar. Let θγ < 0. Then
θγ − ωγ < 0 and therefore α := ξ−1+ (θγ − ωγ) < 0. Since Dωγ (x) > 0
holds for every x ∈ [θγ − ωγ, θγ + ωγ] by lemma 6.3, we obtain

(6.5) ln
1 + b

1− c

θγ + ωγ

θγ − ωγ

1− θγ + ωγ

1− θγ − ωγ

= −
∫ θγ+ωγ

θγ−ωγ

dx

Dωγ (x)
< 0.

The left-hand side is a sum of ln(1+ b)+ ln |1−θγ+ωγ

θγ−ωγ
| = ln |1/α−1| > 0

and − ln(1− c)− ln |1−θγ−ωγ

θγ+ωγ
| which has to be negative. In particular,

θγ +ωγ 6= 1−c
−c
and therefore we can put β := ξ−1− (θγ +ωγ). Further, we

obtain from the definition of ξ− that

(6.6) ln |1/β − 1| = ln(1− c) + ln

∣∣∣∣1− θγ − ωγ

θγ + ωγ

∣∣∣∣ > 0.

Since θγ + ωγ /∈ [0, 1], we get that β = ξ−1− (θγ + ωγ) /∈ [0, 1] and we
obtain from (6.6) that β < 0. Since α, β < 0, the inequality α < β is
equivalent to the inequality ln |1/α−1

1/β−1 | < 0 and it holds, since its left-
hand side is equal to the left-hand side of (6.5) by the definition of ξ+
and ξ−. �
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Corollary 6.5 Let θγ /∈ {0, 1}. Then there exists just one ωγ ∈
(0, ω̃γ) such that I(ωγ) + ln 1+b

1−c
= 0. Further,

(6.7) −1/b < α := ξ−1+ (θγ − ωγ) < ξ−1− (θγ + ωγ) =: β < 1/c

are such that 0, 1 /∈ [α, β] and there exists f ∈ C2(−1/b, 1/c) such that
the assumptions of theorem 4.4 are satisfied with ν = 1−γ

2 σ2(θ2γ − ω2γ).

Proof. By lemma 6.3, there exists just one ωγ ∈ (0, ω̃γ) such that
I(ωγ)+ln 1+b

1−c
= 0. By lemma 6.4, (6.7) and 0, 1 /∈ [α, β] hold if α and β

are defined by (6.7). We obtain from the equality I(ωγ)+ln 1+b
1−c
= 0 and

the definition of u that u(α, β) = (1−γ)(θ2γ−ω2γ). Hence, (6.1) are satis-
fied and we obtain from lemma 6.2 that there exists f ∈ C2(−1/b, 1/c)
such that assumptions of theorem 4.4 are satisfied. �

7. Time change and non-zero interest rate

Remark 7.1 Let Xt be a one-dimensional Ft-geometric Brownian
motion (2.1) with µ ∈ R,Σ1/2 = σ > 0 and x > 0. By corollary 6.5,
there exists ωγ ∈ (0, ω̃γ) and α < β such that 0, 1 /∈ [α, β] ⊆ (−1/b, 1/c)
and f ∈ C2(−1/b, 1/c) satisfying assumptions of theorem 4.4 with
ν = 1−γ

2 σ2(θ2γ − ω2γ). Let (τ(s), s ≥ 0) be a non-decreasing continuous
system of Ft-stopping times such that τ(0) = 0 and τ(s) → ∞ as
t →∞ and let X̃s := Xτ(s) be the stock market price at time s.
a) LetH+t , H−

t be the control processes corresponding to the strategy
[(α, β)] and let Yt denote the corresponding portfolio market price in
the model with stock market price Xt at time t. Let us consider the
strategy with control processes H̃s := H+τ(s) and H̃s := H−

τ(s) in the
time-changed model. By lemma 3.1 applied to the processes with the
time argument t, we obtain after substitution that

Ỹs := Yτ(s) = y0 +
∫ s

0 H̃u dX̃u − bX̃u dH̃+u − cX̃u dH̃−
u

and therefore Ỹs can be interpreted as the portfolio market price at time
s in the time-changed model and theorem 4.4 gives that the following
equalities hold almost surely

ν = lim
t→∞

1
t
lnYt = lim

s→∞

1
τ(s)

ln Ỹs.

b) We are going to show that (7.1) holds almost surely for a wide
class of strategies. Let us consider a strategy with the portfolio market
price Ỹs ∈ (0,∞) and that G̃s := H̃sX̃sỸ

−1
s ∈ [π+, π−] ⊆ (−1/b, 1/c)

hold for every s ≥ 0 almost surely, where H̃s := H0 + H̃+s − H̃−
s and

where H̃+s , H̃−
s are Fτ(s)-adapted control processes. Further, denote

ϕ(t) := inf{s ≥ 0 : τ(s) ≥ t} and assume that EỸ δ
ϕ(t) < ∞ holds

for every t ≥ 0 and δ < 0. This assumption is satisfied for example
if there exists ε ∈ (0, 1) such that Ỹ (s) ≥ εy0 holds for every s ≥ 0
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almost surely. Since H̃±
s , ϕ(t) are non-decreasing and left-continuous

processes, we obtain that H±
t := H̃±

ϕ(t) have the same property. They
are also Ft-measurable. By lemma 3.1 applied to the processes with
the time argument s and the filtration Fτ(s), we obtain that

Yt := y0 +
∫ t

0 Hu dXu − bXu dH+u − cXu dH−
u ≥ Ỹs

provided that t = τ(s). Then we obtain from theorem 4.4 that the
following inequalities hold almost surely

(7.1) lim sup
s→∞

1
τ(s)

ln Ỹs ≤ lim sup
t→∞

1
t
lnYt ≤ ν.

Remark 7.2 We have considered a money market only with zero
interest rate. In case of positive interest rate r, we denote by Zt the
stock market price at time t and by Xt = e−rtZt the discounted stock
market price. If Zt is a geometric Brownian motion dZt = Ztµ̃ dt +
Ztσ dWt, thenXt is also a geometric Brownian motion with a stochastic
differential (2.1), where µ := µ̃− r. Now, it is sufficient to define Yt as
a discounted portfolio market price at time t and to apply the above
mentioned results to obtain the optimal strategy for this case.
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