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Random matrix ensembles of time-lagged correlation matrices: Derivation of
eigenvalue spectra and analysis of financial time-series

Christoly Biely1, ∗ and Stefan Thurner1, †

1Complex Systems Research Group, HNO, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna
and

Atominstitut der Österreichischen Universitäten, Stadionallee 2, A-1020 Vienna, Austria
(Dated: May 19, 2007)

We derive the exact form of the eigenvalue spectra of correlation matrices derived from a
set of time-shifted, finite Brownian random walks (time-series). These matrices can be seen
as real, asymmetric random matrices where the time-shift superimposes some structure. We
demonstrate that for large matrices the associated eigenvalue spectrum is circular symmetric in
the complex plane. This fact allows us to exactly compute the eigenvalue density via an inverse
Abel-transform of the density of the symmetrized problem. We demonstrate the validity of this
approach numerically. Theoretical findings are next compared with eigenvalue densities obtained
from actual high frequency (5 min) data of the S&P500 and discuss the observed deviations. We
identify various non-trivial, non-random patterns and find asymmetric dependencies associated
with eigenvalues departing strongly from the Gaussian prediction in the imaginary part. For the
same time-series, with the market contribution removed, we observe strong clustering of stocks,
into causal sectors. We finally comment on the stability of the observed patterns.

PACS: 02.50.-r, 02.10.Yn, 89.65.Gh, 05.45.Tp, 05.40.-a, 24.60.-k, 87.10.+e

1. INTRODUCTION

One of the pillars of contemporary theory of finan-
cial economics is the notion of correlation matrices of
timeseries of financial instruments; the capital asset pric-
ing model [1] and Markowitz portfolio theory [2] proba-
bly being the most prominent examples. Recent empir-
ical analyses on the detailed structure of financial cor-
relation matrices have shown that there exist remark-
able deviations from predictions that would be expected
from the efficient market hypothesis. In particular, based
on pioneering work [3, 4], eigenvalue spectra of empiri-
cal equal-time covariance matrices have been analyzed
and compared to predictions of eigenvalue densities for
Gaussian-randomness obtained from random matrix the-
ory (RMT). It has been shown, that the eigenvectors
which strongly depart from the spectrum obtained by
RMT contain information about sector organization of
markets [5, 6]. The largest eigenvalue has been identi-
fied as the ’market-mode’, and it has been pointed out
that a ’cleaning’ of the original correlation matrices by
removing the noise part of the spectrum explainable by
RMT results in an improved mean variance efficient fron-
tier which seems to be much more adequate than the one
obtained by Markowitz (see e.g. the recent discussion in
[7]). Further, RMT provides an almost full understand-
ing of why the Markovitz approach is close to useless
(dominance of small eigenvalues which lie in the noise
regime) in actual portfolio management.

Initially, RMT has been proposed to explain energy

∗Electronic address: christoly.biely@meduniwien.ac.at
†Electronic address: thurner@univie.ac.at

spectra of complicated nuclei half a century ago. In its
simplest form, a random matrix ensemble is an ensemble
of N × N matrices M whose entries are uncorrelated iid
random variables, and whose distribution is given by

P (M) ∼ exp
(
−βN

2
Tr(MMT )

)
, (1)

where β takes specific values for different ensembles of
matrices (e.g. depending on whether or not the random
variables are complex- or real-valued). Eigenvalue spec-
tra and correlations of eigenvalues in the limit N → ∞
have been worked out for symmetric N ×N random ma-
trices by Wigner [8]. For real valued matrix entries, such
symmetric random matrices are sometimes referred to as
the Gaussian orthogonal ensemble (GOE).

The symmetry constraint has later been relaxed and
the probability distributions of different ensembles (real,
complex, quaternion) – known as the Ginibre ensembles
(GinOE, GinUE, GinSE) – have been derived [9] in the
limit of infinite matrix size. For ensembles of random real
asymmetric matrices (GinOE) – the most difficult case –
progress has only slowly been made under great efforts
over the past decades. The eigenvalue density could fi-
nally be derived via different methods [10, 11], where –
quite remarkably – the finite-size dependence of the en-
semble has also been elucidated [11, 12].

However, these developments in RMT do not yet take
into account the timeseries character of financial appli-
cations, i.e. the fact, that one deals – in general – with
(lagged) covariance matrices stemming from finite rect-
angular N×T data matrices X, which contain data for N
different assets (or instruments) at T observation points.
The matrix ensemble corresponding to the N × N co-
variance matrix C ∼ XXT of such data is known as the
Wishart ensemble [13] and is a cornerstone of multivari-

Page 2 of 16

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

2

ate data analysis. For the case of uncorrelated Gaussian
distributed data, the exact solution to the eigenvalue-
spectrum of XXT is known as Marcenko-Pastur law (for
N → ∞) and has been used as a starting point for ran-
dom matrix analysis of correlation matrices at lag zero
[3, 4, 5, 6, 7, 14]. Moreover a quite general methodol-
ogy of extracting meaningful correlations between vari-
ables has been discussed based on a generalization of
the Marcenko-Pastur distribution [15]. The underlying
method was the powerful tool of singular-value decompo-
sition and RMT was used to predict singular-value spec-
tra of Gaussian randomness.

The time-lagged analogon to the covariance matrix
is defined as Cτ ∼

∑T
t ri

tr
j
t−τ , where one timeseries is

shifted by τ timesteps with respect to the other. In
contrast to (real-valued) equal-time correlation matrices
of the Wishart ensemble, which have a real eigenvalue
spectrum, the spectrum of Cτ is defined in the com-
plex plane since matrices of these type are in general
asymmetric. While the complex spectrum of Cτ remains
unknown so far, results for symmetrized lagged correla-
tion matrices have been reported recently [16, 17]. How-
ever, it has to be noted that treating the symmetrized
object CS

τ = 1
2 (Cτ + Cτ ) [16, 17] is problematic from a

practical viewpoint, since one may lose important causal
information via the symmetrization. Especially asym-
metric dependencies (where e.g. the entry Cij

τ carries
non-random information and Cji

τ is just noise) are prone
to be lost when turning to the analysis of the object CS

τ
since 1

2 (Cij
τ + Cji

τ ) may be classified random although
Cij
τ carries information. The problem of working out

actual predictions based on symmetrized lagged correla-
tions (and not on the initial asymmetric ones) would be
even more embarrassing from a practical viewpoint since
1
2 (Cij

τ + Cji
τ ) will, in general, be a bad predictor for Cij

τ .
Moreover, it is the analysis of the initial asymmetric

time-lagged correlations which forms a fundamental part
of finance and econometrics, and which has attracted
considerable attention in the respective literature. The
existence of asymmetric lead-lag relationships has been
initially reported for the U.S. stock market [18]. Specifi-
cally, it was found that returns of large stocks lead those
of smaller ones. Later, trading volume was identified as
a significant determinant of such lead-lag patterns, and
returns of high-volume stocks (portfolios) were found to
lead those of low-volume stocks (portfolios) [19]. These
lead-lag effects have primarily been explained by differ-
ent effects of information adjustment asymmetry. For
instance, a model was brought forward in [20], where it
was argued, that, as soon as previous price changes are
observed and marketwide information can thus be incor-
porated in the marketmakers’ evaluation of stock prices,
lagged correlations may emanate. Another type of infor-
mation asymmetry can be seen in the different number
of investment analysts following a firm’s stock price [21].
Other explanatory approaches, include the institutional
ownership of stocks [22], the different exposure of stocks
to persistent factors [23], or transaction costs and market

microstructure [24] as causes of lagged autocorrelations.
Whether or not non-synchronous trading may constitute
a source of lead-lag relationships or not is an issue of on-
going discussion [18, 25, 26]. Recently, aiming at a closer
empirical understanding of lagged correlations, the de-
pendence of the strength of lagged correlations on the
chosen time-shift τ has been analyzed for high-frequency
NYSE data [27]. It was shown, that the lagged corre-
lation function typically exhibits an asymmetric peak.
The revealed patterns basically showed structures con-
sistent with those found in [18] (e.g. patterns where
more ’important’ companies pull smaller, less ’important’
ones). Interestingly, also evidence for a diminution of the
Epps effect [28] has been demonstrated based on lagged
cross-correlations of NYSE-data, as lead-lag dependen-
cies seem to diminish over the years [29].

As diverse and interesting these approaches are, the
methods applied mainly focus on Granger causality, vec-
tor autoregressive models and shrinkage estimators. In
this paper, we extend the methodology to eigenvalue
analysis of time-lagged correlations. First, we discuss
how solutions of RMT problems pertaining to real, asym-
metric matrices can be obtained from solutions to the
symmetrized problem via an inverse Abel-transform.
The respective developments will then enable us to de-
rive the form of the eigenvalue spectra of the pure ran-
dom case. As an immediate application we compare these
theoretical results with real financial data and relate the
observed deviations to market specific features.

The paper is organized as follows: In Section 2 we fix
the notation and develop the spectral form of asymmetric
real random correlation matrices. In Section 3 we apply
the introduced methodology to empirical correlation ma-
trices of 5 min log-returns of the S&P500 and discuss the
meaning of deviant eigenvalues from several perspectives.
Time-dependence issues are discussed in Section 4 and in
Section 5 we finally conclude.

2. SPECTRA OF TIME-LAGGED
CORRELATION MATRICES

2.1. Notation

The entries in the N ×T data matrices X for N assets
and T observation times, are the log-return time-series
of asset i at observation times t,

ri
t = lnSi

t − ln Si
t−1 , (2)

after subtraction of the mean and normalization to unit
variance, i.e. division by σi =

√
〈(ri

t)2〉 − 〈ri
t〉2. Here,

Si
t is the price of asset i at time t. One time unit is the

time difference between observations at t + 1 and t, e.g.
a day, 5 minutes; for tic data it can also be of variable
size. Time-lagged correlation functions of unit-variance
log-return series among stocks are defined as

Cτ (T ) ≡ 〈(ri
t − 〈ri

t〉)(r
j
t−τ − 〈rj

t−τ 〉)〉T , (3)
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where the time-lag τ is measured in time units and 〈...〉T
stands for a time-average over the period T . We drop (T )
in the following, except for Section 4. Equal-time corre-
lations are obviously obtained for τ = 0. For τ )= 0, the
lagged correlation matrix Cτ is generally not symmetric
and contains the lagged autocorrelations in the diagonal.
It can be written as

Cτ =
1
T

XDτXT , (4)

where Dτ ≡ δt,t+τ and where X is the N × T normal-
ized time-series data. Denoting the eigenvalues of Cτ

by λi and their associated right eigenvectors by &ui (or
U = uik), where i, k = 1, ..., N , we may write the eigen-
value problem as C&uj = λj&uj . We immediately recognize
that eigenvalues λi are either real or complex conjugate,
since the matrix elements of Cτ are real and thus the con-
jugate eigenvalue λ∗

i also solves the eigenvalue problem.
In the following we refrain from discussing the case of
left eigenvectors since this would not yield additional in-
sights. Regarding the elements of Cτ as random variables
with a certain distribution, we should keep in mind that
their specific construction, Eq. (4), results in a departure
from a ’purely’ random real asymmetric N × N matrix
where the entries are iid Gaussian distributed. Thus we
do – in general – not expect a flat eigenvalue distribution
as in the Ginibre-Girko case. Rather, we can interpret
Cτ as a random real asymmetric matrix with a special
structure due to its construction. In general, comparably
little work has been done to understand the eigenvalue
spectra of such random real asymmetric matrices. How-
ever, it was shown that the problem can be treated in a
way formally equivalent to classical electrostatics [30].

2.2. General Arguments

We start our original arguments by making use of the
electrostatic analogy discussed in [30]. The idea is to
interpret the distribution of eigenvalues in the complex
plane as a distribution of electrical charges in 2 dimen-
sions. The density of eigenvalues in the complex plane,
ρ(z) = ρ(x, y) with z = x+ iy, can then be calculated by
the Poisson equation

ρ(x, y) = − 1
4π

*φ(x, y) . (5)

In the present case, it can be verified easily that the cor-
responding potential in 2 dimensions is given by

φ(x, y) = − 1
N

〈 ln det
(
(1z∗ − CT

τ )(1z − Cτ )
)
〉c , (6)

where 〈...〉c denotes the average over the distribution of
X and 1 denotes the identity matrix.

P (X) ∼ exp
(
−N

2
Tr(XXT)

)
. (7)

We expand the argument of the determinant in Eq. (6)
to obtain the positive definite matrix

H = 1|z|+ CτCT
τ − x(Cτ + CT

τ ) + iy(Cτ −CT
τ ) . (8)

This form now shows that any symmetric (anti-
symmetric) contribution of Cij

τ only influences the real
(imaginary) part of z.
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FIG. 1: Complex eigenvalue spectra of time-lagged correla-
tion matrices, obtained from random matrices X. The entries
of X are iid and Gaussian with unit variance. In (a), (c), (e)
and (g) the position of the eigenvalues is shown in the complex
plane for values of Q ≡ T

N = 100, 10, 1 and 0.5, respectively.
The visibly enhanced density along the real axis is the finite-
size effect mentioned in the text. The right column shows
the projections of the EVs onto the real and imaginary axis.
The solid lines are the theoretically expected curves, which
are numerical solutions to Eq. (17). Note in (h) that for
this projection, the eigenvalue spectra is composed of differ-
ent solutions to Eq. (17) as G(z) itself has a discontinuity.
The divergence at z = 0 is not shown for analytical curves
associated with Q = 100, 10 and 0.5.
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Because of the absence of any structural difference in
the randomness of the symmetric and the anti-symmetric
part of matrix Cτ , the expression of Eq. (8) is equiva-
lent under exchange of x and y in the distributional sense
and Eq. (5) will thus be a symmetric function in x and
y. Since one does not expect any direction in the com-
plex plane being distinguished from any other in the limit
N → ∞, this leads to the central argument of our discus-
sion, namely that the potential is a function of the radius
r =

√
x2 + y2, φ(x, y) = φ(r) in the limit N → ∞. Thus

also the eigenvalue density resulting from (6) will be a
radial symmetric function,

ρ(x, y) = ρ(r) ≡ 1
2πr

∫

S
dzρ(z) δ(|z| − r) . (9)

A more formal argument can be given via expanding the
matrix H entering the potential. Since the entries in
C are typically smaller than one, H can be written as
H ≈ |z|(1 + εB). Here, ε is a small perturbation, and
B = CCT /|z| − x̄(C+CT )+ iȳ(C−CT ) with x̄ = x/|z|
and ȳ = y/|z|. We fix |z| = 1 without loss of generality
and write the determinant as a Taylor series,

φ(x, y) = − 1
N

〈 ln det(H)〉c = − 1
N

〈Tr ln(H)〉c

≈ − 1
N

〈Tr(B) − Tr
(

B2

2

)
+ Tr

(
B3

3

)
− · · · 〉c .

(10)

Based on this series, we checked up to fourth order
that this expansion indeed only leads to terms in r for
N → ∞; we outline some aspects of the calculation in
Appendix A.

Before turning to the main argument of our deriva-
tion, we discuss the support of the eigenvalue density.
Clearly, if ρ(r) is circular symmetric, the support S of
the eigenvalue-spectrum will be bounded by a circle and
is thus definable via a maximal radius rmax. Since rmax is
governed by the standard deviation of the underlying ran-
dom matrix elements, one can compute the extent of the
support of Cτ by considering the support of symmetric
(rS

max) and anti-symmetric matrices (rA
max). Let these be

defined by CS
τ ≡ 1

2 (Cτ +Cτ
T ) and CA

τ ≡ 1
2 (Cτ −Cτ

T ).
If we assume that the standard deviations of the sym-
metric and anti-symmetric matrices are equal, σS = σA,
this implies that the standard deviation σ of the matrix
Cτ , will be σ =

√
2σS/2. Taking into account that one

has two degrees of freedom in the two-dimensional case,
the support of Cτ can be defined via a disc with radius

rSmax =
1√
2
rS
max =

1√
2
rA
max . (11)

We will now discuss a new method to determine ρ(r)
based on its radial symmetry. To our best knowledge,
this method has not been discussed in literature so far
and is applicable whenever the potential in Eq. (6) is
radial symmetric. The method is based on the sensible

conjecture that the projections of ρ(r) onto the x-axis,
denoted by ρx(λ), and the projection onto the y-axis,
ρy(λ), are nothing but the rescaled spectra of the solu-
tion to the symmetric, ρS(λ), and to the anti-symmetric
problem, ρA(y). To be more explicit,

ρx(λ) ≡ ρ(Re(λ)) =
∫

S
ρ(r)dy = ρS(

√
2x)

ρy(λ) ≡ ρ(Im(λ)) =
∫

S
ρ(r)dx = ρA(

√
2y)

, (12)

where the integration extends over the support S in the
complex plane. Although this conjecture might seem
quite natural we shall provide numerical evidence for its
correctness below. Noting that the eigenvalue density of
the symmetric problem can be obtained from the well-
known relation

ρS(x) =
∑

n

δ(x − xn) =
1
π

lim
ε→0

[
Im(GS(x − iε))

]
,

(13)
the main idea of this work is now to note that one can
use the inverse Abel-Transform to actually determine the
radial symmetric density ρ(r).

Indeed, since the rescaled eigenvalue density of the
symmetrized problem ρS(

√
2x) is nothing but the pro-

jection of ρ(r) onto the real axis, Eq. (12), it can be
written as the Abel-transform [34],

ρS(
√

2x) = 2
∫ ∞

x

ρ(r)r√
r2 − x2

dr , (14)

of the radial density ρ(r). One can then reconstruct the
desired eigenvalue spectrum exactly (in the limit N →
∞) via the inverse Abel-transform, and thus via the cuts
of the Greens function of the symmetric problem,

ρ(r) = − 1
π2

∫ ∞

r

d
dx limε→0

[
Im(GS

τ (
√

2x − iε))
]

√
x2 − r2

dx .

(15)
Here, we have made use of Eq. (13). Since Eq. (15) can
be problematic if evaluated numerically, we also specify
a form which exploits the Fourier-Hankel-Abel cycle [34]

ρ(r) = 2π
∫ ∞

0
qJ0(2πrq)

∫ ∞

−∞
ρS(x)e−2πixqdxdq ,

(16)
where J0(x) denotes the zeroth-order Besselfunction.
We also note, that yet another method of determining
ρ(r) is the evaluation of the inverse Radon-transform of
ρS(

√
2x).

Eq. (15) represents a hitherto unknown way of attack-
ing the problem of the dermination of complex eigenvalue
densities in the case of radial symmetry and for any ra-
dial symmetric eigenvalue density in the limit N → ∞.
Its extreme simplicity is demonstrated in Appendix B,
where – as a specific and prominent example – we show
the case of deriving the density of real asymmetric ran-
dom matrices directly from the semi-circle law. We note
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FIG. 2: Radial eigenvalue densities approximated via simula-
tions along different directions (real axis, imaginary axis and
the diagonal in the complex plane. Numerical data for finite
matrices is compared with the solution of the inverse Abel-
transform. (a) Q=100 (b) Q=10 (c) Q=1; the inset shows a
detail of the curve.

that the solution of the symmetric problem will generally
be valid only in the N → ∞ limit. Thus, although the
Abel-inversion gives an exact result, discrepancies may
occur because of finite-size effects.

2.3. Application to lagged correlation matrices

We now turn to our specific problem of determining the
eigenvalue density of Cτ . What is left is to confirm the
validity of our conjecture, Eq. (12), and to show, that
– as a consequence – Eq. (15) gives an approximation
to the radial eigenvalue distribution, ρ(r). To start, we
leave our original discussion for a short moment and refer
to existing literature on the symmetric problem which
we will use in our formalism: It has been shown that
the Greens function G(z) of the symmetrized problem
Cτ

S = 1
2T X(Dτ + D−τ )XT is given by the polynomial

equation [16, 17],

1
Q3 z2G4(z) − 2 1

Q2 ( 1
Q − 1)zG3(z)−

1
Q (z2 − ( 1

Q − 1)2)G2(z)
+2( 1

Q − 1)zG(z) + 2 − 1
Q = 0 ,

(17)

with Q ≡ T/N playing the role of a information-to-noise
ratio. We note that eigenvalue-densities for different val-
ues of Q have not been discussed so far and that we
have verified that the Greens function pertaining to the
asymmetric problem leads to eigenvalue densities on the
complex axis functionally identical to the ones resulting
from Eq. (17).

To verify our conjecture, we can calculate our ρx(λ)
from Eq. (17) by using Eqs. (13) and (12). Fig. 1 shows
(simulated) spectra of Cτ=1 as defined by Eq. (4) with
iid entries in the columns of X, for various values of Q.
Note, that for Q < 1 the shape of the boundary of eigen-
values in the complex plane changes from a disk to an
annulus [41]. We immediately recognize that eigenvalues
are enhanced along the real axis and that, as a conse-
quence, the density is lower in the vicinity of the real
axis. This can be attributed to a well-known finite-size
effect [12, 30] which we confirmed for different values of
Q (not shown). Of course, the finite-size effect implies
that circular symmetry is not fully fulfilled for finite ma-
trices of the GinOE [42]. Thus, we also expect to observe
some discrepancies between the theoretical results based
on the Abel-transform and the empirical densities of fi-
nite, lagged correlation matrices based on random data.
In our concrete case, the prediction of the projections
ρx and ρy (blue lines, obtained from Eq. (13) and Eq.
(17)) depicted in the right column of Fig. 1 is in good
agreement with the numerical data for the real parts of
the eigenvalues (ρx). For the projection of the complex
parts (ρy) we recognize that there is a slight deviation
from the prediction (due to the enhanced density along
the real axis). We also checked projections with data ob-
tained via rotating all the individual eigenvalues in the
complex plane for different angles. Apart from some mi-
nor effects attributable to the inhomogenity around the
real axis we found no significant discrepancies.

Thus, we have numerically verified our conjecture and
may turn towards the point of reconstructing the ra-
dial eigenvalue density. The function to be transformed
(ρS(

√
2x) or ρA(

√
2y)) may be evaluated exactly (with
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some effort) for the symmetric case from Eq. (13) and
Eq. (17). The remaining integral Eq. (15) will, however,
be hard to solve in general. Nonetheless, we were able to
solve the case Q = 1 analytically and obtain the exact
formula for the eigenvalue density,

ρQ=1(r) =
1
K

[
23/43rΓ

(
5
4

)
Γ

(
5
4

)
Φ1

2

(
1
4
,
5
4
,
3
2
,
λ2

2

)

−21/4Γ
(
−1

4

)
Γ

(
7
4

)
Φ1

2

(
−1

4
,
3
4
,
1
2
,
λ2

2

)]
,

(18)

with K ≡ 6
√
π5r3. Here, Γ(x) denotes the Gamma func-

tion and Φ1
2(a, b, c, z) the hypergeometric function; the

derivation is briefly summarized in Appendix C. Note
that limQ→0 GS

Q(z) = 1
z , whereas for Q → ∞ we ex-

pect the Greens function and the eigenvalue density to
converge to those of a random real asymmetric matrix
without specific structure, i.e. a flat eigenvalue-density
in the sense of [30].

We were not able to derive closed expressions for other
values of Q, since already the solution of Eq. (17) results
in lengthy expressions. In these cases we computed the
integral Eq. (15) numerically. The results are depicted
in Fig. 2 for Q = 100, Q = 10 and Q = 1. The theoret-
ical predictions are accompanied by data obtained from
performing cuts along various directions of the spectra
ρ(x, y) from Fig. 1, namely along the x-axis, the y-axis
and along the diagonal direction, i.e. Re(λ) = Im(λ).
We performed these cuts numerically via calculating the
density in narrow strips along the different directions.
The theoretical prediction catches the different experi-
mental densities very well. Especially for Q = 100 and
Q = 1 results are consistent with the predictions to a
high degree. For Q = 10 we observe some discrepancies
for values r < 0.1. These are associated with the finite-
size effect of enhanced eigenvalue density along the real
axis discussed above. In fact, a closer investigation of the
N -dependence of the fraction of real eigenvalues freal re-
veals a scaling freal ∼ N−1/2 quite independent of the
value of Q (not shown). This scaling is equivalent to the
GinOE case [11, 12, 30].

To shortly summarize our theoretical investigation:
We have used a well-known analogy to classical electro-
statics to present our original arguments and calculations
concerning radial symmetry of the potential in the case of
lagged correlation matrices. We have then introduced a
novel method of calculating the radial eigenvalue-density
in such cases via an inverse Abel-Transform and we used
existing results for symmetrized lagged correlation matri-
ces as input to our method to arrive at an understanding
of the initial asymmetric case.

3. EMPIRICAL ANALYSIS

3.1. Data

With a theoretical concept of and some specific knowl-
edge about the eigenvalue-spectra of time-lagged correla-
tion matrices, we now turn to actual financial data and
study empirical lagged correlation matrices Cτ . We ana-
lyze 5 min data of the S&P500 in the time period of Jan 2
2002 – Apr 20 2004. After rigorous cleaning the data set
X consisted of N = 400 time-series at T = 44720 obser-
vation times each. Of course, the empirical time-series
and its distribution-functions showed the usual proper-
ties of high-frequency stock-returns (not shown).

From X we construct two surrogate data sets, one by
removing the market mode, the other by a scrambling of
data. As τ = 1 remains unchanged during the rest of the
paper, we will occasionally drop the subscript, C1 = C.

Market mode removed data: It is well known that the
spectrum of equal-time correlations is dominated by a
single very large eigenvalue which can be attributed to
the so-called ’market-mode’ describing movements com-
mon to all stocks, see e.g. [5, 7, 36]. We define the market
return (the movement of the index) by rm

t =
∑N

j=1 v1jr
j
t ,

where &v1 is the eigenvector associated with the largest
eigenvalue λ̃1 of the empirical covariance matrix at equal
times, i.e. τ = 0. To remove this market mode from the
data we simply regress in the spirit of the Capital asset
pricing model [1]

&rt = &α + &βrm
t + &εt , (19)

where the residuals εit carry what is left of the structural
information in the data; we denote this data set by Xres,
its elements being Xres

it = εit.
Randomly reshuffled data: A reshuffled version Xscr

is generated by a random permutation of all elements of
X. This destroys all correlation structure but has ex-
actly the same distributions as the original data. Corre-
lation matrices from Xscr should – up to potential non-
Gaussian effects in the distributions – correspond to the
developments in Section 2. We checked that the support
of the eigenvalue-spectra pertaining to the lagged cor-
relation matrices – which will be the quantity used for
identifying deviating eigenvalues – indeed resembles the
value rmax of the Gaussian case discussed in Section 2.
We also checked the distribution of eigenvalues within
the support and did not find strong deviations from the
theoretical predictions for the empirical (non-Gaussian)
return-series. This assures us, that we can still use the
gaussian results to test whether or not the eigenvalues in
the support can be regarded as noise. A treatment of the
exact spectra of lagged correlation matrices of random
Levy distributed data is, of course, far beyond the scope
of the present work.

The following empirical investigation is based on these
three datasets. We will first investigate whether or not
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FIG. 3: (a) Empirical distribution P (Cij) of the lagged corre-
lation matrix elements Cij for a sampling period of T = 40000
and T = 4000 (inset). Circles represent empirical data, red
squares the situation for randomly reshuffled data from Xscr.
(b) shows the same for the removed market case, i.e. from
Xres. Individual frequencies are normalized by the summed
frequencies for each plot.

C1 contains non-random information. Comparing the
empirical eigenvalue spectra to the theoretical ones we
will then discuss the source of differences between the two
and we will subsequently show in detail how departing
eigenvalues may be interpreted.

3.2. Empirical time-lagged financial random
matrices

As a first investigation of the data, we show the dis-
tribution of matrix elements P (Cij

1 ) of the empirical cor-
relation matrix C1 (circles) in Fig. 3. Fig. 3a is based
on X and Fig. 3b on Xres. Squares show the results for
the randomly reshuffled data Cscr

1 . The inset shows the
result for a shorter sampling time of T = 4000. Clearly,
there is ’significant’ correlation in the data in both cases,
contrasting the Gaussian prediction of the efficient mar-
ket hypothesis. We mention that the observed correla-
tions typically decrease with decreasing observation fre-
quency (e.g. examining hourly or daily returns) and also
decrease with increasing timeshift τ [43].

!1 0 1 2 . / 5
!1

0

1

%e'!(

)m
'!

(

!0.2 0 0.2 0./ 0.1 0.> 1
!0.2

0

0.2

%e'!(

)m
'!

(

'a(

'7(

!0.2 0 0.2 0./ 0.1 0.> 1
!0.2

0

0.2

%e'!(
)m

'!
(

!1 !0.5 0 0.5 1 1.5
!0.2

0

0.2

%e'!res(

)m
'!

re
s (

'c(

'd(

FIG. 4: Eigenvalue spectra of lagged correlation matrices from
5 min S&P500 data. (a) shows the full spectrum with one very
large deviation on the real axis (λ1 ∼ 4.6), and a large depart-
ing eigenvalue pair λ2 = λ∗

3. (b) is a detail, clearly showing
that the spectrum is shifted with respect to the ’bulk-disc’.
(c) spectrum corrected for displacement d as discussed in the
text. (d) is the eigenvalue spectrum based on the market re-
moved data, Xres, also after displacement correction. The
circles in plots (b)–(d) indicate the theoretical support dis-
cussed in Section 2.

The situation for the market removed data Xres, Fig.
3b, shows that lagged correlations are not distributed
randomly as well. The frequency of higher values of C1

is slightly reduced and the curve has significantly changed
shape. In the semilogarithmic plot of Fig. 3, the positive
regime is clearly not following a square-polynomial curva-
ture, but rather an exponential one. This also applies to
the data sampled from T = 4000 subperiods, depicted in
the inset of Fig. 3. Both empirical distribution functions
also exhibit clear non-random negative autocorrelations
which are the predominant source of the non-Gaussian
tails for negative entries.
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3.2.1. Eigenvalue spectra

We will now investigate if and how the non-random
lagged correlations manifest themselves in the eigenvalue
spectra of C1. Fig. 4a-c shows the eigenvalue spectrum
obtained from C1 at various stages. In Fig. 4a a few
very strong deviations from the bulk of the eigenvalues
are seen, most significantly one real eigenvalue λ1 ≈ 4.6
and a conjugate pair of complex eigenvalues. Fig. 4 (b)
is a detail of (a) where a clear shift of the bulk of the
eigenvalues with respect to the Gaussian regime (circle)
is observed.

Correction of the shift: Closer analysis shows that this
shift can be attributed to two effects: First, each deviat-
ing positive real eigenvalue λ̃i is associated with a shift
s of the ’bulk’ spectrum of s ≈ − Re(λ̃i)/N in direc-
tion of the negative real axis. (’Departing’ eigenvalues
are those which have real parts larger than the radius
of the theoretical support.) The shift of the ’disc’ per-
taining to this effect is then the sum of all effects from
departing eigenvalues, stot = − 1

N

∑
λ̃i

Re(λ̃i) ≈ − 0.031.
A second contribution of the shift is due to the non-zero
diagonal entries of the correlation matrices C1. The shift
of the center of the disk explainable by the mean of the
diagonal elements is C̄ii

1 = −0.029, such that the overall
displacement is d = stot + C̄ii = −0.060. When corrected
for the total shift we arrive at Fig. 4 (c). We repeated
the same procedure for C1

res, obtaining dres = 0.081.
The resulting – displacement corrected – distribution is
directly depicted in Fig. 4 (d). In both cases the shift
of the center of the support is explained by our analysis
and thus does is not associated to non-random features
of interest here (i.e. non-randomness in the lagged cor-
relations).

After having explained the observed shift in the eigen-
value distribution, the next step is to analyze the shape of
the distribution within the theoretical support. This will
allow to decide whether or not the ’bulk’ of the spectrum
is random. To do so, we compare the predictions from
Section 2 with the empirical data in Fig. 5. We show
the projections of the empirical eigenvalues on the real
and imaginary axis. The inset shows the theoretical pre-
diction of the radial density integrated over the complex
plane, 2rπρ(r), compared with the empirical data, ρ(|λ|).
We chose this ’integrated’ representation since data qual-
ity would be unsatisfying otherwise. The empirical spec-
tra are truncated at Re(λ) = 1. Given the modest eigen-
value statistics (Nλ = 400) and the strong deviations
outside the theoretical support, the agreement between
the theoretical predictions for Gaussian noise and the
empirical data seems rather satisfying and one can con-
clude that the factors represented in the bulk of the ob-
served spectrum are indeed predominantly random. The
eigenvalues lying outside the random regime can be con-
fidently associated with specific non-random structures
which will now be subject to closer examination.
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FIG. 5: Projection of the empirical spectrum pertaining to
Fig. 4c on the real and imaginary axis. The blue line is the
analytical solution discussed in Section 2. The inset shows the
empirical distribution of ρ(|λ|) compared with the analytical
analogue 2rπρ(r).

3.2.2. Interpretation of deviating eigenvalues

Strong deviations from the theoretical pure random
prediction indicate significant correlation structure in the
data. The nature of these deviations can be interpreted
considering the form of the potential and its argument,
Eq. (6) and Eq. (8). In these equations, symmetric non-
randomness would affect the real part and asymmetric
non-randomness the imaginary part of the potential and
of the eigenvalue distribution). Eigenvalues departing on
the real axis with no or only a small imaginary part will
therefore be the effect of symmetric correlations. Com-
plex conjugate eigenvalues departing on the imaginary
axis will be attributable to asymmetric correlations. We
stress again that non-random factors associated to such
complex eigenvalues may be lost when analyzing the sym-
metrized matrix.

Thus, the departures of the largest eigenvalue in Fig.
4a and Fig. 4c are caused by a symmetric lagged cor-
relation structure since this eigenvalue is real. Turn-
ing to the second and third largest eigenvalue, we see
significant non-symmetric correlations in X reflected in
complex-conjugate pairs of eigenvalues with relatively
large imaginary parts. The residuals Xres exhibit a
large negative real eigenvalue indicating symmetric anti-
correlations between stocks. Such a departure is not vis-
ible for X.

For a closer inspection of which assets ’participate’ in a
given eigenvector associated to a deviating eigenvalue, we
define the inverse participation ratio for the eigenvectors
&ui in the form

IPR(&ui) ≡
N∑

k=1

|uik|4 . (20)
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FIG. 6: (a) Inverse participation ratio as defined in Eq. (20)
as a function of the absolute value of λi. Circles represent
data from the empirical matrix, squares (inset) data from a
random analogue, obtained from iid gaussian distributed X.
(b) The same as above but for eigenvectors obtained from the
data with the market mode subtracted out.

This ratio shows to which extent each of the N = 400
assets contribute to the eigenvector &ui. While a low IPR
means that assets contribute equally, a large IPR signals
that only a few assets dominate the eigenvector.

Fig.6a shows the IPRs for the empirical correlation ma-
trix C1. The inset is a detail and also exhibits the IPRs
of the randomly reshuffled data (squares). Clearly, the
’random’ regime is not confined to an approximately con-
stant region of IPRs but varies quite widely. This is in
contrast to the symmetric case where one has a constant
IPR for eigenvalues stemming from Gaussian random-
ness. We checked that the fluctuations observed here are
already present in the Ginibre ensemble and are thus not
associated to the specific structure of Cτ . It is clear,
that the IPRs belonging to the random case not being
bound to a line hinders the identification of the eigenvec-
tors with strong influence from only a few components
to certain extent. However, one can nonetheless observe
that the largest departing eigenvalue λ1 is characterized
by a rather small IPR, indicating an influence of a large
number of assets. In contrast, some other deviant eigen-
values lie well above the random regime indicating the

Sector GICS No. of Stocks Ns

Energy 10 22

Materials 15 27

Industrials 20 44

Consumer Discretionary 25 63

Consumer Staples 30 35

Healthcare 35 40

Financials 40 71

Information Technology 45 63

Telecommunication 50 11

Utilities 55 24

TABLE I: Global Industry Classification Standard (GICS
code), for the 10 main sectors of the S&P500 with the number
of stocks in these sectors, see www.standardandpoors.com.

influence of only few stocks.
Again, we compare this situation with the one found

for the residuals Xres which is given in Fig. 6b. On
average, the IPRs of the deviating eigenvalues are larger
than in Fig. 6a, indicating increased presence of clustered
structures. Having evidence of group structure in the
lagged-correlations at hand, we now take a closer look at
these structures.

3.2.3. Sector organization in time-lagged data

It is well known from RMT applications to covariance
matrices (τ = 0) of financial data, that the eigenvectors
&ui of large eigenvalues can be associated with the sector
organization of markets. Let us label the different sectors
with s, and define

∆sk =
{

1 if stock k belongs to sector s
0 otherwise . (21)

To visualize the influence of each sector s to a given eigen-
vector i, we calculate

Isi ≡
1

Ns

N∑

k=1

∆sk|uik|2 , (22)

where Ns is the number of stocks in the respective sec-
tor, s. We evaluate Eq. (22) for the S&P500, using the
standard sector classification scheme, the so-called GICS
code, which is summarized in Table I. Focusing on some
selected eigenvalues, Fig. 7 shows the contributions of the
sectors in the case of the original (left column) and the
market-mode removed data (right column). In the case
of the original data, the information technology sector
plays a decisive role for the largest 3 eigenvalues, namely
λ1 and λ2 = λ∗

3. One can conclude that this sector thus
explains a large part of the most distinctive non-random
(symmetric and asymmetric) structure in C1. For other
eigenvectors, as for example λ4 and λ10 as well as others
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FIG. 7: Strength of participation, Isi, of the ten main sectors
of the S&P500 (according to the GICS code) to eigenvectors
$ui for some selected eigenvalues λi.

not shown here, a distinctive role is played by the energy
and financial sector.

Turning towards the data where the market mode has
been removed, we see that the largest eigenvalue λres

1
is associated with a strong participation of the energy
and utility sectors. In the second eigenvector, the finan-
cial sector is dominant, whereas the eigenvalue associ-
ated with the strong negative departure on the real axis,
λ3 ≈ − 1, is not dominantly influenced by any sector.
For λ4 = λ∗

5 we find a strong influence of the energy sec-
tor. Other eigenvectors also indicate a strong sectorial
contribution (not shown).

We will now proceed to a network view to visualize and
further discuss the findings of strong sectorial contribu-
tion associated to the deviating eigenvalues.

3.2.4. Lead-lag networks

Comparing eigenvalue spectra of the residuals with
those of the initial data (Fig. 4), it is apparent that
the market mode has a clear influence on the devia-
tions and that the largest eigenvalue for the residuals
is significantly reduced. One would expect that remov-
ing the (equal-time) market-mode also eliminates much
of the correlations pertaining to small firms driven by
large companies or similar ’star-like’ structures (i.e. any
network structure where one stock leads or lags many
other stocks). In Fig. 8a we show a network view of
the C1 correlation matrix, where a link is drawn for any
Cij

1 > 0.09; Fig. 8b is the same after removal of the
market mode, and removing entries Cij res

1 > 0.033. The
chosen cut-offs can be motivated from Fig. 3 by extract-
ing the values of the Cij

1 where the distributions change
their functional behavior.

Clearly, while in Fig. 8a there is not much clustering
(except maybe for the utility sector), the market mode
removed scenario in Fig. 8b exhibits distinctive cluster-
ing. As in the previous section, we mapped the nodes
to the 10 most important sectors in the market. Nodes
are colored according to these sectors in Fig. 8 along
the lines of the accompanying color scheme. Clearly, the
identified clusters correspond very nicely with industry
sectors, as was found quite some time ago for the case
τ = 0.

The structures in the network-view can also be asso-
ciated with the departing eigenvalues via decomposition
of the lagged correlation matrix in its right eigenvectors,

Cλi = UΛiU−1 , (23)

where Λi = diag(λi) denotes a diagonal matrix with
only one entry at the respective position, associated with
eigenvalue λi.

In the case of the original data and the contribution
Cλ1 of the largest eigenvalue to the lagged correlation
matrix, we find assets from the Information Technology
(IT) sector leading stocks of different sectors (not shown)
with positive lagged correlations in the the Cij

λ1
. Quite

similarily, the most prominent features of the conjugate
pair λ2 = λ∗

3 are found to be associated with a hub-like
influence of the IT sector when examining Cij

λ2
. Networks

pertaining to λ4 and λ10 primarily exhibit intersectorial
ties of the Energy and Financial sector, where we also ob-
served hub-like anti-correlations pointing from stocks of
the Financial sector to the Energy sector. For all eigen-
values, we found no indication for the leading stocks be-
ing the ones with the highest market capitalization as
would be implied by the finding of [18].

Turning to an examination of the residuals Xres and
the correspondence between the Cres

λi
and the structure

observed in the network-representation we found very
nice correspondence: The contribution of the largest
eigenvalue λres

1 to the matrix Cres shows a strong clus-
tering of the Energy & Utility sector, which is visible in

Page 11 of 16

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

11

(a)

(b)

FIG. 8: Network view of C1 (a). A Link was drawn for
Cij

1 > 0.09. The situation for the regressed scenario is shown
in (b) with a threshold of Cij res

1 > 0.033. All network pictures
resulted from a Kamada-Kawai algorithm.

Fig. 8b as well. The fact that practically no assets apart
from the Energy and Utilities sector are represented is
also fully conforming with the top right panel of Fig.
7. Cres

λ2
carries the organization of the Financial sector.

The eigenvalues λ4 = λ∗
5 exhibit clustering of the En-

ergy and the Consumer Staples sector. Therefore, the
deviating eigenvalues can – in general – be associated
with the clustering of different sectors. We note, that –
in contrast to the original data – we did not find hub-
like interactions in the data where the market-mode has
been removed. From a methodological viewpoint, the
close correspondence between the Cλi and the different
sectors visible in the network-representation of the data
confirms the validity of our analysis and its tools. Only
the negative eigenvalue Re(λ3) ≈ − 1 and its contribu-
tion Cλ3 is associated with time-lagged anti-correlations
between various sectors which are naturally not visible
in the network-view.
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FIG. 9: (a) Time dependence of the largest eigenvalue of
C1(Tn) as a function of the period index n for T = 500
(main figure) and T = 4000 (inset). Values are plotted as
blue circles if the largest eigenvalue is located on the real axis
(Im(λmax

n ) = 0) and as red squares otherwise. (b) Same for
Cres

τ .

4. TIME DEPENDENCE

After having discussed the interpretation of deviat-
ing eigenvalues, we now discuss the time-dependence of
the correlation matrices as the last point of our analy-
sis. Within the developed framework, we can immedi-
ately use the prediction of the support of the eigenvalue
spectra in the complex plane C to determine a minimum
sampling period T (or equivalently a minimum value of
Q) at which the estimated cross-correlations still exhibit
non-random structure. This is possible since we know
that if eigenvalues are outside the support the data is
non-random. Reducing T too much one expects to arrive
a very noisy estimate of the lagged correlation matrix,
which will manifest itself in having no departing eigen-
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values at all.
We calculate C1(Ti) for consecutive, non-overlapping

time periods Ti and find that – very remarkably – down to
a information to noise ratio of Q ≈ 1.25, clear deviations
from the predicted support occur. This means that even
though noise is drastically increased for low values of Q,
non-random structures prevail even at short time-scales.

More specifically, we analyzed 11 correlation matrices
obtained from time slices of 4000 observations (Q=10),
and 89 matrices for 500 time points each. For each in-
dividual sub-period Tn, we compute lagged correlation
matrices C(Tn) for the raw data as well as on the matri-
ces resulting from the regression model, Cres(Tn). Fig.
9 (a) shows a plot of the absolute value, abs(λn), of the
maximal eigenvalue found for each sub-period, indexed
by n. The dashed blue line corresponds to the predic-
tion of the support rmax. We immediately recognize that
for Q = 10, as well as for Q = 1.25 the largest eigen-
value lies significantly above the noise regime. On the
other hand, the absolute value of the largest eigenvalue
is quite volatile and anti-persistent for Q = 1.25. We
also observe that the largest eigenvalues with non-zero
imaginary parts (red squares) mainly occur at low values
of abs(λn), whereas real eigenvalues occur at absolute
values. If the eigenvalue is real, the lead-lag network is
dominated by strong, approximately symmetric effects;
for imaginary eigenvalues the network is dominated by
asymmetric correlations, i.e. anti-correlations may play
a distinctive part too. We find that if an eigenvalue λ1

was real (i.e. marked by a blue circle in Fig. 9), the
analysis of the preceding sections always identified the
IT sector mainly contributing to &u1 (for Q = 10). On
the other hand, if the largest eigenvalue was imaginary,
no unique interpretation appeared to be valid for all of
the sub-periods. In Fig. 9b we show the same for our con-
tinuing antagonist Xres. Again, we observe abs(λn) be-
ing clearly located above the random frontier for all sub-
periods. The movement of abs(λ1) is less volatile. Closer
investigation of the underlying eigenvalues for Q = 10
revealed changing participation of the sectors (measured
by the quantity Isi as defined in Eq. (22)). In effect, for
all of the 11 sub-periods either the Energy (in periods
6-9) or the Utilities sector (in periods 3, 5) appeared as
primarily contributing. In the rest of the periods, both
of these sectors were represented strongly in Isi.

The last question addressed in this analysis is about
the correlations of the lagged correlation matrices: Are
significant lagged correlations only found a posteriori or
does the data indicate a possibility for a reasonable pre-
diction of future lead-lag structures? To this end we
calculate the correlation of matrix elements between the
lagged correlation matrices obtained from different (non-
overlapping) observation periods Tn and Tm,

c(Tn, Tm) =
〈(Cij

τ (Tn) − 〈Cij
τ (Tn)〉ij)(Cij

τ (Tm) − 〈Cij
τ (Tm)〉ij)〉ij

σTnσTm

.

(24)
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FIG. 10: Matrix element correlation c(T1, T1+d) as described
in Eq. (24) for various time lags d for the original data and
for the residuals Xres.

Here, the average extends over all matrix-elements and
σTn denotes the standard deviation of matrix C1(Tn).
Fig. 10 depicts the characteristics we obtained from em-
pirical data. While the expected band of correlation-
coefficients would be bound by very small values (in the
order of 1/400), we find extremely significant correla-
tions, especially for the Q = 10 case. As expected,
the ’predictability’ of future weighted lead-lag matri-
ces is significantly higher for lagged matrices calculated
over longer sub-periods. The inset of Fig. 10 shows
cres(Tn, Tm), i.e. the same quantity calculated for the
residual data. Overall correlations are lower in this case,
meaning nothing else than that the market-wide move-
ments exhibit predictable lead-lag structures. In both
cases, one could make practical use of our results by per-
forming a cleaning of the matrices (in analogy to the
method described in [7]) and test whether or not the
cleaned matrix at time Tn allows for an improved esti-
mation of the future lagged correlation matrices at times
Tm > Tn. We found that this is indeed the case (not
shown) but a comprehensive analysis of this issue remains
beyond the present scope of the paper.

5. CONCLUSION

We extended random matrix theory to lagged cross-
correlation matrices and theoretically derived the eigen-
value spectra of the respective real, asymmetric random
matrices as a function of the information to noise ratio,
Q. Specifically, we have shown that an inverse Abel-
transform can be used to reconstruct the radial density,
ρ(r), from re-scaled projections available from solutions
of the symmetrized problem. Based on this previously
unknown technique we were able to obtain theoretical
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results of eigenvalue spectra, which we compared to em-
pirical cross-correlations of 5 min returns of the S&P500.
We explained the observed shift of the support and found
that the distribution of eigenvalues in the bulk of the dis-
tribution can be considered as reasonably random. Based
on these findings, we have shown that the eigenvalues de-
viating from the support carry information. We discussed
various structural properties of these deviating eigenval-
ues. Analyzing data based on the residuals of a regression
to the market-mode, we found that clustering in the lead-
lag network is strongly enhanced. Looking at lagged cor-
relation matrices pertaining to sub-periods of the overall
investigation period we found that deviations from the
theoretical prediction do occur at quite low information
to noise ratios. We also found that significant parts of the
lagged correlation matrix should be predictable via mea-
surements of past (non-overlapping) periods. Based on
the results of the present paper, a cleaning of the lagged
correlation matrix can be performed which could directly
lead to a number of practical applications.

We think that the current work can be extended in
various directions. On the theoretical side, a closer in-
vestigation of the nature finite-size effects in the ensemble
of time-lagged correlation matrices and comparison with
the exact finite-size result of the random real asymmet-
ric case [11] would be tempting. Regarding the math-
ematical difficulties of calculating eigenvalue spectra of
asymmetric matrices, the proposed method of an inverse
Abel-transform may prove helpful in many additional
cases. We also think that some work is needed in an
exact understanding of the relation between the eigen-
value spectra (including the left and right eigenvectors
of the ensemble discussed here) and the singular value
decomposition of related problems [15]. Also a rigorous
study of the efficiency of different methods of cleaning
could be pursued as well.

Finally we believe that the presented work – in general
– should allow for an eigenvalue-dependent, systematic
study of the influence of matrices and their interplay with
equal time-correlations between financial assets in con-
crete models. The fact that cluster structure conforming
with market sectors can be found in lagged correlation
matrices already indicates the direction of findings to be
expected from such work.

Acknowledgements

We thank J.D. Farmer for encouraging discussions on
the matter and J.-P. Bouchaud for various very useful
suggestions, especially for pointing out Eq. (10) to C.B.,
who further acknowledges useful information from M.
Biely. Data is by courtesy of red-stars.com data AG,
the paper was sponsored in part by the Austrian Science
Fund under FWF projects P17621 and P19132.

Appendix A

Based on the series expansion (10) of the potential φ,
we have calculated the first four terms in the series. For
the first term, one easily obtains

lim
N→∞

1
N

〈Tr(B)〉c = lim
N→∞

1
N

Tr(〈CCT 〉c) =
1
Q

. (25)

since all other terms vanish as Tr(C) gives just N times
the averages of the autocorrelation of the assumed iid
white noise process. In Eq. (25), we have also made
use of the fact that the diagonal of CCT contains N -
times the variances of correlations between white-noise
processes (≈ 1/T ). For calculating the second term, it is
useful to remember Tr(AB) = Tr(BA) and Tr(CC) =
Tr(CT CT ) as well as taking into account that odd powers
of C vanish. One then arrives at

lim
N→∞

1
N

〈Tr
(
B2

)
〉c = lim

N→∞

1
N

(Tr(〈(CCT )2〉c)

+ 2(x2 + y2)Tr(〈CCT 〉c)
+ 2(x2 − y2)Tr(〈CC〉c)) .

(26)

This structure is also typical for higher order terms (not
shown for brevity). The trace in the ’dangerous’ term
proportional to x2 − y2 is nothing else than N times the
variance of autocorrelations which is just 1/T for a Gaus-
sian process. Thus, in total, the term vanishes as 1/T in
the limit N → ∞ with Q = const., and one gets

lim
N→∞

1
N

Tr〈B2〉c = K + 2rQ−1 , (27)

where K = limN→∞
1
N (Tr(〈(CCT )2〉c) is a constant (for

T > N one has K ≈ 2/Q2). In very similar calculations,
it is easy (but tedious), to check that

1
N

〈Tr(B3)〉 = f(r) and
1
N

〈Tr(B4)〉 = g(r) . (28)

The typical situation for higher order terms is similar to
the one for the second order term, i.e. the terms in r gen-
erally depend on some function of Q and the ’dangerous’
terms (like (x2 − y2)2) vanish since they remain constant
for growing matrix size and are thus neutralized by the
prefactor 1/N . We do not expect any different behavior
for terms higher than fourth order.

Appendix B

The uniform eigenvalue distribution of real asymmet-
ric matrices in the complex plane C found in [30] can be
almost trivially recovered from Wigner’s semicircle law
of real symmetric matrices via application of the inverse
Abel-transform. Starting from Wigner’s semicircle law
ρ(λ̄) = 1

2π

√
4 − λ̄2 and after proper rescaling and nor-

malization we may insert ρS(
√

2x) = 1
π

√
2 − x2 into Eq.
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(15) to arrive at

ρ(r) =
1
π2

∫ √
2

r

x√
2 − x2

√
x2 − r2

dx

= − 1
π2

arctan

( √
2 − x2

√
x2 − r2

) ∣∣∣∣∣

√
2

r

=
1
2π

.

(29)

We immediately arrive at the result of an uniform eigen-
value distribution,

ρ(r) =

{
1
2π 0 < r <

√
2

0 elsewhere
. (30)

Appendix C

For Q = 1, one solution can be written in the form

GH
r=1(z) =

1√
2

√

1 −
√

z2 − 4
z

. (31)

Note, that this equation shows a simple relation to the
resolvent of the Gaussian orthogonal ensemble (GS

Q=1 =√
1
z GGOE

r=1 (z)). The eigenvalue spectrum following from
Eqs. (13) and (31) can then be written as

ρQ=1(λ̄) =
1√
2π

√
− 1

2 + 2
2+|λ̄|

√
|λ̄|

2+|λ̄|

=
1√
2π

√

−1
2
− 1

|λ̄|
+

2
2 + |λ̄|

+
4

|λ̄|(2 + |λ̄|)
,

(32)

and is valued on the support [−2, 2]. After proper rescal-
ing and taking an expression of the inverse Abel Trans-
form equivalent to Eq. (15), namely

ρQ=1(r) = − 1
πr

d
dr

∫ ∞

r
x
ρS

Q=1(
√

2x)
√

x2 − r2
dx , (33)

we end up with the expression

ρQ=1(r) = −
√

2
π2r

d
dr

∫ √
2

r

x
√√

2
x − 1

√
x2 − r2

dx , (34)

which can be evaluated to

ρQ=1(r) =
1
K

[
23/43rΓ

(
5
4

)
Γ

(
5
4

)
Φ1

2

(
1
4
,
5
4
,
3
2
,
λ2

2

)

−21/4Γ
(
−1

4

)
Γ

(
7
4

)
Φ1

2

(
−1

4
,
3
4
,
1
2
,
λ2

2

)]
,

(35)

where K = 6
√
π5r3, Γ(x) denotes the Gamma-Function

and Φ1
2(a, b, c, x) is the hypergeometric function. It can

be checked, that – of course –
∫ √

2
0 2πrρ(r)dr = 1.
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