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gg Abstract

24 A recent paper, Crosby (2005), introduced a multi-factor jump-diffusion model which would allow

25 futures (or forward) commodity prices to be modelled in a way which captured empirically observed

26 features of the commodity and commodity options markets. However, the model focused on modelling

27 a single individual underlying commodity. In this paper, we investigate an extension of this model

28 which would allow the prices of multiple commodities to be modelled simultaneously in a simple but

29 realistic fashion. We then price a class of simple exotic options whose payoff depends on the difference

30 (or ratio) between the prices of two different commodities (for example, spread options), or between

31 the prices of two different (ie with different tenors) futures contracts on the same underlying

32 commodity, or between the prices of a single futures contract as observed at two different calendar

33 times (for example, forward start or cliquet options). We show that it is possible, using a Fourier

34 Transform based algorithm, to derive a single unifying form for the prices of all these aforementioned

35 exotic options and some of their generalisations. Although we focus on pricing options within the

model of Crosby (2005), most of our results would be applicable to other models where the relevant

g? “extended” characteristic function is available in analytical form.

38

39 .

20 1. Introduction

j; Our aim, in this paper, is to price a class of simple European-style exotic commodity options within

43 an extension of the Crosby (2005) model. One of the features of the commodities markets is that

a4 options which are considered “exotic” for other asset classes are very common in the commodities

45 markets. Consider an option which pays the greater of zero and the difference between the prices of

46 two commodities minus a fixed strike (which might in practice, be zero). These options are very

47 actively traded. When the commodities are crude oil and a refined oil product (such as heating oil or jet
8 fuel), an option on the price difference is called a crack spread option. These crack spread options are

4 actively traded, not only in the OTC market but also, on NYMEX, the New York futures exchange.

49 When one of the commodities is coal, spread options are called dark spread options and when one of

=0 the commodities is electricity, spread options are called spark spread options. Phraseology apart, all

o1 these options are options on the difference between the prices of two commodities. The prices in

52 question might be the futures prices to some given tenors or the spot prices of two different

53 commodities. In this paper, we will focus on the case when the prices in question are futures

o4 commodity prices because, we can easily include the case of spot prices as a special case of the former

55 (ie as a futures contract which matures at the same time as the option maturity).

56 Another phraseology that is also used for spread options is that of “primary” commodity and

57 “daughter” commodity. A “primary” commodity might be, for example, a very actively traded blend of

58 crude oil (in practice, either Brent or WTI) and a “daughter” commodity would then be either a much

2(9) less actively traded blend (eg Bonny Light from Nigeria or Dubai) of crude oil or a refined petroleum

product such as heating oil, jet fuel or gasoline. The price movements of the “daughter” commodity
would closely, but not perfectly, follow those of the “primary” commodity. In practice, many spread
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options involve a “primary” commodity and a “daughter” commodity although, clearly, spread options
on two seemingly unrelated commodities, such as natural gas and a base metal, are possible.

It would be possible to approximate the prices of spread options by making ad-hoc assumptions such
as assuming the price spread is normally or log-normally distributed. However, such assumptions are
ad-hoc and are inconsistent with the assumptions typically made about the dynamics of the individual
commodities. The disadvantages of these approaches are discussed in, for example, Dempster and
Hong (2000) and Garman (1992). We will briefly mention one disadvantage of modelling price spreads
ie (arithmetic) price differences as log-normal. Because, of the way that crude oil is refined, through
fractional distillation, into a basket of refined products, one would expect the basket of refined products
to be always worth more than the same quantity of crude oil and that the difference is the (positive)
cost of refining. One might therefore be tempted to expect that the price of a particular refined
petroleum product (for example, heating oil or aviation fuel) is always higher (when measured in the
same units) than the price of crude oil. In fact, whilst a positive price differential is the more common
situation, it is empirically observed (see, for example, Geman (2005)) that sometimes an imbalance of
supply and demand in the international markets results in a negative price differential, albeit usually for
just short periods of time. It is also observed that, over a period of time, the spot price of a benchmark
grade of crude oil (such as Brent or WTI) can trade both more expensively and, at different times, more
cheaply than a given, less actively traded grade of crude oil (such as Bonny Light or Dubai). Clearly, it
would not be appropriate, therefore, to model (arithmetic) price differences as log-normal. So therefore,
in this paper, we will look at pricing spread options without ad-hoc assumptions about the price spread
and consistent with each of the two commodities following the dynamics of the model of Crosby
(2005).

Quite often the fixed strike of the spread option is, in fact, zero and we will call these “zero strike”
spread options. These are the type we will focus on, in this paper. The “zero strike” type of spread
option (an option to exchange one asset for another) was first considered by Margrabe (1978) for the
case of log-normally distributed asset prices. See also Rubinstein (1991a), (1991b) and Geman (2005)
and the references therein. Duffie et al. (2000) consider the pricing of some simple types of exotic
options for assets (bonds (both risk-free and defaultable), foreign exchange rates and equities)
following affine jump-diffusion processes. Deng (1998) considers the pricing of spread options on spot
commodity prices where the underlying spot commodity prices follow affine jump-diffusion processes.
In addition, Dempster and Hong (2000) have considered spread options (including the more difficult
case of “non-zero-strike””) on options where the underlying assets can follow more general stochastic
processes, including processes with stochastic volatility. Duffie et al. (2000), Deng (1998) and
Dempster and Hong (2000) all use Fourier Transform methods.

There are other actively traded variants on spread options, including options on the price ratio (rather
than the price difference). Another variant is that the underlying is actually a single physical
commodity but the spread involves the price difference (or ratio) between two futures contracts on that
same commodity but with two different tenors. These could be viewed as options on the slope of the
futures commodity curve. A somewhat different variant again is that a single commodity futures
contract is observed at two different calendar times. This gives rise to forward start and ratio forward
start (single leg cliquet) options. Using Fourier Transform methods, we will derive a single unifying
form for all these exotic options and some of their generalisations.

It is well-known (see Geman (2005) and Crosby (2005) and the references therein) that jumps are an
important feature of the commodities and commodity options markets, being both more frequent and
larger in magnitude than in, for example, the equity and foreign exchange markets.

In Crosby (2005), we introduced a multi-factor jump-diffusion model for commodities and
commodity options. It is an arbitrage-free model consistent with any initial term structure of futures
commodity prices. The model incorporates multiple jump processes into the dynamics of futures
commodity prices. It also allows for a specific empirically observed feature, common in the
commodities markets (especially for energy related commodities such as crude oil, natural gas and
electricity), that when there are jumps in futures commodity prices, the short end of the futures
commodity price curve jumps by a larger magnitude than the long end of the futures commodity price
curve. This is a feature that did not seem to have appeared in the literature before. In fact, Deng (1998),
and several other papers, such as Hilliard and Reis (1998) and Clewlow and Strickland (2000), include
jumps in models for spot commodity prices. None of these models are consistent with any initial term
structure of futures commodity prices but even if time-dependent drift terms were introduced to allow
for this, they are only able to produce jumps which cause parallel shifts in the term structure of (log)
futures commodity prices. We also allow for these latter types of jumps (see Assumption 2.2 in section
2) but, in addition, through an exponential dampening feature, we also allow for jumps (see
Assumption 2.1 in section 2) which cause long-dated futures commodity prices to jump by smaller
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magnitudes than short-dated futures commodity prices. In Crosby (2005), we explain how jumps which
cause parallel shifts in the term structure of (log) futures commodity prices are empirically more
suitable for modelling options on gold (in this respect, gold “trades like a currency”). On the other
hand, the exponentially dampened type of jumps is shown to be more suitable for modelling most other
commodities (especially crude oil, natural gas and electricity).

A feature of “primary” and “daughter” commodities is that, it is observed empirically that, when
there are jumps in the price of the “primary” commodity, then there are also simultaneous jumps in the
price of the “daughter” commodity, albeit, generally of a different magnitude.

In this paper, we consider two commodities which we will label Commodity 1 and Commodity 2.
We consider how we can adapt the Crosby (2005) model to realistically handle the case of two
different commodities. Heuristically, we suppose that there are background (for example, economic)
factors which influence the dynamics of futures commodity prices. These background factors are
represented mathematically as Brownian motions and Poisson processes. To provide some heuristic
intuition as to how the Poisson processes relate to the dynamics of futures commodity prices, we
consider the following: One could imagine there being factors which caused the futures prices of both
natural gas and electricity to jump simultaneously whilst there could also be factors (an outage, for
example) which caused electricity prices to jump but did not cause jumps in the futures prices of
natural gas. Equally there could be factors which always caused simultaneous jumps in the futures
prices of crude oil and the futures prices of a refined petroleum product (although, of course, the
magnitudes of the jumps could be different). At the other end of the spectrum, one could imagine
modelling the futures prices of two commodities (perhaps a base metal and an energy-related
commodity) which would have no simultaneous jumps at all. Of course, our aim in this paper is to
price commodity derivatives for which we need to model commodity prices in the risk-neutral measure
— it is not to explain price movements in the real-world physical measure. The heuristic intuition above
is simply designed to provide an insight into our model.

In order to cater for all the different possible cases of modelling the futures prices of two different
underlying commodities, we suppose there are M Poisson processes which drive all futures
commodity prices. If, in fact, the price of a particular commodity does not jump in response to a jump
of a particular Poisson process, we can cater for this by setting the jump size to be identically equal to
ZEero.

In addition to Poisson processes, futures commodity prices are also driven by multiple Brownian
motions. The diffusion volatilities associated with the Brownian motions are assumed deterministic but
otherwise can be specified in a fairly flexible manner (Crosby (2005) provides more details or see
Miltersen (2003) for a specification which can model seasonality in the term structure of volatilities,
which is an empirically observed feature of the natural gas markets).

In this paper, we assume that interest-rates are stochastic and, therefore (Cox et al. (1981)), futures
commodity prices and forward commodity prices are not the same. We will work with futures
commodity prices but, results in, for example, Jamshidian (1993) and Crosby (2005) show that pricing
options involving forward commodity prices is a straightforward extension.

The rest of this paper is organised as follows: In section 2, we consider a simple but realistic
extension of the Crosby (2005) framework to model two underlying commodities. In section 3, we
define the payoff of a simple class of exotic options. In section 4, we derive a generic formula for the
price of these options using Fourier Transform methods. In section 5, we provide some numerical
examples of our methodology. Section 6 is a short conclusion.

2. Extending the model to two underlying commodities

In this paper, we will make the standard assumptions that markets are frictionless and arbitrage-free.
We will work exclusively in the equivalent martingale measure (EMM), under which' futures
commodity prices are martingales, which, depending on the form of the model, may not be unique. In
essence, in the case of non-uniqueness (which corresponds to market incompleteness) we assume that
an EMM has been “fixed” through the market prices of standard (plain vanilla) options and by an abuse
of language call this the (rather than an) EMM. Crosby (2005) provides more details. We denote

expectations, at time #, with respect to the EMM by Et[ ]

" To be precise, the EMM under which futures prices are martingales is defined with respect to the money market
account numeraire.

E-mail: quant@tandf.co.uk URL://http.manuscriptcentral.com/tandf/rquf



©CoO~NOUTA,WNPE

Quantitative Finance

We denote the (continuously compounded) risk-free short rate, at time £, by l’(t ) and we denote the

price, at time f, of a (credit risk free) zero coupon bond maturing at time 7 by P(t,T). We assume

that interest-rates are stochastic and (see Heath et al. (1992)) follow a Gaussian interest-rate model (eg
Hull-White, extended Vasicek, Babbs (1990), Hull and White (1993)), which is an arbitrage-free model
consistent with any initial term structure of interest-rates. The dynamics of bond prices under the EMM
are (Babbs (1990), Heath et al. (1992), Hull and White (1993)):

%: K0\t + o, (T )z, (),

where o p (t,T) is a purely deterministic function of ¢ and 7', with o, (T,T) =0, and dz, (t)

denotes standard Brownian increments. In section 5, we will provide numerical examples where we
work within a one factor Gaussian (Hull-White, extended Vasicek) model in which we write

O, (t, T) =0, (1 N exp(— a, (T - t))) Q, , where 0, and ¢, are positive constants. However, all

results in this paper are extendable to any multi-factor Gaussian HIM (Heath et al. (1992)) interest-rate
model without further ado.

We consider two commodities, labelled Commodity 1 and Commodity 2. We denote the futures
price of Commodity I, i =1,2, at time ¢ to time T (ie the futures contract, into which Commodity

i, i=12, is deliverable, matures at time T ) by Hi(t,T). Then for each i, i = 1,2, we assume,
following Crosby (2005), that the dynamics of futures commodity prices under the EMM are:

dH (1,T) gam (6.7 )z, () - 0 (6.7 )z, )

H, (t—
M
+z exp| ¥ exp( jb J —11dN,, —Zeiwm(t,T)dt, (2.1)
m=1
where
T
e, (.T)= 2, 0E, | ext| 7., p( jbi,m<u>duj 1], 22

where, for each k, k=1.2,....K;, o, (t,T) are purely deterministic functions of at most ¢ and
T, dz Hik (t ), for each k , are standard Brownian increments (which can be correlated with each other

and with dz P (t ) but we assume the instantaneous correlations between these Brownian motions are

constant and form a positive semi-definite correlation matrix), and N __, foreach m, m=1,....M ,

mt ’
are independent Poisson processes whose intensity rates, under the EMM, at time £, are ﬂ,m (t ) which
are positive deterministic functions of at most . The functions bi m (t ), for each m , and for each 1,
are non-negative deterministic functions which we call jump decay coefficient functions. The

parameters ), ., for each m, are parameters, which we call spot jump amplitudes. For each m, El.’m

denotes the expectation operator, at time ?, conditional on a jump occurring in N, ie in equations

mt ?
2.1 and 2.2, it computes the expected impact of jumps in the 7 ™ Poisson process on Commodity i .

We use the terminology spot jump amplitudes for the parameters ), because it can be seen
(Crosby (2005)) that y; , is the log of the jump amplitude of the futures price for a futures contract

with T =t (ie a futures contract for immediate delivery), ie for each m , Vim 1s the (log of the) spot
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jump amplitude for Commodity i. We assume that the spot jump amplitudes Vim are one of two

possible forms, which we term those of assumption 2.1 and assumption 2.2, which in turn are linked to

two possible specifications of the jump decay coefficient functions bi!m (t )

Foreach m, m=1,..., M , we assume that either:
Assumption 2.1 :
The spot jump amplitudes }; ., for each i, are assumed to be constants, which we denote by ﬁi!m .In

this case, the jump decay coefficient functions bim(t) are assumed to be any non-negative

deterministic function. °
Or:
Assumption 2.2 :

In this case, the jump decay coefficient functions bi!m (t ), for each i, { =1,2, are assumed to be
identically equal to zero ie bi!m (t ) =0 for all ¢ and for each i. The spot jump amplitudes Vi are
assumed to be normally distributed random variables, with (under the EMM) mean ﬂi’m and standard
deviation Ui s for each i, each of which is independent of each of the Brownian motions and of each

of the Poisson processes. For different 1, the spot jump amplitudes ), , are assumed to be
independent. However, for a given m , we assume that, for this m, the correlation between the spot

jump amplitudes ¥, , and ¥, is p1J2 . - In other words, we assume correl(yl sV on ) = /0112 i
m=n and correl(}/l sV n)E 0 otherwise. We assume that, for each i and for each m, f3, .

J
U;,, and pp, - are all constants. °

Remark 2.3 : Note that, in assumptions 2.1 and 2.2, ﬁl,m need not equal ﬂZ,m and also that one of
ﬂl,m or ﬂZ,m may be zero (and for assumption 2.2, likewise v, and U, ). This allows us to
capture the effect where, in response to a jump in N, at time 7, the spot price H, (t,t) of

Commodity 1 and the spot price H 2(1‘ 1 ) of Commodity 2 may jump by different magnitudes (and
one may not actually jump at all).

We define the indicator functions, for each m, m=1,....M , 1m(2.1) =1 if assumption 2.1 is
satisfied, for this 7, and 1m(2.l) =0 otherwise and 1m(2.2) =1 if assumption 2.2 is satisfied, for this
m , and 1m(2.2) =0 otherwise. Then equation 2.1 and assumptions 2.1 and 2.2 imply that

e; (t,T):

i,m

M=
M=

3
N
3
L

T
1m(2.1)ﬁ“m(t eXp ﬂi,m exp(_jbi,m(u)duj _1

M
S fo{a ot e <051

Crosby (2005) provides more information about the consequences of the assumptions above and of
equation 2.1. In short, the consequences are that futures commodity prices are martingales in the EMM

and (with a suitable (see Crosby (2005)) form for o ;. (t,T)) log of the spot prices of both

Commodity 1 and Commodity 2 exhibit mean reversion in the EMM. It is also shown how, when the
jumps are of the type of assumption 2.1, jumps can also contribute to the effect of mean reversion and
that the speed of this jump-related mean reversion is given by the values of the jump decay coefficient
functions. When there are jumps, in the case of assumption 2.1 (and provided the relevant jump decay

coefficient functions bi,m (l‘) are strictly positive), the prices of long-dated futures contracts jump by

smaller magnitudes than short-dated futures contracts because of the exponential dampening effect of

E-mail: quant@tandf.co.uk URL://http.manuscriptcentral.com/tandf/rquf



©CoO~NOUTA,WNPE

Quantitative Finance

the jump decay coefficient functions in equation 2.1. This is in accordance with stylised empirical
observations in most commodities markets (especially for energy-related commodities). In the case of
assumption 2.2, jumps cause parallel shifts in the (log of the) futures commodity prices to all tenors

because, in this case, the jump decay coefficient functions bim(t) are identically equal to zero.

Stylised empirical observations suggest this is more appropriate for gold.
We have deliberately worked with very general forms of the diffusion volatility parameters
O uik (t,T), the intensity rates A, (l‘) and the jump decay coefficient functions b, ,, (l‘) The specific

functional forms and the values of K,, K, and M would be chosen by the trader according to her

intuition of the behaviour of the two underlying commodities. To help with this process, we will briefly
consider possible specifications of the dynamics of the futures prices of the two commodities.

2.1 A possible specification for the jumps and the diffusion volatilities

Suppose that Commodity 1 is WTI grade crude oil. This is the “primary” commodity. It is very
actively traded and there are many standard European options traded on it whose prices the trader can
observe in the market. Suppose Commodity 2 is heating oil, a refined petroleum product. This is the
“daughter” commodity. It is not so actively traded but there are some (but a smaller number than for
WTI grade crude oil) standard European options traded on it whose prices she can observe in the

market. We suppose K, =2, K, =3 and M =1. Furthermore, we suppose the two Brownian

motions driving Commodity 1 are also precisely the first two Brownian motions driving Commodity 2,
with the same volatility parameters. The third Brownian motion driving Commodity 2 is specific to that
commodity. More specifically, we assume

Oyt (t’T) =0pqa (t’T) =1t eXP(_ a, (T - t)) (2:3)
Onin (t’T) =O0pqa» (t’T) =X exp(— a, (T . t)) (2.4)

and we assume the diffusion volatility function for the third Brownian motion (driving only
Commodity 2) is of the form

25 (t:T) = 25 expl=a; (T — 1)), 2.5)
where 77,, ¥\, X, X3» 4;, 4, and a, are all constants.

We will drop the first subscripted index for the Brownian motions in this subsection only (ie write
dz,,, (t)=dzy,, (t)=dz,, , (¢), for k=12 and dz,,,,(t)= dz,, , (t), for k =3).

We define the correlations (assumed constant), for i =1,2,3 and j =1,2,3:

Pij = correl(dij (¢) dzy (t))’ Pri = correl(dZP (¢) dzy; (t))

We assume that Commodity 1 and Commodity 2 both jump in response to increments in the Poisson
process N,, which we assume to be of the type of assumption 2.1 and to have a constant intensity rate
ie A, (t) = A,, where A, is a constant. The jump decay coefficient functions are identical for each

commodity and assumed constant ie b, 1(1‘)5 b21(t )E b,, where b, is a constant. However, we

assume the spot jump amplitudes are possibly different ie ,31’1 is not necessarily equal to ,32’1 .

Then we can write the dynamics of Commodity 1 and Commodity 2 (under the EMM) as:

dH,(t.T)

H, (t—,T) B (771 i exp(— a4 (T - t)))dZH,l(t)+ X2 exp(— a, (T - t))dZH,Z (t)

-0, (t, T)dz,, (t) + (exp(ﬂL1 exp(— b, (T - t))) - l)let —e, (t, T)dt ) (2.6)

E-mail: quant@tandf.co.uk URL://http.manuscriptcentral.com/tandf/rquf

Page 7 of 46



Page 8 of 46

©CoO~NOUTA,WNPE

Quantitative Finance

A0 0 exple T =DM 0+ ek = e )
+ X3 CXP(_ a; (T - t))dZH,3 (t)
—Op (t’ T)dZP (t) + (exp(ﬂz,l eXp(_ b, (T - t)))_ 1)ler T € (t’ T)dt : 2.7

If we define Rz/l(t T)E%:TT; and Cz/l(t)z%,then by Ito’s lemma,
dRzn(t’T)

R (t—,T) =X exp(— a, (T - t))dZH,S( )+ pPSGP( T)Z3 exp( (T - t))dt
-1 eXP(_ a, (T P t)Xp3,1 (771 1 eXP(_ a, (T - t)))+ Psa (Zz eXP(_ a, (T - t))))dt
+ (exp(( 21 ﬂl 1 )exp( ) 1)dN1z (ez 1 t T € (t’ T))dt . (2.8)

Note the form of the diffusion volatility term which only depends on the Brownian increments
dz HA (t ) . In fact, utilising results in section 3 of Crosby (2005), it is now clear, from equation 2.8, that

the SDE for C 21 (t ) can be written either in the form

d(InC,, ()= ay(A, (1) - (In C,,, (¢)))dr + X3z 5 (e)+ (/32,1 =P )dNn : 2.9
or, equivalently and alternatively, in the form
d(ln Cyn (t)) =b, (AD (t) - (ln Con (t)))dt + X3dzy 5 (t) + (/32,1 =P )dNn : (2.10)

where A J(t) and A D(t) are stochastic mean reversion levels whose exact forms can easily be
obtained utilising the methodology leading to proposition 3.4 of Crosby (2005), albeit at the expense of
some algebra (in fact, A, (t) is a pure-jump stochastic process and A, (t) is a pure-diffusion
stochastic process).

We see that the log ratio InC, (t) of the spot prices of the two commodities is a mean reverting

stochastic process (under the EMM). This is an attractive feature for modelling, for example, the case
where Commodity 1 is crude oil (the “primary” commodity) and Commodity 2 is a refined petroleum
product (the “daughter” commodity) such as heating oil, because, heuristically, we would expect the
price differential (and therefore also the log ratio) in the long-term to not move too far away from a
long-run mean level which reflects the cost of the refining process. However, in the short-term, the log
price ratio (and therefore also the arithmetic price difference) can go negative in line with the stylised
empirical observations made in section 1.

We will also briefly mention how this model might be calibrated. Usually, there will be fewer
actively traded options on the “daughter” commodity than on the “primary” commodity. One could
estimate the parameters of the process for the “primary” commodity by calibrating to the market prices

of standard options. In our example above, there would be eleven parameters, namely 77,, ¥, ¥,

a,, Ay, Py, Ppys» Ppa» Ay» by and B . Having determined these eleven parameters, one could
take these as given. Then one could estimate the remaining six parameters, namely Y., d;, 05,

Psas Ppss ﬂz 1 » from the market prices of standard options on the “daughter” commodity. There

would typically, be fewer actively traded options on the “daughter” commodity but, equally, there are
fewer parameters to estimate. Of course, it would require an empirical investigation, beyond the scope
of this paper, to determine how feasible our suggested calibration mechanism might be.

In order to give some intuition about the correlation between the futures prices of Commodity 1 and
Commodity 2, we compute the model implied correlation between log of the futures prices of the two

commodities for different tenors S and T, ie correl(ln(H . (O,S )), ln(H 2(O,T))), given the
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model specification in equations 2.6 and 2.7. The results are in figure 1. For both S and T (plotted on
the x and y axes), we used the values 0, 0.5, 1, 1.5, 2, 2.5, 3 (all tenors are in years). Our parameter

values are exactly as in examples 1 and 2 (see section 5). Note that when S =T, the correlations are

lowest for the shortest tenor (ie for S =7 =0) but tend to one for the longest tenor (S =7 =3).
This behaviour seems” quite intuitive for the case where Commodity 1 is crude oil and Commodity 2 is
a refined petroleum product such as heating oil. One would expect the prices of longer-dated futures
contracts on crude oil and heating oil to have a higher correlation since the difference between the (log
of the) prices would reflect the (average) cost of refining (which one would expect to vary only a little).
By contrast, one would expect a lower correlation between the (log of the) prices of shorter-dated
futures contracts on crude oil and heating oil because the price movements would reflect additional
short-term issues such as supply and demand, inventory and weather conditions.

In our example above, we have considered the dynamics of two commodities (“primary” and
“daughter”’) where intuition suggests they will move closely (but not perfectly) together. Of course, in
the case of two seemingly unconnected commodities such as, for example, natural gas and a base
metal, a different specification of the jumps and the diffusion volatilities would be chosen. For

example, we might consider two Poisson processes, with the first Poisson process N, only causing
jumps in Commodity 1 (by having ﬂ1,1 # 0 and ﬂ2,1 = () and the second Poisson process IN,, only
causing jumps in Commodity 2 (by having ﬂ1,2 =0 and ﬂz,z #0). We would also specify the

diffusion terms differently. The example above is just meant for illustration.

We have illustrated how the model could be applied in a specific case of interest but, for this rest of
this paper, we now return to considering the general case, as we turn our attention to pricing a class of
exotic commodity options.

3. A class of exotic commodity options

Our aim is to price a European-style option whose payoff is the greater of zero and a particular
function involving the futures price, at time 7, , of Commodity 1 deliverable at (ie the futures contract
on Commodity 1 matures at) time 7, , and the futures price, at time 7 ,, of Commodity 2 deliverable
at (ie the futures contract on Commodity 2 matures at) time 7, ,, where T,, <7,,, T,, =7}, and

T,, 2T,,. The payoff is known at time 7}, but is paid at (a possibly later) time 7, . Note

pay *
Tpay 2 711,1 2 7—'1,2 .

More mathematically, we price a European-style option whose payoff is:

H1 (Tll > Tz,l )_ K [Hz (le > Tz,z )]L

max| 77 - ,0 |, at time Tpay, 3.1)
|11, (7,7, )
where 77 =1 if the option is a call and 77 = —1 if the option is a put. Note & and @ are constants

and, furthermore, K " is a constant which might, for example, account for different units of
measurement. The reason for investigating options with this class of payoffs is that it contains as
special cases a number of option types of interest, all of which are actively traded in the OTC
commodity options markets.

We will now briefly outline (for the case of call options) some of these special cases:

% Note that the parameter ﬂl is the intensity rate in the risk-neutral EMM. Clearly, this parameter could be

different from the intensity rate in the real-world physical measure (in addition, had we also considered jumps of
the type of assumption 2.2, the mean jump amplitudes may also be different in the two different measures). Hence,
whilst the model implied (risk-neutral) correlations shown in figure 1 can provide intuition for traders, they are not
directly comparable to historical correlations (implicitly evaluated in the real-world physical measure).
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Spread (crack spread or dark spread or spark spread) options
These are options on the difference in price between two different underlying commodities. Their

payoffs can be defined (for the “zero strike” case) via equation 3.1 with £ =1 and a = 0. In practice,

we usually have Tl,l = T1,2' If the underlying prices, on which the option payoff is determined, are

spot prices, then we alsoset 7, =7,, and T}, =7T,, . °

Ratio spread or relative performance options
These are options on the ratio of the price of two different underlying commodities. Their payoffs

can be defined via equation 3.1 with & =1 and & =1. In practice, we usually have 7}, =T , . If the

underlying prices, on which the option payoff is determined, are spot prices, then we also set

T1,1 = Tz,l and Tl,z N T2,2~ i

Options on futures commodity price curve spreads
These are options on a single underlying physical commodity but with futures commodity contracts

of different tenors ie T2,1 # Tz,z- Their payoffs can be defined via equation 3.1 with

HI(O,O) =H, (0,0). Typically, we have T}, =T,, & =1 and, either &« =0 or a =1. .

Forward start options
These are options on a single underlying commodity in which TI.Z is strictly less than Tl,l' The

payoff is the greater of zero and the difference between the futures commodity price to a given tenor at
some calendar time and the futures commodity price to the same tenor at some earlier calendar time.

Their payoffs can be defined via equation 3.1 with H, (0,0) =H, (0,0), =1 and a =0. For the

case just described, one would have T, , =T, , but other variants are possible. For example, forward

start options on the spot commodity price would have T}, =7, , and T}, =T, ,. °

Ratio forward start options
Note that these options might also be called single-leg cliquets by analogy with terminology in the

equity options markets. These are also options on a single underlying commodity in which 7}, is

strictly less than Tl,l . The payoff is the greater of zero and the ratio of the futures commodity price to a

given tenor at some calendar time and the futures commodity price to the same tenor at some earlier
calendar time (minus a constant strike term). Their payoffs can be defined via equation 3.1 with

H, (0,0) =H, (0,0), & =1 and @ =1. Again, one could also have ratio forward start options on the

spot commodity price with 7}, =T, and T,, =T, , . °

Of course, we can also price options which are generalisations or mixtures of the special cases noted
above. For example, & and & need not be integers.

We should also make a brief comment about the time Tpa‘y at which the option payoff is paid. The

most common situation, in practice, is that Tpa would be set equal to T1 | - However, occasionally, we

y

observe in the OTC markets that commodity options are traded where the payoff is deferred for a short
period of time after Tl,l (and this is not just the standard two working day spot settlement but might,

for example, be a period of a few weeks). For example, it might be that Tpay is set equal to the

maturity of one of the underlying futures contracts.
We will now return, for the rest of the paper, to the completely general case of considering the class
of exotic options whose payoff is given by equation 3.1.
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4. Fourier Transform methodology

In this section, we will use a Fourier transform methodology, to price European-style options whose
payoff is defined in equation 3.1. We will proceed along the lines of Sepp (2003) who considers the
case of standard European options (on a single underlying asset).

Define, for times #, =2 and £, 2 1:
Hl(tl’TZ,l) Hl(t’TZ,l)
[Hz (tz T, )]L [Hz (t’ T,, )]‘E

The price of the European-style option, whose payoff is given by equation 3.1, at time f, (for
t<T,<T)is

Y(t,.T,,.1,,T, ,3t) = log @.1)

. .
pay Hl(Tll’TZI)_K [Hz(T12’T22)]g
E|exp - T, —
exp .!F(S)ds max| 77 [Hz (Tl,z’Tz,z )]a
= M, (0)+ M ()M (). -
Ty
where Ml(t)f (1—;77)E, exp| — r(s)ds Hl(Tl,l’TZ,l )[Hz (Tl,z’Tz,z )]_a 3
Tpuy
and Mz(t) = I_TU)E, exp| — jr(s)ds K*[Hz(TLZ’TM )]8*05 @9

Ty
and M,(t)=E, exp(— jr(s)ds

H\t,T .
MGXP(Y(TM VISPV IP ’Tz,z;t))’ K 1] (4.5)
2\l Ao

The last set of equations follows from a simple algebraic arrangement.
We focus, firstly, on M 5 (t)

[HZ (le ’ Tz,z )]g_a min

Define f(Y(Tl,l’TZ,l’TLZ’TZ,Z;t))z min %eﬂ)(y(ﬂvnmnz’n,z;t))’K*
2\l

and then write

f(Y(TL1 10T ,,T, 55 t)) in (inverse) terms of its Fourier Transform f (Z ) ie write

iz;+00

f(Y(Tl,sz,pTLz’Tz,z;t)): Py IeXP(_ iZY(TLl’T2,1’71,2’T2,2;t))f(z)dzv (4.6)

iz;—o0

where 7 is complex. Results in Lewis (2001) and Sepp (2003) show that, by taking the Fourier
Transform of f(Y(Tl,l’Tz,l’Tl,z’Tz,z;t))’ which exists provided 0 <z, <1, where z, is the

imaginary part of Z , then:
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iz+1

%))

ie)- H (.T,,) (Z 1 j K'[H,(1, )

CAEM)] H(0.T,,)

Furthermore, by substituting equation 4.6 into equation 4.5, M , (l‘ ) is given by:

2 .

Ty iz;+o0 R
E,|exp| - Ir(s)ds [Hz(n,z’Tz,z)]gai IeXP(_ iZY(TLl’T2,1’T1,2’Tz,2;t))f(z)dZ
t iz; =0
1 iz;+o0 Ty

=5 j E, | exp| — jr(s)ds [Hz(Tl,z’Tz,z )]g_a exp(— iZY(Yl,l’Tz,l’Y],z’Tz,z;t)) f(z)dz

iz;—o0 t

= ICD(_ ut. 1. 1,,.T,,.1,, )f(z)dz , “4.8)

where CD(_ zt,1,,,1,,,T,,.T,, )E
TI

E,|exp| - jfyr(s)ds [Hz(Tl,z’Tz,z )]s_a exp(— iZY(Tl,l’TZ,I’TI,Z’Tz,Z;t)) ’ “.9)

t

and where we use Fubini’s theorem to justify the interchange of the integral and the expectation
operator. We will call (I)(— 0. 1,,.,1,,.1,,.T, 2) the “extended” characteristic function (we have

borrowed the terminology from Duffie et al. (2000) but our definition is somewhat different).
We now collect the equations above into the form of a proposition.

Proposition 4.1 : The price of the European-style option, at time #, whose payoff is defined in
equation 3.1, is:

iz; +o0

1 ~
Ml(t)+M2(t)_E .[CD(_ Z;t’Tl,l’TZ,l’Tl,Z’TZ,Z) (Z)dz : (4.10)

Proof : From equations 4.2 and 4.8. o

Remark 4.2 : Note that equation 4.10 holds independently of the specific model for futures commodity
prices. So, for example, we could consider extensions of the Crosby (2005) model which allow for, for
example, stochastic volatility or alternative specifications of the jump processes (in the manner of
Heston (1993), Duffie et al. (2000) and Barndorff-Nielsen and Shephard (2001)) and equation 4.10
would still be applicable, provided that the “extended” characteristic function can be calculated.
Equation 4.10 (with minor modifications) could also be useful for options involving other asset classes
such as equities (see Duffie et al. (2000)) or inflation (see Mercurio (2005), where it is shown that the
valuation of derivatives on year-on-year inflation involves calculations very similar to valuing ratio
forward start (cliquet) options). However, for the sake of brevity, we will not pursue this point further
in this paper.

In the appendix, we write down the “extended” characteristic function when the dynamics of futures
commodity prices are given by equation 2.1. From the form of the “extended” characteristic function,

we can also easily obtain explicit forms for M, (t ) and M, (t ) (see the appendix).
We can now calculate the option price, via equation 4.10 provided the integral is well-defined,
which requires 0 < z; < 1. One choice (as in Lewis (2001) and Sepp (2003)) is to evaluate the

integral along the straight line given by z = u + i/ 2, where U is real.
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With this choice, the price of the European-style option at time f, whose payoff is defined in
equation 3.1, is:

M, (0)+M

—— [ @ u=i/250.T, . T, T, T ) i/ 2)du @.11)
0

hll'—

where we have also changed the lower limit of the integration from — 00 to zero by using the fact that
the option price is real and hence the integrand is odd in its imaginary part and even in its real part. We
will not write down the option price formula in its most explicit form as it is rather long and would not
greatly enhance intuition. Equations for M, (t ) and M, (t ) are in the appendix and f(u + i/ 2) can

be obtained from equation 4.7.

If the “extended” characteristic function were to be completely analytic, then it would be
straightforward to evaluate the integral in equation 4.11. In particular, we can compute option prices
using a single one-dimensional integration irregardless of how many Brownian motions and Poisson
Processes drive the futures commodity prices. If all the Poisson processes satisfy assumption 2.2, and

provided that J-/7u ds is easily evaluated (and, of course, in practice, one would choose a form for

the intensity rates ﬂm( so that j/?. ds can be evaluated analytically), then this would be the

case in our model. Unfortunately, if any of the Poisson processes satisfy assumption 2.1, then our
“extended” characteristic function involves integrals (see the second, third, fourth and fifth lines of
equation A.2 in the appendix) which means that evaluating equation 4.11 involves at least a double
integral. This is certainly computationally feasible but equally performing a double integral will be
considerably slower than a single integral. Crosby (2006) shows how calculation times can be speeded
up, when pricing standard (plain vanilla) European options, by using power series expansions of terms
appearing in the characteristic function. A similar idea can be used here provided we make some
simplifying assumptions.

As in Crosby (2006), we make the following assumption:
Assumption 4.3 : We will henceforth assume that, foreach m, m=1,...,.M , lm (s ) = /1m and, for

each 1, bl. m(t ) = bl. . are constants. Furthermore, we assume that, if for this m1, the jumps satisfy

assumption 2.1, then b, > 0. (This condition is not restrictive since if b, were to equal zero, we

could treat it as in the case of assumption 2.2 which is much simpler). L

This means that we can use the power series expansions of Crosby (2006) for the terms on the
second, third and fourth lines of the “extended” characteristic function (see equation A.2) (into which

we would substitute 7 = u + i/ 2, where u is real).
In order to rapidly compute the following term (the fifth line) in equation A.2 (into which, again, we
would substitute 7 = u + i/2 ):

T,

exp ZI 21) J. )exp((g a+zz8),b’2m¢2m(s Tzz) izﬂ1,m¢lym(s,T2J))ds ,

(where ¢, m( T, 1) and @, (S T, 2) are defined as in equation A.1 in the appendix) we will make

the following additional assumption:

Assumption 4.4 : We will henceforth assume that, for each m, b, and b, are identically equal ie

that b, =b,, =b,,, say. °

Remark 4.5 : Crosby (2005) shows that futures commodity prices can be written in terms of a number
of Gaussian state variables and M Poisson jump state variables. It can therefore be shown that
assumption 4.4 is equivalent to saying (for assumption 2.1) that the futures prices of Commodity 1 and
Commodity 2 are driven by the same jump state variables. It is shown in Crosby (2005) that our model
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is consistent with mean reversion, under the EMM. Not only that, but it is also shown that, when the
jump processes are of the type of assumption 2.1, then jumps can also contribute to the effect of mean
reversion and that the speed of this jump-related mean reversion is equal to the associated jump decay
coefficient function. Hence assumption 4.4 is also equivalent to assuming that, after a jump, there is a
common speed of jump-related mean reversion in Commodity 1 and Commodity 2. Although it would
be an empirical matter, beyond the scope of this paper, to fully justify assumption 4.4, this assumption
does, therefore, have some economic intuition. In addition, we note that assumption 4.4 is obviously a
non-assumption in the special case when the option is on a single underlying commodity (see section 3,
for example, options on futures commodity price curve spreads, forward start options and ratio forward
start options), since it must hold.

With assumption 4.4, we can make a similar type of power series expansion which we specify in the
next proposition.

Proposition 4.6 : Define /= eXp(— b, (T -T,.. )) and Y/, , = eXp(— b, (T -T,, )), with
T, . <T, 6 <T.Then:

start — ~end —

Tend

J A expllio, + @, )exp(=b, (T ~s)Ms = 2, (T, ~T.0.)

start

+ /1—'” i l (“ a)12 + a)22 Y(l//ennd - l//Sntart Xcos(n9)+ isin(nﬁ))
n!

b n

, (4.12)

m n=1
where @, and @, are real numbers, independent of ', and where 0, is defined as follows:

a)z/qla)f+a)22

If o, 20 and @, =0, then 0=0,clse if @, 20 and @, <0, then O=r-0,clseif w, <0
and @, =0, then 0=27-0,clseif @, <0 and w, <0, then O=7+0 .

Firstly, define 5, 0<6 < % , via cos = , then:

Proof: This proposition is just a generalisation of proposition 3.3 in Crosby (2006) and can be proved
in an identical fashion. Therefore, the proof is omitted”. L

All the integrals (see the second, third, fourth and fifth lines of equation A.2) which appear in the
“extended” characteristic function can be nested in a form which enables them to be evaluated by
proposition 4.6, provided assumptions 4.3 and 4.4 hold. Hence, we can quickly and easily evaluate the

“extended” characteristic function. We can also evaluate M l(t ) and M 2(t ) (see appendix) in the
same way. We can then very rapidly, using standard one dimensional numerical integration techniques,

compute the integral in equation 4.11 and hence also compute the price of the European-style option
whose payoff is defined in equation 3.1.

5. Numerical examples and results

In this section, we will provide four numerical examples, labelled examples 1, 2, 3 and 4, of our
methodology, the results of which are in tables 1, 2, 3 and 4 respectively. In all four examples, we
value European-style options, whose payoff is defined in equation 3.1, using equation 4.11.

We evaluate the integral with respect to # in equation 4.11 using Simpson’s rule with 1024 points.
Examining the forms of equations A.2 and 4.11, we see that for large u, the integrand behaves

s straightforward to see that the power-series expansion in equation 4.12 will be rapidly convergent. Indeed
the modulus of the term appearing in the square brackets is guaranteed to be monotonically declining to zero when

n> max(Z,w/a)f +o; )
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1 1 1
asymptotically like exp(— 2(142 + 4)22 (t’Tl,l 5,157, , )j/(uz + 4) which clearly tends

to zero rapidly as u —> o0, since Zz(t’n,pTl,z’Tz,pTz,z)Z 0. We truncate the upper limit of the

integral when the value of u is such exp(— ;[uz + ijzz(t,Tu,lez 1,,,T,, )j/(uz + 411} is

less than 10™*. We truncate the infinite series in equation 4.12 when the value of an additional term in
the series has converged to less than 107,

In all four examples, we assume that the initial (ie as of the valuation date of the options that we will
value in our examples) futures prices of Commodity 1 to all maturities are 40 and the initial futures
prices of Commodity 2 to all maturities are 41. We assume that the initial interest-rate yield curve is
flat with a continuously compounded risk-free rate of 0.044 ie we assume that the discount factors for

all maturities T , as of the valuation date, time , of the options that we will value, are all of the form
exp(— 0.044(T —t )) Interest-rates are stochastic and evolve following a one factor Hull-White
(extended Vasicek) model in which
o,(t.T)=0,(1-exp(-a,(T —t)))/a, . where &, =0.012 and @, =0.125.

In all four examples, we use the same form for the diffusion parameters as in equations 2.3 to 2.5 in
section 2.1. That is, we suppose K, =2 and K, =3 and, furthermore, we suppose
m =012, y, =022, 7, =025, ,=0242,a, =09, a, =0.7. a, = 1.5.
We assume all correlations are 0.05 ie forall i =1,2,3 and j =1,2,3:

P;; =0.05 and p,; =0.05. Note that all these parameters are just for illustration.

In all four examples, we assume that the maturities of the futures contracts on Commodity 1 are of
the form T,, =T, + (3 1/365) and on Commodity 2 of the form T,, =T, + (91/365) ie the
futures contracts on Commodity 1 and Commodity 2 mature 31 days and 91 days respectively after
T, and T, , . In all four examples, we set T’ =T, . We specify 7}, and 7|, in the examples.

In each example, we value six options and all of them are calls (ie 77 =1). For the first three

options, & = 0, £ =1 and the values of K " are 0.95, 0.975 and 1. The fourth, fifth and sixth options
have & =1 and, again, & = 1 and the values of K~ are 0.95, 0.975 and 1. Thus, we evaluate spread

options for three different values of K " and ratio spread options for the same three values of K " in
each example.

Example 1 :
In example 1, we assume 7;, =1 and 7}, =1. We assume that there is one Poisson process,

M =1, and it satisfies assumption 2.1 and it has an intensity rate 4, = 0.512. As in the example in
section 2.1, both Commodity 1 and Commodity 2 exhibit jumps of non-zero magnitude in response to
jumps in this Poisson process. We assume b, =b,, =1.55, B, =0.55, f,, = 0.35. We price

the six different options and the results are in table 1. °

Example 2 :

In example 2, we assume 77, =3 and T,, =2. This means that the maturities of the futures
contracts on Commodity 1 and Commodity 2 are approximately 3.08493151 and 2.24931507 years
respectively. Note that because T1,2 is strictly less than TL1 , the options in this example can also be

viewed as hybrid forward start options (for the first three options where & = 0) and ratio forward start

options (for the fourth, fifth and sixth options where ¢ = 1) involving two different commodities. We
assume that all the jump parameters are exactly the same as in example 1. We price the six different
options and the results are in table 2. °
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Example 3 :
In example 3, we assume Tl,l =1 and TL2 =1. We use exactly the same diffusion parameters as in

examples 1 and 2 but to provide a contrast with those examples, we assume that there are two Poisson
process, M =2, and they both satisfy assumption 2.1 and they have intensity rates 4, =0.512 and

A, =0.47 respectively. Commodity 1 jumps but Commodity 2 does not jump in responses to jumps
in this first Poisson process V|, . Conversely, Commodity 2 jumps but Commodity 1 does not jump in

responses to jumps in this second Poisson process NN ,, . We assume b, | = b, =1.55,

bl,z =b2!2 =1.55, ,3131 =0.55, ﬂz,l =0, ,31’2 =0, ,32’2 =0.35. We price the six different

options and the results are in table 3. °

Example 4 :
In example 4, we assume 7}, =3 and 7,, = 2. We assume that there are two Poisson processes

again and that all the jump parameters are exactly the same as in example 3. We assume that all the
diffusion parameters are exactly the same as in examples 1, 2 and 3. Note that, as in example 2,

because 7 , is strictly less than 7T} |, the options in this example can also be viewed as hybrid forward

start and ratio forward start options. We price the six different options and the results are in table 4. @

Computations were performed on a desk-top p.c., running at 2.8 GHz, with Microsoft Windows XP
Professional, with 1 Gb of RAM with a program written in Microsoft C++. The total calculation time
for all 24 options in examples 1 to 4 was 0.532 seconds or an average of less than 23 milliseconds per
option. By significantly increasing the number of points in the numerical integration and by
significantly reducing the tolerances used to truncate the upper limit of the integral (in equation 4.11)
and the power series expansions (as in equation 4.12), we were able to confirm that in proportional (ie
proportional to the calculated option prices) terms, all the option prices in tables 1 to 4 are accurate to
at least one part in 500,000 and, also, that in absolute terms, all the option prices are accurate to at least
5 decimal places. So our algorithm is both fast and accurate.

Note how the option prices in examples 3 and 4 are higher than the corresponding option prices in
examples 1 and 2 respectively. This is intuitive given the different specifications of the jump processes
driving futures commodity prices, between, on the one hand, examples 1 and 2, and, on the other hand,
examples 3 and 4, and given the arguments we presented after equation 2.10.

6. Conclusions

We have extended the Crosby (2005) model to simultaneously model the prices of multiple
commodities. We then priced a class of simple exotic options which includes those whose payoffs
involve two different underlying commodities, or a single underlying commodity but with futures
contracts of two different tenors or the price of a single underlying futures contract observed at two
different calendar times. This class of exotic options includes common exotics such as (crack, dark or
spark) spread options, ratio spread options, forward start options and ratio forward start options (single
leg cliquets). We have shown that these exotic options can be priced using Fourier methods in any
model in which the relevant “extended” characteristic function is known analytically or can be
computed rapidly. The Crosby (2005) model falls into the latter category. We have provided some
numerical examples which demonstrate that our methodology is both fast and accurate.

Finally, we will briefly mention two possible areas for future research:

(i) We have focussed, when pricing spread options in this paper, on the “zero strike” case. Dempster
and Hong (2000) show how “non-zero-strike” spread options can be priced using a two-dimensional
Fast Fourier Transform methodology combined with an ingenious decomposition of the option payoff
analogous to Riemann sums. Their approach (combined with assumptions 4.3 and 4.4 and the power
series expansion of proposition 4.6) could be used to price “non-zero-strike” spread options within the
framework of this paper. It might also be possible to extend the Dempster and Hong (2000) approach in
order to price more exotic variations of some of the option types we discussed in section 3.

(i1) In section 2.1, we provided an example of specifying the dynamics of the futures prices of two
different commodities based on heuristics and trader-intuition. It might be possible to construct a more

E-mail: quant@tandf.co.uk URL://http.manuscriptcentral.com/tandf/rquf 15



©CoO~NOUTA,WNPE

Quantitative Finance

systematic approach based on suitable extensions of the methodology described in section 3 of
Casassus and Collin-Dufresne (2005). However, we leave this for future research.

Appendix

In order to obtain the forms for M 1(t ) and M 2(t ), defined in equations 4.3 and 4.4, we can
essentially use the “extended” characteristic function (defined in equation 4.9 and given explicitly in
equation A.2 below), into which we substitute 7 =i and z = O respectively, then :

Ml(t)E (1+77)Et €Xp| — jr(s)ds Hl(Tl,pTz,l)[Hz(ﬂ,z’Tz,z)]ia

:(1+77) Hl(t,Tz,l) q)(_i;t,TLl,TZJ,TLz,Tz,z)

2 [HZ(I’TZ,Z )]‘9

Mz(t)z (I_U)Et exp _TT‘vr(s)ds K*[Hz(Tl,z’Tz,z)]g_a

t

1—
( U)CD(O;LTLl’Tz,l’TLz’Tz,z)-

We will now proceed to write down the “extended” characteristic function when the dynamics of
futures commodity prices are given by equation 2.1, after defining the following notation:

i T)_s dHE(1,T

denotes the purely continuous martingale component in the SDE for Commodity i .

For each i, i=12,

T
Foreach i, i=12, ¢, (s,T)= exp(— .[b,.,m (u)duj. (A1)

Ti» ¢
Define U(t, T.,.T,, ) = —(g - a) .[ cov( ‘fés’;pay))’ ‘fIICz ((ss’;z,z))]ds
2 2522

t 9 pay

dHZC (S’TZ,Z)
H;(s.T,,

Lfo-ake-a- 1)T va{

Define W(t, TM 5 Tl,2 5 Tz,l > Tz,z ) =

TI]COV( dP(S’ TP")’ ) dch (S, T2,1 )Jd _ gT.lr COV( dP(S’ Tpay ) dHZC (S’ T2,2 )]JS

t P(S’Tpay) ’ ch (S’TZ,I) P(S’Tpay) , HZC(S’TZ,Z)

T, c c T, c
—a | COV( dH (s.Ty,) a3 (5T, )]ds +%(€ +2e0— &’ )I va{dH2 (5.7.,)

ch(s’Tz,l) , Hzc(S’Tz,z) Hzc .15,

t

E-mail: quant@tandf.co.uk URL://http.manuscriptcentral.com/tandf/rquf 16

Page 17 of 46



Page 18 of 46

©CoO~NOUTA,WNPE

Quantitative Finance

T, C
Define Zz(t’Tl,l’Tl,z’Tz,l’Tz,z)E Ivar( C;I;Iéigs’;z’li)st
‘ 1 \8. 1y,
f (dch oL dHZC(S’Tz’Z)jd 3 {dHf (s Tz,z)jds

_25}[ cov HIC(S,TZJ)’ Hzc(s,szz) s +& .[[Var Hzc o,

In order to compute the “extended” characteristic function, we will use the fact that Brownian
motions and Poisson processes have independent increments. Then by direct calculation:

M T
CD(_ ut. 1. 1,,.1,,.1,, ) = eXp(_ 2 jﬂm (s)dsl

m=1 t
T,

lm 21) jﬂ exp iz P (s,Tz,1 ))dsJ

exp.

M=

3
I

1 T

exp izz 1m(2.1) Iﬂm (S)(eXP(ﬂ1,m¢1,m (S’ T,, ))_ 1)d5}

m=1 t

Ti,

exp —(e—a +ize mﬁlm j )(eXp(ﬂzm¢2m( )) 1)‘13}
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3
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Figure 1:

Graph of the model implied instantaneous correlation correl (ln(H . (0, S )), ln(H ) (0, T))) between

the futures prices of Commodity 1 and Commodity 2, for different tenors S and T , given the model

specification in equations 2.6 and 2.7. For both S and T (plotted on the x and y axes), we used the
values 0, 0.5, 1, 1.5, 2, 2.5, 3 (all tenors are in years). Our parameter values are as in examples 1 and 2
(see section 5).

Model implied instantaneous correlations

;
0.5 Futures tenor (in years)
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Table 1 :

There is one Poisson process. 7, =1, T}, =1, T, =1+ (3 1/365), T,, =1+ (91/365).
The values of K are across the first row and the option prices are in bold across the second row.
a =0, & =1 (spread options) a =1, € =1 (ratio spread options)

0.95 0.975 1.0 0.95 0.975 1.0
2.64579 2.19204 1.80901 0.05799 0.04737 0.03852

Table 2 :

There is one Poisson process. 1\, =3, T, =2, T,, =3+ (3 1/365) T, =2+ (91/365).
The values of K~ are across the first row and the option prices are in bold across the second row.
a =0, & =1 (spread options) a =1, & =1 (ratio spread options)

0.95 0.975 1.0 0.95 0.975 1.0
6.04522 5.66903 5.31508 0.17500 0.16471 0.15498

Table 3 :

There are two Poisson processes. T, =1, T,, =1, T, =1+ (3 1/365), T,,=1+ (9 1/365).
The values of K~ are across the first row and the option prices are in bold across the second row.
a =0, & =1 (spread options) a =1, & =1 (ratio spread options)

0.95 0.975 1.0 0.95 0.975 1.0
4.02340 3.63361 3.28715 0.10248 0.09258 0.08379

Table 4 :

There are two Poisson processes. T, =3, T,, =2, T,, =3+ (3 1/365), T,,=2+ (91/365).
The values of K are across the first row and the option prices are in bold across the second row.

a =0, & =1 (spread options) a =1, € =1 (ratio spread options)

0.95 0.975 1.0 0.95 0.975 1.0
6.17001 5.79409 5.43994 0.17959 0.16926 0.15949
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alpha = 0, epsilon = 1 (spread options) alpha = 1, epsilon = 1 (ratio si
TABLE 1 (Example 1)
K* > 0.95 0.975 1.0 0.95 0.975
Option Price 2.64579 2.19204 1.80901 0.05799 0.04737

©CoO~NOUTA,WNPE

10 TABLE 2 (Example 2)
11 K* > 0.95 0.975 1.0 0.95 0.975
12 Option Price 6.04522 5.66903 5.31508 0.17500 0.16471

14 TABLE 3 (Example 3)
15 K* > 0.95 0.975 1.0 0.95 0.975
16 Option Price 4.02340 3.63361 3.28715 0.10248 0.09258

18 TABLE 4 (Example 4)

19 K > 0.95 0.975 1.0 0.95 0.975
20 Option Price 6.17001 5.79409 5.43994 0.17959 0.16926
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correl(H1(0,S),H2(0,T)) from examples 1 and 2 (but with different tenors)

0

0 0.881268
0.5 0.874569
1 0.840726
1.5 0.796371
2 0.75201
2.5 0.711487
3 0.675965

0.5
0.903977
0.93563
0.932046
0.907933
0.875233
0.840206
0.806303

1
0.884259

0.94799
0.972136
0.968926
0.950585
0.924717
0.896266

1.5
0.843201
0.92918
0.974822
0.989949
0.986126
0.971182
0.950632

2
0.797556
0.896973
0.957701
0.987536
0.996853
0.992926
0.981143

2.5
0.754378
0.860878
0.931548

0.97259
0.993006
0.999117
0.995792
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3
0.716001
0.825543
0.902457
0.951732
0.981041
0.995654
0.999772
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Model implied instantaneous correlations
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Abstract

A recent paper, Crosby (2005), introduced a multi-factor jump-diffusion model which would allow
futures (or forward) commodity prices to be modelled in a way which captured empirically observed
features of the commodity and commodity options markets. However, the model focused on modelling
a single individual underlying commaodity. In this paper, we investigate an extension of this model
which would allow the prices of multiple commodities to be modelled simultaneously in a simple but
realistic fashion. We then price a class of simple exotic options whose payoff depends on the difference
(or ratio) between the prices of two different commaodities (for example, spread options), or between
the prices of two different (ie with different tenors) futures contracts on the same underlying
commaodity, or between the prices of a single futures contract as observed at two different calendar
times (for example, forward start or cliquet options). We show that it is possible, using a Fourier
Transform based algorithm, to derive a single unifying form for the prices of all these aforementioned
exotic options and some of their generalisations. Although we focus on pricing options within the
model of Crosbhy (2005), most of our results would be applicable to other models where the relevant
“extended” characteristic function is available in analytical form.

1. Introduction

Our aim, in this paper, is to price a class of simple European-style exotic commodity options within
an extension of the Crosby (2005) model. One of the features of the commodities markets is that
options which are considered “exotic” for other asset classes are very common in the commodities
markets. Consider an option which pays the greater of zero and the difference between the prices of
two commodities minus a fixed strike (which might in practice, be zero). These options are very
actively traded. When the commodities are crude oil and a refined oil product (such as heating oil or jet
fuel), an option on the price difference is called a crack spread option. These crack spread options are
actively traded, not only in the OTC market but also, on NYMEX, the New York futures exchange.
When one of the commaodities is coal, spread options are called dark spread options and when one of
the commadities is electricity, spread options are called spark spread options. Phraseology apart, all
these options are options on the difference between the prices of two commaodities. The prices in
question might be the futures prices to some given tenors or the spot prices of two different
commodities. In this paper, we will focus on the case when the prices in question are futures
commodity prices because, we can easily include the case of spot prices as a special case of the former
(ie as a futures contract which matures at the same time as the option maturity).

Another phraseology that is also used for spread options is that of “primary” commodity and
“daughter” commodity. A “primary” commaodity might be, for example, a very actively traded blend of
crude oil (in practice, either Brent or WTI) and a “daughter” commaodity would then be either a much
less actively traded blend (eg Bonny Light from Nigeria or Dubai) of crude oil or a refined petroleum
product such as heating oil, jet fuel or gasoline. The price movements of the “daughter” commodity
would closely, but not perfectly, follow those of the “primary” commodity. In practice, many spread
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options involve a “primary” commaodity and a “daughter” commodity although, clearly, spread options
on two seemingly unrelated commodities, such as natural gas and a base metal, are possible.

It would be possible to approximate the prices of spread options by making ad-hoc assumptions such
as assuming the price spread is normally or log-normally distributed. However, such assumptions are
ad-hoc and are inconsistent with the assumptions typically made about the dynamics of the individual
commodities. The disadvantages of these approaches are discussed in, for example, Dempster and
Hong (2000) and Garman (1992). We will briefly mention one disadvantage of modelling price spreads
ie (arithmetic) price differences as log-normal. Because, of the way that crude oil is refined, through
fractional distillation, into a basket of refined products, one would expect the basket of refined products
to be always worth more than the same quantity of crude oil and that the difference is the (positive)
cost of refining. One might therefore be tempted to expect that the price of a particular refined
petroleum product (for example, heating oil or aviation fuel) is always higher (when measured in the
same units) than the price of crude oil. In fact, whilst a positive price differential is the more common
situation, it is empirically observed (see, for example, Geman (2005)) that sometimes an imbalance of
supply and demand in the international markets results in a negative price differential, albeit usually for
just short periods of time. It is also observed that, over a period of time, the spot price of a benchmark
grade of crude oil (such as Brent or WTI) can trade both more expensively and, at different times, more
cheaply than a given, less actively traded grade of crude oil (such as Bonny Light or Dubai). Clearly, it
would not be appropriate, therefore, to model (arithmetic) price differences as log-normal. So therefore,
in this paper, we will look at pricing spread options without ad-hoc assumptions about the price spread
and consistent with each of the two commodities following the dynamics of the model of Crosby
(2005).

Quite often the fixed strike of the spread option is, in fact, zero and we will call these “zero strike”
spread options. These are the type we will focus on, in this paper. The “zero strike” type of spread
option (an option to exchange one asset for another) was first considered by Margrabe (1978) for the
case of log-normally distributed asset prices. See also Rubinstein (1991a), (1991b) and Geman (2005)
and the references therein. Duffie et al. (2000) consider the pricing of some simple types of exotic
options for assets (bonds (both risk-free and defaultable), foreign exchange rates and equities)
following affine jump-diffusion processes. Deng (1998) considers the pricing of spread options on spot
commodity prices where the underlying spot commodity prices follow affine jump-diffusion processes.
In addition, Dempster and Hong (2000) have considered spread options (including the more difficult
case of “non-zero-strike™) on options where the underlying assets can follow more general stochastic
processes, including processes with stochastic volatility. Duffie et al. (2000), Deng (1998) and
Dempster and Hong (2000) all use Fourier Transform methods.

There are other actively traded variants on spread options, including options on the price ratio (rather
than the price difference). Another variant is that the underlying is actually a single physical
commodity but the spread involves the price difference (or ratio) between two futures contracts on that
same commodity but with two different tenors. These could be viewed as options on the slope of the
futures commodity curve. A somewhat different variant again is that a single commodity futures
contract is observed at two different calendar times. This gives rise to forward start and ratio forward
start (single leg cliquet) options. Using Fourier Transform methods, we will derive a single unifying
form for all these exotic options and some of their generalisations.

It is well-known (see Geman (2005) and Crosby (2005) and the references therein) that jumps are an
important feature of the commaodities and commodity options markets, being both more frequent and
larger in magnitude than in, for example, the equity and foreign exchange markets.

In Croshy (2005), we introduced a multi-factor jump-diffusion model for commodities and
commodity options. It is an arbitrage-free model consistent with any initial term structure of futures
commodity prices. The model incorporates multiple jump processes into the dynamics of futures
commodity prices. It also allows for a specific empirically observed feature, common in the
commodities markets (especially for energy related commodities such as crude oil, natural gas and
electricity), that when there are jumps in futures commodity prices, the short end of the futures
commodity price curve jumps by a larger magnitude than the long end of the futures commodity price
curve. This is a feature that did not seem to have appeared in the literature before. In fact, Deng (1998),
and several other papers, such as Hilliard and Reis (1998) and Clewlow and Strickland (2000), include
jumps in models for spot commaodity prices. None of these models are consistent with any initial term
structure of futures commodity prices but even if time-dependent drift terms were introduced to allow
for this, they are only able to produce jumps which cause parallel shifts in the term structure of (log)
futures commodity prices. We also allow for these latter types of jumps (see Assumption 2.2 in section
2) but, in addition, through an exponential dampening feature, we also allow for jumps (see
Assumption 2.1 in section 2) which cause long-dated futures commaodity prices to jump by smaller
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magnitudes than short-dated futures commodity prices. In Crosby (2005), we explain how jumps which
cause parallel shifts in the term structure of (log) futures commodity prices are empirically more
suitable for modelling options on gold (in this respect, gold “trades like a currency”). On the other
hand, the exponentially dampened type of jumps is shown to be more suitable for modelling most other
commodities (especially crude oil, natural gas and electricity).

A feature of “primary” and “daughter” commodities is that, it is observed empirically that, when
there are jumps in the price of the “primary” commodity, then there are also simultaneous jumps in the
price of the “daughter” commodity, albeit, generally of a different magnitude.

In this paper, we consider two commodities which we will label Commodity 1 and Commodity 2.
We consider how we can adapt the Crosby (2005) model to realistically handle the case of two
different commodities. Heuristically, we suppose that there are background (for example, economic)
factors which influence the dynamics of futures commodity prices. These background factors are
represented mathematically as Brownian motions and Poisson processes. To provide some heuristic
intuition as to how the Poisson processes relate to the dynamics of futures commodity prices, we
consider the following: One could imagine there being factors which caused the futures prices of both
natural gas and electricity to jump simultaneously whilst there could also be factors (an outage, for
example) which caused electricity prices to jump but did not cause jumps in the futures prices of
natural gas. Equally there could be factors which always caused simultaneous jumps in the futures
prices of crude oil and the futures prices of a refined petroleum product (although, of course, the
magnitudes of the jumps could be different). At the other end of the spectrum, one could imagine
modelling the futures prices of two commodities (perhaps a base metal and an energy-related
commodity) which would have no simultaneous jumps at all. Of course, our aim in this paper is to
price commaodity derivatives for which we need to model commaodity prices in the risk-neutral measure
— it is not to explain price movements in the real-world physical measure. The heuristic intuition above
is simply designed to provide an insight into our model.

In order to cater for all the different possible cases of modelling the futures prices of two different
underlying commodities, we suppose there are M Poisson processes which drive all futures
commodity prices. If, in fact, the price of a particular commodity does not jump in response to a jump
of a particular Poisson process, we can cater for this by setting the jump size to be identically equal to
zero.

In addition to Poisson processes, futures commodity prices are also driven by multiple Brownian
motions. The diffusion volatilities associated with the Brownian motions are assumed deterministic but
otherwise can be specified in a fairly flexible manner (Crosby (2005) provides more details or see
Miltersen (2003) for a specification which can model seasonality in the term structure of volatilities,
which is an empirically observed feature of the natural gas markets).

In this paper, we assume that interest-rates are stochastic and, therefore (Cox et al. (1981)), futures
commodity prices and forward commodity prices are not the same. We will work with futures
commodity prices but, results in, for example, Jamshidian (1993) and Crosby (2005) show that pricing
options involving forward commodity prices is a straightforward extension.

The rest of this paper is organised as follows: In section 2, we consider a simple but realistic
extension of the Croshy (2005) framework to model two underlying commaodities. In section 3, we
define the payoff of a simple class of exotic options. In section 4, we derive a generic formula for the
price of these options using Fourier Transform methods. In section 5, we provide some numerical
examples of our methodology. Section 6 is a short conclusion.

2. Extending the model to two underlying commodities

In this paper, we will make the standard assumptions that markets are frictionless and arbitrage-free.
We will work exclusively in the equivalent martingale measure (EMM), under which® futures
commodity prices are martingales, which, depending on the form of the model, may not be unique. In
essence, in the case of non-uniqueness (which corresponds to market incompleteness) we assume that
an EMM has been “fixed” through the market prices of standard (plain vanilla) options and by an abuse
of language call this the (rather than an) EMM. Crosby (2005) provides more details. We denote

expectations, at time t, with respect to the EMM by Et[ ]

1 To be precise, the EMM under which futures prices are martingales is defined with respect to the money market
account numeraire.
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We denote the (continuously compounded) risk-free short rate, at time t, by I‘(’[) and we denote the

price, at time t, of a (credit risk free) zero coupon bond maturing at time T by P(t,T). We assume

that interest-rates are stochastic and (see Heath et al. (1992)) follow a Gaussian interest-rate model (eg
Hull-White, extended Vasicek, Babbs (1990), Hull and White (1993)), which is an arbitrage-free model
consistent with any initial term structure of interest-rates. The dynamics of bond prices under the EMM
are (Babbs (1990), Heath et al. (1992), Hull and White (1993)):

%,’TT)) = r(t)dt + o, (t, T )dz, (),

where o, (t,T) is a purely deterministic function of t and T, with &(T,T)=0, and dz,(t)

denotes standard Brownian increments. In section 5, we will provide numerical examples where we
work within a one factor Gaussian (Hull-White, extended Vasicek) model in which we write

oo(t,T)=0, 1-exp(-a, (T —t)))/e, , where &, and e, are positive constants. However, all

results in this paper are extendable to any multi-factor Gaussian HIM (Heath et al. (1992)) interest-rate
model without further ado.

We consider two commodities, labelled Commaodity 1 and Commodity 2. We denote the futures
price of Commodity i, i =1,2, at time t to time T (ie the futures contract, into which Commaodity

i, 1=1,2, is deliverable, matures at time T ) by Hi(t,T). Then for each i, i =1,2, we assume,
following Crosby (2005), that the dynamics of futures commodity prices under the EMM are:

dH, (tT) <

ﬁ:;O-Hi,k(t1T)dZHi,k(t)_O-P(t’T)dZP(t)
M T M

+>° exp| i exp{—jbi,m(u)duJ —1(dN,, =D e, (t,T)dt, @.1)
m=1 t m=1

where

e tT)= 2, 0., eXp[hm exp(—jbi,mm)du}j—l , €2

where, for each k, k =1,2,...,K. O hix (t,T) are purely deterministic functions of at most t and

1!
T,dzy, (t) for each K, are standard Brownian increments (which can be correlated with each other
and with dZP(t) but we assume the instantaneous correlations between these Brownian motions are

constant and form a positive semi-definite correlation matrix), and N, foreach m, m=1...,.M ,

mt
are independent Poisson processes whose intensity rates, under the EMM, at time t, are A (t) which
are positive deterministic functions of at most t. The functions b | (t) for each M, and for each i,
are non-negative deterministic functions which we call jump decay coefficient functions. The
parameters y; .., for each M, are parameters, which we call spot jump amplitudes. For each M, Ei,m

denotes the expectation operator, at time t, conditional on a jump occurring in N ., ie in equations
2.1 and 2.2, it computes the expected impact of jumps in the M ™ Poisson process on Commodity i .
We use the terminology spot jump amplitudes for the parameters y; . because it can be seen

(Crosby (2005)) that ; ., is the log of the jump amplitude of the futures price for a futures contract

with T =t (ie a futures contract for immediate delivery), ie for each m, Vim is the (log of the) spot
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jump amplitude for Commodity i. We assume that the spot jump amplitudes Vim are one of two
possible forms, which we term those of assumption 2.1 and assumption 2.2, which in turn are linked to
two possible specifications of the jump decay coefficient functions bi]m (t)

Foreach m, m=1,...,M , we assume that either:
Assumption 2.1 :
The spot jump amplitudes y; ., for each i, are assumed to be constants, which we denote by ﬂi’m .In

this case, the jump decay coefficient functions bi,m(t) are assumed to be any non-negative

deterministic function. °
Or:

Assumption 2.2 :

In this case, the jump decay coefficient functions bi'm (t) for each i, i =1,2, are assumed to be

identically equal to zero ie bi’m (t) =0 forall t and for each i. The spot jump amplitudes Vim are
assumed to be normally distributed random variables, with (under the EMM) mean ﬁi,m and standard

deviation v, _, for each 1, each of which is independent of each of the Brownian motions and of each

I,m?
of the Poisson processes. For different M, the spot jump amplitudes p; . are assumed to be
independent. However, for a given M, we assume that, for this M, the correlation between the spot

jump amplitudes y, . and y, . is plem. In other words, we assume correl(ylym,yzvn)z pljzvm if
m=n and Correl(yl’m : 72,n)5 O otherwise. We assume that, for each i and for each m, £

im?

J
U; , and pp, . are all constants. .

i,m

Remark 2.3 : Note that, in assumptions 2.1 and 2.2, /3, need not equal 3, and also that one of
B or B,, may be zero (and for assumption 2.2, likewise v, and v, ). This allows us to
capture the effect where, in response to a jump in N, at time t, the spot price Hl(t,t) of

Commodity 1 and the spot price Hz(t,t) of Commodity 2 may jump by different magnitudes (and
one may not actually jump at all).

We define the indicator functions, for each m, m=1..,M , 1,,,) =1 if assumption 2.1 is
satisfied, for this M, and 1, = O otherwise and 1,,,) =1 if assumption 2.2 is satisfied, for this

m,and 1,,, =0 otherwise. Then equation 2.1 and assumptions 2.1 and 2.2 imply that

1m(2.l) /1m (t exp(ﬂi,m exp(_ -Ij bi,m (U )duJ] -1

Mz

zei,m (t’T):

M
m=1

1

3
I

M
+ Z_;(lm(Z.Z)ﬂ’m (t)(eXp[,Biym + %Ufm j —1}] , (where we have used b; (t) =0ifl,,, =1)

Crosby (2005) provides more information about the consequences of the assumptions above and of
equation 2.1. In short, the consequences are that futures commodity prices are martingales in the EMM

and (with a suitable (see Crosby (2005)) form for aHiyk(t,T)) log of the spot prices of both
Commodity 1 and Commodity 2 exhibit mean reversion in the EMM. It is also shown how, when the
jumps are of the type of assumption 2.1, jumps can also contribute to the effect of mean reversion and

that the speed of this jump-related mean reversion is given by the values of the jump decay coefficient
functions. When there are jumps, in the case of assumption 2.1 (and provided the relevant jump decay

coefficient functions bi,m (t) are strictly positive), the prices of long-dated futures contracts jump by
smaller magnitudes than short-dated futures contracts because of the exponential dampening effect of
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the jump decay coefficient functions in equation 2.1. This is in accordance with stylised empirical
observations in most commodities markets (especially for energy-related commaodities). In the case of
assumption 2.2, jumps cause parallel shifts in the (log of the) futures commaodity prices to all tenors

because, in this case, the jump decay coefficient functions bi’m(t) are identically equal to zero.
Stylised empirical observations suggest this is more appropriate for gold.

We have deliberately worked with very general forms of the diffusion volatility parameters
O hik (t,T), the intensity rates A, (t) and the jump decay coefficient functions biym(t). The specific

functional forms and the values of K,, K, and M would be chosen by the trader according to her

intuition of the behaviour of the two underlying commodities. To help with this process, we will briefly
consider possible specifications of the dynamics of the futures prices of the two commadities.

2.1 A possible specification for the jumps and the diffusion volatilities

Suppose that Commodity 1 is WTI grade crude oil. This is the “primary” commodity. It is very
actively traded and there are many standard European options traded on it whose prices the trader can
observe in the market. Suppose Commaodity 2 is heating oil, a refined petroleum product. This is the
“daughter” commaodity. It is not so actively traded but there are some (but a smaller number than for
WTI grade crude oil) standard European options traded on it whose prices she can observe in the

market. We suppose K, =2, K, =3 and M =1. Furthermore, we suppose the two Brownian

motions driving Commodity 1 are also precisely the first two Brownian motions driving Commodity 2,
with the same volatility parameters. The third Brownian motion driving Commodity 2 is specific to that
commodity. More specifically, we assume

O-Hl,l(t’T): Oy 2,1(th): m+xn EXp(_ al(T _t)) (2.3)
O'Hl,z(th):o'Hz,z(th):Zz eXp(_az(T_t)) (2.4)

and we assume the diffusion volatility function for the third Brownian motion (driving only
Commodity 2) is of the form

O-H2,3(t’T)=Zs eXp(_ as(T _t))v (2.5)
where 77,, ¥, ¥», X3, &, @, and @, are all constants.

We will drop the first subscripted index for the Brownian motions in this subsection only (ie write
dz,,,, (t)=dz,,,, ()= dz,, , (t), for k =12 and dz,,,,(t)=dz,, (), for k =3).

We define the correlations (assumed constant), for i =1,2,3 and j =1,2,3:

pi; = correl(dz,,; (t) dz,, ; (t)), pp; = correl(dz, (t) dz,,; (t)).

We assume that Commodity 1 and Commodity 2 both jump in response to increments in the Poisson
process N, which we assume to be of the type of assumption 2.1 and to have a constant intensity rate
ie 4,(t)=A,, where A, is a constant. The jump decay coefficient functions are identical for each

commodity and assumed constant ie bl,l(t)E bz,l(t)E b,, where b, is a constant. However, we

assume the spot jump amplitudes are possibly different ie ﬂl,l is not necessarily equal to ﬂm :

Then we can write the dynamics of Commodity 1 and Commaodity 2 (under the EMM) as:

dH, (t,T)

Hl(t—,T) - (771 A exp(— al(T _t)))dzH,l(t)+ X2 exp(— a, (T _t))dZH,z(t)

— 0o (t,T )z, (t) + (exp(,, exp(=b, (T —t)))—1)dN,, —e,, (t, T )dt, (2.6)
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% (771 + 1 eXp( 1(T )))dZH 1( )"’ X2 exp(— a, (T _t))dZH,z(t)

+ 2 €xp(= 3 (T — )z, (1)
— 0, (t,T )z, ( +(exp(ﬁ21exp ) 1)dN1t €, (t, T )dt. (2.7)

If we define R, (t, T)E H,(, )) and C,,,(t)= HZ(t’t),then by Ito’s lemma,

H, (6T H,(t.t)
% = 75 0XP(= (T —t))dz,, 4 (t)+ ppacrs (T )75 exp(— 2, (T —t))dt

X exp(_ 2 (T z t)xp&l (771 + exp(_ & (T - t)))+ P32 (Zz exp(— a, (T - t))))dt
+(exp((B,, — By Jexp(= by (T ~1))) - 1JAN,, — (e, (t.T) ey, (6Tt 29

Note the form of the diffusion volatility term which only depends on the Brownian increments
dz, 3 (t) In fact, utilising results in section 3 of Crosby (2005), it is now clear, from equation 2.8, that

the SDE for Cz,l(t) can be written either in the form

00N Copy(t) = a3 (A, ()~ (N Coy (DNt + 220, 0)+ (B, — B, N, @9
or, equivalently and alternatively, in the form
d(InC,,(t)=b, (A, ()= (INC,, ()t + 40z, 5 (t)+(B,, — By JAN,,, (2.10)

where A (t) and AD(t) are stochastic mean reversion levels whose exact forms can easily be
obtained utilising the methodology leading to proposition 3.4 of Croshy (2005), albeit at the expense of
some algebra (in fact, A, (t) is a pure-jump stochastic process and AD(t) is a pure-diffusion
stochastic process).

We see that the log ratio InC, (‘[) of the spot prices of the two commodities is a mean reverting

stochastic process (under the EMM). This is an attractive feature for modelling, for example, the case
where Commaodity 1 is crude oil (the “primary” commodity) and Commaodity 2 is a refined petroleum
product (the “daughter” commaodity) such as heating oil, because, heuristically, we would expect the
price differential (and therefore also the log ratio) in the long-term to not move too far away from a
long-run mean level which reflects the cost of the refining process. However, in the short-term, the log
price ratio (and therefore also the arithmetic price difference) can go negative in line with the stylised
empirical observations made in section 1.

We will also briefly mention how this model might be calibrated. Usually, there will be fewer
actively traded options on the “daughter” commaodity than on the “primary” commodity. One could
estimate the parameters of the process for the “primary” commodity by calibrating to the market prices

of standard options. In our example above, there would be eleven parameters, namely 77,, ¥, ¥,
&, 8y, Pry: Peir Prpas Ay, By and B, . Having determined these eleven parameters, one could

take these as given. Then one could estimate the remaining six parameters, namely y,, a;, O3,

P32+ Ppss Pay, from the market prices of standard options on the “daughter” commodity. There

would typically, be fewer actively traded options on the “daughter” commodity but, equally, there are
fewer parameters to estimate. Of course, it would require an empirical investigation, beyond the scope
of this paper, to determine how feasible our suggested calibration mechanism might be.

In order to give some intuition about the correlation between the futures prices of Commaodity 1 and
Commodity 2, we compute the model implied correlation between log of the futures prices of the two

commodities for different tenors S and T, ie correl(In(H,(0,S)),In(H,(0,T))), given the
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model specification in equations 2.6 and 2.7. The results are in figure 1. For both S and T (plotted on
the x and y axes), we used the values 0, 0.5, 1, 1.5, 2, 2.5, 3 (all tenors are in years). Our parameter
values are exactly as in examples 1 and 2 (see section 5). Note that when S =T , the correlations are
lowest for the shortest tenor (ie for S =T =0) but tend to one for the longest tenor (S =T = 3).
This behaviour seems? quite intuitive for the case where Commodity 1 is crude oil and Commodity 2 is
a refined petroleum product such as heating oil. One would expect the prices of longer-dated futures
contracts on crude oil and heating oil to have a higher correlation since the difference between the (log
of the) prices would reflect the (average) cost of refining (which one would expect to vary only a little).
By contrast, one would expect a lower correlation between the (log of the) prices of shorter-dated
futures contracts on crude oil and heating oil because the price movements would reflect additional
short-term issues such as supply and demand, inventory and weather conditions.

In our example above, we have considered the dynamics of two commodities (“primary” and
“daughter”) where intuition suggests they will move closely (but not perfectly) together. Of course, in
the case of two seemingly unconnected commodities such as, for example, natural gas and a base
metal, a different specification of the jumps and the diffusion volatilities would be chosen. For

example, we might consider two Poisson processes, with the first Poisson process N,, only causing
jumps in Commodity 1 (by having f,, # 0 and f,, = 0) and the second Poisson process N, only

causing jumps in Commodity 2 (by having f,, =0 and f,, #0). We would also specify the

diffusion terms differently. The example above is just meant for illustration.

We have illustrated how the model could be applied in a specific case of interest but, for this rest of
this paper, we now return to considering the general case, as we turn our attention to pricing a class of
exotic commaodity options.

3. A class of exotic commodity options

Our aim is to price a European-style option whose payoff is the greater of zero and a particular
function involving the futures price, at time T, ; , of Commodity 1 deliverable at (ie the futures contract
on Commodity 1 matures at) time T, , and the futures price, at time T, , , of Commodity 2 deliverable
at (ie the futures contract on Commodity 2 matures at) time T, ,, where T,, <T,,, T,, =T, and
T,, 2T,,. The payoff is known at time T,, but is paid at (a possibly later) time T . Note
T 2T, 2T,

pay — "11 —
More mathematically, we price a European-style option whose payoff is:

Hl(Tl,l'TZ,l)_ K*[HZ(TLZ’TZ,Z)]‘g 0 attime T
[HZ(Tl,Z'TZ,Z)]a

where 77 =1 if the option is a call and 7 = —1 if the option is a put. Note & and « are constants

max| 7

oy (3.1)

and, furthermore, K~ is a constant which might, for example, account for different units of
measurement. The reason for investigating options with this class of payoffs is that it contains as
special cases a number of option types of interest, all of which are actively traded in the OTC
commodity options markets.

We will now briefly outline (for the case of call options) some of these special cases:

2 Note that the parameter 2,1 is the intensity rate in the risk-neutral EMM. Clearly, this parameter could be

different from the intensity rate in the real-world physical measure (in addition, had we also considered jumps of
the type of assumption 2.2, the mean jump amplitudes may also be different in the two different measures). Hence,
whilst the model implied (risk-neutral) correlations shown in figure 1 can provide intuition for traders, they are not
directly comparable to historical correlations (implicitly evaluated in the real-world physical measure).
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Spread (crack spread or dark spread or spark spread) options
These are options on the difference in price between two different underlying commaodities. Their

payoffs can be defined (for the “zero strike” case) via equation 3.1 with € =1 and o = 0. In practice,
we usually have T1,1 = Tl,2' If the underlying prices, on which the option payoff is determined, are

spot prices, thenwe alsoset T,; =T, and T, =T, ,. o

Ratio spread or relative performance options
These are options on the ratio of the price of two different underlying commodities. Their payoffs

can be defined via equation 3.1 with £ =1 and & =1. In practice, we usually have T,; =T, ,. If the

underlying prices, on which the option payoff is determined, are spot prices, then we also set
T,=TadT,=T,,. °

Options on futures commaodity price curve spreads
These are options on a single underlying physical commaodity but with futures commaodity contracts

of different tenors ie T,, #T,,. Their payoffs can be defined via equation 3.1 with

H,(e,0)=H,(e,8). Typically, we have T, =T,,, £=1and,either a =0 or & =1. J

Forward start options
These are options on a single underlying commodity in which T, , is strictly less than T, . The

payoff is the greater of zero and the difference between the futures commodity price to a given tenor at
some calendar time and the futures commaodity price to the same tenor at some earlier calendar time.

Their payoffs can be defined via equation 3.1 with H,(e,6)=H,(e,6), £ =1 and a = 0. For the

case just described, one would have T,, =T, , but other variants are possible. For example, forward

start options on the spot commodity price would have T, =T, and T, =T, ,. o

Ratio forward start options
Note that these options might also be called single-leg cliquets by analogy with terminology in the

equity options markets. These are also options on a single underlying commodity in which T1,2 is

strictly less than T1,1 . The payoff is the greater of zero and the ratio of the futures commodity price to a

given tenor at some calendar time and the futures commaodity price to the same tenor at some earlier
calendar time (minus a constant strike term). Their payoffs can be defined via equation 3.1 with

Hl(o,o) =H, (0,0), £ =1 and o =1. Again, one could also have ratio forward start options on the

spot commodity price with T,;, =T,, and T,, =T, ,. J

Of course, we can also price options which are generalisations or mixtures of the special cases noted
above. For example, & and & need not be integers.

We should also make a brief comment about the time T,

y at which the option payoff is paid. The

most common situation, in practice, is that Tpay would be set equal to T1,1 . However, occasionally, we
observe in the OTC markets that commodity options are traded where the payoff is deferred for a short
period of time after T1,1 (and this is not just the standard two working day spot settlement but might,
for example, be a period of a few weeks). For example, it might be that Tpay is set equal to the

maturity of one of the underlying futures contracts.
We will now return, for the rest of the paper, to the completely general case of considering the class
of exotic options whose payoff is given by equation 3.1.
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4. Fourier Transform methodology
In this section, we will use a Fourier transform methodology, to price European-style options whose

payoff is defined in equation 3.1. We will proceed along the lines of Sepp (2003) who considers the
case of standard European options (on a single underlying asset).

Define, for times t, >t and t, > 1:

s s e ||

The price of the European-style option, whose payoff is given by equation 3.1, at time t, (for
t<T,<T,)is

E, exp[— TTyr(s)de max(n( H 1(T1,1’T2,1)_ K* [H 2 (Tl,z Tao )]g }OJ
M

: CHUS|

= Ml(t)+ Mz(t)_ s(t)! (4.2)
_(1+7) " »
where M, (t)= S Eexp - Jris)s [H, (T, T, JH, (T, T, ) 43)
t
— 1_77) b 4 e-a
and Mz(t)=TEt exp| — [r(s)ds [K*[H,(T,,. T, ) (4.4)
t
Tpay
and M, (t)=E, exp(— .[r(s)dsj
t
o H(T )
[H,(T,.T,, ) mm[ﬁ exp(Y (T4, 1. T Tt K ﬂ . (4.5)

The last set of equations follows from a simple algebraic arrangement.
We focus, firstly, on M, (t)

Define f(Y (T, T, T, Tooit)) = min[%exp(\( (M0 To0 s Tooit)) K*]
2\*1 '2,2

and then write

f (Y (Tl,1 N PP PP P t)) in (inverse) terms of its Fourier Transform fA(Z) ie write

izj+o0

f (Y (Tl,l ’T2,1’T1,2 ’T2,2 ’t)) = _72' jexp(— IZY (Tl,l ’TZ,l’Tl,Z ’T2,2 ,t))f(Z)dZ ! (46)

iZi—oo

where Z is complex. Results in Lewis (2001) and Sepp (2003) show that, by taking the Fourier
Transform of f(Y(lel,Tzvl,Tlvz,szz;t)), which exists provided 0<z; <1, where z; is the
imaginary part of z, then;
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iz+1

4.7

o) PlTs) ( ki ) KH, 0T, )

H. (T, ) H(t.T,)
Furthermore, by substituting equation 4.6 into equation 4.5, M 3(t) is given by:

Tpay iZi ~+00

c-a 1 - £
E,| exp| — Ir(s)ds [Hz(Tl,ziTz,z)] % IEXp(_'ZY(T1,1’T2,17T1,27T2,2;t))f(Z)dz

t

iz;+o0 Toay

P J- t| €XP| — I r(s)ds [Hz(Tl,lez,z)]gia exp(_iZY(Tll’T21’T121T2Z’t)) ]?(Z)dz

t

1 A~
Eg] (-4, 7,1, 0. T, T, ) (2)dz, (4.8)

where (D(— Z, t,Tl’l,Tz,liTl,z ’T2,2 )E

Tpay
E, exp[— J'r(s)ds}[H (T T I expl=izY (T,1, T, T, Tosit)) | (4.9)

t

and where we use Fubini’s theorem to justify the interchange of the integral and the expectation
operator. We will call <D(— 4, T, T, T, ,TZ,Z) the “extended” characteristic function (we have

borrowed the terminology from Duffie et al. (2000) but our definition is somewhat different).
We now collect the equations above into the form of a proposition.

Proposition 4.1 : The price of the European-style option, at time t, whose payoff is defined in
equation 3.1, is:

l izj+o0 R
M, (t)+M 2(‘[)——” Jol-ztT,,T,,.T,,.T,, )f (2)dz. (4.10)
Proof : From equations 4.2 and 4.8. o

Remark 4.2 : Note that equation 4.10 holds independently of the specific model for futures commaodity
prices. So, for example, we could consider extensions of the Crosby (2005) model which allow for, for
example, stochastic volatility or alternative specifications of the jump processes (in the manner of
Heston (1993), Duffie et al. (2000) and Barndorff-Nielsen and Shephard (2001)) and equation 4.10
would still be applicable, provided that the “extended” characteristic function can be calculated.
Equation 4.10 (with minor modifications) could also be useful for options involving other asset classes
such as equities (see Duffie et al. (2000)) or inflation (see Mercurio (2005), where it is shown that the
valuation of derivatives on year-on-year inflation involves calculations very similar to valuing ratio
forward start (cliquet) options). However, for the sake of brevity, we will not pursue this point further
in this paper.

In the appendix, we write down the “extended” characteristic function when the dynamics of futures
commodity prices are given by equation 2.1. From the form of the “extended” characteristic function,

we can also easily obtain explicit forms for M 1('[) and M, (t) (see the appendix).
We can now calculate the option price, via equation 4.10 provided the integral is well-defined,
which requires 0 <z, <1. One choice (as in Lewis (2001) and Sepp (2003)) is to evaluate the

integral along the straight line given by Z =U + i/2 , where U is real.
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With this choice, the price of the European-style option at time t, whose payoff is defined in
equation 3.1, is:

o0

M, (t)+ M 2(t)—ijq)(— U=i/2;t,T,1, o0, To o, ) f (U+i/2)du, (4.11)

%

where we have also changed the lower limit of the integration from — oo to zero by using the fact that
the option price is real and hence the integrand is odd in its imaginary part and even in its real part. We
will not write down the option price formula in its most explicit form as it is rather long and would not

greatly enhance intuition. Equations for Ml(t) and M 2(t) are in the appendix and f(u + i/2) can

be obtained from equation 4.7.

If the “extended” characteristic function were to be completely analytic, then it would be
straightforward to evaluate the integral in equation 4.11. In particular, we can compute option prices
using a single one-dimensional integration irregardless of how many Brownian motions and Poisson
Processes drive the futures commodity prices. If all the Poisson processes satisfy assumption 2.2, and

provided that I A (S)ds is easily evaluated (and, of course, in practice, one would choose a form for

the intensity rates A, (S) so that '[ Ay (S)ds can be evaluated analytically), then this would be the

case in our model. Unfortunately, if any of the Poisson processes satisfy assumption 2.1, then our
“extended” characteristic function involves integrals (see the second, third, fourth and fifth lines of
equation A.2 in the appendix) which means that evaluating equation 4.11 involves at least a double
integral. This is certainly computationally feasible but equally performing a double integral will be
considerably slower than a single integral. Crosby (2006) shows how calculation times can be speeded
up, when pricing standard (plain vanilla) European options, by using power series expansions of terms
appearing in the characteristic function. A similar idea can be used here provided we make some
simplifying assumptions.

As in Croshy (2006), we make the following assumption:
Assumption 4.3 : We will henceforth assume that, foreach m, m=1,...,.M , 4 (S) = A, and, for
each i, b ,(t)=b

assumption 2.1, then b; > 0. (This condition is not restrictive since if b,  were to equal zero, we

im are constants. Furthermore, we assume that, if for this M, the jumps satisfy

could treat it as in the case of assumption 2.2 which is much simpler). °

This means that we can use the power series expansions of Crosby (2006) for the terms on the
second, third and fourth lines of the “extended” characteristic function (see equation A.2) (into which

we would substitute Z =U+1i/2, where U is real).
In order to rapidly compute the following term (the fifth line) in equation A.2 (into which, again, we
would substitute Z =U +i/2):

Tl 2

EXp ilm(z.l) _[ﬂ“m (s)exp((g —a+ iZg)ﬂ21m¢21m(S,T212)— izﬂl,m¢l,m(S1T2,l))dS ;

t

(where @ , (S,szl) and @, (S,TZYZ) are defined as in equation A.1 in the appendix) we will make
the following additional assumption:

Assumption 4.4 : We will henceforth assume that, for each M, b, | and b, . are identically equal ie

that b, =b, =b,_,say. .

Remark 4.5 : Crosby (2005) shows that futures commodity prices can be written in terms of a number
of Gaussian state variables and M Poisson jump state variables. It can therefore be shown that
assumption 4.4 is equivalent to saying (for assumption 2.1) that the futures prices of Commaodity 1 and
Commodity 2 are driven by the same jump state variables. It is shown in Crosby (2005) that our model
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is consistent with mean reversion, under the EMM. Not only that, but it is also shown that, when the
jump processes are of the type of assumption 2.1, then jumps can also contribute to the effect of mean
reversion and that the speed of this jump-related mean reversion is equal to the associated jump decay
coefficient function. Hence assumption 4.4 is also equivalent to assuming that, after a jump, there is a
common speed of jump-related mean reversion in Commodity 1 and Commodity 2. Although it would
be an empirical matter, beyond the scope of this paper, to fully justify assumption 4.4, this assumption
does, therefore, have some economic intuition. In addition, we note that assumption 4.4 is obviously a
non-assumption in the special case when the option is on a single underlying commodity (see section 3,
for example, options on futures commodity price curve spreads, forward start options and ratio forward
start options), since it must hold.

With assumption 4.4, we can make a similar type of power series expansion which we specify in the
next proposition.

Proposition 4.6 : Define ., = exp(—b, (T =T, )) and w,, =exp(=b, (T =T, )), with
Toart STeng <T . Then:

start — "end —

Tend

J.ﬂ”m eXp((i @ + 0, )eXp(_ by, (T - S)))js = An (Tend ~ Totart )

Tstar!
1o <] 1 (o7 07 | (2 2 Neos(no) +isin(no)
+mIY S ,
bm n=1 n nl
(4.12)

where @, and @, are real numbers, independent of S, and where @, is defined as follows:

[ 2 2
a)z/ w; + ,

If @, >0 and @, >0,then & =6 ,elseif @ >0 and @, <0, then 8 =7 -6 ,elseif @, <0
and @, >0,then =27 —0 ,elseif @ <0 and @, <0,then =7 +0 .

- - a < A < 7[ - Y E .
Firstly, define @ , 0 <@ < A , via cos @ , then:

Proof: This proposition is just a generalisation of proposition 3.3 in Crosby (2006) and can be proved
in an identical fashion. Therefore, the proof is omitted®. °

All the integrals (see the second, third, fourth and fifth lines of equation A.2) which appear in the
“extended” characteristic function can be nested in a form which enables them to be evaluated by
proposition 4.6, provided assumptions 4.3 and 4.4 hold. Hence, we can quickly and easily evaluate the

“extended” characteristic function. We can also evaluate Ml(t) and M 2(t) (see appendix) in the
same way. We can then very rapidly, using standard one dimensional numerical integration techniques,

compute the integral in equation 4.11 and hence also compute the price of the European-style option
whose payoff is defined in equation 3.1.

5. Numerical examples and results

In this section, we will provide four numerical examples, labelled examples 1, 2, 3 and 4, of our
methodology, the results of which are in tables 1, 2, 3 and 4 respectively. In all four examples, we
value European-style options, whose payoff is defined in equation 3.1, using equation 4.11.

We evaluate the integral with respect to U in equation 4.11 using Simpson’s rule with 1024 points.
Examining the forms of equations A.2 and 4.11, we see that for large U, the integrand behaves

®ltis straightforward to see that the power-series expansion in equation 4.12 will be rapidly convergent. Indeed
the modulus of the term appearing in the square brackets is guaranteed to be monotonically declining to zero when

n> max(2,w/a)f + @) )
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asymptotically like exp(—;(uz +ijzz(t'Tl,l’Tl,z'szl’Tz,z)J/(Uz +i] which clearly tends

to zero rapidly as U — oo, since Zz(thl,lle,Z!T2,1’T2,2)2 0. We truncate the upper limit of the

integral when the value of U is such exp[—;(uz +iJZZ(I,TLl,TI’Z,szl,Tz’z)J/(uz +£1J is

less than 10®. We truncate the infinite series in equation 4.12 when the value of an additional term in
the series has converged to less than 102,

In all four examples, we assume that the initial (ie as of the valuation date of the options that we will
value in our examples) futures prices of Commodity 1 to all maturities are 40 and the initial futures
prices of Commaodity 2 to all maturities are 41. We assume that the initial interest-rate yield curve is
flat with a continuously compounded risk-free rate of 0.044 ie we assume that the discount factors for

all maturities T , as of the valuation date, time T, of the options that we will value, are all of the form
exp(—0.044(T —1)). Interest-rates are stochastic and evolve following a one factor Hull-White
(extended Vasicek) model in which
op(t,T)=0, (1-exp(- e, (T —t)))/e, , where &, =0.012 and e, =0.125.

In all four examples, we use the same form for the diffusion parameters as in equations 2.3 to 2.5 in
section 2.1. That is, we suppose K, =2 and K, =3 and, furthermore, we suppose

n, =012, , =022, y,=025, y,=0242,a, =09, a,=0.7, a, =15.
We assume all correlations are 0.05 ie forall i =1,2,3 and j =1,2,3:
pi; =0.05 and p,; =0.05. Note that all these parameters are just for illustration.

In all four examples, we assume that the maturities of the futures contracts on Commodity 1 are of
the form T,, =T,, +(31/365) and on Commodity 2 of the form T,, =T, , +(91/365) ie the

futures contracts on Commaodity 1 and Commodity 2 mature 31 days and 91 days respectively after
Ty, and T, , . Inall four examples, we set T, =T, ;. We specify T,, and T, , in the examples.
In each example, we value six options and all of them are calls (ie 77 =1). For the first three

options, @ =0, & =1 and the values of K™ are 0.95, 0.975 and 1. The fourth, fifth and sixth options
have o =1 and, again, £ =1 and the values of K™ are 0.95, 0.975 and 1. Thus, we evaluate spread

options for three different values of K™ and ratio spread options for the same three values of K™ in
each example.

Example 1 :
In example 1, we assume T,, =1 and T,, =1. We assume that there is one Poisson process,

M =1, and it satisfies assumption 2.1 and it has an intensity rate 4, = 0.512. As in the example in
section 2.1, both Commodity 1 and Commodity 2 exhibit jumps of non-zero magnitude in response to
jumps in this Poisson process. We assume b, =b,, =1.55, ,, =0.55, ,, =0.35. We price

the six different options and the results are in table 1. o

Example 2 :

In example 2, we assume T,;, =3 and T,, = 2. This means that the maturities of the futures
contracts on Commodity 1 and Commodity 2 are approximately 3.08493151 and 2.24931507 years
respectively. Note that because le2 is strictly less than T1,1’ the options in this example can also be

viewed as hybrid forward start options (for the first three options where & = 0) and ratio forward start

options (for the fourth, fifth and sixth options where a =1) involving two different commodities. We
assume that all the jump parameters are exactly the same as in example 1. We price the six different
options and the results are in table 2. °
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Example 3 :
In example 3, we assume T,, =1 and T, , =1. We use exactly the same diffusion parameters as in

examples 1 and 2 but to provide a contrast with those examples, we assume that there are two Poisson
process, M = 2, and they both satisfy assumption 2.1 and they have intensity rates 4, = 0.512 and

A, =0.47 respectively. Commodity 1 jumps but Commodity 2 does not jump in responses to jumps
in this first Poisson process N, . Conversely, Commodity 2 jumps but Commodity 1 does not jump in

responses to jumps in this second Poisson process N, . We assume b,, =b,, =1.55,

b,, =b,, =155, g, =055, B,, =0, B,,=0, B,, =0.35. We price the six different
options and the results are in table 3. °

Example 4 :
In example 4, we assume T,, =3 and T,, = 2. We assume that there are two Poisson processes

again and that all the jump parameters are exactly the same as in example 3. We assume that all the
diffusion parameters are exactly the same as in examples 1, 2 and 3. Note that, as in example 2,

because T, , is strictly less than T, , , the options in this example can also be viewed as hybrid forward
start and ratio forward start options. We price the six different options and the results are in table 4. e

Computations were performed on a desk-top p.c., running at 2.8 GHz, with Microsoft Windows XP
Professional, with 1 Gb of RAM with a program written in Microsoft C++. The total calculation time
for all 24 options in examples 1 to 4 was 0.532 seconds or an average of less than 23 milliseconds per
option. By significantly increasing the number of points in the numerical integration and by
significantly reducing the tolerances used to truncate the upper limit of the integral (in equation 4.11)
and the power series expansions (as in equation 4.12), we were able to confirm that in proportional (ie
proportional to the calculated option prices) terms, all the option prices in tables 1 to 4 are accurate to
at least one part in 500,000 and, also, that in absolute terms, all the option prices are accurate to at least
5 decimal places. So our algorithm is both fast and accurate.

Note how the option prices in examples 3 and 4 are higher than the corresponding option prices in
examples 1 and 2 respectively. This is intuitive given the different specifications of the jump processes
driving futures commodity prices, between, on the one hand, examples 1 and 2, and, on the other hand,
examples 3 and 4, and given the arguments we presented after equation 2.10.

6. Conclusions

We have extended the Crosby (2005) model to simultaneously model the prices of multiple
commodities. We then priced a class of simple exotic options which includes those whose payoffs
involve two different underlying commodities, or a single underlying commodity but with futures
contracts of two different tenors or the price of a single underlying futures contract observed at two
different calendar times. This class of exotic options includes common exotics such as (crack, dark or
spark) spread options, ratio spread options, forward start options and ratio forward start options (single
leg cliquets). We have shown that these exotic options can be priced using Fourier methods in any
model in which the relevant “extended” characteristic function is known analytically or can be
computed rapidly. The Crosby (2005) model falls into the latter category. We have provided some
numerical examples which demonstrate that our methodology is both fast and accurate.

Finally, we will briefly mention two possible areas for future research:

(i) We have focussed, when pricing spread options in this paper, on the “zero strike” case. Dempster
and Hong (2000) show how “non-zero-strike” spread options can be priced using a two-dimensional
Fast Fourier Transform methodology combined with an ingenious decomposition of the option payoff
analogous to Riemann sums. Their approach (combined with assumptions 4.3 and 4.4 and the power
series expansion of proposition 4.6) could be used to price “non-zero-strike” spread options within the
framework of this paper. It might also be possible to extend the Dempster and Hong (2000) approach in
order to price more exotic variations of some of the option types we discussed in section 3.

(ii) In section 2.1, we provided an example of specifying the dynamics of the futures prices of two
different commodities based on heuristics and trader-intuition. It might be possible to construct a more
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systematic approach based on suitable extensions of the methodology described in section 3 of
Casassus and Collin-Dufresne (2005). However, we leave this for future research.

Appendix

In order to obtain the forms for Ml(t) and Mz(t), defined in equations 4.3 and 4.4, we can
essentially use the “extended” characteristic function (defined in equation 4.9 and given explicitly in
equation A.2 below), into which we substitute z =i and z = 0 respectively, then :

M, (t) ) E, eXp[_TTy r(s )dsj ( 11’T2,1IH2(T1,21T2,2 )]w

:(1+77) Hl(t’TZ,l)
2 [H, T, )

(D(_ i;t’Tl,l 'T2,11T1,2 'Tz,z)

and

\_/

M., (t)

(1;77 E, EXp[_ TTYr(S)de K” [H 2 (Tl,z T2z )]g_a

2 t

’|_\*

T) (0 t Tll’T211T12’T22)

We will now proceed to write down the “extended” characteristic function when the dynamics of
futures commodity prices are given by equation 2.1, after defining the following notation:

o dHS(tT) & _dHE(LT
For each I, 1=12, ﬁEkZO-Hi,k(t1T)dZHi,k(t)_O-P(t’T)dZP(t)’ e Hicé,T))
denotes the purely continuous martingale component in the SDE for Commodity i .
T
Foreach i, i=12, ¢iym(S,T)Eexp(—jbi'm(u)du]. (A1)
" (dP(s,T T
Define U(t’Tl,Z’TZ,z)E_(g—OZ)j COV[ (S pay 3 22 ds
t P(S Tpay) S Tz 2

—%(g afe—a- 1T]2 var(ﬁ(sizj)]ds

Define W (t’Tl,l )T]_]Z 1T2,17T2,2 ) =

chov[dp(s To) dHf(s,Tzvl)J Tz (dP(S Tow) ng(S’TZ'Z)jds

ds — cov
R ETI A I el el B e R Ay

t

Yo (dHE(s,T,,) dHE(S,T,,)), 1 TM dHS(s,T,,)
—a | cov[ T, ) G, ) ds + 2(5+25a &’ I var m ds

t

ls’ 21

Tl,l
Define 2(t,T,1,T150 To0 T ) Ivar(dH s T“)st
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" (dHE(s,T,,) dHS(s,T )J T [dH S(s,T )]
—2¢ | cov| —= 2 2 220 g 4 var 222 ds.
5_! [ H:LC(S’TZ,l) HZC(S’Tz,z) ‘ j Hz (S Tzz)

In order to compute the “extended” characteristic function, we will use the fact that Brownian
motions and Poisson processes have independent increments. Then by direct calculation:

Tll
q)(_ Z;t’Tl,l’TZ,l’Tl,Z’TZ 2 exp( Z J.;t J

m=1l ¢

expl 100 j/lm (s)exp(~ 2B, i (S’Tz,l ))ds}

EXp izzlm(z.l) J.ﬂ’m (S)(exp(ﬂl,m ¢1,m (S’ T2,l ))_ 1)dSJ

m=1 t

M

EXp| — (5 -—a+ iZS)Zlm(z 1)T].2 ( )(eXp(ﬂz n®s, m( ))_1)dSJ

m=1

exp ilm(z.l) ]Lzﬂ“m (S)exp((g —a+ izg)ﬂz,m¢2,m (S’TZ,Z )_ izﬂl,m¢l,m (S1T2,1 ))ds]
exp ilm(Z.Z){ ]ﬁﬂm (S)J exp(_ izﬂl,m - %Ulz,m z 2 j\]

LY Tia 1 ,
exp| 1z 1m(2.2)( J-/lm (S)dSJ(exp(ﬂl,m + Eul,m j _1JJ

M T2
exp| — (& —a + iZE)Zlm(z_z)[ J'/im (s)ds}(exp(ﬂzym +%022Ym ) 1}}
m=1
- 1 22
exp Zlmzz j/I s)ds exp{g a+ize) - 2(5—0{+|Z£) Vyn

m=.

Izﬁlm Ulmz _(‘9 a+|zg)lzp12mulml)2m}J

1
exp(z( -z )Z tTll,le,Tu,Tzz)jexp( |zW(t Tll,le,TZI,Tzz))

I:)(t’Tpay )eXp(— U (t’Tl,z 'T2,2 )XH (t’TZ,Z ))gia ' (A-Z)
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Figure 1:

Graph of the model implied instantaneous correlation correl(In(H,(0,S)),In(H,(0,T))) between

the futures prices of Commodity 1 and Commodity 2, for different tenors S and T , given the model

specification in equations 2.6 and 2.7. For both S and T (plotted on the x and y axes), we used the
values 0, 0.5, 1, 1.5, 2, 2.5, 3 (all tenors are in years). Our parameter values are as in examples 1 and 2
10 (see section 5).
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Table 1 :

There is one Poisson process. T, =1, T,, =1, T,, =1+ (31/365), T,,=1+ (91/365).
The values of K™ are across the first row and the option prices are in bold across the second row.
a =0, & =1 (spread options) a =1, £ =1 (ratio spread options)

0.95 0.975 1.0 0.95 0.975 1.0
2.64579 2.19204 1.80901 0.05799 0.04737 0.03852

Table 2 :

There is one Poisson process. T, =3, T,, =2, T,, =3+ (31/365), T,, =2+ (91/365).
The values of K~ are across the first row and the option prices are in bold across the second row.
a =0, & =1 (spread options) a =1, & =1 (ratio spread options)

0.95 0.975 1.0 0.95 0.975 1.0
6.04522 5.66903 5.31508 0.17500 0.16471 0.15498

Table 3 :

There are two Poisson processes. T,, =1, T,, =1, T,, =1+ (31/365), T,,=1+ (91/365).
The values of K™ are across the first row and the option prices are in bold across the second row.
a =0, & =1 (spread options) a =1, £ =1 (ratio spread options)

0.95 0.975 1.0 0.95 0.975 1.0
4.02340 3.63361 3.28715 0.10248 0.09258 0.08379

Table 4 :

There are two Poisson processes. T, =3, T,, =2, T,; =3+ (31/365), T,, =2+ (91/365).
The values of K™ are across the first row and the option prices are in bold across the second row.
a =0, & =1 (spread options) a =1, & =1 (ratio spread options)

0.95 0.975 1.0 0.95 0.975 1.0
6.17001 5.79409 5.43994 0.17959 0.16926 0.15949
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