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On the Feasibility of Portfolio Optimization under Expected Shortfall

Stefano Ciliberti,1 Imre Kondor,2 and Marc Mézard1

1CNRS; Univ. Paris Sud, UMR8626, LPTMS, ORSAY CEDEX, F-91405
2Collegium Budapest, 1014 Budapest, Szenthromsg u. 2

We address the problem of portfolio optimization under the simplest coherent risk measure, i.e.
the expected shortfall. As it is well known, one can map this problem into a linear programming
setting. For some values of the external parameters, when the available time series is too short,
the portfolio optimization is ill posed because it leads to unbounded positions, infinitely short on
some assets and infinitely long on some others. As first observed by Kondor and coworkers, this
phenomenon is actually a phase transition. We investigate the nature of this transition by means
of a replica approach.

I. INTRODUCTION

Among the several risk measures existing in the context of portfolio optimization, expected shortfall (ES) has
certainly gained increasing popularity in recent years. In several practical applications, ES is starting to replace the
classical Value-at-Risk (VaR). There are a number of reasons for this. For a given threshold probability β, the VaR
is defined so that with probability β the loss will be smaller than VaR. This definition only gives the minimum loss
one can reasonably expect but does not tell anything about the typical value of that loss that can be measured by the
conditional value-at-risk (CVaR, which is the same as ES for continuous distributions that we consider here [12]). We
will be more precise on these definitions below. The point we want to stress here is that the VaR measure, lacking the
mandatory properties of subadditivity and convexity,is not coherent [1]. This means that summing VaR’s of individual
portfolios will not necessarily produce an upper bound for the VaR of the combined portfolio, thus contradicting the
holy principle of diversification in finance. A nice practical example of the inconsistency of VaR in credit portfolio
management is reported in Ref. 3. On the other hand, it has been shown [2] that ES is a coherent measure with
interesting properties [4]. Moreover, the optimization of ES can be reduced to linear programming [5] (which allows
for a fast implementation) and leads to a good estimate for the VaR as a byproduct of the minimization process. To
summarize, the intuitive and simple character, together with the mathematical properties (coherence) and the fast
algorithmic implementation (linear programming), are the main reasons behind the growing importance of ES as a
risk measure.

In this paper, we will focus on the feasibility of the portfolio optimization problem under the ES measure of risk.
The control parameters of this problem are (i) the imposed threshold in probability, β, and (ii) the ratio N/T between
the number N of financial assets making up the portfolio and the time series length T used to sample the probability
distribution of returns. (It is curious that, albeit trivial, the scaling in N/T had not been explicitly pointed out before
[11]. It has been discovered by Kondor at al. Ref. 6 that, for certain values of these parameters, the optimization
problem does not have a finite solution because, even if convex, it is not bounded from below. Extended numerical
simulations allowed these authors to determine the feasibility map of the problem. Here, in order to better understand
the root of the problem and to study the transition from a feasible regime to an unfeasible one (corresponding to an
ill-posed minimization problem) we address the same problem from an analytical point of view.

The paper is organized as follows. In Section II we briefly recall the basic definitions of β-VaR and β-CVaR and we
show how the portfolio optimization problem can be reduced to linear programming. We introduce a “cost function”
to be minimized under linear constraints and we discuss the rationale for a statistical mechanics approach. In Section
III we solve the problem of optimizing large portfolios under ES using the replica approach. Our results and the
comparison with numerics are reported in Section IV, and our conclusions are summarized in Section V.

II. THE OPTIMIZATION PROBLEM

We consider a portfolio of N financial instruments w = {w1, . . . wN}, where wi is the position of asset i. The global
budget constraint fixes the sum of these numbers: we impose for example

N
∑

i=1

wi = N . (1)

We do not stipulate any constraint on short selling, so that wi can be any negative or positive number. This is, of
course, unrealistic for liquidity reasons, but considering this case allows us to show up the essence of the phenomenon.
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FIG. 1: Schematic representation of the VaR measure of risk. P<(w) is the probability of a loss associated to the portfolio w

being smaller than α. The conditional VaR β-CVaR (or ES) is the average loss when this is constrained to be greater than the
β-VaR.

If we imposed a constraint that would render the domain of the wi bounded (such as a ban on short selling, e.g.), this
would evidently prevent the weights from diverging, but a vestige of the transition would still remain in the form of
large, though finite, fluctuations of the weights, and in a large number of them sticking to the ”walls” of the domain.

We denote the returns on the assets by x = {x1, x2, . . . xN} , and we assume that there exists an underlying proba-

bility distribution function p(x) of the returns. The loss of portfolio w given the returns x is ℓ(w|x) = −∑N
i=1 wixi,

and the probability of that loss being smaller than a given threshold α is

P<(w, α) =

∫

dx p(x)θ
(

α − ℓ(w|x)
)

, (2)

where θ(·) is the Heaviside step function, equal to 1 if its argument is positive and 0 otherwise. The β-VaR of this
portfolio is formally defined by

β-VaR(w) = min{α : P<(w, α) ≥ β} , (3)

(see Fig. 1), while the CVaR (or ES, in this case) associated with the same portfolio is the average loss on the tail of
the distribution,

β-CVaR(w) =

∫

dx p(x)ℓ(w|x)θ
(

ℓ(w|x) − β-VaR(w)
)

∫

dx p(x)θ
(

ℓ(w|x) − β-VaR(w)
)

=
1

1 − β

∫

dx p(x)ℓ(w|x)θ
(

ℓ(w|x) − β-VaR(w)
)

. (4)

The threshold β then represents a confidence level. In practice, the typical values of β which one considers are
β = 0.90, 0.95, and 0.99, but we will address the problem for any β ∈ [0, 1]. What is usually called “exceeding
probability” in previous literature would correspond here to (1 − β).

As mentioned in the introduction, the ES measure can be obtained from a variational principle [5]. The minimization
of a properly chosen objective function leads directly to (4):

β-CVaR(w) = min
v

Fβ(w, v) , (5)

Fβ(w, v) ≡ v + (1 − β)−1

∫

dx p(x)
[

ℓ(w|x) − v
]+

. (6)

Here, [a]+ ≡ (a + |a|)/2. The external parameter v over which one has to minimize is claimed to be relevant in
itself [5], since its optimal value may represent a good estimate for the actual value-at-risk of the portfolio. We will
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come back to this point as we discuss our results. We stress here that minimizing (6) over w and v is equivalent to
optimizing (4) over the portfolio vectors w.

Of course, in practical cases the probability distribution of the loss is not known and must be inferred from the
past data. In other words, we need an “in-sample” estimate of the integral in (6), which would turn a well posed
(but useless) optimization problem into a practical approach. We thus approximate the integral by sampling the
probability distributions of returns. If we have a time series x

(1), . . .x(T ), our objective function becomes simply

F̂β(w, v) = v +
1

(1 − β)T

T
∑

τ=1

[

ℓ(w|x(τ)) − v
]+

= v +
1

(1 − β)T

T
∑

τ=1

[

−v −
N
∑

i=1

wixiτ

]+

, (7)

where we denote by xiτ the return of asset i at time τ .
Minimizing this risk measure is the same as the following linear programming problem:

• given one data sample, i.e. a matrix xiτ , i = 1, . . .N , τ = 1, . . . T ,

• minimize the cost function

Eβ

[

Y; {xiτ}
]

= Eβ

[

v, {wi}, {uτ}; {xiτ}
]

= (1 − β)Tv +

T
∑

t=τ

uτ , (8)

• over the (N + T + 1) variables Y ≡ {w1, . . . wN u1, . . . uT v,

• under the (2T + 1) constraints

uτ ≥ 0 , uτ + v +

N
∑

i=1

xiτ wi ≥ 0 ∀τ , and

N
∑

i=1

wi = N . (9)

Since we allow short positions, not all the wi are positive, which makes this problem different from standard linear
programming. To keep the problem tractable, we impose the condition that wi ≥ −W , where W is a very large cutoff,
and the optimization problem will be said to be ill-defined if its solution does not converge to a finite limit when
W → ∞. It is now clear why constraining all the wi to be non-negative would eliminate the feasibility problem: a finite
solution will always exist because the weights are by definition bounded, the worst case being an optimal portfolio
with only one non-zero weight taking care of the total budget. The control parameters that govern the problem are
the threshold β and the ratio N/T of assets to data points. The resulting “phase diagram” is then a line in the β-N/T
plane separating a region in which, with high probability, the minimization problem is not bounded and thus does not
admit a finite solution, and another region in which a finite solution exists with high probability. These statements
are non-deterministic because of the intrinsic probabilistic nature of the returns. We will address this minimization
problem in the non-trivial limit where T → ∞, N → ∞, while N/T stays finite. In this “thermodynamic” limit, we
shall assume that extensive quantities (like the average loss of the optimal portfolio, i.e. the minimum cost function) do
not fluctuate, namely that their probability distribution is concentrated around the mean value. This “self-averaging”
property has been proved for a wide range of similar statistical mechanics models [7]. Then, we will be interested
in the average value of the minimum of the cost function 8) over the distribution of returns. Given the similarity of
portfolio optimization with the statistical physics of disordered systems, this problem can be addressed analytically
by means of a replica approach [8].

III. THE REPLICA APPROACH

For a given history of returns xit, one can compute the minimum of the cost function, minY Eβ [Y; {xit}]. In this
section we show how to compute analytically the expectation value of this quantity over the histories of return. For
simplicity we shall keep to the case in which the xit are independent identically distributed (iid) normal variables, so
that an history of returns xit is drawn from the distribution

p({xit}) ∼
∏

it

e−Nx2
it/2 . (10)

This assumption of iid normal distribution of returns is very restrictive, but we would like to emphasize that the
method that we use can be generalized easily to iid variables with other distributions, and also in some cases to
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correlated variables. Certainly the precise location of the critical value of N/T separating an unfeasible phase from a
feasible one depends on the distribution of returns. But we expect that the broad features like the existence of this
critical value, or the way the fluctuations in portfolio diverge when approaching the transition, should not depend on
this distribution. This property, called universality, has been one of the major discoveries of statistical mechanics in
the last fifty years.

Instead of focusing only on the the minimal cost, the statistical mechanics approach makes a detour: it consid-
ers, for a given history of returnsxit, a probability distribution in the space of variables Y, defined by Pγ(Y) =

1/Zγ [{xit}] exp
[

− γEβ [Y; {xit}]
]

. The parameter γ is an auxiliary parameter: in physics it is the inverse of the

temperature, in the present case it is just one parameter that we introduce in order to have a probability distribution
on Y which interpolates between the uniform probability (γ = 0), and a probability which is peaked on the value of
Y which minimizes the cost Eβ [Y; {xit}] (case γ = ∞).

The normalization constant Zγ [{xit}] is called the partition function at inverse temperature γ; it is defined as

Zγ [{xit}] =

∫

V

dY exp
[

− γEβ [Y; {xit}]
]

(11)

where V is the convex polytope defined by (9).
The partition function contains a lot of information on the problem. For instance the minimal cost can be expressed

as limγ→∞(−1)/(Nγ) logZγ [{xit}]. We shall be interested in computing the large N limit of the minimal cost per
variable:

ε[{xit}] = lim
N→∞

min E[{xit}]
N

= lim
N→∞

lim
γ→∞

−1

Nγ
log Zγ [{xit}] . (12)

In the following, we will compute the average value of this quantity over the choice of the sample xit. Using equation
(12), we can compute this average minimum cost if we are able to compute the average of the logarithm of Z. This is
a difficult problem which is usually circumvented by means of the so called “replica trick”: one computes the average
of Zn, where n is an integer, and then the average of the logarithm is obtained by

log Z = lim
n→0

∂Zn

∂n
, (13)

thus assuming that Zn can be analytically continued to real values of n. The overline stands for an average over
different samples, i.e. over the probability distribution (10). This technique has a long history in the physics of spin
glasses [8]: the proof that it leads to the correct solution has been obtained [9] recently.

The partition function (11) can be written more explicitly as

Zγ [{xit}] =

∫ +∞

−∞
dv

∫ +∞

0

T
∏

t=1

dut

∫ +∞

−∞

N
∏

i=1

dwi

∫ +i∞

−i∞
dλ exp

[

λ

(

N
∑

i=1

wi − N

)]

×

×
∫ +∞

0

T
∏

t=1

dµt

∫ +i∞

−i∞

T
∏

t=1

dµ̂t exp

[

T
∑

t=1

µ̂t

(

ut + v +

N
∑

i=1

xitwi − µt

)]

exp

[

−γ(1 − β)Tv − γ

T
∑

t=1

ut

]

,(14)

where the constraints are imposed by means of the Lagrange multipliers λ, µ, µ̂. The replica trick is based on the
idea that the n-th power of the partition function appearing in (13), can be written as the partition function for n
independent replicas Y

1,...,Yn of the system: all the replicas correspond to the same history of returns {xit}, and

their joint probability distribution function is Pγ(Y1, . . . ,Yn) = 1/Zn
γ [{xit}] exp

[

−γ
∑n

a=1 Eβ [Ya; {xit}]
]

. It is not

difficult to write down the expression for Zn and average it over the distribution of samples xit. One introduces the
overlap matrix

Qab =
1

N

N
∑

i=1

wa
i wb

i , a, b = 1, . . . n , (15)

as well as its conjugate Q̂ab (the Lagrange multiplier imposing (15)), where a and b are replica indexes. This matrix
characterizes how the portfolios in different replicas differ: they provide some indication of how the measure Pγ(Y)
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is spread. After (several) Gaussian integrations, one obtains

Zn
γ [{xit}] ∼

∫ +∞

−∞

n
∏

a=1

dva

∫ +∞

−∞

∏

a,b

dQab

∫ +i∞

−i∞

∏

a,b

dQ̂ab exp

{

N
∑

a,b

QabQ̂ab − N
∑

a,b

Q̂ab − γ(1 − β)T
∑

a

va

−Tn logγ + T log Ẑγ

(

{va}, {Qab}
)

− T

2
Tr log Q − N

2
Tr log Q̂ − nN

2
log 2

}

, (16)

where

Ẑγ

(

{va}, {Qab}
)

≡
∫ +∞

−∞

n
∏

a=1

dya exp



−1

2

n
∑

a,b=1

(Q−1)ab(ya − va)(yb − vb) + γ
n
∑

a=1

yaθ(−ya)



 . (17)

We now write T = tN and work at fixed t while N → ∞.
The most natural solution is obtained by realizing that all the replicas are identical. Given the linear character of

the problem, the symmetric solution should be the correct one. The replica-symmetric solution corresponds to the
ansatz

Qab =

{

q1 if a = b

q0 if a 6= b
; Q̂ab =

{

q̂1 if a = b

q̂0 if a 6= b
, (18)

and va = v for any a. As we discuss in detail in appendix A, one can show that the optimal cost function, computed
from eq. (??), is the minimum of

ε(v, q0, ∆) =
1

2∆
+ ∆

[

t(1 − β)v − q0

2
+

t

2
√

π

∫ +∞

−∞
dse−s2

g(v + s
√

2q0)

]

, (19)

where ∆ ≡ limγ→∞ γ∆q and the function g(·) is defined as

g(x) =











0 x ≥ 0 ,

x2 −1 ≤ x < 0 ,

−2x − 1 x < −1 .

(20)

Note that this function and its derivative are continuous. Moreover, v and q0 in (19) are solutions of the saddle point
equations

1 − β +
1

2
√

π

∫

dse−s2

g′(v + s
√

2q0) = 0 , (21)

−1 +
t√

2πq0

∫

dse−s2

s g′(v + s
√

2q0) = 0 . (22)

We require that the minimum of (19) occur at a finite value of ∆. In order to understand this point, we recall the
meaning of ∆ (see also (18)):

∆/γ ∼ ∆q = (q1 − q0) =
1

N

N
∑

i=1

(

w
(1)
i

)2 − 1

N

N
∑

i=1

w
(1)
i w

(2)
i ∼ w2 − w2 , (23)

where the superscripts (1) and (2) represent two generic replicas of the system. We then find that ∆ is proportional
to the fluctuations in the distribution of the w’s. An infinite value of ∆ would then correspond to a portfolio which is
infinitely short on some particular positions and, because of the global budget constraint (1), infinitely long on some
other ones.

Given (19), the existence of a solution at finite ∆ translates into the following condition:

t(1 − β)v − q0

2
+

t

2
√

π

∫ +∞

−∞
dse−s2

g(v + s
√

2q0) ≥ 0 , (24)

which defines, along with eqs. (21) and (22), our phase diagram.
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FIG. 2: Left panel: The phase diagram of the feasibility problem for expected shortfall. Right panel: The order parameter ∆
diverges with an exponent 1/2 as the transition line is approached. A curve of slope −1/2 is also shown for comparison.

IV. THE FEASIBLE AND UNFEASIBLE REGIONS

We can now chart the feasibility map of the expected shortfall problem. Following the notation of [6], we will use
as control parameters N/T ≡ 1/t and β. The limiting case β → 1 can be worked out analytically and one can show
that the critical value t∗ is given by

1

t∗
=

1

2
−O

[

(1 − β)3e−(4π(1−β)2)−1
]

. (25)

This limit corresponds to the over-pessimistic case of maximal loss, in which the single worst loss contribute to the
risk measure. The optimization problem is the following:

min
w

[

max
t

(

−
∑

i

wixit

)

]

. (26)

A simple “geometric” argument by Kondor et al. [6] leads to the critical value 1/t∗ = 0.5 in this extreme case. The
idea is the following. According to eq. (26), one has to look for the minimum of a polytope made by a large number
of planes, whose normal vectors (the xit) are drawn from a symmetric distribution. The simplex is convex, but with
some probability it can be unbounded from below and then the optimization problem is ill defined. Increasing T
means that the probability of this event decreases, because there are more planes and thus it is more likely that for
large values of the wi the max over t has a positive slope in the i-th direction. The exact law for this probability
can be obtained by induction on N and T [6] and, as we said, it jumps in the thermodynamic limit from 1 to 0 at
N/T = 0.5. The example of the max-loss risk measure is also helpful because it allows to stress two aspects of the
problem: 1) even for finite N and T there is a finite chance that the risk measure is unbounded from below in some
samples, and 2) the phase transition occurs in the thermodynamic limit when N/T is strictly smaller than 1, i.e.
much before the covariance matrix develops zero modes. The very nature of the problem is that the risk measure
there is simply not bounded from below. As for the ES risk measure, the threshold value N/T = 0.5 can be thought
of as a good approximation of the actual value for many cases of practical interest (i.e. β & 0.9), since the corrections
to this limit case are exponentially small (eq. (25)).

For finite values of β we have solved numerically eqs. (21), (22) and (24) using the following procedure. We first
solve the two equations (21) and (22), which always admit a solution for (v, q0). We then plot the l.h.s. of eq. (24) as
a function of 1/t for a fixed value of β. This function is positive at small 1/t and becomes negative beyond a threshold
1/t∗. By keeping track of 1/t∗ (numerically obtaining via linear interpolations) for each value of β we build up the
phase diagram (Fig. 2, left). This diagram is in agreement with the numerical results obtained in ref. 6. We show in
the right panel of Fig. 2 the divergence of the order parameter ∆ versus 1/t− 1/t∗. The critical exponent is found to
be 1/2:

∆ ∼
(

1

t
− 1

t∗(β)

)−1/2

, (27)
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FIG. 3: Left: The probability of finding a finite solution as obtained from linear programming at increasing values of N and
with β = 0.8. Right: Scaling plot of the same data. The critical value is set equal to the analytical one, N/T = 0.4945 and the
critical exponent is 1/2, i.e. the one obtained by Kondor et al. [6] for the limit case β → 1. The data do not collapse perfectly,
and better results can be obtained by slightly changing either the critical value or the exponent.

again in agreement with the scaling found in ref. 6. We have performed extensive numerical simulations in order
to check the validity of our analytical findings. For a given realization of the time series, we solve the optimization
problem (8) by standard linear programming [10]. We impose a large negative cutoff for the w’s, that is wi > −W ,
and we say that a feasible solution exists if it stays finite for W → ∞. We then repeat the procedure for a certain
number of samples, and then average our final results (optimal cost, optimal v, and the variance of the w’s in the
optimal portfolio) over those of them which produced a finite solution. In Fig. 3 we show how the probability of
finding a finite solution depends on the size of the problem. Here, the probability is simply defined in terms of the
frequency. We see that the convergence towards the expected 1-0 law is fairly slow, and a finite size scaling analysis
is shown in the right panel. Without loss of generality, we can summarize the finite-N numerical results by writing
the probability of finding a finite solution as

p(N, T, β) = f

[(

1

t
− 1

t∗(β)

)

· Nα(β)

]

, (28)

where f(x) → 1 if x ≫ 1 and f(x) → 0 if x ≪ 1, and where α(1) = 1/2. It is interesting to note that these results do
not depend on some initial conditions of the algorithm we used to solve the problem: for a given sample, the algorithm
finds in a linear time the minimum of the polytope by looking at all its vertexes exhaustively. The statistics is taken
by repeating such a deterministic procedure on a large number of samples chosen at random.

In Fig. 4 (left panel) we plot, for a given value of β, the optimal cost found numerically for several values of the size
N compared to the analytical prediction at infinite N . One can show that the cost vanishes as ∆−1 ∼ (1/t−1/t∗)1/2.
The right panel of the same figure shows the behavior of the value of v which leads to the optimal cost versus N/T ,
for the same fixed value of β. Also in this case, the analytical (N → ∞ limit) is plotted for comparison. We note that
this quantity was suggested [5] to be a good approximation of the VaR of the optimal portfolio: We find here that
vopt diverges at the critical threshold and becomes negative at an even smaller value of N/T .

V. CONCLUSIONS

We have shown that the problem of optimizing a portfolio under the expected shortfall measure of risk by using
empirical distributions of returns is not well defined when the ratio N/T of assets to data points is larger than
a certain critical value. This value depends on the threshold β of the risk measure in a continuous way and this
defines a phase diagram. The lower the value of β, the larger the length of the time series needed for the portfolio
optimization. The analytical approach we have discussed in this paper allows us to have a clear understanding of this
phase transition. The mathematical reason for the non-feasibility of the optimization problem is that, with a certain
probability p(N, T, β), the linear constraints in (9) define a simplex which is not bounded from below, thus leading
to a solution which is not finite (∆q → ∞ in our language), in the same way as it happens in the extreme case β → 1
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FIG. 4: Numerical results from linear programming and comparison with analytical predictions at large N . Left: The minimum
cost of the optimization problem vs N/T , at increasing values of N . The thick line is the analytical solution (19). Here β = 0.7,
(N/T )∗ ≃ 0.463. Right: The optimal value of v as found numerically for several values of N is compared to the analytical
solution.

discussed in [6]. From a more physical point of view, it is reasonable that the feasibility of the problem depend on
the number of data points we take from the time series with respect to the number of financial instruments of our
portfolio. The probabilistic character of the time series is reflected in the probability p(N, T, β). Interestingly, this
probability becomes a threshold function at large N if N/T ≡ 1/t is finite, and its general form is given in (28).

These results have a practical relevance in portfolio optimization. The order parameter discussed in this paper is
tightly related to the relative estimation error [6]. The fact that this order parameter has been found to diverge
means that in some regions of the parameter space the estimation error blows up which makes the task of portfolio
optimization completely meaningless. The divergence of estimation error is not limited to the case of expected
shortfall: as shown in [6], it happens in the case of variance and absolute deviation as well, but the noise sensitivity
of expected shortfall turns out to be even greater than that of these more conventional risk measures.

There is nothing surprising about the fact that if there are no sufficient data, the estimation error is large and
we cannot make a good decision. What is surprising is the fact that there is a sharply defined threshold where the
estimation error actually diverges.

For a given portfolio size, it is important to know that a minimum amount of data points is required in order to
perform an optimization based on empirical distributions. We also note that the divergence of the parameter ∆ at
the phase transition, which is directly related to the fluctuations of the optimal portfolio, may play a dramatic role
in practical cases. To stress this point, we can define a sort of “susceptibility” with respect to the data,

χt
ij =

∂〈wj〉
∂xit

, (29)

and one can show that this quantity diverges at the critical point, since χij ∼ ∆. A small change (or uncertainty) in
xit becomes increasingly relevant as the transition is approached, and the portfolio optimization could then be very
unstable even in the feasible region of the phase diagram. We stress that the susceptibility we have introduced might
be considered as a measure of the effect of the noise on portfolio selection and is very reminiscent of the measure
proposed in [11].

In order to present a clean, analytic picture, we have made several simplifying assumptions in this work. We have
omitted the constraint on the returns, liquidity constraints, correlations between the assets, non-stationary effects,
etc. Some of these can be systematically taken into account and we plan to return to these finer details in a subsequent
work.

Acknowledgments. We thank O. C. Martin, and M. Potters for useful discussions, and particularly J. P. Bouchaud
for a critical reading of the manuscript. S. C. is supported by EC through the network MTR 2002-00319, STIPCO,
I.K. by the National Office of Research and Technology under grant No. KCKHA005.
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APPENDIX A: THE REPLICA SYMMETRIC SOLUTION

We show in this appendix how the minimum cost function corresponding to the replica-symmetric ansatz is obtained.
The ‘TrLogQ’ term in (16) is computed by realizing that the eigenvalues of such a symmetric matrix are (q1 +(n−

1)q0) (with multiplicity 1) and (q1 − q0) with multiplicity n − 1. Then,

Tr log Q = log detQ = log(q1 + (n − 1)q0) + (n − 1) log(q1 − q0) = n

(

log ∆q +
q1

∆q

)

+ O(n2) , (A1)

where ∆q ≡ q1 − q0. The effective partition function in (17) depends on Q−1, whose elements are:

(Q−1)ab =

{

(∆q − q0)/(∆q)2 + O(n) if a = b

−q0/(∆q)2 + O(n) if a 6= b
(A2)

By introducing a Gaussian measure dPq0(s) ≡ ds√
2πq0

e−s2/2q0 , one can show that

1

n
log Ẑ(v, q1, q0) =

1

n
log

{

∫

∏

a

dxae−
1

2∆q

P

a
(xa)2+γ

P

a
(xa+v)θ(−xa−v)

∫

dPq0 (s)e
s

∆q

P

a
xa

}

=
q0

2∆q
+

∫

dPq0 (s) log Bγ(s, v, ∆q) + O(n) (A3)

where we have defined

Bγ(s, v, ∆q) ≡
∫

dx exp

(

− (x − s)2

2∆q
+ γ(x + v)θ(−x − v)

)

. (A4)

The exponential in (16) now reads expNn[S(q0, ∆q, q̂0, ∆q̂) + O(n)], where

S(q0, ∆q, q̂0, ∆q̂) = q0∆q̂ + q̂0∆q + ∆q∆q̂ − ∆q̂ − γt(1 − β)v − t log γ + t

∫

dPq0(s) log Bγ(s, v, ∆q)

− t

2
log ∆q − 1

2

(

log ∆q̂ +
q̂0

∆q̂

)

− log 2

2
.

(A5)

The saddle point equations for q̂0 and ∆q̂ allow then to simplify this expression. The free energy (−γ)fγ =

limn→0 ∂Zn
γ /∂n is given by

−γfγ(v, q0, ∆q) =
1

2
− t log γ +

1 − t

2
log ∆q +

q0 − 1

2∆q
− γt(1 − β)v + t

∫

dPq0(s) log Bγ(s, v, ∆q) , (A6)

where the actual values of v, q0 and ∆q are fixed by the saddle point equations

∂fγ

∂v
=

∂fγ

∂q0
=

∂fγ

∂∆q
= 0 . (A7)

A close inspection of these saddle point equations allows one to perform the low temperature γ → ∞ limit by assuming
that ∆q = ∆/γ while v and q0 do not depend on the temperature. In this limit one can show that

lim
γ→∞

1

γ
log Bγ(s, v, ∆/γ) =











s + v + ∆/2 s < −v − ∆

−(v + s)2/2∆ −v − ∆ ≤ s < −v

0 s ≥ −v

(A8)

If we plug this expression into eq. (A6) and perform the large-γ limit we get the minimum cost:

E = lim
γ→∞

fγ = −q0 − 1

2∆
+ t(1 − β)v − t

∫ −∆

−∞

dx√
2πq0

e−
(x−v)2

2q0

(

x +
∆

2

)

+
t

2∆

∫ 0

−∆

dx√
2πq0

e−
(x−v)2

2q0 x2 . (A9)

We rescale x → x∆, v → v∆, and q0 → q0∆
2, and after some algebra we obtain eq. (19).

[1] see P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, Mathematical Finance 9, 203–228 (1999), for an axiomatic definition
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On the Feasibility of Portfolio Optimization under Expected Shortfall

Stefano Ciliberti,1 Imre Kondor,2 and Marc Mézard1

1CNRS; Univ. Paris Sud, UMR8626, LPTMS, ORSAY CEDEX, F-91405
2Collegium Budapest, 1014 Budapest, Szenthromsg u. 2

We address the problem of portfolio optimization under the simplest coherent risk measure, i.e.
the expected shortfall. As it is well known, one can map this problem into a linear programming
setting. For some values of the external parameters, when the available time series is too short,
the portfolio optimization is ill posed because it leads to unbounded positions, infinitely short on
some assets and infinitely long on some others. As first observed by Kondor and coworkers, this
phenomenon is actually a phase transition. We investigate the nature of this transition by means
of a replica approach.

I. INTRODUCTION

Among the several risk measures existing in the context of portfolio optimization, expected shortfall (ES) has
certainly gained increasing popularity in recent years. In several practical applications, ES is starting to replace the
classical Value-at-Risk (VaR). There are a number of reasons for this. For a given threshold probability β, the VaR
is defined so that with probability β the loss will be smaller than VaR. This definition only gives the minimum loss
one can reasonably expect but does not tell anything about the typical value of that loss that can be measured by the
conditional value-at-risk (CVaR, which is the same as ES for continuous distributions that we consider here [12]). We
will be more precise on these definitions below. The point we want to stress here is that the VaR measure, lacking the
mandatory properties of subadditivity and convexity,is not coherent [1]. This means that summing VaR’s of individual
portfolios will not necessarily produce an upper bound for the VaR of the combined portfolio, thus contradicting the
holy principle of diversification in finance. A nice practical example of the inconsistency of VaR in credit portfolio
management is reported in Ref. 3. On the other hand, it has been shown [2] that ES is a coherent measure with
interesting properties [4]. Moreover, the optimization of ES can be reduced to linear programming [5] (which allows
for a fast implementation) and leads to a good estimate for the VaR as a byproduct of the minimization process. To
summarize, the intuitive and simple character, together with the mathematical properties (coherence) and the fast
algorithmic implementation (linear programming), are the main reasons behind the growing importance of ES as a
risk measure.

In this paper, we will focus on the feasibility of the portfolio optimization problem under the ES measure of risk.
The control parameters of this problem are (i) the imposed threshold in probability, β, and (ii) the ratio N/T between
the number N of financial assets making up the portfolio and the time series length T used to sample the probability
distribution of returns. (It is curious that, albeit trivial, the scaling in N/T had not been explicitly pointed out before
[11]. It has been discovered by Kondor at al. Ref. 6 that, for certain values of these parameters, the optimization
problem does not have a finite solution because, even if convex, it is not bounded from below. Extended numerical
simulations allowed these authors to determine the feasibility map of the problem. Here, in order to better understand
the root of the problem and to study the transition from a feasible regime to an unfeasible one (corresponding to an
ill-posed minimization problem) we address the same problem from an analytical point of view.

The paper is organized as follows. In Section II we briefly recall the basic definitions of β-VaR and β-CVaR and we
show how the portfolio optimization problem can be reduced to linear programming. We introduce a “cost function”
to be minimized under linear constraints and we discuss the rationale for a statistical mechanics approach. In Section
III we solve the problem of optimizing large portfolios under ES using the replica approach. Our results and the
comparison with numerics are reported in Section IV, and our conclusions are summarized in Section V.

II. THE OPTIMIZATION PROBLEM

We consider a portfolio of N financial instruments w = {w1, . . . wN}, where wi is the position of asset i. The global
budget constraint fixes the sum of these numbers: we impose for example

N∑

i=1

wi = N . (1)

We do not stipulate any constraint on short selling, so that wi can be any negative or positive number. This is, of
course, unrealistic for liquidity reasons, but considering this case allows us to show up the essence of the phenomenon.
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FIG. 1: Schematic representation of the VaR measure of risk. P<(w) is the probability of a loss associated to the portfolio w
being smaller than α. The conditional VaR β-CVaR (or ES) is the average loss when this is constrained to be greater than the
β-VaR.

If we imposed a constraint that would render the domain of the wi bounded (such as a ban on short selling, e.g.), this
would evidently prevent the weights from diverging, but a vestige of the transition would still remain in the form of
large, though finite, fluctuations of the weights, and in a large number of them sticking to the ”walls” of the domain.

We denote the returns on the assets by x = {x1, x2, . . . xN} , and we assume that there exists an underlying proba-
bility distribution function p(x) of the returns. The loss of portfolio w given the returns x is `(w|x) = −

∑N
i=1 wixi,

and the probability of that loss being smaller than a given threshold α is

P<(w, α) =
∫

dx p(x)θ
(
α − `(w|x)

)
, (2)

where θ(·) is the Heaviside step function, equal to 1 if its argument is positive and 0 otherwise. The β-VaR of this
portfolio is formally defined by

β-VaR(w) = min{α : P<(w, α) ≥ β} , (3)

(see Fig. 1), while the CVaR (or ES, in this case) associated with the same portfolio is the average loss on the tail of
the distribution,

β-CVaR(w) =

∫
dx p(x)`(w|x)θ

(
`(w|x) − β-VaR(w)

)

∫
dx p(x)θ

(
`(w|x) − β-VaR(w)

) =
1

1 − β

∫
dx p(x)`(w|x)θ

(
`(w|x) − β-VaR(w)

)
. (4)

The threshold β then represents a confidence level. In practice, the typical values of β which one considers are
β = 0.90, 0.95, and 0.99, but we will address the problem for any β ∈ [0, 1]. What is usually called “exceeding
probability” in previous literature would correspond here to (1 − β).

As mentioned in the introduction, the ES measure can be obtained from a variational principle [5]. The minimization
of a properly chosen objective function leads directly to (4):

β-CVaR(w) = min
v

Fβ(w, v) , (5)

Fβ(w, v) ≡ v + (1 − β)−1

∫
dx p(x)

[
`(w|x) − v

]+
. (6)

Here, [a]+ ≡ (a + |a|)/2. The external parameter v over which one has to minimize is claimed to be relevant in
itself [5], since its optimal value may represent a good estimate for the actual value-at-risk of the portfolio. We will
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come back to this point as we discuss our results. We stress here that minimizing (6) over w and v is equivalent to
optimizing (4) over the portfolio vectors w.

Of course, in practical cases the probability distribution of the loss is not known and must be inferred from the
past data. In other words, we need an “in-sample” estimate of the integral in (6), which would turn a well posed
(but useless) optimization problem into a practical approach. We thus approximate the integral by sampling the
probability distributions of returns. If we have a time series x(1), . . .x(T ), our objective function becomes simply

F̂β(w, v) = v +
1

(1 − β)T

T∑

τ=1

[
`(w|x(τ)) − v

]+ = v +
1

(1 − β)T

T∑

τ=1

[
−v −

N∑

i=1

wixiτ

]+

, (7)

where we denote by xiτ the return of asset i at time τ .
Minimizing this risk measure is the same as the following linear programming problem:

• given one data sample, i.e. a matrix xiτ , i = 1, . . .N , τ = 1, . . . T ,

• minimize the cost function

Eβ

[
Y; {xiτ}

]
= Eβ

[
v, {wi}, {uτ}; {xiτ}

]
= (1 − β)Tv +

T∑

t=τ

uτ , (8)

• over the (N + T + 1) variables Y ≡ {w1, . . . wN u1, . . . uT v,

• under the (2T + 1) constraints

uτ ≥ 0 , uτ + v +
N∑

i=1

xiτ wi ≥ 0 ∀τ , and
N∑

i=1

wi = N . (9)

Since we allow short positions, not all the wi are positive, which makes this problem different from standard linear
programming. To keep the problem tractable, we impose the condition that wi ≥ −W , where W is a very large cutoff,
and the optimization problem will be said to be ill-defined if its solution does not converge to a finite limit when
W → ∞. It is now clear why constraining all the wi to be non-negative would eliminate the feasibility problem: a finite
solution will always exist because the weights are by definition bounded, the worst case being an optimal portfolio
with only one non-zero weight taking care of the total budget. The control parameters that govern the problem are
the threshold β and the ratio N/T of assets to data points. The resulting “phase diagram” is then a line in the β-N/T
plane separating a region in which, with high probability, the minimization problem is not bounded and thus does not
admit a finite solution, and another region in which a finite solution exists with high probability. These statements
are non-deterministic because of the intrinsic probabilistic nature of the returns. We will address this minimization
problem in the non-trivial limit where T → ∞, N → ∞, while N/T stays finite. In this “thermodynamic” limit, we
shall assume that extensive quantities (like the average loss of the optimal portfolio, i.e. the minimum cost function) do
not fluctuate, namely that their probability distribution is concentrated around the mean value. This “self-averaging”
property has been proved for a wide range of similar statistical mechanics models [7]. Then, we will be interested
in the average value of the minimum of the cost function 8) over the distribution of returns. Given the similarity of
portfolio optimization with the statistical physics of disordered systems, this problem can be addressed analytically
by means of a replica approach [8].

III. THE REPLICA APPROACH

For a given history of returns xit, one can compute the minimum of the cost function, minY Eβ [Y; {xit}]. In this
section we show how to compute analytically the expectation value of this quantity over the histories of return. For
simplicity we shall keep to the case in which the xit are independent identically distributed (iid) normal variables, so
that an history of returns xit is drawn from the distribution

p({xit}) ∼
∏

it

e−Nx2
it/2 . (10)

This assumption of iid normal distribution of returns is very restrictive, but we would like to emphasize that the
method that we use can be generalized easily to iid variables with other distributions, and also in some cases to
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correlated variables. Certainly the precise location of the critical value of N/T separating an unfeasible phase from a
feasible one depends on the distribution of returns. But we expect that the broad features like the existence of this
critical value, or the way the fluctuations in portfolio diverge when approaching the transition, should not depend on
this distribution. This property, called universality, has been one of the major discoveries of statistical mechanics in
the last fifty years.

Instead of focusing only on the the minimal cost, the statistical mechanics approach makes a detour: it consid-
ers, for a given history of returnsxit, a probability distribution in the space of variables Y, defined by Pγ(Y) =

1/Zγ [{xit}] exp
[
− γEβ [Y; {xit}]

]
. The parameter γ is an auxiliary parameter: in physics it is the inverse of the

temperature, in the present case it is just one parameter that we introduce in order to have a probability distribution
on Y which interpolates between the uniform probability (γ = 0), and a probability which is peaked on the value of
Y which minimizes the cost Eβ [Y; {xit}] (case γ = ∞).

The normalization constant Zγ [{xit}] is called the partition function at inverse temperature γ; it is defined as

Zγ [{xit}] =
∫

V

dY exp
[
− γEβ [Y; {xit}]

]
(11)

where V is the convex polytope defined by (9).
The partition function contains a lot of information on the problem. For instance the minimal cost can be expressed

as limγ→∞(−1)/(Nγ) logZγ [{xit}]. We shall be interested in computing the large N limit of the minimal cost per
variable:

ε[{xit}] = lim
N→∞

min E[{xit}]
N

= lim
N→∞

lim
γ→∞

−1
Nγ

log Zγ [{xit}] . (12)

In the following, we will compute the average value of this quantity over the choice of the sample xit. Using equation
(12), we can compute this average minimum cost if we are able to compute the average of the logarithm of Z. This is
a difficult problem which is usually circumvented by means of the so called “replica trick”: one computes the average
of Zn, where n is an integer, and then the average of the logarithm is obtained by

log Z = lim
n→0

∂Zn

∂n
, (13)

thus assuming that Zn can be analytically continued to real values of n. The overline stands for an average over
different samples, i.e. over the probability distribution (10). This technique has a long history in the physics of spin
glasses [8]: the proof that it leads to the correct solution has been obtained [9] recently.

The partition function (11) can be written more explicitly as

Zγ [{xit}] =
∫ +∞

−∞
dv

∫ +∞

0

T∏

t=1

dut

∫ +∞

−∞

N∏

i=1

dwi

∫ +i∞

−i∞
dλ exp

[
λ

(
N∑

i=1

wi − N

)]
×

×
∫ +∞

0

T∏

t=1

dµt

∫ +i∞

−i∞

T∏

t=1

dµ̂t exp

[
T∑

t=1

µ̂t

(
ut + v +

N∑

i=1

xitwi − µt

)]
exp

[
−γ(1− β)Tv − γ

T∑

t=1

ut

]
,(14)

where the constraints are imposed by means of the Lagrange multipliers λ, µ, µ̂. The replica trick is based on the
idea that the n-th power of the partition function appearing in (13), can be written as the partition function for n
independent replicas Y1,...,Yn of the system: all the replicas correspond to the same history of returns {xit}, and
their joint probability distribution function is Pγ(Y1, . . . ,Yn) = 1/Zn

γ [{xit}] exp
[
−γ

∑n
a=1 Eβ [Ya; {xit}]

]
. It is not

difficult to write down the expression for Zn and average it over the distribution of samples xit. One introduces the
overlap matrix

Qab =
1
N

N∑

i=1

wa
i wb

i , a, b = 1, . . . n , (15)

as well as its conjugate Q̂ab (the Lagrange multiplier imposing (15)), where a and b are replica indexes. This matrix
characterizes how the portfolios in different replicas differ: they provide some indication of how the measure Pγ(Y)
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is spread. After (several) Gaussian integrations, one obtains

Zn
γ [{xit}] ∼

∫ +∞

−∞

n∏

a=1

dva

∫ +∞

−∞

∏

a,b

dQab

∫ +i∞

−i∞

∏

a,b

dQ̂ab exp

{
N
∑

a,b

QabQ̂ab − N
∑

a,b

Q̂ab − γ(1 − β)T
∑

a

va

−Tn logγ + T log Ẑγ

(
{va}, {Qab}

)
− T

2
Tr log Q − N

2
Tr log Q̂ − nN

2
log 2

}
, (16)

where

Ẑγ

(
{va}, {Qab}

)
≡
∫ +∞

−∞

n∏

a=1

dya exp


−1

2

n∑

a,b=1

(Q−1)ab(ya − va)(yb − vb) + γ
n∑

a=1

yaθ(−ya)


 . (17)

We now write T = tN and work at fixed t while N → ∞.
The most natural solution is obtained by realizing that all the replicas are identical. Given the linear character of

the problem, the symmetric solution should be the correct one. The replica-symmetric solution corresponds to the
ansatz

Qab =

{
q1 if a = b

q0 if a 6= b
; Q̂ab =

{
q̂1 if a = b

q̂0 if a 6= b
, (18)

and va = v for any a. As we discuss in detail in appendix A, one can show that the optimal cost function, computed
from eq. (??), is the minimum of

ε(v, q0, ∆) =
1

2∆
+ ∆

[
t(1 − β)v − q0

2
+

t

2
√

π

∫ +∞

−∞
dse−s2

g(v + s
√

2q0)
]

, (19)

where ∆ ≡ limγ→∞ γ∆q and the function g(·) is defined as

g(x) =





0 x ≥ 0 ,

x2 −1 ≤ x < 0 ,

−2x − 1 x < −1 .

(20)

Note that this function and its derivative are continuous. Moreover, v and q0 in (19) are solutions of the saddle point
equations

1 − β +
1

2
√

π

∫
dse−s2

g′(v + s
√

2q0) = 0 , (21)

−1 +
t√

2πq0

∫
dse−s2

s g′(v + s
√

2q0) = 0 . (22)

We require that the minimum of (19) occur at a finite value of ∆. In order to understand this point, we recall the
meaning of ∆ (see also (18)):

∆/γ ∼ ∆q = (q1 − q0) =
1
N

N∑

i=1

(
w

(1)
i

)2 − 1
N

N∑

i=1

w
(1)
i w

(2)
i ∼ w2 − w2 , (23)

where the superscripts (1) and (2) represent two generic replicas of the system. We then find that ∆ is proportional
to the fluctuations in the distribution of the w’s. An infinite value of ∆ would then correspond to a portfolio which is
infinitely short on some particular positions and, because of the global budget constraint (1), infinitely long on some
other ones.

Given (19), the existence of a solution at finite ∆ translates into the following condition:

t(1 − β)v − q0

2
+

t

2
√

π

∫ +∞

−∞
dse−s2

g(v + s
√

2q0) ≥ 0 , (24)

which defines, along with eqs. (21) and (22), our phase diagram.

Page 5 of 10

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Page 17 of 22

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

For Peer Review
 O

nly

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

non-feasible

feasible

N T

β

101

102

103

104

105

10-8 10-7 10-6 10-5 10-4 10-3 10-2

∆

β = 0.95

β = 0.90

β = 0.80

1/
√

x

»
N

T
−

„
N

T

«∗–

FIG. 2: Left panel: The phase diagram of the feasibility problem for expected shortfall. Right panel: The order parameter ∆
diverges with an exponent 1/2 as the transition line is approached. A curve of slope −1/2 is also shown for comparison.

IV. THE FEASIBLE AND UNFEASIBLE REGIONS

We can now chart the feasibility map of the expected shortfall problem. Following the notation of [6], we will use
as control parameters N/T ≡ 1/t and β. The limiting case β → 1 can be worked out analytically and one can show
that the critical value t∗ is given by

1
t∗

=
1
2
−O

[
(1 − β)3e−(4π(1−β)2)−1]

. (25)

This limit corresponds to the over-pessimistic case of maximal loss, in which the single worst loss contribute to the
risk measure. The optimization problem is the following:

min
w

[
max

t

(
−
∑

i

wixit

)]
. (26)

A simple “geometric” argument by Kondor et al. [6] leads to the critical value 1/t∗ = 0.5 in this extreme case. The
idea is the following. According to eq. (26), one has to look for the minimum of a polytope made by a large number
of planes, whose normal vectors (the xit) are drawn from a symmetric distribution. The simplex is convex, but with
some probability it can be unbounded from below and then the optimization problem is ill defined. Increasing T
means that the probability of this event decreases, because there are more planes and thus it is more likely that for
large values of the wi the max over t has a positive slope in the i-th direction. The exact law for this probability
can be obtained by induction on N and T [6] and, as we said, it jumps in the thermodynamic limit from 1 to 0 at
N/T = 0.5. The example of the max-loss risk measure is also helpful because it allows to stress two aspects of the
problem: 1) even for finite N and T there is a finite chance that the risk measure is unbounded from below in some
samples, and 2) the phase transition occurs in the thermodynamic limit when N/T is strictly smaller than 1, i.e.
much before the covariance matrix develops zero modes. The very nature of the problem is that the risk measure
there is simply not bounded from below. As for the ES risk measure, the threshold value N/T = 0.5 can be thought
of as a good approximation of the actual value for many cases of practical interest (i.e. β & 0.9), since the corrections
to this limit case are exponentially small (eq. (25)).

For finite values of β we have solved numerically eqs. (21), (22) and (24) using the following procedure. We first
solve the two equations (21) and (22), which always admit a solution for (v, q0). We then plot the l.h.s. of eq. (24) as
a function of 1/t for a fixed value of β. This function is positive at small 1/t and becomes negative beyond a threshold
1/t∗. By keeping track of 1/t∗ (numerically obtaining via linear interpolations) for each value of β we build up the
phase diagram (Fig. 2, left). This diagram is in agreement with the numerical results obtained in ref. 6. We show in
the right panel of Fig. 2 the divergence of the order parameter ∆ versus 1/t− 1/t∗. The critical exponent is found to
be 1/2:

∆ ∼
(

1
t
− 1

t∗(β)

)−1/2

, (27)
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FIG. 3: Left: The probability of finding a finite solution as obtained from linear programming at increasing values of N and
with β = 0.8. Right: Scaling plot of the same data. The critical value is set equal to the analytical one, N/T = 0.4945 and the
critical exponent is 1/2, i.e. the one obtained by Kondor et al. [6] for the limit case β → 1. The data do not collapse perfectly,
and better results can be obtained by slightly changing either the critical value or the exponent.

again in agreement with the scaling found in ref. 6. We have performed extensive numerical simulations in order
to check the validity of our analytical findings. For a given realization of the time series, we solve the optimization
problem (8) by standard linear programming [10]. We impose a large negative cutoff for the w’s, that is wi > −W ,
and we say that a feasible solution exists if it stays finite for W → ∞. We then repeat the procedure for a certain
number of samples, and then average our final results (optimal cost, optimal v, and the variance of the w’s in the
optimal portfolio) over those of them which produced a finite solution. In Fig. 3 we show how the probability of
finding a finite solution depends on the size of the problem. Here, the probability is simply defined in terms of the
frequency. We see that the convergence towards the expected 1-0 law is fairly slow, and a finite size scaling analysis
is shown in the right panel. Without loss of generality, we can summarize the finite-N numerical results by writing
the probability of finding a finite solution as

p(N, T, β) = f

[(
1
t
− 1

t∗(β)

)
· Nα(β)

]
, (28)

where f(x) → 1 if x � 1 and f(x) → 0 if x � 1, and where α(1) = 1/2. It is interesting to note that these results do
not depend on some initial conditions of the algorithm we used to solve the problem: for a given sample, the algorithm
finds in a linear time the minimum of the polytope by looking at all its vertexes exhaustively. The statistics is taken
by repeating such a deterministic procedure on a large number of samples chosen at random.

In Fig. 4 (left panel) we plot, for a given value of β, the optimal cost found numerically for several values of the size
N compared to the analytical prediction at infinite N . One can show that the cost vanishes as ∆−1 ∼ (1/t−1/t∗)1/2.
The right panel of the same figure shows the behavior of the value of v which leads to the optimal cost versus N/T ,
for the same fixed value of β. Also in this case, the analytical (N → ∞ limit) is plotted for comparison. We note that
this quantity was suggested [5] to be a good approximation of the VaR of the optimal portfolio: We find here that
vopt diverges at the critical threshold and becomes negative at an even smaller value of N/T .

V. CONCLUSIONS

We have shown that the problem of optimizing a portfolio under the expected shortfall measure of risk by using
empirical distributions of returns is not well defined when the ratio N/T of assets to data points is larger than
a certain critical value. This value depends on the threshold β of the risk measure in a continuous way and this
defines a phase diagram. The lower the value of β, the larger the length of the time series needed for the portfolio
optimization. The analytical approach we have discussed in this paper allows us to have a clear understanding of this
phase transition. The mathematical reason for the non-feasibility of the optimization problem is that, with a certain
probability p(N, T, β), the linear constraints in (9) define a simplex which is not bounded from below, thus leading
to a solution which is not finite (∆q → ∞ in our language), in the same way as it happens in the extreme case β → 1
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FIG. 4: Numerical results from linear programming and comparison with analytical predictions at large N . Left: The minimum
cost of the optimization problem vs N/T , at increasing values of N . The thick line is the analytical solution (19). Here β = 0.7,
(N/T )∗ ' 0.463. Right: The optimal value of v as found numerically for several values of N is compared to the analytical
solution.

discussed in [6]. From a more physical point of view, it is reasonable that the feasibility of the problem depend on
the number of data points we take from the time series with respect to the number of financial instruments of our
portfolio. The probabilistic character of the time series is reflected in the probability p(N, T, β). Interestingly, this
probability becomes a threshold function at large N if N/T ≡ 1/t is finite, and its general form is given in (28).

These results have a practical relevance in portfolio optimization. The order parameter discussed in this paper is
tightly related to the relative estimation error [6]. The fact that this order parameter has been found to diverge
means that in some regions of the parameter space the estimation error blows up which makes the task of portfolio
optimization completely meaningless. The divergence of estimation error is not limited to the case of expected
shortfall: as shown in [6], it happens in the case of variance and absolute deviation as well, but the noise sensitivity
of expected shortfall turns out to be even greater than that of these more conventional risk measures.

There is nothing surprising about the fact that if there are no sufficient data, the estimation error is large and
we cannot make a good decision. What is surprising is the fact that there is a sharply defined threshold where the
estimation error actually diverges.

For a given portfolio size, it is important to know that a minimum amount of data points is required in order to
perform an optimization based on empirical distributions. We also note that the divergence of the parameter ∆ at
the phase transition, which is directly related to the fluctuations of the optimal portfolio, may play a dramatic role
in practical cases. To stress this point, we can define a sort of “susceptibility” with respect to the data,

χt
ij =

∂〈wj〉
∂xit

, (29)

and one can show that this quantity diverges at the critical point, since χij ∼ ∆. A small change (or uncertainty) in
xit becomes increasingly relevant as the transition is approached, and the portfolio optimization could then be very
unstable even in the feasible region of the phase diagram. We stress that the susceptibility we have introduced might
be considered as a measure of the effect of the noise on portfolio selection and is very reminiscent of the measure
proposed in [11].

In order to present a clean, analytic picture, we have made several simplifying assumptions in this work. We have
omitted the constraint on the returns, liquidity constraints, correlations between the assets, non-stationary effects,
etc. Some of these can be systematically taken into account and we plan to return to these finer details in a subsequent
work.
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APPENDIX A: THE REPLICA SYMMETRIC SOLUTION

We show in this appendix how the minimum cost function corresponding to the replica-symmetric ansatz is obtained.
The ‘TrLogQ’ term in (16) is computed by realizing that the eigenvalues of such a symmetric matrix are (q1 +(n−

1)q0) (with multiplicity 1) and (q1 − q0) with multiplicity n − 1. Then,

Tr log Q = log detQ = log(q1 + (n − 1)q0) + (n − 1) log(q1 − q0) = n

(
log ∆q +

q1

∆q

)
+ O(n2) , (A1)

where ∆q ≡ q1 − q0. The effective partition function in (17) depends on Q−1, whose elements are:

(Q−1)ab =

{
(∆q − q0)/(∆q)2 + O(n) if a = b

−q0/(∆q)2 + O(n) if a 6= b
(A2)

By introducing a Gaussian measure dPq0(s) ≡ ds√
2πq0

e−s2/2q0 , one can show that

1
n

log Ẑ(v, q1, q0) =
1
n

log

{∫ ∏

a

dxae−
1

2∆q

P
a(xa)2+γ

P
a(xa+v)θ(−xa−v)

∫
dPq0 (s)e

s
∆q

P
a xa

}

=
q0

2∆q
+
∫

dPq0 (s) log Bγ(s, v, ∆q) + O(n) (A3)

where we have defined

Bγ(s, v, ∆q) ≡
∫

dx exp
(
− (x − s)2

2∆q
+ γ(x + v)θ(−x − v)

)
. (A4)

The exponential in (16) now reads expNn[S(q0, ∆q, q̂0, ∆q̂) + O(n)], where

S(q0, ∆q, q̂0, ∆q̂) = q0∆q̂ + q̂0∆q + ∆q∆q̂ − ∆q̂ − γt(1 − β)v − t log γ + t

∫
dPq0(s) log Bγ(s, v, ∆q)

− t

2
log ∆q − 1

2

(
log ∆q̂ +

q̂0

∆q̂

)
− log 2

2
.

(A5)

The saddle point equations for q̂0 and ∆q̂ allow then to simplify this expression. The free energy (−γ)fγ =
limn→0 ∂Zn

γ /∂n is given by

−γfγ(v, q0, ∆q) =
1
2
− t log γ +

1 − t

2
log ∆q +

q0 − 1
2∆q

− γt(1 − β)v + t

∫
dPq0(s) log Bγ(s, v, ∆q) , (A6)

where the actual values of v, q0 and ∆q are fixed by the saddle point equations

∂fγ

∂v
=

∂fγ

∂q0
=

∂fγ

∂∆q
= 0 . (A7)

A close inspection of these saddle point equations allows one to perform the low temperature γ → ∞ limit by assuming
that ∆q = ∆/γ while v and q0 do not depend on the temperature. In this limit one can show that

lim
γ→∞

1
γ

log Bγ(s, v, ∆/γ) =





s + v + ∆/2 s < −v − ∆
−(v + s)2/2∆ −v − ∆ ≤ s < −v

0 s ≥ −v

(A8)

If we plug this expression into eq. (A6) and perform the large-γ limit we get the minimum cost:

E = lim
γ→∞

fγ = −q0 − 1
2∆

+ t(1 − β)v − t

∫ −∆

−∞

dx√
2πq0

e−
(x−v)2

2q0

(
x +

∆
2

)
+

t

2∆

∫ 0

−∆

dx√
2πq0

e−
(x−v)2

2q0 x2 . (A9)

We rescale x → x∆, v → v∆, and q0 → q0∆2, and after some algebra we obtain eq. (19).
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