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Optimal approximations of power-laws with exponentials: application to volatility
models with long memory

Thierry Bochud
Nestlé Capital Advisers, Av. Nestlé 55, 1800 Vevey, Switzerland∗

Damien Challet
Nomura Centre for Quantitative Finance, Mathematical Institute,

Oxford University, 24–29 St Giles’, Oxford OX1 3LB, United Kingdom†

(Dated: February 13, 2007)

We propose an explicit recursive method to approximate a power-law with a finite sum of weighted
exponentials. Applications to moving averages with long memory are discussed in relationship with
stochastic volatility models.

Exponential moving averages are widely used as tool
for computing efficiently averages of time-changing quan-
tities such as volatility and price. Their main advantage
resides in their recursive definition that allows for easy
numerical implementation, or remarkably simple models
of stochastic volatility, such as GARCH [1]. Their use
is however conceptually questionable when the process
in question has long memory, as the volume and volatil-
ity do [2–4]. One should rather consider a power-law
kernel; this requires however considerably more comput-
ing power as one must keep track of all the data points.
Some authors approximate a power-law with a sum of
exponentials in the literature, the record being held by
Ref. [5], which uses 600 exponentials for 2 decades but
notices that only a few have a significant contribution to
the final function.

While the principle of economy should dictate to fit
power-law-looking data with nothing else than a power-
law (see for instance the controversy in the June 2001
issue of Quantitative Finance), computing real-time av-
erages with a power-law kernel is much eased by the use
of a sum of exponentials. Recent stochastic volatility
models for instance use a sum of exponentials [6–8] (5,
12 and an infinity, respectively) with algebraically de-
creasing weights and algebraically increasing character-
istic times, thereby respecting the long-memory of the
volatility, which might explain in part their forecasting
performance[24]. It is clear that only a handful of expo-
nentials are required in order to approximate a power-law
up to a given order of magnitude, as many practitioners
are aware (see for instance [2, 6]). Since financial market
data time series do not extend over an infinite period,
such approximation will be good enough for application
to financial time-correlations. How many exponentials
should be used and with what parameters seem never
discussed in the literature. Here, we aim to derive an
explicit and new simple scheme that improves the often
used approximation; in addition we show that the usual
assumption of independent contribution from each ex-
ponential implies the existence of an optimal number of
exponentials.

Let f(x) = x−α and g(x) =
∑N

i=0 gi(x) where gi(x) =
wi exp(−λix). Assume that one would like to approxi-
mate f with g from x = 1 to x = 10k, that is, over k
decades. The standard approach (see for instance [9])
consists in defining a cost function per decade that is the
integral of some measure of the difference between f and
g, i.e.

C =
1
k

(∫ 10k

1

[−α log x− log g(x)]2d log x

)1/2

, (1)

and to minimize C with respect to wi and λi, so as
to obtain 2(N + 1) coupled non-linear equations. Ad-
hoc numerical methods have been investigated a long
time ago, that solve the resulting set of equations by
using the Gram-Schmidt orthonormalisation of exponen-
tials [9]; working with an orthonormal basis is crucial in
order to avoid the famously ill-posed problem of fitting
a sum of exponentials [10, 11], most recently shown to
be an example of sloppy model [12]. Our aim here is to
obtain a sub-optimal (with respect to C) but explicit set
of wi and λi.

The proposed method relies on a simple ansatz for wi

and λi. Instead of trying to solve an intricate set of
non-linear equations, one observes that the nature of a
power-law is to be scale-free, whereas an exponential has
a well defined scale. Therefore, the role of each exponen-
tial is to approximate a given region of the k decades.
In particular, one wishes that the i-th exponential ap-
proximates correctly f(x) at xi = βi where β > 1 is a
constant. This already suggests that λi ∝ β−i, which is
both intuitive and well-known. Then one matches g to
f and its first derivative g′ to f ′ at xi = βi. However,
once again, this would yield 2(N + 1) coupled non-linear
equations. The key observation is that, provided that β
is large enough (see below), only gi contributes signifi-
cantly to g at xi, i.e. g(xi) ' gi(xi). We therefore solve
gi(xi) = f(xi) and g′(xi) = f ′(xi), which gives

λi = αβ−i (2)

wi =
(

e

βi

)α

. (3)
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FIG. 1: Convergence of the approximation function g(x) to
f(x) for the uniform ansatz with 2 (red line), 3 (green line)
and 6 exponentials (blue line), and for the recursive ansatz
with 6 exponentials (orange line); α = 2, β = 5

However, g(xi) > f(xi) because the contribution of the
exponentials other than the i-th cannot be totally ig-
nored. Therefore, one must correct the above over-
optimistic assumption by considering that g is a weighted
sum of gi(x)

g(x) =
N∑

i=0

ciβ
−iα exp(α) exp(−α/βix), (4)

where {ci} is a set of correction factors. The last step is
to solve g(βj) = f(βj), which is a set of N+1 linear equa-
tions with variables ci. The complexity of the problem
has been greatly reduced. One can solve numerically this
set of equations. In order to obtain explicit expressions
for ci, one has to resort to another approximation.

The simplest ansatz for ci already gives a high de-
gree of accuracy and is equivalent to the one currently
in use in the literature. Taking uniform ci = c given by
1/c =

∑N
i=0 β−iα exp(α) exp(−α/βi) ensures the equality

g(1) = f(1). With this choice the factor exp(α) disap-
pears from g(x) and

g(x) =
( N∑

i=0

β−iα exp(−α/βi)
)−1

N∑

i=0

β−iα exp(−α/βix)

(5)
Fig. 1 shows how the approximation works for increas-

ing N : each additional exponential extends the range
that is well approximated by a factor β. The value of β
was chosen large enough so as to emphasise the oscilla-
tions of g(x) at each βj . The uniform ansatz implies that
while g(1) = f(1) = 1, g(βj) > f(βj) for 0 < j < N since
the contribution of each gk is asymmetric with respect to
βj ; when j = N , since there are no additional exponen-
tials from i > j to contribute to g, g(βN ) < β−αN (see
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k=1, recursive
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FIG. 2: Error per decade C as a function of N for various k;
α = 2; β = 10k/N for the uniform and recursive ansatz (full
and empty symbols respectively). Lines are for eye guidance
only.

Fig. 1). This problem is of course negligible when a very
large number of exponentials is used; however, since our
aim is to use as few exponentials as possible it needs to
be addressed.

The parameter β tunes how much of a decade is ap-
proximated by a single exponential. When k and N are
fixed, it is sensible to take βN = 10k. The cost func-
tion C is plotted in Fig. 2 as a function of N at fixed
k for several values of k. For small N , C decreases ex-
ponentially as a function N . Then, strikingly, C has a
minimum at Nm(k) and increases slightly before stabil-
ising; the smaller α, the smaller the subsequent increase.
One would have naively expected that C decreased mono-
tonically as a function of N ; however, since β decreases
when N increases at fixed k, the assumption that the
exponentials give independent contributions to g is not
valid any more at N ' Nm, and becomes clearly in-
correct when N > Nm. The consequence is that g(x)
becomes too large except at x = 1. This is not prob-
lematic, however, since in practice, one prefers large β to
small ones, so as to use as few exponentials as possible.
As expected, Nm increases linearly with k, implying that
for α = 2, the optimal N = Nm(k) ' 1.7k, or equiva-
lently β ' 101/1.7 ' 3.87. Another feature of this figure
is that C(Nm(k)) decreases as function of k: this due
to the vanishing influence of the deviation caused by the
downwards shift of the last exponential.

It is possible to improve the precision of the approxi-
mation for N < Nm by modifying the scale of x, or equiv-
alently by taking into account derivatives of g of higher
orders. The second order yields λi =

√
α(α + 1)β−i.

From the conditions on the first derivatives and on the
equality of functions, wi ∝ β−αi exp(

√
α(α + 1)). This

reasoning can be extended to match the derivatives up
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FIG. 3: Error per decade C as a function of n for various
N ≤ Nm = 5; k = 3, α = 2; β = 10k/N . Dotted lines are for
eye guidance only.

to order n, resulting in

g(x) =
( N∑

i=0

β−iα exp(−µ/βi)
)−1

N∑

i=0

β−iα exp(−µx/βi)

(6)
with

µ =




n−1∏

j=0

(α + j)




1
n

=
[
Γ(α + n)

Γ(α)

] 1
n

(7)

Since µ does not depend on i it modifies the scale of x,
which can be used to adjust the position in log-space of
g relative to f . For large n, µ ' (n + α− 1)/e, therefore
shifting g(x) to larger x. According to Fig. 3, as long as
N < Nm, there is an optimal n. This comes from the fact
that g(βN ) < f(βN ): it is more advantageous to shift x
to larger values so as to avoid the too small value of g at
βN . It also emphasises once again the need to solve the
problem of the last exponential.

The solution comes from a close examination of Fig.
1: the first exponentials do not contribute much to the
value of g(βN ) for N not too small. This suggest that the
contribution of gi(βj) to g(βj) can be neglected if i < j.
As a consequence, g(βN ) ' gN (βN ), and cN = 1. Thus

cN−1 = 1− β−αeα(1−1/β). (8)

More generally,

cN−k = 1−
k−1∑

i=0

cN−iβ
−α(k−i)eα(1−βi−k) (9)

c0 is the same with both ansätze, since there is no ex-
ponential on the left of β0. Table I gives an example set of

1000 10000
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, g
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)

y=x
-2
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N=5, recursive

FIG. 4: Zoom of Fig 1 on the last two exponentials. α = 2;
β = 4

cN−k. It is noticable that cN−k display oscillations which
are damped as k increases: since cN = 1 is large in order
to compensate for the absence of further exponentials,
cN−1 must be smaller than c0; next, cN−2 will be slightly
larger than c0 so as to satisfy g(βN−1) = f(βN−1), etc.

TABLE I: Correction coefficients given by the recursive
ansatz. α = 2, N = 8, β = 4

k 0 1 2 3 4 5 6 7 8

cN−k 1.000 0.720 0.773 0.763 0.765 0.765 0.765 0.765 0.765

The recursive ansatz always gives a better result that
the uniform one, as it ensures that g(βi) is closer to f(βi)
for all i, and particularly for large i; g approximates f re-
markably well at xi = βi provided that β is not too small.
The differences are most perceptible for x ' βN , where
the recursive scheme gives a much better approximation
(see Fig. 4), which explains why it is most advantageous
for k ≤ 4 where it decreases C, at Nm by a factor 2 for
k = 2 and 1.5 for k = 3; larger k, hence larger Nm, will
not bring much improvement since the weight of the dis-
crepancy caused by the uniform ansatz at βN decreases.
Improving the precision further is possible by taking more
exponentials from the left hand side of βj into account
in the calculus of ci at the price of heavier and probably
non-explicit computations. Finally, if solving the full set
of linear equations for ci does not give enough precision,
the remaing possibility is to minimise numerically C [9].

Application to volatility models with long memory

Volatility modeling and forecasting is carried out in
discrete time by autoregressive models such as GARCH
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and its numerous variants (see for instance [13, 14]).
They are all based on a recursive moving average of the
volatility σ2

σ2(t) = σ2(t)Λ + (1− Λ)v(t− δ) (10)

where v(t) is some measure of the instantaneous volatility
(e.g. daily volatility) over δt units of time, and Λ = e−λ

is the memory. RiskMetrics recommends Λ1 = 0.98 or
Λ2 = 0.94. While this is an efficient way of computing
an average, it implicitely assumes a choice of a single time
scale 1/| lnΛ| ' 1/(1− Λ) for Λ close to 1.

Unfortunately, the volatility is a process with no obvi-
ous time scale, as its autocorrelation function decreases
slowly; fitting it with a power-law gives an exponent
ν ' 0.3 [2, 3]. In other words, any choice of Λ is a
compromise between smoothness and reactivity. To our
knowledge, the first paper to use a power-law kernel for
measuring volatilities is from the Olsen group [15]. One
possible reason of this particular functional form of the
volatility memory is that the market is made of hetere-
geneous participants [16]. For instance the variety of
time-scales of people taking part into financial markets
is obvious to any practioner, hence a choice of a single Λ
selects the categories of traders that the resulting average
volatility incorporates. Direct measure on high-frequency
data revealed five characteristic time scales [8].

Extending GARCH to include multiple time scales can
be done in a simple way[25] by a weighted sum of volatil-
ities at increasing time scales δtk, k = 1, · · · , kmax, de-
noted by σ2

k

σ2(t) =
kmax∑

k=1

wkσ2
k(t) (11)

where σ2
k is the estimated volatility at time scale δtk,

whose dynamics is given by

σ2
k(t) = Λkσ2

k(t− δtk) + (1− Λk)rδtk
(t) (12)

rδtk
(t) =

log p(t)− log p(t− δtk)√
τk

. (13)

Several works considered similar setups [6–8, 17, 18].
Because of the power-law decay of the auto-correlation
of the volatility, the weights wk should decrease alge-
braically. Indeed, Ref [8] fitted such a stochastic volatil-
ity model with five time-scales and found them to be 0.18,
1.4, 2.8, 7, 28 business days, with respective weights of
0.39, 0.20, 0.18, 0.12, 0.11; the time scales span about
2.2 decades, and the weights decreases algebraically as
the timescale grows with an exponent of about α = 0.3.
Other work considered α = 2 [6, 15]. Generally speaking,
2α− 2 = ν, which gives α = 1.15 if ν = 0.3 (see e.g. [7]).
Using the results from the previous section, for α = 1.15,
five exponentials approximate best three decades with
corrections ~c = (0.704, 0.702, 0.714, 0.647, 1). As stated

in the introduction, the number of timescales to take
into account in this kind of modeling varies from pa-
per to paper: 5 [8], 12 [6] and an infinity [7] for instance
(in the latter case, this was motivated by mathematical
tractability). Our first result implies that the optimal
number of time scales (hence of exponentials) is about
1.7 per decade if α = 2; if one uses 5-minute data and
if one contents oneself with a cut-off of 6 months, as in
Ref. [6], there are 4.7 decades, which are optimally ap-
proximated by 8 exponentials. One sees therefore that
long-memory generalisations of GARCH do not require
many exponentials in order to implement at relatively
long-term cut-off.

However, there is still a computational problem with
this approach: according to Eq (13), one must keep the
returns over a time horizon equal to the longest time
scale; this is barely economical and defeats the initial
aim of the approximation. An ingenious solution resides
in nested exponential moving averages. Indeed, applying
n times such an operator to a price return time series is
equivalent to averaging the last n price returns [19]. Since
by definition a price return over a time horizon of nδt is
nothing else but the sum of n returns at time scale δt, one
can abstain from keeping any price return in memory, at
the price of using more computing power, which is not a
problem nowadays; even better, the first section of this
paper explicitely specifies how to minimise the number
of exponentials so as to save memory and processor time.

CONCLUSIONS

We have provided a simple method to use efficiently a
sum of weighted exponentials as a parsimonious approxi-
mation of a power-law with any exponent. In particular,
we have shown the existence of an optimal number of
exponentials when one neglects the contribution of some
exponentials in the determination of the coefficients. The
recursive ansatz is probably precise enough for most ap-
plications. This method can be directly applied to deter-
mine the minimal number of components in long-memory
volatility forecasting.

We thank Gilles Zumbach for useful discussions.
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