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Enhanced policy iteration for American options

via scenario selection

Christian Bender1, Anastasia Kolodko1,2, and John Schoenmakers1

December 22, 2006

Abstract

In Kolodko & Schoenmakers [9] and Bender & Schoenmakers [3] a pol-
icy iteration was introduced, which allows to achieve tight lower approx-
imations of the price for early exercise options via a nested Monte-Carlo
simulation in a Markovian setting. In this paper we enhance the algorithm
by a scenario selection method. It is demonstrated by numerical examples
that the scenario selection can significantly reduce the number of actually
performed inner simulations, and thus can heavily speed up the method
(up to factor 15 in some examples). Moreover, it is shown that the mod-
ified algorithm retains the desirable properties of the original one such as
the monotone improvement property, termination after a finite number of
iteration steps, and numerical stability.

Keywords: American options, Monte-Carlo simulation, optimal stopping,
policy improvement.

2000 AMS subject classification: 60G40, 62L15, 91B28

1 Introduction

In recent years the pricing of American options on a high-dimensional system of
underlyings via Monte Carlo has become an ever growing field of interest. While,
in principle, the backward dynamic program provides a recursive representation
of the (time-discretized) price process of an American option, it requires the
evaluation of high order nestings of conditional expectations. Therefore Monte
Carlo estimators for regression functions, which do not run into explosive cost
when nested several times, have been proposed by several authors, see Longstaff
& Schwartz [10], Tsitsiklis & Van Roy [15], Broadie & Glasserman [5], and
Bouchard et al. [4].

An alternative to solving the backward dynamic program recursively are
policy iterations for dynamic programming. The main advantage of policy it-
erations is, that they yield lower approximations of the price process for any

1Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117
Berlin, Germany. bender[kolodko][schoenma]@wias-berlin.de.
Supported by the DFG Research Center Matheon ‘Mathematics for Key Technologies’ in
Berlin.

2Institute of Computational Mathematics and Mathematical Geophysics, Russian Acad.
Sci., Lavrentieva str. 6, 630090 Novosibirsk, Russia.
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given order of nested conditional expectations, which are typically of increasing
quality the higher the order. (The latter property is referred to as monotone
improvement property.) In a Markovian setting, this methodology allows to
apply the plain Monte Carlo estimator to evaluate the conditional expectations,
at least for nestings of order one. As one can only obtain approximations cor-
responding to low order iterations this way, the quality of a single improvement
step is of prime importance. A new policy improvement algorithm was devel-
oped in Kolodko & Schoenmakers [9] and Bender & Schoenmakers [3] which
outperforms for instance the more classical Howard improvement (e.g. [13]). In
principle, one could start the algorithm with a very simple input policy. For ex-
ample, in case European options are given (quasi-)analytically, two iterations of
the policy ‘exercise immediately’ can be obtained by a one degree nested Monte
Carlo simulation, yielding surprisingly good results [9]. Given today’s computer
power however, more than one degree of nesting is virtually impossible. This
means that in practice only one step of the algorithm in [9] can be carried out.
Therefore, the choice of the input stopping family is important. In this respect
we found that, in particular for complex high-dimensional products, it turns out
more effective to apply one improvement step to some input policy obtained by
a popular standard method (for example Longstaff & Schwartz [10], Tsitsiklis
& Van Roy [15], Piterbarg [12], or Andersen [1]), as exemplified in [2].

Since a one step version of the algorithm in [9] typically requires nested
Monte Carlo simulation, it is still quite costly. In the present paper we enhance
the policy improvement algorithm by a scenario selection method, while retain-
ing the monotone improvement property of the original procedure. In this way
the number of actually performed inner simulation can be reduced, which in
some of our numerical examples speeds up the procedure by a factor 15. The
basic idea is as follows: Suppose the holder of an American option has some
pre-information, for example he knows good closed form approximations of the
price for the corresponding European options. Such approximations are often
available in the literature for practically relevant options. Given a trajectory
of the underlying system, the investor rules out some time points, at which an
optimal strategy cannot (or at least is very unlikely to) exercise, by the pre-
information. Then the policy improvement is run only at the remaining time
points. (Here, the set of remaining time points depends on the state of the un-
derlying system. Hence we do not simply reduce to an other American option
with a smaller set of exercise dates.)

We illustrate the enhancement procedure by numerical examples for Ameri-
can basket-call options on dividend paying stocks and an asset based cancelable
swap. The latter example indicates that it may be more efficient to apply
one enhanced improvement step to an input family obtained via the Longstaff-
Schwartz algorithm with a low number of basis functions, than running the
Longstaff-Schwartz algorithm alone with a huge number of basis functions.
Hence, our algorithm can efficiently complement linear regression approaches
such as [10, 15] in situations where the latter algorithms do not yield a fully
satisfactory lower bound using standard bases. Moreover, the enhanced version
of the policy improvement algorithm is compared to the original version showing
that the scenario selection may drastically increase the efficiency.

After a short recap of American options and optimal stopping in discrete
time (Section 2), we introduce the enhanced algorithm in Section 3.1 and verify
the monotone improvement property. We also prove that the algorithm termi-
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nates after a finite number of iteration steps. The latter result is of theoretical
interest rather, since in practice only one or two iterations can be calculated.
We also estimate the additional error when time points are ruled out which are
only unlikely but not impossible to be in the range of an optimal policy. In
Section 3.2 we provide a pseudo-code for the Monte Carlo implementation of
one improvement step and prove the numerical stability in Section 3.3. The
numerical examples are presented in Section 4. Some proofs are postponed to
an Appendix.

2 Optimal stopping in discrete time

First we recall some facts about the optimal stopping problem in discrete time.
Suppose (Z(i): i = 0, 1, . . . , k) is a nonnegative stochastic process in discrete
time on a probability space (Ω,F , P ) adapted to some filtration (Fi : 0 ≤ i ≤ k)
which satisfies

k∑
i=1

E|Z(i)| < ∞.

We may think of the process Z as a cashflow, which an investor may exercise
once. The investors’ problem is to maximize his expected gain by choosing the
optimal time for exercising. This problem is known as optimal stopping in dis-
crete time. In the context of option pricing it is well known by the no arbitrage
principle that the pricing of a (discrete time) American option is equivalent to
the (discrete) optimal stopping problem, where Z is the discounted pay-off and
P is a pricing measure corresponding to the discount numeraire.

To formalize the stopping problem we define Si as the set of Fi stopping
times taking values in {i, . . . , k}. The stopping problem can now be stated as
follows: Find stopping times τ∗(i) ∈ Si such that for 0 ≤ i ≤ k

EFi [Z(τ∗(i))] = esssupτ∈Si
EFi [Z(τ)] . (1)

The process on the right hand side is called the Snell envelope of Z and we
denote it by Y ∗(i). We collect some facts, which can be found in Neveu [11] for
example.

1. The Snell envelope Y ∗ of Z is the smallest supermartingale that dominates
Z. It can be constructed recursively by backward dynamic programming:

Y ∗(k) = Z(k)
Y ∗(i) = max{Z(i), EFi [Y ∗(i + 1)]}.

2. A family of optimal stopping times is given by

τ̃∗(i) = inf{j : i ≤ j ≤ k, Z(j) ≥ EFj [Y ∗(j + 1)]}.

If several optimal stopping families exist, then the above family is the
family of first optimal stopping times. In that case

τ̂∗(i) = inf{j : i ≤ j ≤ k, Z(j) > EFj [Y ∗(j + 1)]}

is the family of last optimal stopping times.

3
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For the remainder of the paper we assume that

P (Z(k) > 0) > 0. (2)

Clearly, this is no loss of generality: Let k̃ = max{i : 0 ≤ i ≤ k, P (Z(i) > 0) >

0}. Then exercising at i > k̃ cannot be optimal and hence the stopping problem
is equivalent to the one with exercise set {0, . . . , k̃}.

3 Enhancing the policy iteration method

3.1 Definition and monotone improvement property

Suppose the buyer of the option chooses ad hoc a family of stopping times
(τ(i) : 0 ≤ i ≤ k) taking values in the set {0, . . . , k}. We interpret τ(i) as the
time, at which the buyer will exercise his option, provided he has not exercised
prior to time i. This interpretation requires the following consistency condition:

Definition 3.1. A family of integer-valued stopping times (τ(i) : 0 ≤ i ≤ k) is
said to be consistent, if

i ≤ τ(i) ≤ k, τ(k) ≡ k,

τ(i) > i ⇒ τ(i) = τ(i + 1), 0 ≤ i < k. (3)

Indeed, suppose τ(i) > i, i.e. according to our interpretation the investor
has not exercised the first right prior to time i + 1. Then he has not exercised
the first right prior to time i, either. This means he will exercise the first right
at times τ(i) and τ(i + 1), which requires τ(i) = τ(i + 1). A typical example of
a consistent stopping family can be obtained by comparison with the still-alive
European options, i.e.

τ(i) := inf
{

j : i ≤ j ≤ k, Z(j) ≥ max
j+1≤p≤k

EFj [Z(p)]
}

. (4)

In addition to the algorithm introduced in Kolodko & Schoenmakers [9] and
further developed in Bender & Schoenmakers [3] we suppose that the investor
has in some sense a-priori knowledge about an optimal exercise strategy. We
consider a random set A, A ⊂ {0, . . . , k}, for which 1A(i) is Fi-adapted, and k
∈ A almost surely. Henceforth we will call such a set an adapted random set.
Given some consistent stopping family τ we then consider a new stopping family
by

τ̃(i) := inf
{

j : i ≤ j ≤ k, (Z(j) ≥ max
j+1≤p≤k

EFj [Z(τ(p))]) ∧ (j ∈ A)
}

, (5)

where ∧ denotes the logical ‘and’. Note that the stopping family τ̃ is consistent.
In particular τ̃(k) = k, since max ∅ = −∞ and k ∈ A. Moreover, by the
definition of τ̃ , we have for all 0 ≤ i ≤ k,

τ̃(i) ∈ A. (6)

In (5) the investor exploits his ‘a-priori knowledge’ by not exercising outside the
set A(ω). If there exists some optimal stopping family τ∗ such that

τ∗(i) ∈ A, i = 0, . . . , k, P − a.s. (7)

4
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we call A an a-priori set. For instance, given any Fi-adapted lower bound L(i)
of the Snell envelope Y ∗(i),

A(ω) = {i : 0 ≤ i ≤ k, Z(i, ω) ≥ L(i, ω)} (8)

is an a-priori set. For an a-priori set A, (5) means that, due to the new family
τ̃ , the investor will not exercise at a date j which is either suboptimal or for
optimality not necessary to exercise since τ∗(j) ∈ A.

We call τ̃ a one-step improvement of τ for the following reason: Denote by
Y (i; τ) the value process corresponding to the stopping family τ , namely

Y (i; τ) = EFi [Z(τ(i))] . (9)

Then due to the next theorem which is in fact a generalization of Theorem 3.5
in Bender & Schoenmakers [3], the one-step improvement yields a higher value
than the given family, provided the input family τ(i) takes values in A.

Theorem 3.2. Suppose A is an adapted random set, τ is a consistent input
stopping family such that τ(i) ∈ A a.s. for all 0 ≤ i ≤ k. Consider

τ̂(i) := inf
{

j : i ≤ j ≤ k, (Z(j) > max
j+1≤p≤k

EFj [Z(τ(p))]) ∧ (j ∈ A)
}

, (10)

and let τ̄ be a consistent stopping family such that

τ̃(i) ≤ τ̄(i) ≤ τ̂(i), 0 ≤ i ≤ k. (11)

Then,

Y (i; τ̄) ≥ Y (i; τ̃) ≥ max
i≤p≤k

EFi [Z(τ(p))] ≥ Y (i; τ), 0 ≤ i ≤ k. (12)

Moreover, Y (i; τ̃) ≥ Z(i) on {i ∈ A}.

Remark 3.1. (i) In the case of the trivial adapted random set A ≡ {1, . . . , k},
i.e. without scenario selection, the above Theorem is proved in [3].
(ii) It is interesting to note, that τ̄(i) need not take values in A.

Proof. Define ZA(i) := 1A(i)Z(i). Since τ(i) ∈ A, we have by (2)

max
i≤p≤k

EFi [ZA(τ(p))] = max
i≤p≤k

EFi [Z(τ(p))] > 0, 0 ≤ i ≤ k.

Consequently,

τ̃(i) = inf
{

j : i ≤ j ≤ k, ZA(j) ≥ max
j+1≤p≤k

EFj [ZA(τ(p))]
}

, (13)

τ̂(i) = inf
{

j : i ≤ j ≤ k, ZA(j) > max
j+1≤p≤k

EFj [ZA(τ(p))]
}

. (14)

We can now apply Remark 3.1, (i), to the cashflow ZA and obtain

EFi [ZA(τ̄(i))] ≥ EFi [ZA(τ̃(i))] ≥ max
{

ZA(i), max
i≤p≤k

EFi [ZA(τ(p))]
}

.

5
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So,

Y (i; τ̄) = EFi [Z(τ̄(i))] ≥ EFi [ZA(τ̄(i))] ≥ EFi [ZA(τ̃(i))] = Y (i; τ̃)

by (6), and

Y (i; τ̃) ≥ max
{

ZA(i), max
i≤p≤k

EFi [Z(τ(p))]
}

since τ(i) ∈ A.

The following example shows that assumption τ(i) ∈ A cannot be dispensed
with in Theorem 3.2.

Example 3.3. Suppose ξ is a binary trial with P (ξ = 1) = P (ξ = −1). Define
the process Z by Z(0) = 9/4, Z(1) = Z(3) = 2 and Z(2) = 2 + ξ. The
filtration Fi is assumed to be generated by Z. Then σ = 5/2− ξ/2 is a stopping
time which yields an expected payoff E[Z(σ)] = 5/2. Consequently, immediate
exercise at t = 0 cannot be optimal. With this knowledge we define an a-
priori set A(ω) ≡ {1, 2, 3}. We want to improve upon the trivial starting family
τ(i) = i, which obviously violates the condition τ(0) ∈ A. We define

τ̃(0) = inf{j : 0 ≤ j ≤ 3, (Z(j) ≥ max
p=1,2,3

E[Z(p)]) ∧ (j ∈ A)}.

A simple calculation gives τ̃(0) = 1 and hence E[Z(τ̃(0))] = 2 < 9/4 =
E[Z(τ(0))]. Hence, τ̃(0) does not improve upon τ(0).

It is natural to iterate the policy improvement (5). Suppose A is an adapted
random set, and τ0 is some consistent stopping family satisfying τ0(i) ∈ A for
all 0 ≤ i ≤ k. Define, recursively,

τm = τ̃m−1,

Ym(i) = Y (i; τm), m = 1, 2, . . .

By Theorem 3.2, Ym is an increasing sequence. Taking (13) and Proposition
4.4 in Kolodko & Schoenmakers [9] into account, we observe that the algorithm
terminates after at most k steps.

Proposition 3.4. Suppose m ≥ k − i. Then,

τm(i) = τ̃∗A(i), Ym(i) = Y ∗
A(i),

where τ̃∗A and Y ∗
A denote the first optimal stopping family and the Snell envelope

for the stopping problem with cashflow ZA(i) = 1A(i)Z(i). In particular, it
follows that

Ym(i) = Y ∗(i)

for m ≥ k − i, if A is an a-priori set.

If A is an a-priori set, the proposition states that the policy improvement
algorithm terminates at the Snell envelope as fast as backward dynamic pro-
gramming does. Most importantly, in every iteration step we obtain increased
lower approximations of the Snell envelope, simultaneously at all exercise dates.
If A is only an adapted random set, but not an a-priori set, the algorithm ter-
minates at the Snell envelope Y ∗

A of the cashflow ZA(i) = 1A(i)Z(i) and not

6
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at Y ∗. As we will demonstrate by numerical examples in Section 4, it can be
numerically more efficient to choose an adapted random set which contains the
image of an optimal stopping family with only high probability. The follow-
ing theorem estimates the difference between the two Snell envelopes in such a
situation. The proof is postponed to the Appendix.

Theorem 3.5. Let A be an adapted random set containing k a.s., and suppose
that for some q > 1, E[|Z(i)|q] < ∞ for all 0 ≤ i ≤ k. Then for every consistent
stopping family τ∗ which is optimal for the cashflow Z the following estimate
holds:

E[Y ∗(i)− Y ∗
A(i)] ≤ Kq,iP ({τ∗(i) /∈ A})1−1/q

,

where
Kq,i = (k − i)1/q max

i≤j≤k−1

(
E[|Z(j)1{0,...,k}\A(j)|q]

)1/q
.

In the case A(ω) ≡ {1, . . . , k} the policy iteration presented in this subsec-
tion coincides with the one suggested in [9]. As will be explained in Section
3.2 and exemplified in Section 4, an appropriate choice of A can significantly
reduce the computational cost for a Monte Carlo implementation of one im-
provement step. In this respect the following corollary, which follows directly
from Proposition A.1, is interesting.

Corollary 3.6. Suppose τ is a consistent stopping family and A1 ⊂ A2 are
adapted random sets. Define

τ̃(i) := inf
{

j : i ≤ j ≤ k, (Z(j) ≥ max
j+1≤p≤k

EFj [Z(τ(p))]) ∧ (j ∈ A1)
}

,

σ̃(i) := inf
{

j : i ≤ j ≤ k, (Z(j) ≥ max
j+1≤p≤k

EFj [Z(τ(p))]) ∧ (j ∈ A2)
}

.

Then obviously τ̃ and σ̃ are consistent and τ̃(i) ≥ σ̃(i), 0 ≤ i ≤ k. So by
Proposition A.1 and Jensen’s inequality, we have

(Y (i; τ̃)− Y (i; σ̃))− ≤
k−1∑
j=i

EFi
[
1{eτ(i)>j}1{eσ(i)=j} (Y (j; τ̃)− Z(j))−

]
, (15)

(Y (i; τ̃)− Y (i; σ̃))+ ≤
k−1∑
j=i

EFi
[
1{eτ(i)>j}1{eσ(i)=j} (Y (j; τ̃)− Z(j))+

]
,

where for any real x, x =: x+ − x−, with minimal x± ≥ 0.

As a special case we may compare one step of the plain version of the al-
gorithm, σ̃ with A2(ω) = {0, . . . , k}, with a modified version (5) due to a non-
trivial adapted random set A1 containing k a.s. Obviously, constructing τ̃ is
generally cheaper than constructing σ̃, and the quality loss with respect to σ̃,
due to τ̃ may be estimated by (15). In fact (15) means that τ̃ may be worse
than σ̃ only if Y (i; τ̃) can be below the cashflow at a time where σ̃ says ‘exercise’
but τ̃ refuses to do so.
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3.2 On the implementation

We now give some comments on the practical Monte Carlo implementation of
an improvement step. Henceforth, we suppose that the cashflow Z is of the
form Z(i) = f(i,X(i)) where f(i, x) is a deterministic function and (X(i),Fi)
is a – possibly high-dimensional – Markovian chain. Note that one improvement
step of an initial lower bound Y (0; τ0) requires a nested Monte Carlo simulation
provided there are no closed form expressions for the conditional expectations
in (5). The introduction of an adapted random set can significantly reduce the
number of actually performed inner simulations and consequently increases the
efficiency of the method. We suggest to implement an improvement step as
follows.

Step 1: Choose an adapted random set A such that (j ∈ A) can be checked
in closed form given the state X(j). This means, there are Borel sets Bj ⊂
R, Bk = R ,which are explicitly known to the investor, such that (j ∈ A)
if and only if X(j) ∈ Bj . For instance good closed form approximations of
the price processes of still alive Europeans are often available for practically
relevant products. In such situation let L(i) be a closed form approximation of
their maximum, maxi+1≤p≤k EFi [Z(p)]. Typically L(i) = g(i, X(i)) for some
explicitly known deterministic function g(i, x). Define

A(ω) = {i : 0 ≤ i ≤ k, Z(i, ω) ≥ L(i, ω)} (16)
= {i : 0 ≤ i ≤ k, f(i, X(i, ω)) ≥ g(i,X(i, ω)}.

Obviously, A is in closed form in the above sense. One can just define
Bj = (f(j, ·) − g(j, ·))−1([0,∞)). Clearly, A is an a-priori set, if L is a lower
approximation of the maximum of still alive Europeans, but only an adapted
random set in general. An alternative construction of adapted random sets is
given in Remark 3.3 below.

Step 2: Choose an initial stopping family τ0 such that τ0(i) ∈ A for all
0 ≤ i ≤ k. A natural choice is

τ0(i) = inf{j : i ≤ j ≤ k, j ∈ A}.

Notice that, by Step 1, {τ0(i) = i} = {X(i) ∈ Bi} belongs to the σ-field
generated by X(i). This guarantees that conditional expectations of the form
EFi [Z(τ0(j))] can be replaced by regressions EX(i)[Z(τ0(j))] in the present
Markovian setting.

Step 3: Construct a lower bound Y (0; τ1) due to the improved policy τ1 :=
τ̃0 using the following pseudo-code.

Simulate M trajectories X(m), m = 1, . . . ,M , starting at X(0);

Along each trajectory X(m) we compute η(m) ≈ τ
(m)
1 (0) as follows:

i := 0;

A: Search the first exercise date η ≥ i such that η belongs to A, which
formally means X(m)(η) ∈ Bη, since A is in closed form.
If η = k (i.e. τ

(m)
1 (0) = k) then set η(m) := k, else:

Consider η as a candidate for τ
(m)
1 (0).
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To decide whether η ≈ τ

(m)
1 (0) or not we do the following:

Simulate M1 trajectories (X(m,p)(q), q = η, . . . , k), p = 1, . . . ,M1, un-
der the conditional measure PX(m)(η) (hence X(m,p)(η) = X(m)(η));

Along each trajectory (m, p) search all exercise dates ≥ η where the
policy τ0 says ‘exercise’. From these dates we can detect easily (an
approximation of) the family (τ (m,p)

0 (q), q ≥ η) along the path (m, p);

Then, for q = η, . . . , k compute

Dummy[q] :=
1

M1

M1∑
p=1

f(τ (m,p)
0 (q), X(m,p)(τ (m,p)

0 (q)))

≈ EX(m)(η) [Z(τ0(q))] ;

Next determine
Max Dummy := max

η≤q≤k
Dummy[q] ≈ max

η≤q≤k
EX(m)(η) [Z(τ0(q))];

Check whether f(η, X(m)(η)) ≥ Max Dummy:
If yes, set η(m) := η ≈ τ

(m)
1 (0);

If no, do i := η + 1 and go to (A);

We so end up with η(m) ≈ τ
(m)
1 (0);

Finally compute
1
M

M∑
m=1

f(η(m), X(m)(η(m))) ≈ E[Z(τ1(0))] = Y (0; τ1).

Step 4: Given a consistent stopping family τ0 as in Step 2, Y (0; τ0) is a
lower bound of Y ∗(0). We recommend to construct an upper bound from this
lower bound by the duality method developed by Rogers [14] and Haugh &
Kogan [6]. Define,

Yup(0; τ) = E

[
max

0≤j≤k
(Z(j)−M(j))

]
, (17)

where M(0) = 0 and, for 1 ≤ i ≤ k,

M(i) =
i∑

p=1

(
Y (p; τ)− EFp−1 [Y (p; τ)]

)
.

Approximation of this upper bound due to Y (·; τ0) by Monte Carlo also requires
nested simulation. It is, thus, roughly as expensive as the improvement of τ0

described in Step 3. Note, however, that calculating Yup(0; τ1) would require
another layer of simulations within simulations which is infeasible with today’s
computer power. For a detailed treatment of efficient computation of dual upper
bounds see for example Kolodko & Schoenmakers [8]. A multiplicative analogon
of the duality method is due to Jamshidian [7].

Remark 3.2. The suggested implementation primarily is a procedure for com-
puting the option price. It does not yield an improved exercise boundary in

9
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terms of functions of the underlying process at different exercise dates. How-
ever, at every exercise date the improved exercise decision, ‘exercise’ or ‘do not
exercise’, can be obtained via a standard (non-nested) Monte Carlo simulation,
hence relatively fast.
Remark 3.3. The algorithm described above can be generically combined with
other methods, such as [1], [10], and [15]. Suppose an approximative exercise
boundary h(i,X(i)) is at hand which was pre-computed by another method.
Then one can construct adapted random sets by shifting this exercise boundary

Aγ = {i : 0 ≤ i ≤ k, f(i,X(i)) ≥ h(i,X(i))− γ}, γ ≥ 0. (18)

We can then define the input stopping time based on the approximative exercise
boundary

τ0(i) = inf{j : i ≤ j ≤ k, j ∈ A0},
which clearly satisfies τ0(i) ∈ Aγ for all γ ≥ 0, since the sets Aγ are increasing
in γ. The choice of the parameter γ for the adapted random set can be seen
as a trade off between speed and accuracy. The closer it is to 0 the bigger the
gain due to the scenario selection. However, when γ is away from 0, then the
adapted random set Aγ becomes ‘closer’ to an a priori set.

3.3 Stability

As described in the previous section, for practical implementation one typically
has to approximate the conditional expectations in the exercise criterion. We
now extend a stability result from Bender & Schoenmakers [3] to the case of a
nontrivial adapted random set. Let A be an adapted random set and τ be a
consistent stopping family which satisfies τ(i) ∈ A for all 0 ≤ i ≤ k. Further
suppose ε(N)(i) is a sequence of Fi-adapted processes such that

lim
N→∞

ε(N)(i) = 0, P − a.s.

A perturbed version of the one step improvement is then defined by

τ̃ (N)(i) := inf
{

j : i ≤ j ≤ k, (Z(j) ≥ max
j+1≤p≤k

EFj [Z(τ(p))] + ε(N)(j))

∧(j ∈ A)
}

. (19)

The sequence ε(N) accounts for the errors when approximating the conditional
expectation. We may and will assume that ε(N)(k) = 0, since no conditional
expectation is to be evaluated at j = k. In accordance with the previous section
we suppose that the criterion j ∈ A can be checked in closed form. We first
recall that even with a trivial a-priori set we can neither expect

τ̃ (N)(i) → τ̃(i) in probability

nor
Y (0; τ̃ (N)) → Y (0; τ̃)

in general. For corresponding counterexamples we refer to [3]. However, we
can generalize a stability result from [3] where the error is measured in terms
of the shortfall instead of the absolute value. As emphasized in [3], preventing
shortfall (viz. change to the worse) is the relevant criterion to look at since our
goal is improvement.
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Theorem 3.7. For all 0 ≤ i ≤ k,

lim
N→∞

(
Y (i; τ̃ (N))− Y (i; τ̃)

)
−

= 0,

where the limit is P -almost surely and in L1(P ).

Proof. Since ε(N)(k) = 0 we may write as in (13),

τ̃ (N)(i) = inf
{

j : i ≤ j ≤ k, ZA(j) ≥ max
j+1≤p≤k

EFj [ZA(τ(p))] + ε(N)(j)
}

,

where ZA(i) = 1A(i)Z(i). Hence, the claim follows from the corresponding
stability result for the plain version of the algorithm (without scenario selection)
applied to the cashflow ZA. Such stability result is proved in [3].

Remark 3.4. Theorem 3.7 provides stability of one improvement step. More
generally, one can prove that the shortfall of the expected gain corresponding
to m perturbed steps of the algorithm below the expected gain corresponding
to m theoretical steps converges to zero. In the case of the trivial a-priori set
A = {0, . . . , k} this statement is made precise and proved in [3], Section 4.2.
This result carries over to the case of a general adapted random set. Here it
is crucial that the criterion (j ∈ A) involves no approximation so that it is
guaranteed that e.g. τ̃ (N)(i) ∈ A for all 0 ≤ i ≤ k.

4 Numerical examples

We now test our algorithm with two examples. The first example is a Bermudan
call on a basket of dividend paying assets. In this comparably simple example
we construct an a priori set based on a lower approximation of European op-
tion prices to illustrate the efficiency gain stemming from the scenario selection.
The second example is a complex structured asset based cancelable swap. It
turns out that the duality gap due to the Longstaff-Schwartz algorithm [10]
is not fully satisfactory for this product. We hence utilize the approximative
exercise boundary of the Longstaff-Schwartz algorithm to run one enhanced im-
provement step as described in Remark 3.3. In particular we demonstrate the
trade-off between accuracy and computational time by shifting the approxima-
tive exercise boundary for the construction of different adapted random sets.

Both examples are treated in the context of a multi-dimensional Black-
Scholes model, i.e. we consider an underlying system of n assets where each
asset is governed under the risk-neutral measure by the following SDE:

dSl(t) = (r − δ)Sl(t)dt + σlSl(t)dWl(t), 1 ≤ l ≤ n. (20)

Here W1(t), . . . ,Wn(t) are correlated n-dimensional Brownian motions with time
independent correlations ρlmt := E[Wl(t)Wm(t)], 1 ≤ l,m ≤ n. The contin-
uously compounded interest rate r and δ, a dividend rate, are assumed to be
constant.
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4.1 Basket-call

The price of a Bermudan basket-call option on n assets is given by (1) with

Z(i) = e−rTi(
S1(Ti) + · · ·+ Sn(Ti)

n
−K)+, 0 ≤ i ≤ k.

For our experiments we assume, that this option can be exercised at 9 dates,
0 < T1 < · · · < T9 = 3, which are equidistant on [0, 3]. We take the following
parameter values,

n = 5, r = 0.05, δ = 0.1, S1(0) = · · · = S5(0) = S0, K = 100.

Further, we consider two different asset systems:
Case 1: uncorrelated assets with identical volatilities,

σl = 0.2, ρlm = δlm, 1 ≤ l,m ≤ 5.

Case 2: assets with dispersed volatilities and exponential correlation structure,

σl = 0.16 + 2(l − 1), ρlm = exp(−0.4|l −m|), 1 ≤ l,m ≤ 5.

In this example we make use of the a-priori set A given by (16) with

L(j) := max
j+1≤p≤k

e−rTpEFj [((S1(Tp) · · ·S5(Tp))1/5 −K)+], 0 ≤ j ≤ k, (21)

which clearly is a lower approximation of the Snell envelope since

L(j) ≤ max
j+1≤p≤k

EFj [Z(p)] ≤ Y ∗(j), 0 ≤ j ≤ k.

Notice that the process Gn(t) := (S1(t) · · ·Sn(t))1/n has a log-normal distribu-
tion and can be represented as

Gn(t) = e((r−δ)− 1
2n

Pn
l=1 σ2

l )t+ 1
n

Pn
l=1 σlWl(t).

Then

W̃ (t) :=
∑n

l=1 σlWl(t)√∑n
l=1 σ2

l + 2
∑n

l=1

∑n
m=l+1 σlσmρlm

is a standard Brownian motion and we thus have

Gn(t) = e(r− 1
2 eσ2)t+eσfW (t) · eϕ(t)

with

σ̃ :=
1
n

√√√√ n∑
l=1

σ2
l + 2

n∑
l=1

n∑
m=l+1

σlσmρlm

and

ϕ(t) :=
1
2
t(σ̃2 − 1

n

n∑
l=1

σ2
l ) =

t

n2
(

n∑
l=1

n∑
m=l+1

σlσmρlm − n− 1
2

n∑
l=1

σ2
l ).
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So the right hand side of (21) can be given in closed form by the well-known
Black-Scholes formula (BS),

e−rTpEFj [(G5(Tp)−K)+] =

e−rTpEFj [(e((r−δ)− 1
2 eσ2)Tp+eσfW (Tp) −Ke−ϕ(Tp))+eϕ(Tp)] =

eϕ(Tp)−rTj BS(G5(Tj), r, δ, σ̃, Ke−ϕ(Tp), Tp − Tj).

Based on the a-priori set A we consider the simple initial stopping family
τ(i) = inf{j : i ≤ j ≤ k, j ∈ A}. We construct the lower bound Y (0; τ) =
E[Z(τ(0))] of the zero Bermudan price, the improved lower bound Y (0; τ̃) =
EZ[(τ̃(0))] with τ̃ given by (5), and the dual upper bound Yup(0; τ) given by
(17). For comparison, we also compute the one-step improvement of the lower
bound without scenario selection, Y (0; τ̌) = E[Z(τ̌)], where

τ̌(i) := inf
{

j : i ≤ j ≤ k, Z(j) ≥ max
j+1≤p≤k

EFj [Z(τ(p))]
}

.

In Table 1, we present the results for the uncorrelated assets with identical
volatilities (case 1), while we deal with the positively correlated assets having
dispersed volatilities (case 2) in Table 2.

We first simulate Y (0; τ) by 107 Monte Carlo trajectories. To reduce the
variance we then compute Y (0; τ̃) and Y (0; τ̌) via the representations

Y (0; τ̃) = Y (0; τ) + E[Z(τ̃(0))− Z(τ(0))] and
Y (0; τ̌) = Y (0; τ) + E[Z(τ̌(0))− Z(τ(0))] (22)

The second term in the respective representation is approximated using 2 · 105

outer and 1000 inner Monte Carlo trajectories for Table 1 (case 1) and 7 · 104

outer and 500 inner Monte Carlo trajectories for Table 2 (case 2). Further,
Yup(0; τ) − Y (0; τ) in the Tables 1-2 are simulated correspondingly by 20 000
and 5000 outer with 1000 inner trajectories. We can see that, although the ini-
tial stopping family gives a rather crude lower bound (the gap between Y (0; τ)
and its dual upper bound Yup(0; τ) is 8%-17% relative to the value), the im-
provements Y (0; τ̃) and Y (0; τ̌) are pretty close to the Bermudan price (the
error is typically less then 1.5% relative to the value).

The example nicely illustrates the efficiency gain due to the scenario selec-
tion. For simulating Y (0; τ̌) we need to estimate the conditional expectations
by nested Monte Carlo simulation at each exercise date until the decision to
exercise is made. However, since a closed form expression of the process L is
available, we can avoid the nested Monte Carlo simulation at many exercise
dates by rejecting the dates, which are not in A, see Section 3.2. In columns 7
and 8, we display the average number of points (per trajectory), where the
nested Monte Carlo simulation has been carried out for constructing Y (0; τ̃)
and Y (0; τ̌) respectively. We see, that pre-selecting exercise dates by checking
Z(i) < L(i) for each i reduces the number of nested Monte Carlo simulations
up to 15 times. However, the values of Y (0; τ̃) and Y (0; τ̌) are the same within
one standard deviation.
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Table 1.

S0 Y (0; τ) (SD) Y (0; eτ) (SD) Y (0; τ̌) (SD) Yup(0; τ) (SD) eN Ň

90 0.369(0.000) 0.427(0.002) 0.425(0.002) 0.431(0.002) 0.4 6.3
95 0.916(0.001) 1.052(0.003) 1.058(0.003) 1.064(0.003) 0.5 6.4
100 2.136(0.001) 2.364(0.004) 2.370(0.004) 2.395(0.004) 0.8 5.6
103 3.430(0.001) 3.668(0.005) 3.677(0.005) 3.716(0.004) 1.0 4.6

Table 2.

S0 Y (0; τ) (SD) Y (0; eτ) (SD) Y (0; τ̌) (SD) Yup(0; τ) (SD) eN Ň

90 2.229(0.001) 2.421(0.011) 2.411(0.012) 2.462(0.009) 0.4 6.7
95 3.428(0.002) 3.709(0.015) 3.723(0.015) 3.762(0.016) 0.6 6.5
100 5.087(0.002) 5.495(0.017) 5.496(0.017) 5.523(0.017) 0.8 6.0
103 6.371(0.002) 6.810(0.019) 6.829(0.019) 6.890(0.018) 0.9 5.5

4.2 Asset based cancelable coupon swap

Nowadays bonds which bear coupons depending on the performance of a basket
of stocks have become popular. Our second example is a stylized version of such
product.

With respect to the system (20) we consider an exotic structured product
specified as follows: Let T1, ..., Tk be a sequence of exercise dates. The option
holder (a bank for example) pays a sequence of coupons on a $1 nominal account
at the exercise dates Ti up to a cancelation time (index) τ, according to the
following scheme: Fix a quantile α, 0 < α < 1, numbers 1 ≤ n1 < n2 ≤ n (we
assume n ≥ 2), and three rates s1, s2, s3. Let

M(i) := #{l : 1 ≤ l ≤ n, Sl(Ti) ≤ (1− α)Sl(0)},

i.e. M(i) is the number of assets which at Ti have fallen more than α with
respect to their starting value at time zero. We then introduce the random rate

a(i) = s11M(i)≤n1 + s21n1<M(i)≤n2 + s31n2<M(i)

and specify the Ti-coupon to be

C(i) := a(i)(Ti − Ti−1).

For pricing this structure we need to compare the coupons C(i) with risk free
coupons over the period [Ti−1, Ti] and thus consider the discounted net cash-flow
process

Z(i) := e−rTi(er(Ti−Ti−1) − 1− C(i)) = e−rTi−1 − e−rTi − a(i)e−rTi(Ti − Ti−1).

The product value at time zero may be represented as an optimal stopping
problem,

V0 = sup
τ∈{1,...,k}

E[Z(τ)] := sup
τ∈{1,...,k}

E[
τ∑

i=1

Z(i)].

Indeed, the discounted net cash-flows may be regarded as investments in the
numeraire, which aggregate up to a virtual pay-off Z(τ) at the cancellation date
τ .
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Remark 4.1. Note that the cashflow Z(i) can become negative in this example.
It is, however, bounded from below. Hence, one can shift the cashflow to obtain
an equivalent stopping problem with nonnegative cashflow and therefore all
theoretical results of this paper still hold true.

For our experiments, we choose a five-year option with semiannual exercise
possibility,

k = 10; Ti − Ti−1 = 0.5, 1 ≤ i ≤ k.

For simplicity we consider a basket of 20 independent and identically distributed
assets. Precisely, we take the following values of the parameters,

n = 20, r = 0.05, δ = 0, σl = 0.2, ρlm = δlm, Sl(0) = 100, 1 ≤ l,m ≤ 20,

n1 = 5, n2 = 10, α = 0.05, s1 = 0.09, s2 = 0.03, s3 = 0.

Since no good closed form approximation of still-alive Europeans is available
for this product, we estimate an initial exercise boundary by the method of
Longstaff & Schwartz [10] and construct an adapted random set Aγ by

Aγ = {i : 1 ≤ i ≤ k − 1, 0 ≥
∑
q≥1

ciqβq(S(Ti))− γ} ∪ {k}, γ ≥ 0.

Here, (βq)q≥1 is a system of basis functions on the state space. The coefficients
(ciq)q≥1, 1 ≤ i ≤ k− 1 are pre-computed via a backward least square regression
on pre-simulated asset trajectories, see, e.g., [10]. The criterion

0 ≥
∑
q≥1

ciqβq(S(Ti))

approximates, backwards in time, the true exercise criterion

0 ≥ EFi

[eτ∗(i+1)∑
p=i+1

Z(p)

]

at time i and is shifted by γ as motivated in Remark 3.3. In all cases below we
pre-compute the coefficients ciq by simulating 2 · 105 trajectories.

Starting from different systems of basis functions, we compute a lower bound
Y (0; τLS) of the Bermudan price with τLS(i) = inf{j : i ≤ j ≤ k, j ∈ A0}, an
improved lower bound Y (0; τ̃LS

[γ] ) with

τ̃LS
[γ] (i) = inf{j : i ≤ j ≤ k, (0 ≥ max

j+1≤p≤k
EFj

τLS(p)∑
q=j+1

Z(q)) ∧ (j ∈ Aγ)} (23)

and a dual upper bound Yup(0; τLS) given by (17). We also run, for comparison,
the one-step improvement Y (0; τ̌LS) without scenario selection, i.e.

τ̌LS(i) = inf{j : i ≤ j ≤ k, 0 ≥ max
j+1≤p≤k

EFj

τLS(p)∑
q=j+1

Z(q)}. (24)

The corresponding numerical price bounds are presented in Table 3.
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To obtain these results, we simulate Y (0; τLS) with 107 trajectories. For

Y (0; τ̃LS
[γ] ) and Yup(0; τLS) we use a variance reducing representation, analo-

gous to (22), where the second term is simulated using 3.5 · 104 outer and
500 inner Monte Carlo trajectories. Further, we compute an approximation of
Yup(0; τLS)− Y (0; τLS) by 2500 outer and 1000 inner trajectories.

It turns out that the choice of the basis functions is a nontrivial issue. Recall
that the ‘classical’ system of basis functions consists of polynomials on the
underlying assets S1, . . . , S20 and the net cashflow Z. For polynomials of first
degree, this basis provides a 12% gap between the Longstaff-Schwartz lower
bound Y (0; τLS) and the corresponding dual upper bound Yup(0; τLS) relative
to the value (an absolute error of 19 b.p.), see Table 3, row 1. This system of
basis functions can be naturally extended as follows. Let us order the assets at
time Ti for a fixed trajectory ω from the worst to the best: Sp1(ω)(Ti, ω) ≤ ·· ≤
Sp20(ω)(Ti, ω). It then holds,

M(i) ≤ n1 ⇔ Spn1+1(Ti) > (1− α)Spn1+1(0),
n1 < M(i) ≤ n2 ⇔ (Spn1+1(Ti) ≤ (1− α)Spn1+1(0)) ∧

(Spn2+1(Ti) > (1− α)Spn2+1(0)),
n2 < M(i) ⇔ Spn2+1(Ti) ≤ (1− α)Spn2+1(0).

So, it is promising to add the processes Spn1+1(Ti) and Spn2+1(Ti) to the basis,
because they trigger the coupon level. This extension decreases the gap between
Y (0; τLS) and Yup(0; τLS) to 7.5% relative to the value (12 b.p), see Table 3, row
5. An increase of the polynomial degree leads to a rapid growth of the number
of basis functions and thus the computing time. In fact, the set of second order
polynomials on the extended asset system S1, . . . , S20,Z, Sp1+1, Sp2+1 consists of
300 functions. Pre-computation of the regression coefficients in this case requires
in our implementation more than 80 minutes (for comparison, in all the other
cases pre-computation takes less than 1 minute). However, the gap between
Y (0; τLS) and Yup(0; τLS) is still not satisfactory (3.8% relative to the value, 6.5
b.p.), see Table 3, row 5. Another way to define the basis functions, suggested
in Piterbarg [12], is to construct polynomials on a small set of functions, called
explanatory variables, which contain important information about the product.
In our example, Sp1+1, Sp2+1, and Z constitute a straightforward choice of
explanatory variables. In Table 3, row 2-4, we present the values for polynomials
on this system of explanatory variables up to 4th degree. We see, that the gap
between Y (0; τLS) and Yup(0; τLS) is approximately 9% relative to the value
(15 b.p.) and decreases only slightly with the growth of the basis.

In contrast, the improved stopping family τ̌LS provides a very close
approximation of the Bermudan price for all considered basis functions. The
gap between Y (0; τ̌LS) and Yup(0; τLS) does not exceed 1.5% relative to the
value (2.5 b.p.) in almost all cases, see Table 3, column 4. As in the previous
example, we can essentially speed up the procedure by computing conditional
expectations in (23) only when the date j belongs to Aγ . Note that the bigger
γ, the closer is τ̃LS

[γ] to the standard improved policy τ̌ , but the smaller is the
gain in the computing time. We illustrate this phenomenon by computing
Y (0; τ̃LS

[γ] ) for γ = 0 and γ = 0.01, see Table 3, columns 2-3, respectively.
In Table 4, we display the average (per trajectory) number of nested Monte
Carlo simulations for computing Y (0; τ̃LS

[0] ), Y (0; τ̃LS
[0.01]) and Y (0; τ̌LS), denoted
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by Ñ[0], Ñ[0.01] and Ň , respectively. As we see, Y (0; τ̃LS

[0.01]) coincides with
Y (0; τ̌LS) within 1 standard deviation in almost all cases, while the number
of inner simulations for computing Y (0; τ̃LS

[0.01]) is 4.5-5 times smaller. We
also report that computing Y (0; τ̃LS

[0.01]) (provided the regression coefficients
and Y (0; τLS) are pre-computed) takes in all cases 10-15 minutes on our
Pentium-III computer. The computing times for Y (0; τ̃LS

[0] ) are roughly two
times smaller, but the lower bound due to τ̃LS

[0] does not close the duality gap
as satisfactory as τ̃LS

[0.01] does.

Table 3. (all values in base points)

Basis functions Y (0; τLS) Y (0; eτLS
[0] ) Y (0; eτLS

[0.01]) Y (0; τ̌LS) Yup(0; τLS)

1,Z, Si 159.8(0.2) 166.5(0.5) 173.0(0.8) 174.2(0.8) 179.0(0.8)

1,Z, Sp1,2+1 161.4(0.2) 167.0(0.5) 172.1(0.8) 174.2(0.8) 176.5(0.6)

2-polynomial
Z, Sp1,2+1 161.4(0.2) 167.9(0.5) 174.4(0.8) 175.6(0.8) 176.1(0.7)

4-polynomial
Z, Sp1,2+1 162.0(0.2) 170.2(0.6) 174.3(0.8) 175.5(0.8) 177.0(0.7)

1,Z, Si, Sp1,2+1 164.8(0.2) 168.4(0.5) 174.3(0.7) 174.5(0.7) 177.0(0.6)

2-polynomial
Z, Si, Sp1,2+1 169.7(0.2) 171.4(0.4) 174.5(0.6) 175.3(0.6) 176.2(0.4)

Table 4.

Basis functions eN[0]
eN[0.01] Ň

1,Z, Si 0.62 1.41 6.53

1,Z, Si, Sp1,2+1 0.58 1.35 6.60

2-polynomial
Z, Si, Sp1,2+1 0.59 1.46 6.67

Basis functions eN[0]
eN[0.01] Ň

1,Z, Sp1,2+1 0.61 1.39 6.57

2-polynomial
Z, Sp1,2+1 0.65 1.49 6.58

4-polynomial
Z, Sp1,2+1 0.67 1.51 6.61

Remark 4.2. We finally remark that often very crude input families already
yield surprisingly good improved lower bounds. In this respect we report simu-
lation results starting from the initial exercise policy ”exercise, when a cashflow
becomes negative or zero”, i.e.

τ(i) = inf{j : i ≤ j ≤ k − 1, 0 ≥ Z(j)} ∪ {k}.

While this initial stopping family gives a very crude lower bound Y (0; τ), namely
85.7(0.2) b.p., which is roughly 50% off the true price, its one step improvement
Y (0; τ̌) is at 172.8(0.8) b.p. already better than the lower bounds provided by
the Longstaff-Schwartz algorithm in our experiments. Here, we use 107 Monte
Carlo trajectories for Y (0; τ) and 1.5 ·105 outer (with 500 inner) trajectories for
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Y (0; τ̌). Moreover, when we enhance the improvement procedure by computing

max
j+1≤p≤k

EFj

τ(p)∑
q=j+1

Z(q)

only at those exercise dates j, which are in the set A = {i : 1 ≤ i ≤ k −
1, 0 ≥ Z(i)} ∪ {k}, the value of the improved lower bound becomes equal
to 171.6(0.8) which is slightly higher than the best Longstaff-Schwartz lower
bound and requires approximately the same computing time. Of course, it is
more efficient with respect to computing time and quality of the lower bound to
run the enhanced improvement step starting from one of the Longstaff-Schwartz
policies (computed with a ‘small’ basis).

A Proof of Theorem 3.5

We first prove the next Proposition.

Proposition A.1. Let τ and σ be two consistent stopping families, such that
σ(i) ≤ τ(i), 0 ≤ i ≤ k. Then,

Y (i; τ)− Y (i;σ) =
k−1∑
j=i

EFi [1τ(i)>j1σ(i)=j(Y (j; τ)− Z(j))].

Proof. We have,

Y (i; τ)− Y (i;σ) = EFi [1τ(i)>σ(i)(Z(τ(i))− Z(σ(i)))]

=
k−1∑
j=i

EFi [1τ(i)>j1σ(i)=j(Z(τ(i))− Z(j))]

=
k−1∑
j=i

EFi [1τ(i)>j1σ(i)=j(Z(τ(j))− Z(j))]

=
k−1∑
j=i

EFi [1τ(i)>j1σ(i)=j(EFj Z(τ(j))− Z(j))]

=
k−1∑
j=i

EFi [1τ(i)>j1σ(i)=j(Y (j; τ)− Z(j))].

Here we use that, due to the consistency, if i ≤ j ≤ τ(i), then τ(j) = τ(i).

As a second preliminary result for the proof of Theorem 3.5 we have the
following lemma.

Lemma A.2. Suppose τ∗ is some optimal stopping family for the cashflow Z.
Then A∗(ω) = {τ∗(i, ω), 0 ≤ i ≤ k} is an a-priori set. Moreover,

τ∗(i) = inf
{

j : i ≤ j ≤ k, (Z(j) ≥ max
j+1≤p≤k

EFj [Z(τ∗(p))]) ∧ (j ∈ A∗)
}

provided τ∗ is consistent.
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Proof. Since {i ∈ A∗} =

⋃
0≤j≤i{τ∗(j) = i} ∈ Fi and τ∗(i) ∈ A∗, A∗ is an a-

priori set. Suppose now that additionally τ∗ is consistent. Then, by consistency
and optimality of τ∗, and by the supermartingale property of the Snell envelope,
we have

inf
{

j : i ≤ j ≤ k, (Z(j) ≥ max
j+1≤p≤k

EFj [Z(τ∗(p))]) ∧ (j ∈ A∗)
}

= inf
{

j : i ≤ j ≤ k, (Z(j) ≥ max
j≤p≤k

EFj [Z(τ∗(p))]) ∧ (j ∈ A∗)
}

= inf
{

j : i ≤ j ≤ k, (Z(j) ≥ max
j≤p≤k

EFj [Y ∗(p)]) ∧ (j ∈ A∗)
}

= inf {j : i ≤ j ≤ k, (Z(j) ≥ Y ∗(j)) ∧ (j ∈ A∗)} .

Moreover, by consistency, j ∈ A∗ if and only if τ∗(j) = j. Hence,

inf {j : i ≤ j ≤ k, (Z(j) ≥ Y ∗(j)) ∧ (j ∈ A∗)}
= inf {j : i ≤ j ≤ k, (Z(τ∗(j)) ≥ Y ∗(τ∗(j))) ∧ (τ∗(j) = j)}
= inf {j : i ≤ j ≤ k, τ∗(j) = j} = τ∗(i).

Note, for the second identity we applied the well-known fact, that evaluated at
any optimal stopping time the Snell envelope Y ∗ equals the cashflow Z. Thus,
(Z(τ∗(j)) ≥ Y ∗(τ∗(j))) is always satisfied for all 0 ≤ j ≤ k.

After these preparations we prove Theorem 3.5.

Proof of Theorem 3.5. Let τ be a consistent and optimal stopping family for
the cashflow Z. We define τ̃ and σ̃ as in Corollary 3.6 for A2(ω) = {τ(i, ω), 0 ≤
i ≤ k} and A1(ω) = A2(ω) ∩ A(ω). Then τ̃ ≥ σ̃ and σ̃ = τ is optimal due to
Lemma A.2. Hence by Proposition A.1 we have,

E[Y ∗(i)− Y (i; τ̃)] =
k−1∑
j=i

E[1eτ(i)>j1τ(i)=j(Z(j)− Y (j; τ̃))]

As τ̃ takes values in A and is possibly suboptimal for the cashflow ZA, we obtain

Y (i; τ̃) = EFi [ZA(τ̃(i))] ≤ Y ∗
A(i).

Consequently, by Hölder’s inequality,

E[Y ∗(i)− Y ∗
A(i)] ≤ E[Y ∗(i)− Y (i; τ̃)]

≤
k−1∑
j=i

E
[
1{j /∈A}1{τ(i)=j}Z(j)

]
≤ max

i≤j≤k−1

(
E[|Z(j)1{0,...,k}\A(j)|q]

)1/q
k−1∑
j=i

P ({τ(i) = j} ∩ {j /∈ A})1−1/q

≤ max
i≤j≤k−1

(
E[|Z(j)1{0,...,k}\A(j)|q]

)1/q (k − i)1/q

×

k−1∑
j=i

P ({τ(i) = j} ∩ {j /∈ A})

1−1/q

.
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The obvious equation

k−1∑
j=i

P ({τ(i) = j} ∩ {j /∈ A}) = P ({τ(i) /∈ A})

concludes.
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