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Abstract

This article investigates the structure of Gaussian pricing models (that
is, models in which future returns are normally distributed). Although
much is already known about such models, this article differs in that it
is based on a formulation of the theory of derivative pricing in which nu-
meraire invariance is manifest, extending earlier work on this subject. The
focus on symmetry properties leads to a deeper insight in the structure
of these models. The central idea is the construction of the most gen-
eral class of derived Gaussian tradables given a set of underlying tradables
which are themselves Gaussian. These derived tradables are called “gen-
eralized power tradables” and they correspond to portfolios in which the
fraction of total value invested in each asset is a deterministic function of
time. Applying this theory to Gaussian HJM models, the new tradables
give an explicit description of the interdependence of bonds implicit in such
models. Given this structure, a simple condition is derived under which
these models allow a description in terms of an M -factor Markov functional
model, as introduced by Hunt, Kennedy and Pelsser. Finally, conditions
are derived under which these Gaussian Markov functional models are time
homogeneous (bond volatilities depending only on the time to maturity).
This result is linked to recent results by Björk and Gombani.

1 Introduction

Models in which future returns are normally distributed, known as Gaussian
models, are a cornerstone in the theory of derivative pricing, despite their many
well known deficiencies. The mathematical tractability of these models makes it
possible to find analytical expressions for the prices of a large range of derivative
contracts. For example, any contract which gives the right to exchange one asset
for another at a fixed future date (e.g. plain vanilla European puts and calls) has
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a price in the familiar Black-Scholes-Merton form. Given the huge popularity of
these models, it is important to have a clear picture of their structure. Although
Gaussian market models can never be incomplete, they can be overcomplete,
which implies that there exist deterministic relations between prices of different
assets in the market. If this is the case, it is necessary to impose conditions on the
model to exclude arbitrage possibilities. This is an issue that has been addressed
in many articles. On the other hand, it is interesting to characterize the nature
of these deterministic relations, given that the market is arbitrage free.

This article offers an investigation into the structure of Gaussian models from
an alternative point of view. It builds on a formulation of pricing theory in
which numeraire invariance (a local scale invariance) is manifest. This formulation
was developed in a series of articles [HN01a, HN01b, HNV02]. The core of the
formalism is the idea that pricing problems should be formulated only in terms
of self-financing objects which are called tradables. From simple dimensional
analysis one then finds that derivative prices must be homogeneous functions
of degree one in these tradables. The consequent use of tradables as a proper
parametrization of every object in a model that has a price makes numeraire
invariance manifest, and pricing problems more transparent.

Following this line of thought, the main tool in the investigation of Gaussian
models is the introduction of the most general class of derived Gaussian tradables
that can be constructed given a set of underlying tradables which are themselves
Gaussian. These derived tradables will be called “generalized power tradables”,
and they correspond to a portfolio in which the fraction of total value invested in
each of the underlying tradables is a deterministic function of time. In general,
these new tradables are strongly path-dependent. Given these new tradables, the
structure of Gaussian models is analyzed by looking at the subspace of linear
relations between volatility vectors of tradables which respect numeraire invari-
ance (“proper relations”). It is shown that, under some technical conditions, a
Gaussian model can be parametrized by a basic subset of tradables for which
no proper relations exist between their volatility vectors (they are “properly in-
dependent”). All tradables in the model can be expressed as generalized power
tradables constructed from this basic set.

The theory is especially useful when applied to interest rate models, in particular
to Gaussian Heath-Jarrow-Morton models, because it gives a clear picture of the
deterministic relations between bonds that are implicit in such models. This
makes it possible to derive a simple condition under which the current price of
each tradable in the model depends only on the current prices of the basic set
of tradables, not on their paths. The model then becomes a Markov functional
model, in the sense of Hunt, Kennedy and Pelsser. Among these, models which
are time homogeneous are of special interest. In these models, the bond volatilities
are a function of the time to maturity only. It is shown that there exists anM(M+
3)/2 parameter family of time homogeneous models that allow a description as
an M -factor Gaussian Markov Functional model. Similar results were obtained
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in Ref. [Ba05], which appeared after the manuscript of this article was finished.

2 Review of the tradable formalism

The material in this section is a review from results appearing in Ref. [HN01a].
Details and proofs can be found in the original paper. Consider a market con-
sisting of N + 1 tradables which is complete, and denote the price at time t of
asset i, in some fixed but arbitrary numeraire, by xi(t) where i = 0, . . . , N . The
prices in the market are assumed to be driven by K uncorrelated standard Wiener
processes and satisfy, under the objective measure

dxi(t)

xi(t)
= µi(x, t)dt+

K∑
k=1

σk
i (x, t)dW k

t (1)

where x = (x0, . . . , xN). The central idea of the tradable formalism is that every
object in the theory that has the dimension of value should be expressed in
terms of the underlying tradables only, which is always possible because of the
assumption of market completeness. Take for example the following model

dx0

x0

= 0,
dx1

x1

= µdt+ (σx1)
αdW

where µ, σ are constants and x0 is taken as numeraire: both x0 and x1 are ex-
pressed in units of x0, which represents the unit of value. In other words, x0

and x1 have dimension [x0]. It is simple to see that the parameter σ has implied
dimension [x0]

−1 so not everything in this model with the dimension of value is
expressed in terms of the underlying tradables only. But it is clear how to correct
this: make the substitution σ → σ/x0. This leads to the equivalent model

dx0

x0

= 0,
dx1

x1

= µdt+

(
σ
x1

x0

)α

dW

where both µ and σ are now dimensionless (with respect to the value dimension,
they still have a time dimension). Now if the model Eq. (1) is formulated ac-
cording to this principle, then the functions µi(x, t) and σk

i (x, t) are necessarily
homogeneous of degree zero in the variables x. Similarly, the value V (x, t) of any
derivative security depending on x must be homogeneous of degree one. By the
Euler formula this is equivalent to

N∑
i=0

xi
∂V (x, t)

∂xi

= V (x, t)

On the other hand, Itô’s lemma gives

dV = (LV )dt+
N∑

i=0

∂V (x, t)

∂xi

dxi

3
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where

LV ≡ ∂V (x, t)

∂t
+ 1

2

N∑
i,j=0

K∑
k=1

σk
i (x, t)σk

j (x, t)xixj
∂2V (x, t)

∂xi∂xj

So if a claim price V (x, t) satisfies the PDE LV = 0 it is the homogeneity property
of V (x, t) which ensures that this claim can be replicated by a self-financing
portfolio using delta hedging. The solutions of this PDE are invariant under
simultaneous shifts of the volatility vectors σi = (σ1

i , . . . , σ
K
i ) by an arbitrary

vector λ

σi(x, t) → σi(x, t)− λ(x, t) for all i

Such transformations correspond to numeraire changes. In fact, taking λ(x, t)
equal to σj(x, t) for some j corresponds to taking xj as numeraire. I will be
interested in market models which are Gaussian. In such models the volatility
functions only depend on time, not on the tradables

σi(x, t) = σi(t) for all i

In this case, asset prices are log-normally distributed, and it is possible to write
down a very elegant formula for the price of a European type claim at time t,
defined by a payoff V (x, T ) at maturity T . One first determines a singular value
decomposition of the time integrated covariance matrix Σij

Σij ≡
K∑

k=1

∫ T

t

σk
i (u)σk

j (u)du =
R∑

r=1

θr
i (t, T )θr

j (t, T )

Here the dimension R of the vectors θi = (θ1
i , . . . , θ

R
i ) equals the rank of the

matrix Σij. The price of the claim is then given by

V (x, t) =

∫
V (x0φ(z − θ0(t, T )), . . . , xNφ(z − θN(t, T )), T )dRz

where z = (z1, . . . , zR) and

φ(z) =
1(√
2π
)R exp

(
−1

2

R∑
r=1

z2
r

)

3 Linear relations between volatility vectors

In this section I will take a closer look at linear relations that might exist between
volatility vectors in a Gaussian model. Such relations can in general be time-
dependent. I will start by looking at a fixed point in time t. Of course, every
linear relation can be written in the form

N∑
i=0

ci(t)σi(t) = 0

4
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for some vector c(t) = (c0(t), . . . , cN(t)). The set of all such relations forms a
linear space L in a natural way. Linear relations are not necessarily invariant
under numeraire changes. Indeed, consider a simultaneous shift of the volatility
vectors σi(t) → σ̂i(t) = σi(t)− λ(t). The shifted vectors satisfy

N∑
i=0

ci(t)σ̂i(t) = −

(
N∑

i=0

ci(t)

)
λ(t)

so the relation will be numeraire independent if and only if

N∑
i=0

ci(t) = 0 (2)

Relations satisfying this condition form a linear subspace Lp ⊂ L which I will call
the space of proper relations. By construction, the dimension of this subspace is
a numeraire-independent quantity. A set of vectors for which no proper relations
exist will be called properly independent. By abuse of terminology, I will also call
a set of tradables properly independent if their volatility vectors are.

Relations which are not in Lp will be called improper relations. Now let c1(t), c2(t)
be two linearly independent improper relations. Then the linear combination(

N∑
i=0

ci2(t)

)
c1(t)−

(
N∑

i=0

ci1(t)

)
c2(t)

corresponds to a proper relation. This shows that

dimL− dimLp ≤ 1

So either L = Lp or L is generated by Lp and exactly one improper relation.
Whether or not an improper relation exists depends on the choice of a numeraire.
In fact, it is always possible to find a numeraire such that an improper relation
does exist. Simply choose a vector c(t) not satisfying Eq. (2), then solve

N∑
i=0

ci(t)σ̂i(t) =
N∑

i=0

ci(t)(σi(t)− λ(t)) = 0

for λ(t). The result is

λ(t) =

∑N
i=0 c

i(t)σi(t)∑N
i=0 c

i(t)

Later in this article it will become clear that such a numeraire is related to
a derivative security in the tradables. In general, it is a good idea to use a
numeraire of this kind, since this tends to simplify calculations. Obviously, the
simplest such choice is taking one of the tradables itself as numeraire.

5

Page 6 of 20

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Conversely, it is always possible to construct a numeraire in such a way that no
improper relations exist. The simplest way to accomplish this is to extend the
volatility vectors as follows:

(σ1
i (t), . . . , σ

K
i ) → (σ1

i (t), . . . , σ
K
i , 1)

This amounts to the introduction of an additional Wiener process. Obviously,
the new volatility vectors describe the same market in a different numeraire, one
that is not related to a derivative security in the tradables.

In the following sections I will need the following trivial result. Suppose that
dimLp = N −M for some M . Then there exists a subset of M + 1 volatility
vectors which is properly independent. Relabeling the tradables if need be, one
may assume that this is the set {σ0(t), . . . , σM(t)}. The volatility vector of every
tradable xj where j = 0, . . . , N can be expressed as a linear combination of vectors
in this set as follows:

σj(t) =
M∑
i=0

ηi
j(t)σi(t) (3)

where the coefficient vectors ηj(t) = (η0
j (t), . . . , η

M
j (t)) are subject to

M∑
i=0

ηi
j(t) = 1

I will call the number M the rank of the model at time t. This number equals
the minimum number of independent Wiener processes necessary to describe the
market model. It is a numeraire-independent quantity and in general M ≤ K.

As mentioned before, linear relations can be time-dependent. In fact, the rank M
might in general not be constant in time. For the sake of simplicity, I will restrict
my attention to models in which this rank is constant. Furthermore I will assume
that there exists a fixed subset of tradables {x0, . . . , xM} such that for all t in a
time interval [0, T ∗] (the lifetime of some contract to be priced) every volatility
vector σj(t) can be written in the form of Eq. (3). In other words, the volatility
vectors corresponding to this fixed subset are properly independent for t ∈ [0, T ∗].
In the next section it will be shown that under these conditions every tradable
can be considered as a (possibly path-dependent) derivative security whose value
is completely fixed by its initial value and the basic set of tradables {x0, . . . , xM}.

4 Generalized power tradables

In this section a class of derived tradables is introduced that I will call generalized
power tradables. I start with a properly independent set of M + 1 tradables
{x0, . . . , xM} whose price processes satisfy

dxi(t)

xi(t)
= µi(t)dt+

K∑
k=1

σk
i (t)dW k

t (4)

6
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The idea behind the new tradables is that they are constructed as a portfolio
where at every point in time t a fraction ηi(t) of the total value of the portfolio V
is invested in tradable xi. The fractions ηi(t) can be arbitrary functions of time,
only subject to the condition that

M∑
i=0

ηi(t) = 1 (5)

The hedge parameters can be expressed in terms of these fractions as

φi =
ηi(t)V

xi

It is then obvious that

M∑
i=0

φixi = V

If the portfolio is to be self-financing, it should also satisfy

dV =
M∑
i=0

φidxi

and this is equivalent to

dV

V
=

M∑
i=0

ηi(t)
dxi

xi

=
M∑
i=0

ηi(t)

(
µi(t)dt+

K∑
k=1

σk
i (t)dW k

t

)
(6)

This shows that V is again a Gaussian tradable, and in fact it is the most gen-
eral Gaussian tradable that can be constructed from the given set of underlying
Gaussian tradables. Obviously, if one takes η(t) = ηj(t) as defined in Eq. (3),
then the generalized power tradable V has exactly the same volatility vector as
xj. But this implies that the two must be equal up to a multiplicative constant,
for else there would be arbitrage opportunities. The constant of proportionality
follows from specification of the values of the tradables at some fixed time. This
shows explicitly that in a Gaussian model with rank M prices of all tradables can
be expressed in terms of the price paths of a subset of M + 1 basic tradables. It
also shows that the model is arbitrage free if and only if for each proper relation
c(t) the drift terms satisfy

N∑
i=0

ci(t)µi(t) = 0

It is a simple exercise to show that this condition is necessary and sufficient for
the existence of functions γk(t) such that for all i, j = 0, . . . , N

µi(t)− µj(t) =
K∑

k=1

(σk
i (t)− σk

j (t))γk(t)

7
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This is a symmetric definition for market prices of risk γk(t) [HNV02]. So the
existence of market prices of risk is necessary and sufficient to ensure the absence
of arbitrage opportunities, a fact that is well known [MR97].

I now turn to the construction of an explicit formula for the value of the gener-
alized power tradable V . Using Itô’s lemma, Eq. (6) can be rewritten as

d lnV +
1

2

〈V, V 〉
V 2

dt =
M∑
i=0

(
d(ηi(t) ln xi)−

∂ηi(t)

∂t
lnxidt+

1

2
ηi(t)

〈xi, xi〉
x2

i

dt

)
which in turn becomes

d lnV =
M∑
i=0

(
d(ηi(t) ln xi)−

∂ηi(t)

∂t
lnxidt

)

+
1

4

M∑
i,j=0

K∑
k=1

ηi(t)ηj(t)(σk
i (t) − σk

j (t))2dt

In this form, the equation can be integrated to give

V = αeξ(t)−Ξ(t)

M∏
i=0

(xi(t))
ηi(t)

where

ξ(t) =
1

4

M∑
i,j=0

K∑
k=1

∫ t

0

ηi(s)ηj(s)(σk
i (s)− σk

j (s))2ds

Ξ(t) =
M∑
i=0

∫ t

0

∂ηi(s)

∂s
ln(xi(s))ds

Here α is an integration constant. It now becomes clear that the price V will
in general depend upon the price paths of the underlying tradables xi via the
term Ξ(t). This path-dependence vanishes if and only if the functions ηi(t) are
constants in time. In this case, the tradable reduces to a power tradable, as
introduced in [HN01b]. This justifies the name “generalized power tradable”
for the general tradable. It turns out that generalized power tradables play an
important role in the valuation of geometric Asian options. Indeed, consider a
market with two basic tradables x0 and x1 (for example a bond and a stock).
Take

η0(t) =
t

T
, η1(t) =

T − t

T

Then the value of V at time T becomes

α exp

(
ξ(T ) +

1

T

∫ T

0

ln
x1(s)

x0(s)
ds

)
x0(T )

and this equals, up to a deterministic factor, the continuously sampled geometric
average of x1(s)/x0(s) for 0 < s < T times x0(T ). More details about the
valuation of geometric average Asian options can be found in [HN01b].

8
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5 Gaussian Heath-Jarrow-Morton models

The most obvious application of this theory is in the field of interest rate modeling.
Gaussian models are still very popular since they can be related directly to Black
formulae, which constitute the market standard for valuation of plain-vanilla
instruments. Of course, one has to make a choice which instruments, available in
the market, will be the basic tradables. One can think of discount bonds, coupon
bonds or swaps, depending on the type of contracts one would like to price. In
this article, I will restrict my attention to the modeling of discount bond prices,
but note that the theory is equally applicable to other choices.

Let P (t, T ) be the price at time t of a discount bond which pays one unit of
currency, say dollars, at time T . The price is expressed in terms of some fixed
but arbitrary numeraire. The most general Gaussian model for these bonds is
given by

dP (t, T )

P (t, T )
= µ(t, T ) +

K∑
k=1

σk(t, T )dW k
t (7)

where K is some positive integer. It is in fact a K-factor Gaussian Heath-Jarrow-
Morton model. Since bonds cease to exist at maturity, the functions µ(t, T ) and
σ(t, T ) are defined only when t ≤ T . From the discussion in the previous sections
it follows that in this model at most K+1 bonds can be properly independent at
any time. I will use similar assumptions as before, i.e. there exists a fixed set of
M + 1 bonds (M ≤ K) characterized by a set of maturities {T0, . . . , TM} whose
volatility vectors are properly independent for t ∈ [0, T ∗] (where T ∗ ≤ Ti for all
i) and such that every σ(t, T ) can be written as

σ(t, T ) =
M∑
i=0

ηi(t, T )σ(t, Ti)

where the vectors η(t, T ) satisfy

M∑
i=0

ηi(t, T ) = 1

Again using the results from the previous section one can write

P (t, T ) = P (0, T )eξ(t)−Ξ(t)

M∏
i=0

(
P (t, Ti)

P (0, Ti)

)ηi(t,T )

(8)

where

ξ(t) =
1

4

M∑
i,j=0

K∑
k=1

∫ t

0

ηi(s, T )ηj(s, T )(σk(s, Ti)− σk(s, Tj))
2ds

9
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Ξ(t) =
M∑
i=0

∫ t

0

∂ηi(s, T )

∂s
ln(P (s, Ti))ds (9)

This explicitly shows the strong relations between bonds that are implicit in the
use of a Gaussian HJM-model. The no-arbitrage conditions can be written as

µ(t, T ) =
M∑
i=0

ηi(t, T )µ(t, Ti)

This is equivalent to the existence of functions γk(t), market prices of risk, such
that for all S, T one has

µ(t, S)− µ(t, T ) =
K∑

k=1

(σk(t, S)− σk(t, T ))γk(t) (10)

6 Cash, Cash bond and Forward rates

According to the principles of the tradable formalism, every contract specification
should be expressible in terms of tradable objects only. Of course, many contracts
make reference to cash payments, which are expressed in terms of money. How-
ever, money is not a tradable object, since it is not self-financing. The way out
is to observe that the bond P (t, T ) has a value of 1$ at time T . So references to
cash payments at time T should be replaced by references to the bond P (t, T ).

On the other hand, one can define a process which has a value of one unit of
currency for all t by C(t) ≡ P (t, t). This process is well defined in terms of the
basic bonds, using Eq. (8). Note that C(t) is in general not constant, because
an arbitrary numeraire is used. Closely related to C(t) is the cash bond or
money market account B(t). This object is by definition a tradable, obtained by
constantly reinvesting in bonds with the shortest time to maturity. It is not hard
to see that it has to satisfy

dB(t)

B(t)
= µ(t, t)dt+

K∑
k=1

σk(t, t)dW k
t (11)

when its value is expressed in the same numeraire as the bonds. Note that
unlike cash, the cash bond never appears in real contract specifications. It is of
theoretical interest only. There is a simple relation between B(t) and C(t), which
in fact defines the short rate r(t)

B(t) = α exp

(∫ t

0

r(u)du

)
C(t)

where α is some constant. From this it follows that C(t) satisfies

dC(t)

C(t)
= (µ(t, t)− r(t))dt+

K∑
k=1

σk(t, t)dW k
t (12)

10
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In the original formulation of the HJM approach, not bond prices but forward
rates are the objects being modeled. How is this related to the tradable approach?
A numeraire-independent definition for forward rates is

B(t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
C(t)

(with a factor C(t) in the right hand side). Assume that the forward rates satisfy

df(t, T ) = a(t, T )dt+
K∑

k=1

bk(t, T )dW k
t

Then consider the following object

I(t) = −
∫ T

t

f(t, u)du = log
P (t, T )

C(t)

On the one hand it satisfies [MR97]

dI(t) =

(
f(t, t)−

∫ T

t

a(t, u)du

)
dt−

K∑
k=1

(∫ T

t

bk(t, u)du

)
dW k

t

On the other hand, using Eq. (7), Eq. (12) and Itô’s lemma

dI(t) =

(
µ(t, T )− µ(t, t) + r(t)− 1

2

K∑
k=1

(σk(t, T )2 − σk(t, t)2)

)
dt

+
K∑

k=1

(
σk(t, T )− σk(t, t)

)
dW k

t

Using the equality r(t) = f(t, t) one finds the equalities

−
∫ T

t

a(t, u)du = µ(t, T )− µ(t, t)− 1

2

K∑
k=1

(σk(t, T )2 − σk(t, t)2)

−
∫ T

t

bk(t, u)du = σk(t, T )− σk(t, t)

It is an easy check that the right hand sides are numeraire-invariant quantities,
and consequently, the same holds for the left hand sides. From these equations
it follows that the no-arbitrage condition Eq. (10) implies

a(t, T ) =
K∑

k=1

bk(t, T )

(∫ T

t

bk(t, u)du− σk(t, t) + γk(t)

)
This is the well known HJM no-arbitrage condition. Furthermore, by differenti-
ation with respect to T one obtains

a(t, T ) = −∂Tµ(t, T ) +
K∑

k=1

σk(t, T )∂Tσ
k(t, T ), bk(t, T ) = −∂Tσ

k(t, T )

11
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7 Gaussian Markov functional models

Of special interest among interest rate models are so-called Markov functional
models [HKP00]. These are models in which values of bonds (relative to each
other) can be expressed as a functional of a Markov process, i.e.

P (t, T )

P (t, T0)
= Ψ(α(t), t, T, T0) (13)

where Ψ is a deterministic function, and α(t) = (α1(t), . . . , αM(t)) follows an M
dimensional Markov process. The advantage of a Markov functional model is that
it can be implemented efficiently, since it is only necessary to track the process
α(t). In this section I will consider under what conditions a Gaussian HJM model
can be described as a Markov functional model. Observe that by inversion, the
process α(t) can be inferred from the prices of M + 1 different bonds (barring
degenerate cases), characterized by a set of maturities {T0, . . . , TM}

α(t) = f

(
t,
P (t, T1)

P (t, T0)
, . . . ,

P (t, TM)

P (t, T0)

)
Inserting this in Eq. (13), it is possible to write

P (t, T ) = Ψ̂(P (t, T0), . . . , P (t, TM), t, T ) (14)

for some deterministic function Ψ̂ which is homogeneous of degree one in the
bond prices. In other words, every bond can be expressed as a derivative security
in terms of a basic set of M + 1 bonds, and this derivative security is only
allowed to depend on the prices of these basic bonds at time t; there can be no
path-dependency. If all bonds are to be Gaussian, it follows from the results of
the previous sections that this derivative security must be a generalized power
tradable. To exclude path-dependency, it is necessary that the path-dependent
term Eq. (9) vanishes, which is the case iff the ηi(t, T ) are constant in t for all i
and T . All in all, this shows that a Gaussian HJM model allows a description as
an M dimensional Markov functional model if and only if the volatility vectors
of bonds can be written in the form

σ(t, T ) =
M∑
i=0

ηi(T )σ(t, Ti) (15)

for functions η(T ) satisfying

M∑
i=0

ηi(T ) = 1 (16)

and

ηi(Tj) =

{
1 if i = j
0 otherwise

for all i, j (17)

12
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This generalizes the result of [Ca94]. Given these relations, one has the following
explicit form for Eq. (14)

P (t, T ) = P (0, T )eξ(t)

M∏
i=0

(
P (t, Ti)

P (0, Ti)

)ηi(T )

(18)

where

ξ(t) =
1

4

M∑
i,j=0

ηi(T )ηj(T )
K∑

k=1

∫ t

0

(σk(s, Ti)− σk(s, Tj))
2ds

So every bond can be expressed as a power tradable in terms of the set of basic
bonds.

8 Time homogeneous models

A useful class of Gaussian interest rate models are the so-called time homogeneous
models. For these models, the volatility vectors only depend on the time to
maturity τ = T − t, i.e.

σ(t, T ) = ρ(T − t) = ρ(τ)

or equivalently

(∂t + ∂T )σ(t, T ) = 0 (19)

8.1 Markov conditions

An interesting question is under what conditions a time homogeneous model
allows a description as an M -factor Markov functional model. This class of
models was characterized in [BG99]. Let me re-derive their result. The claim
is that a model belongs to this class if and only if there exist M real constants
β1, . . . , βM such that the vector ρ(τ) satisfies

∂M+1ρ(τ)

∂τM+1
+

M∑
i=1

βi
∂iρ(τ)

∂τ i
= 0 (20)

Indeed, such a model should satisfy both Eq. (15) and Eq. (19). By combining
these two equations one gets

M∑
i=0

(
ηi(T )

∂σ(t, Ti)

∂t
+
∂ηi(T )

∂T
σ(t, Ti)

)
= 0 (21)

for all t, T . In particular the equation holds for the set of times T ∈ {T0, . . . , TM}.
So one can write, making use of Eq. (17)

∂σ(t, Ti)

∂t
+

M∑
j=0

Aijσ(t, Tj) = 0, Aij =
∂ηj(T )

∂T

∣∣∣∣
T=Ti

(22)
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Now let p(λ) be the characteristic polynomial of the matrix A

p(λ) = det(λ1− A) =
M+1∑
i=0

βiλ
i

for some constants βj with βM+1 = 1. It is well known that p(A) = 0. This fact
can be used to derive a differential condition on the volatility vectors ρ(τ)

M+1∑
i=0

βi
∂iρ(τ)

∂τ i
=

M+1∑
i=0

M∑
j=0

(−1)iβiη
j(T )

∂iσ(t, Tj)

∂ti

=
M+1∑
i=0

M∑
j,k=0

βi(A
i)jkη

j(T )σ(t, Tk) = 0

It remains to consider Eq. (16). In view of Eq. (17) it is equivalent to the condition

M∑
j=0

∂ηj(T )

∂T
= 0 for all T

Again, this holds for T ∈ {T0, . . . , TM}. Using the definition of A one gets

M∑
j=0

∂ηj(T )

∂T

∣∣∣∣
T=Ti

=
M∑

j=0

Aij = 0 for all i

This shows that the matrix A must be degenerate. Consequently the coefficient
β0 in p(λ) is zero. This shows that the volatility vectors in an M -factor time
homogeneous Gaussian Markov functional model must satisfy Eq. (20). It is
straightforward to show that the converse also holds. Indeed, Eq. (20) can be
solved for general constants βj. To do this, one first determines the roots of the
characteristic polynomial

p(λ) = λM+1 +
M∑

j=1

βjλ
j =

∏
k

(λ− αk)
nk (23)

For every root αk with multiplicity nk one finds the following linearly independent
solutions of the equation

τ ieαkτ , for 0 ≤ i < nk

Let me denote these solutions, in some particular order, by ψ0(τ), . . . , ψM(τ),
such that ψ0(τ) = 1, which is a solution because α = 0 is always a root. One can
now check explicitly that any linear combination of these solutions can always be
written in the form of Eq. (15). I leave this as an exercise to the reader.
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8.2 Finding η(T )

In this section I construct an explicit solution for the vector η(T ). It turns out to
be completely fixed by the constants β1, . . . , βM . By substituting Eq. (22) back
into Eq. (21) I find

N∑
i=0

(
∂ηi(T )

∂T
−

N∑
j=0

ηj(T )Aji

)
σ(t, Ti) = 0

for all t, T . Without loss of generality one may assume that the σ(t, Ti) are
linearly independent. This implies that

∂ηi(T )

∂T
−

N∑
j=0

ηj(T )Aji = 0

Now an argument similar to that used in the previous section shows that η(T )
satisfies an equation identical in form to Eq. (20)

∂M+1η(T )

∂TM+1
+

M∑
i=1

βi
∂iη(T )

∂T i
= 0 (24)

Therefore, each component of η(T ) is a linear combination of the functions ψi(T ).
They are uniquely determined by Eq. (17). Indeed, a little linear algebra leads
to

ηi(T ) =
ω(T0, . . . , Ti−1, T, Ti+1, . . . , TM)

ω(T0, . . . , TM)

where ω is given by the determinant

ω(T0, . . . , TN) =

∣∣∣∣∣∣∣
ψ0(T0) . . . ψM(T0)

...
. . .

...
ψ0(TM) . . . ψM(TM)

∣∣∣∣∣∣∣
Note that the solutions ηi(T ) are invariant under a change of basis in the space
of solutions of Eq. (24), as they should be.

8.3 General time homogeneous model

The only numeraire changes σ(t, T ) → σ(t, T ) + λ(t) which respect the time
homogeneity property are those for which λ(t) is constant. This corresponds to
the fact that the constant function ψ0(τ) = 1 is always a solution of Eq. (20).
In order to classify time homogeneous models, it is useful to fix this remaining
freedom. One way to do this is to demand that

σ(t, t) = ρ(0) = 0

15
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In view of Eq. (11), this amounts to the choice of the money market account as
numeraire. Obviously, under this restriction one is left with the following set of
linearly independent solutions of Eq. (20)

ψ̄i(τ) = ψi(τ)− ψi(0)

where 1 ≤ i ≤M . Every component of the volatility vector ρ(τ) must be a linear
combination of these basis functions

ρk(τ) =
M∑

m=1

ckmψ̄m(τ)

for some constants ckm. So the most general M -factor time homogeneous Gaus-
sian Markov functional model is described by an SDE of the form

dP (t, T )

P (t, T )
= µ(t, T )dt+

K∑
k=1

M∑
m=1

ckmψ̄m(T − t)dW k
t (25)

where the drift terms µ(t, T ) are restricted by no-arbitrage conditions. They
are not necessarily time homogeneous. On the other hand, they are irrelevant for
derivative pricing. The description Eq. (25) is not yet unique. To make it unique,
introduce a new basis in the space of Wiener processes

W̄m
t ≡

K∑
k=1

ckmW
k
t

In terms of these, the model simply becomes

dP (t, T )

P (t, T )
= µ(t, T )dt+

M∑
m=1

ψ̄m(T − t)dW̄m
t

The processes Ŵm
t are uniquely described by their covariance matrix

〈W̄ i
t , W̄

j
t 〉 =

K∑
k=1

ckickj ≡ Cij

Let me count the number of degrees of freedom. It equals the sum of M (choice
of the βi’s) and M(M + 1)/2 (choice of a symmetric M ×M matrix Cij). This is

M(M + 3)

2

9 Some applications

9.1 One factor, the Vasicek model

For a one factor model, the characteristic polynomial Eq. (23) has two roots.
One is always zero, the other I will call α. This leads to the following solutions
of Eq. (20)

ψ0(τ) = 1, ψ1(τ) =

{
τ if α = 0
eατ otherwise

16
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I will concentrate on the case α 6= 0, since the case α = 0 can be obtained as a
limit of this. Fixed to the money market account numeraire, the solution becomes

ψ̄1(τ) = eατ − 1

One recognizes the well known (extended) Vasicek model. It is usually parametrized
like

σ(t, T ) =
σ(eα(T−t) − 1)

α
(26)

with α < 0. The vector η(T ) is given by

η(T ) =
{
η0(T ), η1(T )

}
=

{
eαT1 − eαT

eαT1 − eαT0
,
eαT − eαT0

eαT1 − eαT0

}
and it is straightforward to check that the volatility vector can be written in the
form of Eq. (15), i.e. in terms of the volatility vectors of two basic bonds with
maturity T0 and T1 respectively

σ(t, T ) = η0(T )σ(t, T0) + η1(T )σ(t, T1)

The functional relation for a general bond is given by Eq. (18), where

ξ(t) =
σ2

4α3
(1− e−2αt)(eαT1 − eαT )(eαT − eαT0)

In the limit α→ 0 the model reduces to the Ho-Lee model, with

σ(t, T ) = σ(T − t)

η(T ) =

{
T1 − T

T1 − T0

,
T − T0

T1 − T0

}
ξ(t) =

σ2

2
t(T1 − T )(T − T0)

9.2 Pricing an American option

In this section I consider a concrete example, the pricing of an American put
option under stochastic interest rates. The aim is to show explicitly how this
problem can be expressed entirely in terms of a reduced set of tradables. It can
then be solved numerically. The put option is defined as follows. It gives the
owner the right to sell one stock at any time t up to maturity T0 for a strike price
of K dollars, thereby terminating the contract. The profit is then

KC(t)− S(t) (27)

where C(t) is the cash process. This leads to a well-defined free boundary prob-
lem. The underlying model is as follows. The stock price S(t) satisfies

dS(t)

S(t)
= µSdt+ σSdW1

17

Page 18 of 20

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

while the bonds are modeled by the extended Vasicek model

dP (t, T )

P (t, T )
= µ(t, T )dt+ σ(t, T )dW2

In both cases the dynamics are defined with respect to the money market ac-
count numeraire under the objective measure. The function σ(t, T ) is defined by
Eq. (26). To simplify matters, I will assume that W1 and W2 are not correlated.

Now it was shown in the previous section that all bonds can be written as a
function of two basic bonds, for which I will use P0(t) ≡ P (t, T0) and P1(t) ≡
P (t, T1) with T1 > T0. This ensures that both bonds will exist during the entire
lifetime of the option. It will be clear that the value of the put option can be
written as a function of the stock and these two basic bonds. This follows from
the fact that the early exercise function Eq. (27), which essentially defines the
contract, can be expressed in terms of this set of tradables (and the initial term
structure) using the relation

C(t) = P (t, t) = P (0, t)eξ(t)

(
P0(t)

P0(0)

)η0(t)(
P1(t)

P1(0)

)η1(t)

with

η(t) =

{
eαT1 − eαt

eαT1 − eαT0
,
eαt − eαT0

eαT1 − eαT0

}

ξ(t) =
σ2

4α3
(1− e−2αt)(eαT1 − eαt)(eαt − eαT0)

It remains to derive the pricing PDE. For this, it is useful to rewrite the model,
choosing one of the tradables as numeraire. I will use P0 for this purpose. The
reduced model now becomes

dS

S
= µ1(t)dt+ σSdW1 − σ(t, T0)dW2

dP0

P0

= 0,
dP1

P1

= µ2(t)dt+ (σ(t, T1)− σ(t, T0))dW2

where µ1(t), µ2(t) are certain drift functions which are irrelevant for the pricing
problem. According to the discussion in section 2, this leads to the following
pricing PDE for a claim V (S, P0, P1, t)

LV =
∂V

∂t
+

1

2
a0(t)S

2∂
2V

∂S2
+ a1(t)SP1

∂2V

∂S∂P1

+
1

2
a2(t)P

2
1

∂2V

∂P 2
1

= 0

where

a0(t) = σ2
S + σ(t, T0)

2

a1(t) = σ(t, T0)(σ(t, T0)− σ(t, T1))

a2(t) = (σ(t, T1)− σ(t, T0))
2
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This concludes the description of the problem in the reduced set of tradables.
To numerically solve the problem, it is useful to reduce the dimension of the
pricing PDE, making use of the homogeneity of V (S, P0, P1, t). This is done by
introducing new variables

s ≡ S

P0

, p ≡ P1

P0

, v(s, p, t) ≡ V (S, P0, P1, t)

P0

= V (s, 1, p, t)

The pricing PDE then simplifies to

∂v

∂t
+

1

2
a0(t)s

2∂
2v

∂s2
+ a1(t)sp

∂2v

∂s∂p
+

1

2
a2(t)p

2∂
2v

∂p2
= 0

10 Outlook

A possible extension to the theory presented here is to look at models in which
prices are driven not only by diffusion but also by jump processes. It was shown
in [HNV02] that it is possible to define power tradables in this setting if drifts,
volatilities and jump sizes are deterministic functions of time. This suggests that
the theory can be extended to such models. This is work in progress.
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