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SOLVABLE LOCAL AND STOCHASTIC VOLATILITY MODELS:

SUPERSYMMETRIC METHODS IN OPTION PRICING

PIERRE HENRY-LABORDÈRE

Abstract. In this paper we provide an extensive classification of one and two dimensional dif-
fusion processes which admit an exact solution to the Kolmogorov (and hence Black-Scholes)

equation (in terms of hypergeometric functions). By identifying the one-dimensional solvable

processes with the class of integrable superpotentials introduced recently in supersymmetric quan-
tum mechanics, we obtain new analytical solutions. In particular, by applying supersymmetric

transformations on a known solvable diffusion process (such as the Natanzon process for which

the solution is given by a hypergeometric function), we obtain a hierarchy of new solutions. These
solutions are given by a sum of hypergeometric functions, generalizing the results obtained in the

paper ”Black-Scholes Goes Hypergeometric” [1]. For two-dimensional processes, more precisely

stochastic volatility models, the classification is achieved for a specific class called gauge-free
models including the Heston model, the 3/2-model and the geometric Brownian model. We then

present a new exact stochastic volatility model belonging to this class.

1. Introduction

For most mathematical models of asset dynamics, an exact solution for the corresponding
Kolmogorov & Black-Scholes equation is usually not available: there are, however, a few notable
exceptions. The known solutions for local volatility models are the constant elastic of variance
(CEV) [6] including the classical log-normal Black-Scholes process. For the instantaneous short
rate models, there are the CIR process [7] (Bessel process) and the Vasicek-Hull-White process
[9] (Ornstein-Uhlenbeck process). For stochastic volatility models, the known exact solutions are
the Heston model [8], the 3/2-model and the geometric Brownian model [11]. These analytical
solutions can be used for calibrating a model quickly and efficiently or can serve as a benchmark
for testing the implementation of more realistic models requiring intensive numerical computation
(Monte-Carlo, partial differential equation). For example, the existence of a closed-form solution
for the price of a vanilla option in the Heston model allows us to quickly calibrate the model to
the implied volatilities observed on the market. The calibrated model can then be used to value
path-dependent exotic options using, for example, a Monte-Carlo methodology.

In this paper, we show how to obtain new analytic solutions to the Kolmogorov & Black-Scholes
equation, which we refer to as KBS throughout the rest of the paper, for 1d & 2d diffusion processes.
In order to get to our classification, we first present a general reduction method to simplify the
multi-dimensional KBS equation. Rewriting the KBS equation as a heat kernel equation on a
Riemannian manifold endowed with an Abelian connection, we show that this covariant equation
can be simplified using both the group of diffeomorphisms (i.e. change of variables) and the group
of Abelian gauge transformations. In particular for the models admitting a flat Abelian connection,
there always exists a gauge transformation that eliminates the Abelian connection of the diffusion
operator.

Key words and phrases. Solvable diffusion process, supersymmetry, differential geometry.
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2 PIERRE HENRY-LABORDÈRE

In the second part we apply the reduction method, previously presented, to a one-dimensional,
time-homogeneous diffusion process. Modulo a change of variable, the metric becomes flat and the
Abelian connection is an exact one-form for which a gauge transformation can always be applied.
Using these two transformations, the resulting KBS equation becomes a Euclidean Schrödinger
equation with a scalar potential. Extensive work has already been done to classify the set of
scalar potentials which admit an exact solution. In particular, a classification of one-dimensional
time-homogeneous solvable diffusion processes for which the solution to the KBS equation can be
written as a hypergeometric function has been achieved in [1, 2, 3] using the well known Natanzon
classification [15].

Using a supersymmetric formulation of the Schrödinger equation which consists in doubling the
BKS equation with another equation, we show how to generate a hierarchy of new solvable diffusion
processes. In this context, the local volatility function is identified with a superpotential. Applying
supersymmetric transformations on the Natanzon potential (which is the most general potential for
which the Schrödinger equation can be reduced to either a hypergeometric or a confluent equation),
we obtain a new class of solvable one-dimensional diffusion processes which are characterized by
six parameters.

In the last part, we pursue this classification for stochastic volatility models which admit a flat
Abelian connection: we refer to these as gauge-free models. Surprisingly, this class includes all
the well known exact stochastic volatility models (i.e. the Heston model, the 3/2-model and the
geometric Brownian model). For these gauge-free models, we reduce the two-dimensional KBS
equation to a one-dimensional Euclidean Schrödinger equation with a scalar potential. Then, we
present a new exact stochastic volatility model which is a combination of the Heston and 3/2-
models.

2. Reduction method

In this section, we explain how to simplify the KBS equation. This reduction method will be used
in the next section to classify the solvable one and two dimensional time-homogeneous processes.
This method is already well known for a one-dimensional process and is presented in [4, 12, 13] for
example. However, the extension of this method to multi-dimensional diffusion processes (as two
dimensional processes) requires the introduction of differential geometric objects such as a metric
and an Abelian connection on a Riemannian manifold, as we will presently explain.

Let us assume that our time-homogeneous multi-dimensional diffusion model depends on n random
processes xi which can be either traded assets or hidden Markov processes (such as a stochastic
volatility a or an instantaneous short rate r). Let us denote x = (xi)i=1,··· ,n, with initial conditions
α = (αi)i=1,··· ,n. These variables xi satisfy the following stochastic differential equations (SDE)

dxi = bi(x)dt+ σi(x)dWi

dWidWj = ρij(x)dt

with the initial condition xi(t = 0) = αi. The no-arbitrage condition implies that there exists an
equivalent measure P such that the traded assets (i.e. forwards) are (local) martingales under this
measure. For P, the drifts bi are consequently zero for the traded assets. Note that the measure
P is not unique as the market is not necessarily complete. Finally, the fair value of a (European)
option, with payoff f(xi) at maturity T , is given by the discounted mean value of the payoff f
conditional on the filtration Ft generated by the Brownian motions {W i

s≤t}

C(α, t, T ) = EP[e−
R T

t
rsdsf |Ft]
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SUPERSYMMETRIC METHODS IN OPTION PRICING 3

with rs the instantaneous short rate. This mean-value depends on the probability density p(x, τ |α)
which satisfies the backward Kolmogorov equation (τ = T − t, ∂i = ∂

∂αi
)

∂p

∂τ
= bi∂ip+

1
2
ρijσ

iσj∂ijp(1)

with initial condition p(x, τ = 0|α) = δ(x − α). In this equation we have used the Einstein
convention meaning that two repeated indices are summed.

Using the Feymann-Kac theorem, one can show that the fair value C for the option satisfies the
Black-Scholes equation (∂i = ∂

∂αi
)

∂C
∂τ

= bi∂iC + gij∂ijC − r(α)C(2)

with initial condition C(τ = 0, α) = f(α).

In the following, the partial differential equations (PDE) (1,2) will be interpreted as a heat kernel
on a general smooth n-dimensional manifold M (without a boundary) endowed with a metric gij .
The inverse of the metric gij is defined by

gij =
1
2
ρijσ

iσj

and the metric (ρij inverse of ρij)

gij = 2
ρij

σiσj

The differential operator

D = bi∂i + gij∂ij(3)

which appears in (1) is a second order elliptic operator of Laplace type. We can then show that
there is a unique connection ∇ on L, a line bundle over M , and a unique smooth section Q of L
such that

D ≡ gij∇i∇j +Q

= g−
1
2 (∂i +Ai)g

1
2 gij(∂j +Aj) +Q(4)

with g = det[gij ]. We may express the connection Ai and Q as a function of the drift bi and the
metric gij by identifying in (4) the terms ∂i and ∂ij with those in (3). We find

Ai =
1
2
(bi − g−

1
2 ∂j(g1/2gij))(5)

Q = gij(AiAj − bjAi − ∂jAi)(6)

Note that the Latin indices i,j · · · can be lowered or raised using the metric gij or its inverse gij .
For example Ai = gijAj = 1

2 (gikb
k − 1

2∂i ln(g) − gip∂kg
pk). Using this connection, (1) can be

rewritten in the covariant way, i.e.
∂

∂τ
p(x, τ |α) = Dp(x, τ |α)(7)

If we take Ai = 0 , Q = 0 then D becomes the Laplace-Beltrami operator (or Laplacian) ∆ =
g−

1
2 ∂ig

1
2 gij∂j . For this configuration, (7) will be called the Laplacian heat kernel. Similarly, the

Black-Scholes equation (2) can be rewritten
∂

∂τ
C(α, τ) = (D − r)C(α, τ)

The heat kernel equation can now be simplified by applying the actions of the following groups:
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4 PIERRE HENRY-LABORDÈRE

B The group of diffeomorphisms Diff(M) which acts on the metric gij and the connection Ai by

f∗gij = gpk∂if
p(x)∂jf

k(x)
f∗Ai = Ap∂if

p(x) , f ∈ Diff(M)

B The group of gauge transformations G which acts on the conditional probability (and the fair
value C) by

p′(x, τ |α) = eχ(x,τ)−χ(x=α,τ=0)p(x, τ |α)

C′(α, τ) = eχ(α,τ)C(α, τ)

Then p′ (C′) satisfies the same equation as p (C) (7) only with

A′i ≡ Ai − ∂iχ

Q′ ≡ Q+ ∂τχ

The constant phase eχ(x=α,τ=0) has been added so that p and p′ satisfy the same boundary condition
at τ = 0. The above transformation is called a gauge transformation. If the connection A is an
exact form (meaning that there exists a smooth function Λ such that Ai = ∂iΛ), then by applying
a gauge transformation, we can eliminate the connection so that the heat kernel equation for p′

(or C′) has a connection equal to zero. It can be shown that for a simply-connected manifold, the
statement ”A is exact” is equivalent to F = 0, where F is the 2-form curvature given in a specific
coordinate system by

Fij = ∂iAj − ∂jAi

In the following, we will restrict our classification to those processes for which F = 0, meaning
there exists a gauge transformation such that the transformed connection vanishes. The operator
D reduces in this case to the symmetric operator D = ∆ +Q for which we can use an eigenvector
expansion.

Spectral decomposition

This spectral decomposition is valid only if the symmetric operator D is an (unbounded) self-
adjoint operator or admits a self-adjoint extension. This will depend strongly on the boundary
conditions. After proving that D is a self-adjoint operator or admits a self-adjoint extension,
the conditional probability (or the fair value) can then be expanded over a complete basis of
orthonormal eigenvectors φn(x)

p(x, τ |α) =
∑

n

e−Enτφn(x)φn(α)

with Dφn(x) = Enφn(x). The discrete summation over n can also include a continuous summation
according to a specific measure µ(E) if the spectrum contains a continuous part (we speak about
a spectral resolution of identity).

3. 1D Time-homogeneous diffusion models

In the next section, we apply the general reduction method, presented previously, to the one-
dimensional KBS equation. Similar reduction to a Schrödinger equation with a scalar potential
(without any references to differential geometry) can be found in [4, 12, 13]. However, we rederive
this classical result using our general reduction method as we will use it when we will discuss
the classification of stochastic volatility models. We then find the supersymmetric partner of this
Schrödinger equation and show how to generate new exact solutions (for Vanilla options).
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SUPERSYMMETRIC METHODS IN OPTION PRICING 5

3.1. Reduction method. Consider a one-dimensional, time-homogeneous diffusion process with
drift 1

df = µ(f)dt+ σ(f)dW

This process has been used as the basis for various mathematical models in finance. If f is a traded
asset (i.e. a forward), the drift vanishes in the forward measure and we have a local volatility model
where we assume that the volatility is only a function of f . The one-dimensional process is not
necessarily driftless as the random variable is not a traded asset as it is the case for an instantaneous
short rate model, or a model of stochastic volatility. In our framework, this process corresponds
to a (one-dimensional) real curve endowed with the metric gff = 2

σ(f)2 . For the new coordinate

s(f) =
√

2
∫ f

f0

df ′

σ(f ′)

the metric is flat: gss = 1. The Laplace-Beltrami operator therefore becomes M= ∂2
s . Using the

definitions (5), (6), we find that the Abelian connection Af and the function Q are given by

Af = −1
2
∂f ln(σ(f)) +

µ(f)
σ2(f)

Q =
1
4
(σ(f)σ

′′
(f)− 1

2
σ′(f)2)− µ′(f)

2
+
µ(f)σ′(f)
σ(f)

− µ(f)
2σ2(f)

In this case, by applying a gauge transformation on the conditional probability p, P = σ(f0)√
2
eΛp

with

Λ = −1
2
ln(

σ(f)
σ(f0)

) +
∫ f

f0

µ(f ′)
σ2(f ′)

df ′

then the connection vanishes and P satisfies a heat kernel with a scalar potential Q(s) (in the s
flat coordinate)

∂τP (s, τ) = (∂2
s +Q(s))P (s, τ)(8)

The solution P has been scaled by the (constant) factor σ(f0)√
2

in order to have the initial condition
limτ→0P (s, τ) = δ(s). Moreover, Q is given in the s coordinate by

Q =
1
2
(ln(σ))

′′
(s)− 1

4
((ln(σ))

′
(s))2 − µ′(s)√

2σ(s)
+
√

2µ(s)σ′(s)
σ(s)2

− µ2(s)
2σ2(s)

(9)

where the prime ′ indicates a derivative according to s.

Example 3.1.1 (quadratic volatility process). Let us assume that f satisfies a driftless process (i.e.
µ(f) = 0). The Black-Scholes equation reduces to the heat kernel on R ifQ(s) = constant (i.e. Q(s)
is zero modulo a time-dependent gauge transformation) which is equivalent to σ(f) = αf2 +βf+γ
(i.e. the quadratic volatility model, also called the hyperbolic model [12]).

Example 3.1.2 (CEV process). For the CEV process df = fβdWt µ(f) = 0, the potential is
Q(s) = β(β−2)

4(1−β)2s2 for β 6= 1 and Q(s) = − 1
8 for β = 1.

1The time-dependent process df = µ(f)A2(t)dt + σ(f)A(t)dW is equivalent to this process under the change of

local time t′ =
R t A2(s)ds
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6 PIERRE HENRY-LABORDÈRE

If the Hamiltonian D = (−∂2
s − Q) is self-adjoint or admits self-adjoint extensions, the spectral

decomposition can be used and the conditional probability can be decomposed using a complete
basis of orthonormal eigenvectors φn(s):

P (s, τ) =
∑

n

φn(s)φ†n(s0)e−Enτ(10)

with φn(s) satisfying

Dφn(s) = Enφn(s)(11)

In the next section, we explain how to obtain the fair value of an European call option (in the case
of constant interest rate) from this spectral decomposition (10).

3.2. Vanilla option with constant interest rate. We have that the forward f is a local mar-
tingale (i.e. µ(f) = 0) in the forward measure. The value at t of a European option (with strike
K and expiry date T ) is then given by (τ = T − t)

C(ft,K, τ) = e−rτ

∫ ∞

K

(f −K)p(f, τ |ft)df

Doing an integration by parts, or equivalently, applying the Ito-Tanaka-Meyer formula on the
payoff (St −K)+ [3] we can show that the vanilla option C can be rewritten as

C(ft,K, τ) = e−rτ (ft −K)+ + e−rτ σ
2(K)
2

∫ τ

0

dt′p(K, t′|ft)(12)

Using the relation between the conditional probability p(f, t′|ft) and its gauge-transform P (s(f), t′|st)
in (12), we obtain

C(ft,K, τ) = e−rτ ((ft −K)+ +

√
σ(K)σ(ft)

2

∫ τ

0

P (s(K), t′|st)dt′)(13)

Plugging the expression for P (s, t′|st) (10) into (13) and doing the integration over the time t, we
obtain [3]

C(ft,K, τ) = e−rτ ((ft −K)+ +

√
σ(K)σ(ft)

2

∑
n

φn(s(K))φn(st)
(1− e−Enτ )

En
)

A specific local volatility model will give an exact solution for a vanilla option if we can find the
eigenvalues and eigenvectors for the corresponding Euclidean Schrödinger equation with a scalar
potential. As examples of solvable potentials, one can cite the harmonic oscillator, Coulomb,
Morse, Pöschl-Teller I&II, Eckart and Manning-Rosen potentials. The classification of solvable
scalar potentials was initiated by Natanzon [15]. This work provides the most general potential for
which the Schrödinger equation can be reduced to either a hypergeometric or confluent equation.
We will review in the following section the Natanzon potential, which depends on 6 parameters.
We will later show that the Schrödinger equation can be doubled into a set of two independent
Schrödinger equations with two different scalar potentials which transform into each other under
a supersymmetric transformation. Moreover, if one scalar potential is solvable, the other one is.
Applying this technique to the Natanzon potential, we will obtain a new class of solvable potentials
corresponding to a new class of solvable diffusion processes. For these models, the solution to the
KBS equation is given by a sum of hypergeometric functions generalizing the paper ([1]).
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SUPERSYMMETRIC METHODS IN OPTION PRICING 7

3.3. Solvable (super)potentials. In this section, we show that the KBS equation can be formu-
lated using supersymmetric techniques. For details, the application of supersymmetric techniques
to the classification of solvable potentials for the Schrödinger equation has been reviewed in [5]
where a large number of references can be found. For the Kolmogorov & Fokker-Planck equations,
one can consult [10].

In the following, the local volatility will be identified as a superpotential. Using this formalism,
we show how to generate a hierarchy of solvable diffusion models starting from a known solvable
superpotential, for example the hypergeometric or confluent hypergeometric Natanzon superpo-
tential.

3.3.1. Superpotential and local volatility. Let us write the equation (11) in the following way by
introducing the first-order operator A1 and its formal adjoint A†1

2

E(1)
n φ(1)

n = A†1A1φ
(1)
n(14)

with A1 = ∂s + W (1)(s) , A†1 = −∂s + W (1)(s). W (1) is called the superpotential which satisfies
the Riccatti equation

Q(1)(s) = ∂sW
(1)(s)−W (1)2(s)

Surprisingly, this equation is trivially solved for our specific expression for Q(1) (9) (even with a
drift µ(f)!)

W (1)(s) =
1
2
d lnσ(1)(s)

ds
− µ(1)(s)√

2σ(1)(s)
(15)

In particular, for zero drift, the local volatility function is directly related to the superpotential by
σ(s) = e2

R s W (z)dz.

If we have a family of solvable superpotentials W (1)
solvable(s), we can always find an analytic solution

to the Kolmogorov equation for any diffusion term σ(1)(s) by adjusting the drift with the relation
(15)

µ(1)(s) =
σ(1)′(s)√

2
−
√

2σ(1)(s)W (1)
solvable(s)

Note that (14) admits a zero eigenvalue if and only if the Kolmogorov equation admits a stationary
distribution. By observing that A†1A1φ

(1)
0 = 0 is equivalent to A1φ

(1)
0 = 0, we obtain the stationary

distribution

φ
(1)
0 (s) = Ce−

R s W (1)(z)dz(16)

with C a normalization constant. Therefore, the stationary distribution will exist if the superpo-
tential is normalisable (i.e. φ(1)

0 (s) ∈ L2).

Example 3.3.1 (Coulomb superpotential and CEV process). The CEV process corresponding to
σ(f) = fβ and µ(f) = 0 has the Coulomb superpotential W (s) = β

2(1−β)s .

Next, we define the Scholes-Black equation by intervening the operator A1 and A†1

E(2)
n φ(2)

n (s) = A1A
†
1φ

(2)
n (s)

= (−∂2
s −Q(2)(s))φ(2)

n (s)(17)

2In order to obtain the correct adjoint operator on R+, we impose the absorbing boundary condition φn(s =
0) = 0
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We obtain a new Schrödinger equation with the partner potential

Q(2)(s) = −∂sW
(1) − (W (1))2(18)

Plugging our expression for the superpotential (15) in (18), we have

Q(2) = −1
2
(ln(σ(1)))

′′
(s)− 1

4
(ln(σ(1)))

′
(s))2 +

µ(1)′(s)√
2σ(1)(s)

− µ(1)2(s)

2σ(1)2(s)
(19)

In the same way as before, H2 admits a zero eigenvector (i.e. stationary distribution) if φ(2)
0 (s) =

Ce
R s W (1)(z)dz is normalisable.

Remark 3.3.2. In physics, the supersymmetry (SUSY) is said to be broken if at least one of the
eigenvectors φ(1,2)

0 (s) exists. Otherwise, SUSY is said to be broken dynamically.

Now we want to show that if we can solve the equation (14) then we have automatically a solution
to (17) and vice-versa. The SUSY-partner Hamiltonians H1 = A†1A1 and H2 = A1A

†
1 obey the

relations A†1H2 = H1A
†
1 and H2A1 = A1H1. As a consequence H1 and H2 are isospectral. More

precisely, the strictly positive eigenvalues all coincide and the corresponding eigenvectors are related
by the supercharge operators A1 and A†1:

B If H1 admits a zero eigenvalue (i.e. broken supersymmetry), we have the relation

E(2)
n = E

(1)
n+1 ; E(1)

0 = 0; φ(1)
0 (s) = Ce−

R s W (1)(z)dz

φ(2)
n (s) = (E(1)

n+1)
− 1

2A1φ
(1)
n+1(s)

φ(1)
n (s) = (E2

n)−
1
2A†1φ

(2)
n (s)

B If H1 (and H2) doesn’t admit a zero eigenvalue (i.e. unbroken supersymmetry)

E(2)
n = E(1)

n

φ(2)
n (s) = (E(1)

n )−
1
2A1φ

(1)
n (s)

φ(1)
n (s) = (E2

n)−
1
2A†1φ

(2)
n (s)

In the unbroken SUSY case, there are no zero modes and consequently the spectrum of H1 and H2

are the same. One can then obtain the solution to the Scholes-Black (resp. Black-Scholes) equation
if the eigenvalues/eigenvectors of the Black-Scholes (resp. Scholes-Black) are known. We clarify
this correspondence by studying a specific example: the CEV process df = fβdW . In particular,
we show that for β = 2

3 , the partner superpotential vanishes. It is therefore simpler to solve the
Scholes-Black equation as Scholes-Black (rather than Black-Scholes) reduces to the heat kernel on
R+. Applying a supersymmetric transformation on the Scholes-Black equation, we can then derive
the solution to the Black-Scholes equation.

Example 3.3.3 (CEV with β = 2/3 and Bachelier process). We saw previously that the superpo-
tential associated with the CEV process is given by

W (1)(s) =
β

2s(1− β)

with the flat coordinate s =
√

2f1−β

(1−β) and the potential (9)

Q(1)(s) =
β(β − 2)

4(1− β)2s2
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from which we deduce the partner potential (19)

Q(2)(s) =
β(2− 3β)

4(1− β)2s2

This partner potential corresponds to the potential of a CEV process df = fBdW with B given as
a function of β by

B(B − 2)
(1−B)2

=
β(2− 3β)
(1− β)2

Surprisingly, we observe that for β = 2
3 , Q(2)(s) cancels and the corresponding partner local

volatility model is the Bachelier model df = dW for which the heat kernel is given by the normal
distribution. The eigenvectors of the supersymmetric Hamiltonian partner H2 = −∂2

s to H1 are
given by (with the absorbing boundary condition φn(0) = 0)

φ(2)(s,E) =
sin(

√
Es)√

4πE
1
4

with a continuous spectrum R+. Applying the supersymmetric transformation (20), we obtain the
eigenvectors for the Hamiltonian H1 = −∂2

s + 2
s2 corresponding to the CEV process with β = 2

3

φ(1)(s,E) = E−
1
2 (−∂s +

1
s
)φ(2)(s,E)

=
1√

4πE
3
4
(−
√
Ecos(

√
Es) +

sin(
√
Es)

s
)

Plugging this expression in (14), we obtain the fair value for a vanilla option

erτC(ft,K, τ) = (ft −K)+ +
√
Kft

2

∫ ∞

0

dE
(1− e−Eτ )

E
φ(1)(s,E)φ(1)(s0, E)

which can be integrated and written in terms of the cumulative distribution [12]. The fact that the
CEV model with β = 2

3 depends on the normal cumulative distribution and is therefore related to
the heat kernel on R+ has been observed empirically by [12]. Here we have seen that it corresponds
to the fact that the supersymmetric partner potential vanishes for this particular value of β.

3.4. Hierarchy of solvable diffusion processes. In the previous section we saw that the op-
erators A1 and A†1 can be used to factorize the Hamiltonian H1. These operators depend on the
superpotential W (1) which is determined once we know the first eigenvector φ(1)

0 (s) of H1 (16).
We have assumed that H1 admits a zero eigenvalue. By shifting the energy E it is always pos-
sible to achieve this condition. The partner Schrödinger equation (17) can then be recast into a
Schrödinger equation with a zero eigenvalue

H(2) = A1A
†
1 − E

(1)
1 = A†2A2

where A2 ≡ ∂s +W2(s) and A†2 ≡ −∂s +W2(s),

W (2)(s) ≡ 1
2
d lnσ(2)(s)

ds
− µ(2)(s)√

2σ(2)(s)
(20)

We have introduced the notation that in E
(m)
n , n denotes the energy level and (m) refers to the

mth Hamiltonian Hm. By construction, this new Hamiltonian H2 = A†2A2 is solvable as A1A
†
1

(and A1A
†
1 − E

(1)
1 ) is. Finally, the associated diffusion process with volatility σ(2) and drift µ(2)

Page 9 of 16

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

10 PIERRE HENRY-LABORDÈRE

satisfying (20) is solvable. The superpotential W (2)(s) is determined by the first eigenvector of
H2, φ

(2)
0 (s),

W (2)(s) = −d lnφ(2)
0 (s)
ds

We can then apply a supersymmetric transformation on H2. The new Hamiltonian H3 can be
refactorised exactly in the same way we did forH2. Finally, it is not difficult to see that ifH1 admits
p discrete (normalisable) eigenvectors, then one can generate a family of solvable Hamiltonians Hm

(with a zero-eigenvalue by construction)

Hm = Am−1A
†
m−1 − E

(1)
m−1 = A†mAm = −∂2

s +Qm(s)

where Am = ∂s + Wm(s). This corresponds to the solvable diffusion process with a drift and a
volatility such that

Wm(s) = −d lnφ(m)
0 (s)
ds

=
1
2
d lnσ(m)(s)

ds
− µ(m)(s)√

2σ(m)(s)

The eigenvalues/eigenvectors of Hm are related to those of Hm−1 by

E(m)
n = E

(m−1)
n+1 − E

(m−1)
1

φ(m)
n = (E(m−1)

n+1 − E
(m−1)
1 )−

1
2Am−1φ

(m−1)
n+1

In particular, the superpotential of Hm is determined by the (m−1)th eigenvector of H1, φ
(1)
m−1(s),

Wm(s) = −
d ln(Am−1 · · ·A1φ

(1)
m−1(s))

ds
(21)

=
1
2
d lnσ(m)(s)

ds
− µ(m)(s)√

2σ(m)(s)
(22)

Consequently, if we know all the m discrete eigenvalues and eigenvectors of H1, we immediately
know all the energy eigenvalues and eigenfunctions of the hierarchy of m − 1 Hamiltonians. In
the following we apply this procedure starting from a known solvable superpotential, the Natanzon
superpotential.

3.5. Natanzon (super)potentials. The Natanzon potential [15] is the most general potential
which allows us to reduce the Schrödinger equation (8) to a Gauss or confluent hypergeometric
equation (GHE or CHE).

3.5.1. Gauss hypergeometric potential. The potential is given by

Q(s) =
S(z)− 1
R(z)

− (
r1 − 2(r2 + r1)z

z(1− z)
− 5

4
(r21 − 4r1r0)

R(z)
+ r2)

z2(1− z2)
R(z)2

with R(z) = r2z
2 + r1z + r0 > 0 and S(z) = s2z

2 + s1z + s0 (two second order polynomials).
The z coordinate, lying in the interval [0, 1], is defined implicitly in terms of s by the differential
equation

dz(s)
ds

=
2z(1− z)√

R(z)
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Example 3.5.1. The hypergeometric Natanzon potential includes as special cases the Pösch-Teller
potential II 3 Q(s) = A + Bsech( 2s√

r1
)2 + Ccsch( 2s√

r1
)2 for r0 = r2 = 0 and the Rosen-Morse

potential Q(s) = A+B tanh( 2s√
r0

) + Csech( 2s√
r0

)2, r1 = r2 = 0 with A and B constant.

We have the discrete eigenvalues (αn = −n ;n ∈ N∗)

2n+ 1 = −
√

1− r0En − s0 +
√

1− r2En − s2 −
√

1− (r0 + r1 + r2)En − (s0 + s1 + s2)

ψn(s) = (z′)−
1
2 z

γn
2 (z − 1)

−γn+αn+βn+1
2 F (αn, βn, γn, z)

γn = 1 +
√

1− r0En − s0

αn − βn = −
√

1− r2En − s2

αn + βn = γn +
√

1− (r0 + r1 + r2)En − (s0 + s1 + s2)

and the (normalized) eigenvectors

ψn(s) = Bn(z′)−
1
2 z

γn
2 (1− z)

−γn−n+βn+1
2 P (γn−1,−n+βn−γn+1)

n (1− 2z)

with Bn = [(( R(1)
α+β−γ ) + ( r0

γ−1 )− ( r2
β−α ))Γ(γ+n+1)Γ(α+β−γ)

n!Γ(β−α−n) ]−
1
2 and P (γ−1,α+β−γ)

n (2z− 1) the Jacobi
polynomials.

3.5.2. Confluent hypergeometric potential. A similar construction can be achieved for the class of
scaled confluent hypergeometric functions. The potential is given by

Q(s) =
S(z)− 1
R(z)

− (
r1
z
− 5

4
(r21 − 4r2r0)

R(z)
− r2)

z2

R(z)2

with R(z) = r2z
2 + r1z + r0 > 0 and S(z) = s2z

2 + s1z + s0. The z coordinate, lying in the
interval [0,∞[, is defined implicitly in terms of s by the differential equation

dz(s)
ds

=
2z√
R(z)

Example 3.5.2. The confluent Natanzon potential reduces to the Morse potentialQ(s) = −1+s0+s1e
2s√
r0 +s2e

4s√
r0

r0

for r1 = r2 = 0, to the 3D oscillator Q(s) = − 3
4+s0

s2 + s1
r1

+ s2s2

r2
1

for r0 = r2 = 0 and to the Coulomb

potential Q(r) = −r2s0−2s
√

r2s1−4s2s2

4r2s2 for r0 = r1 = 0.

We have the discrete eigenvalues αn = −n ;n ∈ N

γn = 1 +
√

1− r0En − s0

ωn =
√
−r2En − s2

2n+ 1 =
r1En + s1

2
√
−r2En − s2

−
√

1− r0En − s0

and the (normalized) eigenvectors

ψn(s) =
n!

(γn)n
z(s)

γn
2 e−

ωnz(s)
2 (z′(s))−

1
2Lγn−1

n (ωnz(s))

with Lγn−1
n (z) the (generalized) Laguerre polynomial. In the following, we have listed classical

solvable superpotentials and the corresponding solvable local volatility models and solvable instan-
taneous short-rate models (Table 1. & 2.).

3sech(z) ≡ 1
cosh(z)

and csch(z) ≡ 1
sinh(z)
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Superpotential W (s) σ(s)
σ0

Shifted oscillator as+ b eas2+2bs

Coulomb a+ b
s sbe2as

Morse a+ be−αs e2(−( b
αeαs )+as)

Eckart acoth(αs) + b e2(bs+
a log(sinh(αs))

α )

Rosen-Morse ath(αs) + b e2bs+ 2a
α ln(cosh(α))

3D oscillator as+ b
s eas2+2b ln(s)

P-T I α > 2b atan(αs) + bcotg(αs) e2(−( a log(cos(αs))
α )+ b log(sin(αs))

α )

P-T II α > 2b ath(αs) + bcoth(αs) e2(
a log(cosh(αs))

α +
b log(sinh(αs))

α )

Table 1. Example of solvable superpotentials-Local Volatility

one-factor short-rate model SDE Superpotential
Vasicek-Hull-White dr = k(θ − r)dt+ σdW Shifted Osc. (a = κ

2 , b = − κθ√
2σ

)
CIR dr = k(θ − r)dt+ σ

√
rdW 3D Osc. (a = κ

4 , b = 1
2 −

2θκ
σ2 )

Doleans dr = krdt+ σrdW (Constant (W (s) = −2κ+σ2

2
√

2σ
)

EV-BK dr = r(η − α ln(r))dt+ σrdW Shifted Osc. (a = α
2 , b =

√
2(−2η+σ2)

4σ )
Table 2. Example of solvable one-factor short-rate models

3.5.3. Natanzon hierarchy and new solvable processes. We know that the Natanzon superpotential
is related to the zero-eigenvector

Wnat = −∂s ln(ψ0(s))

and the corresponding supercharge A is

A = ∂s +Wnat(s)

=
2z(1− z)√

R
(∂z −

γ0

2z
− (1 + α0 + β0 − γ0)

2(z − 1)
− α0β0F (1 + α0, 1 + β0, 1 + γ0, z)

γ0F (α0, β0, γ0, z)
+
z′−

3
2 z′′(s)
2

)

With a zero drift, the Natanzon superpotential corresponds to the diffusion process (15)

σ(1)(s) =
σ

(1)
0

φ
(1)
0 (s)2

with σ
(1)
0 a constant of integration and φ

(1)
0 (s) ≡ ψ0(s). Applying the results of section (3.2), we

obtain that the driftless diffusion processes

σ(m)(s) =
σ

(m)
0

Am−1 · · ·A1φ
(1)
m−1(s)2

are solvable (22). Using the fact that the (discrete) eigenvector φ(1)
m−1(s) is a hypergeometric

function and that the derivative of a hypergeometric function is a new hypergeometric function 4,
the action of Am−1 · · ·A1 on φ(1)

m1(s) will result in a sum of (m− 1) hypergeometric functions, thus
generalizing the solution found in [1].

4
2F ′

1(α, β, γ, z) = αβ
γ 2F1(α + 1, β + 1, γ + 1, z) and M ′(α, β, z) = α

β
M(α + 1, β + 1, z)
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4. Gauge-free stochastic volatility models

In this section, we try to identify the class of time-homogeneous stochastic volatility models which
leads to an exact solution to the KBS equation. We assume that the forward f and the volatility
a are driven by two correlated Brownian motions in the risk-neutral measure

dft = atC(ft)dW1

dat = b(at, ft)dt+ σ(at, ft)dW2

dW1dW2 = ρdt

with initial condition a0 = a and f0 = f . Using the definition for the Abelian connection (5), we
obtain the components

Af = − 1
2(1− ρ2)

∂f ln(
C

σ
)− ρ

(1− ρ2)
(
b

aCσ
− 1

2C
∂a
σ

a
)

Aa =
1

(1− ρ2)
(
b

σ2
− 1

2
∂a ln(

σ

a
))

Then, the field strength is

Faf = ∂aAf − ∂fAa

=
1

(1− ρ2)
[(∂af ln(σ)− ∂f

b

σ2
)− ρ(

1
C
∂a

b

aσ
− 1

2C
∂2

a

σ

a
+
a

2
∂2

f

C

σ
)]

We will now assume that the connection is flat, Faf = 0, meaning that the connection can be
eliminated modulo a gauge transformation. In this case, the stochastic volatility model can thus
be called a gauge-free model. This condition is satisfied for every correlation ρ if and only if

∂af ln(σ) = ∂f
b

σ2

∂a
b

aσ
− 1

2
∂2

a

σ

a
+
aC

2
∂2

f

C

σ
= 0

Moreover, if we assume that σ(a) is only a function of a (this hypothesis is equivalent to assuming
that the metric admits a Killing vector), the model is gauge-free if and only if

b

σ
=
a

2
∂a
σ

a
+ aφ(f)− aC(f)

2
∂2

fC(f)
∫ a a′da′

σ(a′)

with φ(f) satisfying

∂fφ(f) =
∂f (C∂2

fC)
2

∫ a a′da′

σ(a′)

This last equation is equivalent to C(f)∂2
fC(f) = β with β a constant and φ = γ a constant

function. For β = 0, the above equations simplify and we have

C(f) = µf + ν

b(a) = aσ(a)(γ +
1
2
∂a
σ(a)
a

)

with µ, ν , γ some constant parameters. The gauge-free condition has therefore imposed the
functional form of the drift term. When the volatility function is fixed respectively to a constant
(Heston model), a linear function (geometric Brownian model) and a quadratic function (3/2-
model) in the volatility, one obtains the correct (mean-reversion) drift 5 (see Table 7)

5In order to obtain the correct number of parameters, one needs to apply a change of local time dt = δdt′,
dW1,2 =

√
δdW ′

1,2
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name σ(a) SDE

Heston σ(a) = η dv = δ(2vγ + η(η − 1))dt+ 2η
√
δ
√
vdW2

Geometric Brownian σ(a) = ηa dv = δ(2ηγv
3
2 + η2v)dt+ 2

√
δηvdW2

3/2-model σ(a) = ηa2 dv = 2δη(η + γ)v2dt+ 2
√
δηv

3
2 dW2

Table 3. Examples of Gauge free stochastic volatility models with df =
√
δ(µ+ νf)

√
vdW ′

1.

The gauge transformation eliminating the connection is then

Λ(f, a) = −ρ
ff

2
ln(C(f)) + αρfa

∫ f df ′

C(f ′)
+ (ρffα− ρaf

2
∂fC)

∫ a a′da′

σ(a′)

Finally, plugging the expression for C(f) and b(a) into (6), we find that the function Q is 6

Q = Aa2 +Bσ2∂a
a

σ

The Black-Scholes equation for a Vanilla option C(a, f, τ = T − t) (with strike K and maturity T )
satisfied by the gauge transformed function C′(a, f, τ) = eΛ(f,a)C(a, f, τ) is

∂τC′(a, f, τ) = ∆C′(a, f, τ) +Q(a)C′(a, f, τ)

with the initial condition C′(a, f, τ = 0) = eΛ(f,a)(f − K)+. In the coordinates q(f) =
∫ f df ′

C(f ′)

and a, the Laplace-Beltrami operator is given by

∆ =
aσ

2
(
a

σ
∂2

q + 2ρ∂aq + ∂a
σ

a
∂a)

Applying a Fourier transformation according to q, C′(q, a, τ) = FC′(f, a, τ), we obtain

∂τC′(a, q, τ) =
aσ

2
(−k2 a

σ
+ 2ikρ∂a + ∂a

σ

a
∂a)C′(a, q, τ) +Q(a)C′(a, q, τ)

with the initial condition C′(a, q, τ = 0) = F [eΛ(f,a)(f − K)+]. Using a spectral decomposition
C′(a, q, τ) =

∑
n cnφnk(a)e−Enkτ (with the coefficients cn determined from the initial condition),

the eigenvectors φnk(a) satisfy the equation

−Enkφnk(a) =
aσ

2
(−k2 a

σ
+ 2ikρ∂a + ∂a

σ

a
∂a)φnk(a) +Q(a)φnk(a)

This equation (23) can be further simplified by applying a Liouville transformation consisting in
a gauge transformation and a change of variable [14]

ψnk(s) = (
σ

a
)

1
2 e

ikρ
R a a′

σ(a′) da′
φnk(a)

ds

da
=

√
2

σ(a)

ψnk(s) satisfies a Schrödinger equation

ψ′′nk(s) + (Enk − J(s))ψnk(s) = 0

6A and B are two constants given by

A =
1

2
(−

1

2
ρff ∂f C + αρaf )2 +

1

2
ρff C2∂2

f ln(C) + ρ(−
1

2
ρff ∂f C + αρaf )(αρff −

ρaf

2
∂f C) +

1

2
(ρff α−

ρaf

2
∂f C)2

B = −
1

2
(ρff α− ρaf ∂f C

2
)
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with the scalar potential

J(s) = Q(a)− k2a2

2
+

4 a4 k2 ρ2 − 3σ(a)2 + a2 σ′(a)2 + 2 a σ(a) (σ′(a)− a σ′′(a))
8 a2

+
1
2
{a, s}

and where the curly bracket denotes the Schwarzian derivative of a with respect to s

{a, s} = (
a′′(s)
a′(s)

)′ − 1
2
(
a′′(s)
a′(s)

)2

The 2d partial differential equation corresponding to our original KBS equation for our stochastic
volatility model has therefore been reduced via a change of coordinates and a gauge transformation
to a Schrödinger equation with a scalar potential J(s). The stochastic volatility model is therefore
solvable in terms of hypergeometric functions if the potential J(s) belongs to the Natanzon class.
The solution is given (in terms of the eigenvectors ψnk) by

C(a, f, τ) = e−Λ(a,f)F−1[
∑

n

ψnk(s(a))cne−Enkτ ]

Let us examine classical examples of solvable stochastic volatility model and show that the corre-
sponding potentials J(s) correspond to the Natanzon class (see Table 4.).

name potential J(s)

Heston 3D osc. J(s) =
−3+4 B s2 η+s4 η2 (2 A+k2 (−1+ρ2))

4 s2

Geometric Brownian Morse J(s) =
−η2+4 e

√
2 s η (2 A+k2 (−1+ρ2))

8

3/2-model Coulombian J(s) =
8 A+η (−8 B+η)+4 k2 (−1+ρ2)

4 s2 η2

Table 4. Stochastic volatility models and potential J(s)

We present here a new example of solvable stochastic volatility model which corresponds to the
Pösch-Teller I potential.

Example 4.0.3 (Pösch-Teller I). For a volatility function given by σ(a) = α+ ηa2, the potential is
given by a Pösch-Teller I potential 7

J(s) =
α

(
4

(
−2A+ k2 + 4Bη − k2ρ2

)
− 3η2csc( s

√
α
√

η√
2

)
2

+
(
8A+ η (−8B + η) + 4k2

(
−1 + ρ2

))
sec( s

√
α
√

η√
2

)
2
)

8η

5. Conclusion

We have shown how to use supersymmetric methods to generate new solutions to the Kol-
mogorov & Black-Scholes equation (KBS) for one-dimensional diffusion processes. In particular,
by applying a supersymmetric transformation on the Natanzon potential, we have generated a
hierarchy of new solvable processes. Then, we have classified the stochastic volatility models which
admit a flat Abelian connection (with one Killing vector). The two-dimensional KBS equation
has been converted into a Schrödinger equation with a scalar potential. The models for which the
scalar potential belongs to the Natanzon class are solvable in terms of hypergeometric functions.
This is the case for the Heston model, the geometric Brownian model and the 3/2-model. A new
solution with a volatility of the volatility σ(a) = α+ ηa2, corresponding to the Pösch-Teller I, has
been presented.

7csc(z) ≡ 1
sin(z)

and sec(z) ≡ 1
cos(z)
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