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"The momentum effect: Omitted risk factors or investor behaviour?. 

Some evidence from the Spanish stock market” (*) 

 
ABSTRACT 

In this paper we use generally applicable non-parametric methods in an attempt to sort 
out the possible sources of momentum in stock markets (behavioural theories or omitted 
risk factors). Specifically, we present the results of bootstrap analysis and stochastic 
dominance tests for  the Spanish stock market. Our results from the bootstrap analysis 
are found to depend on the resampling method used (with or without replacement). 
Nevertheless, the various stochastic dominance techniques applied have led us to the 
same conclusion, namely, that the winner portfolio stochastically dominates the loser 
portfolio, which is not consistent with the general asset-pricing models developed for 
risk-averse investors. This suggests the interest of analysing theories that relax the 
unbounded rationality assumptions that support many of the classical asset pricing 
models. 
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"The momentum effect: Omitted risk factors or investor behaviour? 

Some evidence from the Spanish stock market” 
 

1.- Introduction. 

More than ten years since Jegadeesh and Titman (1993) first drew attention to the 

presence of a momentum effect in the US market, the abnormal returns to this type of 

strategy have still not been explained to the unanimous satisfaction of researchers. Thus 

it is one of the main anomalies that continue to challenge the market efficiency 

hypothesis.  

The vast body of evidence that testifies to the presence of the momentum effect, 

both inside and outside the US market, enables us to rule out data mining as the cause, 

while also revealing that the phenomenon is not exclusive to any one market. Thus, 

Jegadeesh and Titman (2001) found that momentum persisted in the US market, beyond 

the time horizon of their original study, right through the 1990s. Rouwenhorst (1998) 

also found evidence for twelve European countries; Chui, Titman and Wei (2000) for 

Asian basin; Hon and Tonks (2003) for the UK, Glaser and Weber (2001) for Germany 

and Forner and Marhuenda [2003] and Muga and Santamaría [2006a] for Spain. 

Hameed and Kusnadi (2002) found evidence in six Asian countries, though only at the 

country level. Going further, Fong, Wong and Lean [2005], using international indices, 

find evidence to support the presence of the momentum effect in both developed and 

emerging markets. Several authors, among them Rouwenhorst [1999], Van der Hart et 

al [2003] and Griffin et al [2003] and Muga and Santamaría [2006 b], have analysed 

momentum in emerging markets. The overriding conclusion from all this literature is 

that, while momentum exists in emerging markets, it is less intense than in the more 

developed ones. 

The market efficiency hypothesis predicts that any pattern, once discovered by 

investors, will gradually fade, unless exploitation proves impossible or the gains do not 

compensate the risk and/or costs involved. Since the empirical evidence has shown that 

this pattern did not fade over time, the literature has tried to find a reasonable 

explanation for the fact. Research has evolved along two very different paths. On the 

one hand, there are authors who claim that the abnormal profits gained from investing in 

momentum strategies are compensation for some risk factor. On the other hand, there 
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are those who claim that they are the result of the behaviour of investors, who do not 

always base their decisions on the risk/return trade-off. There is also another view, 

though with fewer and fewer subscribers, that reckons such returns to be due to 

methodological error. It is also important to note that transaction costs [see Lesmond, 

Schill and Zhou (2004) and Korajczyk and Sadka (2004)] may be a major disincentive 

to arbitrageurs tempted to take positions that might eventually dilute momentum 

returns.  

In this intense debate, it is worth mentioning the work of Conrad and Kaul (1998), 

who, using methodology based on bootstrapping techniques, conclude that the 

momentum effect is due to cross sectional variations in stock returns, and is therefore 

more likely to be due risk factors.  

The available empirical evidence, however, suggests that traditional risk 

assessment models are unable to explain the abnormal returns generated by the 

momentum effect. Indeed, Fama and French (1996) admit that their three-factor model 

fails to capture this anomaly. On the strength of this evidence, explanations have been 

sought in the literature based on risk factors that were omitted in the traditional models. 

Thus, Chordia and Shivakumar (2002) and Avramov and Chordia (2006) suggest that 

stock returns continuation in the medium term is due to a range of macroeconomic risk 

factors. Another outstanding contribution in this vein is that of Wu (2002), who, using 

conditional risk assessment models, obtains some promising, though not entirely 

conclusive, results. Some authors have also suggested different levels of liquidity risk 

(Pastor and Stambaugh, 2003, Sadka, 2006), asymmetric risk (Ang, Chen and Xing, 

2002) or conditional coskewness (Harvey and Siddique, 2000) as possible causes of the 

anomaly. However they find only a partial explanation for the phenomenon.  

Alternatively, behavioural finance has produced several explanations to 

momentum effect, such as Barberis, Sheleifer and Vishny (1998), who propose that the 

momentum effect appears as a result of conservatism and representativeness heuristic 

biases in the decisions of some investors. Daniel, Hirshleifer and Subrahmanyam (1998) 

also suggest the presence of overconfidence or self-attribution bias among agents as a 

possible source of abnormal returns to momentum strategies. Hong and Stein (1999), 

meanwhile, develop a model in which momentum is due to the slow diffusion of 

information and the presence of momentum traders in the market who trade under the 

assumption of continuation in stock returns. The common theory in all this research is 

that various types of behavioural bias lead to an overreaction in stock prices that should 
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revert in the long term. Thus, in addition to predicting a medium term momentum 

effect, these behavioural models predict long-term stock price reversal. In response to 

this, Jegadeesh and Titman (2001) are more inclined towards one of these behavioural 

theories as the most likely cause of the momentum effect, since they obtain long-term 

reversal of momentum strategy returns in the US market. This reversal is more 

consistent with the behavioural theories described earlier than with risk-based 

explanations, which would predict a returns continuation beyond the holding period in 

these strategies.  

This paper probably marked a turning point in the debate over behavioural causes 

and risk factors as possible sources of momentum. Their conclusions, together with 

those reported in Jegadeesh and Titman (2002), seriously challenge those obtained by 

Conrad and Kaul (1998) who claim the momentum effect to be due to cross sectional 

dispersion in stock returns. The main objection to the approach of Conrad and Kaul is 

their use of the bootstrap with replacement method. According to Jegadeesh and Titman 

(2001, 2002), this procedure could be generating an artificial momentum effect, since, 

when bootstrapping with replacement, the same observation may appear both in the 

formation period and in the holding period. These authors therefore propose the use of 

bootstrapping without replacement which, in their case, leads to the conclusion that the 

momentum effect is not due to cross sectional variations in stocks, thus contradicting 

the evidence presented by Conrad and Kaul (1998). 

In a later paper, Karolyi and Kho (2004) compare the two bootstrap procedures, 

with and without replacement, finding the results to differ, as predicted by the above 

evidence. They argue that both procedures are biased, however, thus making it difficult 

to discern which of the results is more accurate. 

An alternative means of discerning between behavioural theories and risk-based 

models is the stochastic dominance method. Fong, Wong and Lean (2005), in particular, 

using international indices, show that those with a better past performance stochastically 

dominate those with a poor past performance, which allows us to assert that preference 

for the winner portfolio over the loser portfolio is not consistent with general asset-

pricing models. These findings are robust to various stochastic dominance tests recently 

performed using different assumptions about the time-series returns. Due to their 

generality and potential for comparing two alternatives, these tests are proving very 

promising for the analysis of momentum strategies.  
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This is the interesting frame of reference to which this study belongs. Its aim is to 

provide evidence that may help to discriminate between the possible causes 

(behavioural theories or omitted risk factors) of the momentum effect, by means of 

generally applicable non-parametric methods. Specifically, we present the results of 

bootstrap analysis and stochastic dominance tests for  the Spanish stock market1.  

The paper aims to contribute to the literature from several different angles. Firstly, 

following the paper of Karolyi and Kho (2004), this study undertakes a bootstrap 

analysis with and without replacement, assuming different return generating models. 

Unlike these authors, however, we resample blocks of returns in the same period to 

avoid destroying any cross sectional patterns in the stock returns. We have also shown 

that  bootstrapping with replacement may not be an useful tool for our purpose because, 

for the problem that concerns us, given the number of available observations, small 

sample bias is clearly less important than the obvious reiteration bias caused by the 

replacement procedure. Finally, various different stochastic dominance techniques are 

also applied, specifically those proposed in Barret and Donald (2003) Davidson and 

Duclois (2000) and Chow (2001), who make different assumptions about return time 

series. The last one, as far as we know, is the first time that it is applied for this purpose. 

Moreover, rather than international market indices as in Fong, Wong and Lean (2005), 

in our paper we use individual stocks because of their greater practical implications. 

The rest of the paper is structured as follows. The second section describes the 

database used for the various analyses, the third presents the methodology employed 

and estimates of momentum in the Spanish stock market. The bootstrap technique is 

described in section four together with the main results obtained thereby. The fifth 

section describes the procedure and results of the various stochastic dominance tests. 

Finally, the sixth section contains a summary of the results obtained throughout the 

paper, followed by the conclusions and possible paths for future research. 

 

 

                                                 
1Most of the past evidence regarding the existence of the momentum effect in the Spanish stock market is 
to be found in the research by Forner and Marhuenda (2003) (2006) and Muga and Santamaría (2006a 
and 2006c). There is also evidence, consistent with that obtained for other markets, to suggest that 
abnormal returns to momentum strategies cannot be explained by the traditional risk assessment models, 
[Forner and Marhuenda (2006) or Muga and Santamaría (2006a)]. The explanation is still not entirely 
convincing, even when asymmetric risk factors are added, Muga and Santamaría (2006c).  Clear findings 
also fail to emerge from tests of the implications drawn from the different behavioural models, [Forner 
and Marhuenda (2004) or Muga and Santamaría (2006a)]. This is due both to the type of portfolio 
analysis that is required and to the relatively small number of stock listed in the Spanish stock market.  
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2.- The database. 

This study uses daily adjusted returns to stocks listed in the Spanish stock market 

from January 1971 to May 2004, and the General Index of the Madrid Stock Exchange. 

Virtually all of the post 1981 data are drawn from the Intertell database, although some 

gaps in these had to be filled with the closing prices of the Stock Exchange Association, 

all returns being adjusted for dividends, rights offerings and splits, based on information 

drawn from the Madrid stock Exchange. Returns prior to that data were obtained from 

information supplied in the weekly bulletins of the Spanish Savings Banks Federation 

(Confederación Española de Cajas de Ahorros, C.E.C.A.). This left us with a total 

sample of 194 firms listed in the Spanish stock market at some time during the sample 

period, with a minimum of 40 at the start of the sample period and a maximum of 145 in 

November 1998.  

To adjust the momentum strategies for the risk factors of the Fama French three-

factor model used in the bootstrap analysis, market profitability is approximated by the 

monthly return of the Madrid Stock Exchange Index and the monthly interest rate on 

one-year bills of exchange in the secondary market was taken as the risk-free return. 

The SMB and HML factors were constructed following Fama and French (1993), which 

required capitalisation and book value data for the stocks listed in the continuous market 

in Spain from the late nineties onwards.2 Finally, the conditional models were estimated 

using dividend yield (DY) and the term structure (TERM), which is given by the 

difference between long and short term bond yields3, as instrumental variables. 

 

3.- The momentum effect in the Spanish stock market. 

3.1.- Methodology 

In line with the existing literature, the methodology used in this paper is similar to 

that described by Jegadeesh and Titman (1993) in their seminal article on the 

momentum effect. The cited authors base their approach on the analysis of a set of 

momentum strategies being held at a given moment of time, all of which together form 

the momentum portfolio at that point of time. Portfolios are formed with 3, 6, 9 and 12 

month formation (J) and holding (K) periods, giving a total of 16 momentum portfolios 

formed in calendar time. 

                                                 
2 Because of the peculiarities of the bootstrap analysis selected for this study, it was performed only for 
the time period January 1991 to December 2000 and not for the entire sample, as will be explained later. 
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Jegadeesh and Titman (1993) skip a period between the formation and the holding 

period, in order to avoid potential microstructure bias, or contamination of the results by 

very short-run return reversals (the opposite of the momentum effect) documented in 

studies such as Jegadeesh (1990) and Lehmann (1990).  

Momentum portfolios can also be constructed in event time, for which momentum 

returns are measured over a given period of time, independently of any strategies that 

may be formed in subsequent periods. The drawback of this approach for the present 

purpose is that returns to the different strategies may be highly correlated, thus making 

it necessary to adjust the statistic used to test the significance of the various strategies.  

Although the definition of winners and losers, as proposed by Jegadeesh and 

Titman (1993) is based on deciles, such a procedure is immensely challenging in small 

markets such the Spanish stock market, given the need for a certain degree of portfolio 

diversification. For the purposes of this study, therefore, the winner portfolios will be 

formed from the top-performing quintile during the formation period and the loser 

portfolios on the bottom-performing quintile during that period4. 

Finally, note that, to avoid overestimating the potential momentum effect and 

possibly falling prey to the effects of survivorship bias, non-survivors are replaced by 

an equal-weighted index of the entire stock sample during that period. 

 

3.2.- Empirical evidence. 

The results for the January 1973 to May 2004 estimation period are consistent 

with the previous evidence with respect to the presence of the momentum effect in the 

Spanish stock market5.  

The calendar time returns for the different momentum strategies in the winner and 

loser portfolio are presented in Panel A of Table 1. The momentum returns range 

between 0.95% per month for J=3 and K=3 and 1.72% per month for J = 12 and K = 3. 

The adjusted returns using the Fama-French model are shown in Panel B of Table 16. In 

this case, the momentum returns range between 1.02% per month for J=3 and K=12 and 

                                                                                                                                               
3Data for the instrumental variables, DY and TERM, were supplied by Belén Nieto at the University of 
Alicante 
4 This is in line with the procedure used by Forner and Marhuenda (2006). 
5 Forner and Marhuenda (2006) find monthly returns ranging between 0.5% and 1.3% for January 1965 to 
December 2000. 
6 HML and SMB factors are only available from 1982. For this reason the adjusted returns using Fama-
French model have been computed for the 1982-2004 period. The momentum raw returns for this period 
are very similar to those obtained for the whole period (1973-2004). These results are available from 
authors upon request. 
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1.68% per month for J = 12 and K = 3. In both cases the all sixteen strategies are 

statistically significant as shown by the t statistic. 

The results in Panel A permit us to assert that the profitability is not equally 

divided between the two momentum portfolios. It is seemingly due to the behaviour of 

winner stocks. Nevertheless, the results using adjusted returns (Panel B) show that both 

the winner and loser portfolios contribute to the momentum. Moreover, the results in 

section 5.2 permit us to assert that the loser portfolios contribute more than winner 

portfolio to the momentum effect.  

The returns to the momentum strategies measured in event time are shown in 

Table 2, where they can be seen to be consistent with those estimated in calendar time. 

The momentum returns range between 0.92 % per month for J = 3, K = 3, and 1.78% 

per month for J = 12, K = 3. All 16 strategies were again shown to be statistically 

significant using the Newey and West (1987) t statistic, and a bootstrapped and skew 

adjusted t statistic as proposed by Lyon, Barber and Tsai (1999). Our results for Spanish 

stock market show that returns to the momentum strategies (1.33% per month for J=6 

K=6) are very close to those obtained in more developed markets7 (Jegadeesh and 

Titman 2001 or Rouwenhorst 1998). 

Summing up, we can assert that there is significant positive momentum in the 

Spanish stock market during the January 1973 to December 2004 estimation period. The 

possible causes of this phenomenon, however, are quite another issue, which will be 

addressed by means of two different procedures, the first one based on the bootstrap 

technique, the other on stochastic dominance. 

 

4.- Results of the bootstrap analysis. 

The debate that pervades the literature as to the true nature of the momentum 

effect has given rise to a variety of techniques aimed at settling the dispute between the 

so-called rational explanations and those that rely on aspects of investor behaviour. 

One of the econometric techniques most frequently used in the attempt to provide 

a global explanation for this phenomenon are the bootstrap methods, though they have 

also received some criticism. As indicated earlier, the first study in which a technique of 

this type was used to determine whether abnormal returns to momentum strategies are 

more likely to be due to risk factors or to behavioural issues was that of Conrad and 

                                                 
7 Jegadeesh and Titman (2001) obtain a momentum return of 1.39% per month for the US in the 1990s 
and Rouwenhorst (1998) 1.16% per month for a sample of developed markets. 
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Kaul (1998). Bootstrap analysis with replacement led these authors to conclude that 

returns to momentum strategies are due to cross-sectional dispersion in stock returns, 

the most likely cause of which is the presence of some omitted risk factor in the 

traditional models, which are apparently unable to explain this anomaly. 

According to Jegadeesh and Titman (2001, 2002), however, because of the way 

the momentum portfolios are constructed, the bootstrap procedure used by Conrad and 

Kaul (1998) may bias the results. To be more specific, when resampling with 

replacement, the same observation may be found in the formation period and the 

holding period, thereby artificially producing the anomaly, and the longer the formation 

and the holding periods the larger the bias. They therefore recommend that the 

appropriate bootstrap technique to analyse this phenomenon is resampling without 

replacement. Using this alternative bootstrap method, they obtain results that are the 

opposite to those found by Conrad and Kaul (1998). That is, the momentum returns do 

not appear to be generated by cross-sectional variation in the stocks. Karolyi and Kho 

(2004), however, point out that this second procedure may also be sensitive to small-

sample bias, since it allows a fairly significant role to outliers. 

 

4.1.- Methodology. 

Given that both bootstrap procedures may potentially bias the results, this paper 

adopts the solution used in Karolyi and Kho (2004), which is to use both procedures, 

with and without replacement, and compare their results for the Spanish stock market 

case. 

Following the same work, we also test several alternative return generation models 

to determine which is the best adapted to the generation of returns to momentum 

strategies. We begin with a random walk with drift model that was used by Conrad and 

Kaul (1998) to determine whether cross-sectional dispersion in returns is on its own 

sufficient to explain the momentum effect. We also consider the Fama French three-

factor model, which includes the market factor and a further two factors designed to 

capture risks related to size  (SMB) and book-to-market ratio (HML). 

These models were then extended to include a return lag and a market return lag in 

order to capture potential auto-correlation and cross correlation in the stock returns 

(Conrad and Kaul 1989 and Lo and Mackinlay 1990). 

Finally, conditional information was incorporated into the Fama French models, 

due to the fact that researchers such as Chordia and Shivakumar (2002) and Wu (2002) 
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propose momentum returns may vary over time depending on the state of the economy. 

The variables used to incorporate the conditional information were lagged dividend 

yield (DY) and the term structure (TERM), the long-term and short-term bond yield 

differential, both these variables were mean-subtracted for use as instruments in the 

conditional models8. 

Each of the described models was estimated individually for all the return series of 

the stocks considered, in order to obtain the corresponding parameters and errors. The 

errors thus obtained were then standardised by dividing them by the standard deviation 

of the error series. Having standardised the error series, random sampling (once with 

replacement and again without replacement) is used to obtain a new series equal in 

length to the original. Finally, after estimating the model parameters, and random 

sampling the error, new series were formed for the original model and the momentum 

strategies were constructed using the methodology described in the preceding section. 

Each of the procedures was repeated 500 times. 

The bootstrap procedures used in this paper differ substantially from those used in 

Karolyi and Kho (2004), however. In the latter, errors generated by the different models 

for each of the stocks are independently sampled. This yields time series of the same 

length as the original ones, enabling each simulation to replicate a momentum effect 

similar to the real one in terms of the number of stocks involved. Nevertheless, as noted 

by the authors themselves, this way of sampling the errors in the stocks may lead to the 

loss of possible cross-sectional correlation between the different return series. The 

recommended sampling procedure to overcome this problem is to extract the blocks of 

errors, for a given time period, from the set as whole, thus leaving any possible cross-

sectional correlation intact. 

The problem that arises with this sampling method is that returns must be 

available for all the stocks used in the bootstrap procedure in every month of the 

estimation period. Any missing data in the return series would prevent the comparison 

needed to construct the momentum portfolios, which, as explained earlier, are based on 

past stock returns. 

The simplest way of surmounting this problem is to take a large enough sample of 

stocks with data available for the whole period. Thus, when it comes to sampling the 

                                                 
8 In Karolyi and Kho (2004), moreover the above models are extended with a GARCH-type structure. 
This was not done in our case, however, because the parameters for most of the selected assets were non-
significant using monthly data. 
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errors of the various bootstrap analyses, there are no instances of missing data that 

would prevent us from constructing the various momentum strategies.  

Taking into account the described constraints that prevent us from performing the 

bootstrap analysis with all the stocks in the original sample in order to obtain the blocks 

of monthly returns, we selected from the sample the 72 assets that are continuously 

listed on the Spanish stock market during the period January 1991 to December 20009. 

 

4.2.- Results 

Prior to the bootstrap procedures, a test is required to determine whether in fact 

the chosen sample continues to present the momentum effect, since previous evidence 

relating to the presence of this anomaly in the Spanish stock market during the 1990s 

tends to suggest the contrary. Thus, while the results of Forner and Marhuenda (2006) 

show momentum to have faded during that period, Muga and Santamaría (2006a) found 

that although the pattern weakened it cannot be said to have faded completely. 

The returns to the different momentum strategies for the sample considered during 

the 1990s are shown in Panels A and B of the Table 3. Of the sixteen strategies 

constructed from the different combinations of formation and holding periods, eleven 

are found to be significant using raw returns and twelve using adjusted returns.  

Having confirmed the presence of momentum, albeit weak, in the study sample, 

we present the results of the various bootstrap analyses in Table 410.   

The results for the first of the models, random walk with drift (see panel A of 

Table 4), are consistent with the existing international evidence. That is, bootstrap with 

replacement, as proposed by Conrad and Kaul (1998), shows simulated momentum 

returns close to those of the original sample, with a maximum monthly return of 0.85% 

and a minimum monthly return of 0.47%. Furthermore, the p-values(1) (those that 

indicate the percentage of  simulations that have yielded a negative return) show that 

eleven of the sixteen strategies are significant. However, when bootstrap without 

replacement is used, as proposed by Jegadeesh and Titman (2002), none of the bootstrap 

strategies turns out to be significant according to the p-value(1). The simulated returns, 

                                                 
9 The reason for this choice of time period was that data are required for a minimum number of stocks, for 
portfolio diversification reasons, and a long enough time horizon, to avoid as far as the possible the small 
sample bias to which bootstrap analysis is susceptible. 
 
10 This table presents the returns obtained through the various bootstrap simulations for each of the 
momentum strategies, a first p value, p-value (1), showing the percentage of simulations that have yielded 
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meanwhile, range between 0.09% per month for the J9/K6 strategy and 0.15 % per 

month for the J6/K3 strategy11. 

These results confirm the evidence presented both by Conrad and Kaul (1998) for 

bootstrap with replacement and Jegadeesh and Titman (2002) for bootstrap without 

replacement. Thus, bearing in mind the bias in both procedures, as noted above, it is not 

possible to draw any clear conclusion with respect to issue under investigation. 

Furthermore, as noted by Karolyi and Kho (2004), the statistics literature offers no 

suitable guidance as to the appropriate choice of method. 

By extending this model or the Fama French model to include auto-correlation and 

cross-sectional correlation terms, (see panels B, C, and D in Table 4), we obtain results 

similar to those described for the random walk with drift. Thus, it can be seen that 

several of the momentum strategies prove significant according to p-value(1) simulated 

for the bootstrap procedures with replacement, but none of them is significant according 

to the p-value(1) in the procedure without replacement. Furthermore, the mean returns 

obtained in the simulations are noticeably higher in the bootstrap procedures with 

replacement. These results provide sufficient support to confirm the overall conclusions 

drawn from the first model, based on random walk with drift. 

There is a change in the results, however, when conditional information is 

incorporated into the Fama-French three-factor model and the extension with auto-

correlation and cross-sectional correlation (see panels 5 and 6 in Table 4). The bootstrap 

procedure with replacement continues to give simulated returns close to the original 

ones and p-values(1) indicating the significance of most of the simulated strategies. The 

results obtained without replacement present a substantial change, however, since, when 

conditional information is incorporated into the model, it is possible to observe an 

overall increase in the simulated returns to the various strategies, versus the models that 

did not contain conditional information. This change is of little practical importance, 

however, since none of the simulated returns comes close to the real returns to the 

momentum strategies, although some emerge as being significantly different from 0 

according to the p-value(1). 

                                                                                                                                               
a negative return and a second p value, p-value(2), showing the percentage that have outperformed the 
original sample. 
11 These results are consistent with those reported in Forner and Marhuenda (2004) using a similar 
procedure. 
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This phenomenon can also be observed in the results reported by Karolyi and Kho 

(2004), since, in the simulations without replacement, the simulated returns increase 

almost to the level of the original momentum returns.  

The results also include p-value(2), which shows what the percentage of 

simulations that outperform the original sample, enabling comparison with the results of 

Karolyi and Kho (2004). These authors find that, generally speaking, in bootstrap 

analyses only a small percentage of simulations exceed the real returns, either with or 

without replacement. Our percentages were higher, however, and the simulated returns 

were also closer to the real ones. This discrepancy is probably due to differences in the 

bootstrapping procedures used, since, in their case, independent stock sampling may 

lead to a partial loss of cross-sectional correlation, which may be causing the 

momentum, a possibility that is avoided by using the bootstrap procedure employed in 

this study. 

In summary, the results of the various bootstrap analyses performed in this study 

are consistent with prior evidence. The results obtained using bootstrapping with 

replacement suggest that returns to momentum strategies are due to cross-sectional 

dispersion in the stocks. This result weakens, however, when bootstrap procedures 

without replacement are used, unless conditional information is introduced into the 

return generating models, in which case it appears that cross-sectional dispersion might 

partially, but not entirely, explain returns to momentum strategies. 

Taking into account the size of the available sample, it appears more reasonable to 

assume the bias is due to the possible repetition of values across the formation and 

holding periods when bootstrapping with replacement. It is worth mentioning, in this 

respect, that the results are consistent with this reasoning. Suffice it to say that potential 

bias when bootstrapping with replacement will be greater for longer formation and 

holding periods, where there will be a higher probability of artificial repetitions across 

periods. In line with this argument, the results with replacement are generally more 

significant for longer J and K, suggesting the possible presence of such bias. The fact 

that this behaviour pattern does not appear in bootstrapping without replacement (where 

there should be a similar degree of small sample bias across the different strategies, 

since we have the same number of observations) suggests that the results of the 

bootstrap with replacement might be due to this bias. All this leads us to give more 

credit to the results obtained via the bootstrap without replacement procedure, which 

suggest the time series performance as the main cause of the momentum effect.  
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Nevertheless, the discrepancy in the results of the various bootstrap methods raises 

the issue of whether it would be worth employing an alternative type of technique, 

namely stochastic dominance, with a view to obtaining more robust findings with 

respect to the source of momentum returns. 

 

5.-Results of the stochastic dominance method. 

Another way of analysing the possible causes of positive returns to momentum 

strategies is via stochastic dominance techniques. This type of techniques probably offer 

the broadest potential for the analysis of the issue that concerns us, since they provide a 

general framework for the study of economic behaviour under uncertainty and impose 

few constraints with respect to the investor’s utility function, thus facilitating 

comparisons (see Levy 1998). With respect to our present purpose, stochastic 

dominance techniques can be used to ascertain whether the winner portfolio dominates 

the loser portfolio in a given market over a set time period, that is, whether the 

difference between loser and winner portfolios12 can be explained using a general asset-

pricing model with risk-averse investors. 

 

5.1.- Methodology. 

The literature has presented several stochastic dominance testing methods. The 

robustness of our results was tested by means of three different methods, namely, the 

KS test (Barret and Donald, 2003), the DD test (Davison and Duclous, 2000), and the 

MCSD test (Chow, 2001). The first of these is based on a Kolmogorov-Smirnov type 

test that compares the objects at all points and is defined for different orders of 

stochastic dominance, especially the first, second and third orders. The DD test is a 

simplification of the KS test that compares the cumulative distribution functions over an 

arbitrary set of points. Finally, marginal conditional stochastic dominance, (MCSD) is 

quite different and restricted exclusively to second order stochastic dominance (see 

Shalit and Yitzhaki, 1994). 

The KS test is applied to our particular problem as follows. There are two separate 

return series, k (returns to the winner portfolio), and l (returns to the losers), of the same 

size for both samples, in which the cumulative distribution functions (CDFs) are given 

                                                 
12 Fong, Wong and Lean  (2005) were the first to apply stochastic dominance techniques to analyse the 
momentum effect and to test whether the loser portfolio was stochastically dominated by the winner 
portfolio. 
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by  and , respectively. The KS test, therefore, tests the following null and 

alternative hypotheses: 

W L
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),( Fzf s  is the function that integrates function F to the order s-1. That is, 
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The null hypothesis that the winners dominate the losers can be tested using the 

following statistic proposed by Barret and Donald (2003): 

 [ )ˆ,()ˆ,(sup
2

ˆ
2/1

LzfWzfN
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z
s −






= ]K  ;  where  is the sample size. N

It should be noted that, for s≥2, the Barret-Donald KS test is analytically 

intractable because the limiting distribution of  depends on the underlying CDFs. 

Thus, all the p-values are calculated using simulations based on the Barret and Donald 

(2003) procedure. 

sK

DD, meanwhile, is designed to test: 

 H    m}{1,...,jany for    ),(),(: ∈≤ LzfWzf jsjs
s
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s

Unlike in the KS test, the hypothesis to be tested here refers to dominance for a 

fixed number of points only. It could therefore be less powerful than the previous test in 

certain situations, since it may fail to take into account all the implications of stochastic 

dominance (see Barret and Donald 2003). However, this type of test can be used on 

both dependent and independent series drawn from a joint distribution, unlike the first, 

which requires independence. It might therefore provide a useful complement to 

increase the robustness of our conclusions. 

A simple way to test the hypothesis is to calculate . The null hypothesis should 

be rejected if  is large enough. where 

sS

sS )}(ˆmax{ˆ
jss ztS = ;ˆ/)(ˆ)(ˆ

, jjsjsjs zzt Ω∆=  
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;  and  is the k vector of estimates of , is 

the estimate of the variance and covariance matrix ∆ . Note, furthermore, that this 

statistic does not have a standard distribution, and that the p values will be calculated 

according to the procedure used in Barrett and Donald (2003). 
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Unlike the above two tests, MCSD is meant to provide the conditions under 

which, beginning with a given portfolio, all risk-averse investors should prefer to 

marginally substitute one asset from one portfolio with one from the other. Thus, the 

test is based on the assumption that investors make only marginal adjustments to their 

portfolios under certain conditions, without altering the “core”.  In this context, Chow 

(2001) creates a statistic for the critical values of the studentised maximum modulus 

(SMM), with which it is possible to determine the complete confidence interval for a set 

of MCSD estimators. 

 The calculation of this statistic is based on the assumption that investors are 

utility-maximising and risk-averse. According to Chow (2001): 

A distribution, k, dominates the market if:  

 ≥SMM(α;m;∞)   for all i, and some  with strict inequality. 

A distribution, k, dominates another distribution, l, if: 

 Z ≥SMM(α;m;∞)  for all i, and some  with strict inequality.  
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The estimator in the numerator )( iτ  measures the mean conditional excess 

return of asset k relative to the market portfolio, under the predetermined target return, 
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N is the number of returns in the series under scrutiny,  is the return to asset k 

in portfolio p at t,  is the market return at t. is a dummy variable.  More 
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specifically, = 0 if r  >   for t=1,…N; otherwise =1; i=1,…,m is the set of 

predetermined target returns. 
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Under certain conditions, the vector of estimates ( )1τ , …, )( m
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vector of target returns {τ | i=1,2,…m} is asymptotically normal  and ( )φφ −N  has a 

normal zero mean limit distribution with mK- varied and covariance matrix 'JJϕπ = , 

where ϕ and J are defined as follows: 
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Hence, the asymptotic standard errors for the sample estimations are13: 
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The first stochastic dominance criterion assumes that investors have an insatiable 

appetite for wealth, the second, that they are also risk-averse, and the third, that they 

have a preference for positively skewed return distributions. Since the conditions for the 

first criterion are too strict for it to be fulfilled, this study focuses on second and third 

order stochastic dominance. The results of these three tests of the Spanish stock market 

are reported in the following section. 

 

 

13 The test is robust to the presence of heteroskedasticity in the data series (See Chow, 2001). 

 17

Page 18 of 35

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

5.2.- Results. 

Table 5 presents the results of the KS test for second and third order stochastic 

dominance for the Spanish stock market during the period January 1973 to December 

2004. 

The results of the KS test for second order stochastic dominance, (see columns 2 

and 3 of Table 5) show that the null hypothesis that the winner portfolio dominates the 

loser portfolio cannot be rejected at the standard levels of significance for any of the 

strategies analysed. (The p-values for the sixteen strategies are all higher than 0.5). 

However, the alternative hypothesis that the loser portfolio dominates the winners has 

p-values very close to 0, and can therefore be rejected at the standard levels of 

significance for second order stochastic dominance. 

Interpretation of these results is straightforward. At least all risk-averse investors 

show a preference for the winner portfolio over the loser portfolio involved in the 

momentum strategy. This assertion is possible because the hypothesis that the loser 

portfolio dominates the winners can be rejected at the 1% level, whereas in no case 

could the opposite hypothesis be rejected at the standard levels of significance. 

The results of the KS third order stochastic dominance test are largely consistent 

with those presented for second order (see columns 4 and 5 of Table 5). Thus, they 

reject the hypothesis that the loser portfolio dominates the winners while being unable 

to reject the opposite hypothesis for any of the sixteen momentum strategies considered. 

These results also raise doubts as to possibility of any general asset-pricing model with 

risk-averse investors being capable of explaining the momentum effect in the Spanish 

stock market. 

The results of the DD test (see Table 6) are found to be consistent with those of 

the KS test. In other words, for second order stochastic dominance, in no case is it 

possible to reject the hypothesis that the winner portfolio dominates the losers (all p-

values higher than 0.6), while the hypothesis that the loser portfolio dominates the 

winner portfolio is rejected in all strategies. The results for the third order stochastic 

dominance DD test also reject that the winner portfolio dominates the losers (all p-

values higher than 0.6) for all strategies and dominance of winners by losers is also 

rejected for all strategies14. 

                                                                                                                                               
 
14 Although in this case, the significance level  for the J = 3 K = 3 strategy is 10% 
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Summing up, the results of these two differentiated tests lead to the same 

conclusions. The winner portfolio stochastically dominates the losers for second and 

third order stochastic dominance. It is important to stress that the KS and DD tests lead 

to the same outcome, despite being based on different assumptions, since this of course 

increases their robustness. 

Finally, the MCSD test proposed by Chow (2001) was also used. Following the 

recommendations of the said author, this test was performed on ten target returns, using 

the Madrid Stock Exchange General Index as the reference. 

Table 7 presents the values of the  statistic for the sixteen strategies 

considered. In this test, the null hypothesis is that the winner portfolio does not 

stochastically dominate the losers. Following the approach described in the 

methodology section, the results of this test are restricted to second order stochastic 

dominance. As shown, the statistic values are positive for all the strategies analysed. 

Furthermore, the maximum value of the statistic in all cases exceeds the critical value 

for a 5% level of significance.

)( i
lkZ τ−

15 Therefore, this test can also be said to confirm that 

winners stochastically dominate losers in the second order sense. 

Overall, the results obtained through the various stochastic dominance tests enable 

us to confirm that the winner portfolio stochastically dominates losers for any risk- 

averse investor (second order stochastic dominance). Hence, momentum strategy 

returns in the Spanish stock market do not appear to be consistent with asset-pricing 

models devised for risk-averse investors. This tips the balance towards explanations 

based on investor behaviour, in line with the conclusions reported by Fong, Wong and 

Lean (2005) in an international market index setting. 

To conclude our investigation of stochastic dominance tests, since Chow’s (2001) 

MCSD can be used to analyse whether momentum returns are due to winners or losers, 

we tested to see whether winners dominate the market and whether losers are dominated 

by the market.  

Panel A of Table 8 gives the values of the  statistic for the winners’ 

dominance of the market. For all but three of the strategies (J=9 K=3; J=9 K=6; J=12 

K=3) this statistic is negative; therefore the winner portfolio cannot be said to dominate 

the market. Likewise, panel B of Table 8 gives the values of the  statistic for the 

)( i
kZ τ

)( i
lZ τ

                                                 
15  The critical value for the case in hand are 2.81 for the 5% level of significance. 
 

 19

Page 20 of 35

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

losers’ dominance of the market. This time all the values are negative, which enables us 

to assert that the market stochastically dominates the loser portfolio. In addition, for all 

strategies, the statistic has some absolute value that exceeds the critical value for a 1% 

level of significance. Thus we are able to conclude that the loser portfolio is 

stochastically dominated by the market in the second order sense. 

The results displayed in Table 8 extend the conclusions of the stochastic 

dominance analysis. Firstly, all three tests show that winners dominate losers for any 

risk-averse investor. Secondly, we also find reason to believe that the momentum effect 

has more to do with behaviour patterns than with risk factors, since the tests reveal the 

loser portfolio to be the main driver of momentum returns in the Spanish stock market 

during the estimation period. This is because the market portfolio dominates the loser 

portfolio for all strategies while, generally speaking, the winner portfolio cannot be said 

to dominate the market portfolio. These findings provide the rationale for potential 

future research into issues such as the characteristics of the securities that form the loser 

portfolio or investor behaviour with respect to loser portfolios (see Grimblat and 

Titman, 2004). 

 

6.- Conclusions.  

This paper has used general non-parametric methods in an attempt to sort out the 

possible sources of momentum in stock markets. For this purpose, we present the results 

for  the Spanish stock market during the January 1973 to May 2004 estimation period. 

The first of the techniques to be applied was bootstrap analysis, which is used in 

the literature to ascertain whether returns to momentum strategies are due to cross-

sectional dispersion in the stocks return or to the time series behavior. In our bootstrap 

analysis we resample blocks of returns in the same period to avoid destroying any cross 

sectional patterns in the stock returns 

In line with the literature, the results from the bootstrap analysis are found to 

depend on the resampling method used (with or without replacement) thus the 

conclusions are inevitably questionable, given the bias present in both procedures and 

the lack of any specific guidelines for choosing between the two. In our opinion, 

however, for the problem that concerns us, given the number of available observations, 

small sample bias is clearly less important than the obvious reiteration bias caused by 

the replacement procedure, as this analysis has shown. This leads us to the conclusion 
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that momentum returns are partially or totally incompatible with explanations based on 

omitted risk factors.  

 Furthermore, the various stochastic dominance techniques, applied as described 

above (the KS test, the DD test and the MCSD test) have led us to the same conclusion, 

namely, that the winner portfolio stochastically dominates the loser portfolio, which is 

not consistent with the general asset-pricing models developed for risk-averse investors.  

The results suggest that theories that relax the unbounded rationality assumptions 

in classical asset pricing models and allow for more flexible environments (see Lo, 

2004) may provide further insights into the causes of momentum profits. However, 

there may be other potential causes including high transaction costs, which may make 

momentum strategies practicably impossible to implement (Lesmond, Schill and Zhou 

2004) or returns due to liquidity differentials between winners and losers. 
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TABLE 1: Calendar time momentum 1973 – 2004 
PANEL A in this table reports the monthly returns to the 16 Winner, Loser, and momentum portfolios,  
measured in calendar time, for the period January 1973 to May 2004 in the Spanish stock market. J, is 
the formation period and  K is the holding period. PANEL B shows the adjusted returns using the Fama-
French model for the period January 1982 – May 2004. * denotes 5% significance according to the t test 
. 
 
 PANEL A 

 K 3  6  9  12  
J Winners  0.898 * 0.990 * 0.986 * 0.998 * 
3 Losers -0.052  -0.080  -0.057  -0.047  
 Momentum 0.950 * 1.070 * 1.043 * 1.045 * 
 Winners  1.191 * 1.146 * 1.126 * 1.059 * 

6 Losers -0.191  -0.182  -0.184  -0.103  
 Momentum 1.383 * 1.329 * 1.310 * 1.162 * 
 Winners  1.389 * 1.360 * 1.234 * 1.118 * 

9 Losers -0.213  -0.328  -0.240  -0.142  
 Momentum 1.603 * 1.689 * 1.474 * 1.261 * 
 Winners  1.330 * 1.244 * 1.110 * 0.975 * 

12 Losers -0.396  -0.341  -0.206  -0.116  
 Momentum 1.726 * 1.586 * 1.317 * 1.091 * 

 
PANEL B 

 K 3  6  9  12  
J Winners  0,296   0,320   0,336   0,324   
3 Losers -0,802 * -0,787 * -0,751 * -0,699 * 
 Momentum 1,099 * 1,107 * 1,087 * 1,023 * 
 Winners  0,560 * 0,533 * 0,523 * 0,432 * 

6 Losers -0,942 * -0,888 * -0,821 * -0,733 * 
 Momentum 1,502 * 1,421 * 1,345 * 1,165 * 
 Winners  0,715 * 0,691 * 0,581 * 0,478 * 

9 Losers -0,934 * -0,952 * -0,854 * -0,770 * 
 Momentum 1,649 * 1,643 * 1,434 * 1,248 * 
 Winners  0,681 * 0,602 * 0,474 * 0,363   

12 Losers -1,002 * -0,941 * -0,812 * -0,746 * 
 Momentum 1,682 * 1,543 * 1,286 * 1,109 * 
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TABLE 2: Event time momentum effect 1973 -  2004  
This table reports the monthly returns to the 16 momentum portfolios, measured in event time, for the 
period January 1973 to May 2004 in the Spanish stock market. J is the formation period and  K is the 
holding period. * denotes 5% significance according to the t statistic adjusted by the Newey West(NW) 
procedure or the bootstrap method proposed by Lyon, Barber and Tsai (1999) (B). 
 

 
 K=3 NW B K=6 NW B K=9 NW B K=12 NW B 

J=3 0.986 * * 1.080 * * 1.059 * * 1.074 * * 
J=6 1.393 * * 1.329 * * 1.335 * * 1.188 * * 
J=9 1.614 * * 1.703 * * 1.492 * * 1.266 * * 

J=12 1.786 * * 1.605 * * 1.337 * * 1.106 * * 
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TABLE 3: Calendar time momentum effect 1992 - 2000 
PANEL A in this table the monthly returns to the 16 momentum strategies, measured in 
calendar time, for the period January 1992 to December 2000 in the Spanish stock market for 
the 72 stocks selected in the bootstrap analysis. J is the formation period and K is the holding 
period. PANEL B shows the adjusted returns using the Fama-French model for the period 
January 1982 – May 2004. ** and * denote 5% and 10 %  significance according to the t test 
 
  PANEL A 

 K=3  K=6  K=9  K=12  
J=3 0.443  0.588  0.743 * 0.763 ** 
J=6 0.776  1.114 ** 1.077 ** 0.912 ** 
J=9 1.240 * 1.301 ** 1.193 ** 0.964 * 

J=12 1.184 * 1.231 * 0.927  0.694  
 
  PANEL B 

 K=3  K=6  K=9  K=12  
J=3 0,503   0,584   0,773 ** 0,802 ** 
J=6 0,757   1,109 ** 1,099 ** 0,906 ** 
J=9 1,270 ** 1,331 ** 1,217 ** 1,002 ** 

J=12 1,257 ** 1,256 ** 0,967 * 0,755   
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TABLE 4: Bootstrap analysis 
This table reports the mean simulated returns in monthly % for the 16 momentum strategies using 
bootstrap procedures with and without replacement for the different return generating models used in the 
study. It also gives p values(1), which indicate the proportion of simulations in which there is a below 
zero return to a particular strategy and p values( 2), which indicate the proportion of simulations in 
which there is a higher than real return.  
PANEL A: Random walk with drift: 

 tiitiR ,, εα +=  

  Bootstrap with replacement Bootstrap without  
Replacement 

  K=3 K=6 K=9 K=12 K=3 K=6 K=9 K=12 
Mean 0.477 0.481 0.512 0.502 0.126 0.127 0.138 0.138 

p-value(1) (0.154) (0.100) (0.042) (0.064) (0.378) (0.332) (0.302) (0.256) J=3 
p-value(2) (0.520) (0.372) (0.226) (0.220) (0.190) (0.048) (0.016) (0.002) 

Mean 0.605 0.634 0.589 0.651 0.152 0.134 0.104 0.118 
p-value(1) (0.156) (0.112) (0.098) (0.052) (0.360) (0.378) (0.370) (0.348) J=6 
p-value(2) (0.378) (0.148) (0.136) (0.268) (0.076) (0.006) (0.002) (0.006) 

Mean 0.743 0.768 0.768 0.775 0.106 0.099 0.119 0.144 
p-value(1) (0.100) (0.064) (0.062) (0.040) (0.402) (0.406) (0.370) (0.336) J=9 
p-value(2) (0.202) (0.168) (0.200) (0.336) (0.000) (0.002) (0.002) (0.010) 

Mean 0.823 0.845 0.844 0.817 0.128 0.129 0.143 0.133 
p-value(1) (0.078) (0.076) (0.062) (0.044) (0.354) (0.382) (0.348) (0.362) J=12 
p-value(2) (0.248) (0.230) (0.406) (0.578) (0.008) (0.006) (0.012) (0.048) 

 
PANEL B: Random walk with drift, auto-correlation and cross-correlation. 
  titmitiiiti RRR ,1,,21,,1, . εββα +++= −−  

  Bootstrap with replacement Bootstrap without  
Replacement 

  K=3 K=6 K=9 K=12 K=3 K=6 K=9 K=12 
Mean 0.572 0.539 0.505 0.500 0.196 0.158 0.145 0.133 

p-value(1) (0.118) (0.076) (0.060) (0.052) (0.328) (0.296) (0.298) (0.274) J=3 
p-value(2) (0.588) (0.358) (0.250) (0.272) (0.266) (0.078) (0.012) (0.006) 

Mean 0.708 0.655 0.655 0.648 0.193 0.143 0.109 0.119 
p-value(1) (0.116) (0.112) (0.056) (0.068) (0.328) (0.348) (0.374) (0.362) J=6 
p-value(2) (0.438) (0.190) (0.180) (0.276) (0.074) (0.006) (0.002) (0.006) 

Mean 0.764 0.722 0.736 0.751 0.124 0.148 0.132 0.082 
p-value(1) (0.086) (0.094) (0.070) (0.090) (0.390) (0.338) (0.362) (0.424) J=9 
p-value(2) (0.190) (0.168) (0.180) (0.320) (0.010) (0.006) (0.004) (0.008) 

Mean 0.845 0.856 0.837 0.835 0.125 0.138 0.104 0.087 
p-value(1) (0.080) (0.066) (0.066) (0.042) (0.418) (0.352) (0.390) (0.420) J=12 
p-value(2) (0.276) (0.276) (0.412) (0.580) (0.016) (0.004) (0.020) (0.044) 
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TABLE 4 (Cont): Bootstrap analysis 
This table reports the mean simulated returns in monthly % for the 16 momentum strategies using 
bootstrap procedures with and without replacement for the different return generating models used in the 
study. It also gives p values (1), which indicate the proportion of simulations in which there is a below 
zero return to a particular strategy and p values (2), which indicate the proportion of simulations in 
which there is a higher than real return.  
 
PANEL C: Fama French Model. 
  titititmiiti HMLSMBRR ,,3,2,,1, εβββα ++++=  

  Bootstrap with replacement Bootstrap without  
Replacement 

  K=3 K=6 K=9 K=12 K=3 K=6 K=9 K=12 
Mean 0.390 0.391 0.458 0.497 0.071 0.071 0.160 0.189 

p-value(1) (0.182) (0.134) (0.058) (0.034) (0.416) (0.424) (0.226) (0.146) J=3 
p-value(2) (0.442) (0.284) (0.174) (0.180) (0.152) (0.028) (0.008) (0.006) 

Mean 0.504 0.559 0.702 0.655 0.043 0.144 0.245 0.209 
p-value(1) (0.174) (0.080) (0.032) (0.030) (0.420) (0.364) (0.198) (0.212) J=6 
p-value(2) (0.328) (0.090) (0.176) (0.242) (0.024) (0.004) (0.000) (0.004) 

Mean 0.816 0.831 0.837 0.764 0.233 0.304 0.283 0.203 
p-value(1) (0.038) (0.026) (0.026) (0.030) (0.256) (0.172) (0.164) (0.204) J=9 
p-value(2) (0.188) (0.152) (0.194) (0.320) (0.006) (0.004) (0.002) (0.006) 

Mean 0.994 0.973 0.882 0.780 0.364 0.324 0.222 0.119 
p-value(1) (0.028) (0.026) (0.024) (0.036) (0.170) (0.142) (0.226) (0.346) J=12 
p-value(2) (0.338) (0.294) (0.452) (0.570) (0.022) (0.002) (0.012) (0.022) 

 
PANEL D: Fama French Model with auto- correlation and cross -correlation. 
  titmitiitititmiiti RRHMLSMBRR ,1,,51,,4,3,2,,1, εβββββα ++++++= −−  

  Bootstrap with replacement Bootstrap without  
Replacement 

  K=3 K=6 K=9 K=12 K=3 K=6 K=9 K=12 
Mean 0.256 0.316 0.450 0.491 -0.043 0.039 0.146 0.164 

p-value(1) (0.246) (0.164) (0.072) (0.024) (0.578) (0.436) (0.276) (0.194) J=3 
p-value(2) (0.294) (0.214) (0.168) (0.154) (0.090) (0.018) (0.006) (0.000) 

Mean 0.441 0.595 0.696 0.666 -0.034 0.170 0.222 0.220 
p-value(1) (0.196) (0.100) (0.030) (0.030) (0.554) (0.326) (0.222) (0.174) J=6 
p-value(2) (0.256) (0.106) (0.160) (0.236) (0.012) (0.002) (0.004) (0.004) 

Mean 0.789 0.795 0.873 0.776 0.179 0.282 0.300 0.222 
p-value(1) (0.068) (0.030) (0.008) (0.018) (0.314) (0.198) (0.156) (0.186) J=9 
p-value(2) (0.206) (0.142) (0.196) (0.310) (0.006) (0.004) (0.004) (0.008) 

Mean 0.964 0.975 0.864 0.779 0.338 0.309 0.253 0.158 
p-value(1) (0.024) (0.018) (0.024) (0.032) (0.176) (0.176) (0.206) (0.292) J=12 
p-value(2) (0.320) (0.278) (0.428) (0.556) (0.018) (0.004) (0.018) (0.038) 
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TABLE 4 (Cont): Bootstrap analysis 
This table reports the mean simulated returns in monthly % for the 16 momentum strategies using 
bootstrap procedures with and without replacement for the different return generating models used in the 
study. It also gives p values (1), which indicate the proportion of simulations in which there is a below 
zero return to a particular strategy and p values (2), which indicate the proportion of simulations in 
which there is a higher than real return.  
 
PANEL E: Conditional Fama French Model. 

titititmitititmiiiti tZHMLtZSMBtZRHMLSMBRtZR ,,6,5,,4,3,2,,1,2,1, )()()()(. εββββββαα ++++++++=
 

  Bootstrap with replacement Bootstrap without  
Replacement 

  K=3 K=6 K=9 K=12 K=3 K=6 K=9 K=12 
Mean 0.621 0.418 0.535 0.639 0.292 0.095 0.239 0.328 

p-value(1) (0.076) (0.114) (0.030) (0.014) (0.204) (0.352) (0.130) (0.028) J=3 
p-value(2) (0.654) (0.314) (0.212) (0.322) (0.318) (0.040) (0.012) (0.004) 

Mean 0.528 0.583 0.772 0.828 0.128 0.149 0.353 0.391 
p-value(1) (0.124) (0.072) (0.012) (0.002) (0.374) (0.342) (0.104) (0.042) J=6 
p-value(2) (0.278) (0.290) (0.204) (0.372) (0.052) (0.004) (0.006) (0.016) 

Mean 0.849 0.909 0.892 0.877 0.305 0.411 0.402 0.402 
p-value(1) (0.034) (0.018) (0.022) (0.012) (0.246) (0.108) (0.108) (0.058) J=9 
p-value(2) (0.204) (0.176) (0.222) (0.408) (0.010) (0.002) (0.016) (0.034) 

Mean 1.175 1.101 0.912 1.093 0.564 0.472 0.496 0.321 
p-value(1) (0.002) (0.006) (0.010) (0.004) (0.056) (0.090) (0.054) (0.138) J=12 
p-value(2) (0.464) (0.392) (0.634) (0.710) (0.048) (0.012) (0.082) (0.110) 

 
 
PANEL F: Conditional Fama French Model with auto-correlation and cross-correlation. 

++++++++= )()()()(. ,6,5,,4,3,2,,1,2,1, tZHMLtZSMBtZRHMLSMBRtZR tititmitititmiiiti ββββββαα  

1,1,,81,,7 −−− ++= titmitii RR εββ  

  Bootstrap with replacement Bootstrap without  
Replacement 

  K=3 K=6 K=9 K=12 K=3 K=6 K=9 K=12 
Mean 0.499 0.356 0.538 0.619 0.261 0.065 0.247 0.332 

p-value(1) (0.120) (0.126) (0.026) (0.006) (0.254) (0.390) (0.130) (0.040) J=3 
p-value(2) (0.556) (0.221) (0.232) (0.284) (0.326) (0.034) (0.016) (0.012) 

Mean 0.438 0.591 0.778 0.787 0.048 0.169 0.358 0.417 
p-value(1) (0.186) (0.070) (0.014) (0.002) (0.476) (0.326) (0.116) (0.044) J=6 
p-value(2) (0.231) (0.134) (0.214) (0.314) (0.034) (0.006) (0.008) (0.014) 

Mean 0.840 0.933 1.007 0.927 0.320 0.447 0.540 0.449 
p-value(1) (0.040) (0.008) (0.002) (0.004) (0.214) (0.106) (0.038) (0.058) J=9 
p-value(2) (0.214) (0.194) (0.294) (0.471) (0.008) (0.006) (0.008) (0.042) 

Mean 1.153 1.075 1.007 0.965 0.557 0.502 0.469 0.360 
p-value(1) (0.002) (0.004) (0.004) (0.010) (0.068) (0.074) (0.072) (0.112) J=12 
p-value(2) (0.452) (0.372) (0.564) (0.752) (0.064) (0.022) (0.091) (0.126) 
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TABLE 5: KS stochastic dominance test 
The second column of this table reports the p values for the null hypothesis that the winner portfolio 
stochastically dominates the loser portfolio (W>L) in the second order sense for all the momentum 
strategies considered for the period January 1973 to May 2004, while the third column reports the p 
values for the opposite hypothesis, that the loser portfolio stochastically dominates the winner 
portfolio(L>W)  in the second order sense. Columns four and five give the same results as columns two 
and three  for third order stochastic dominance. 
 

 s=2 s=3 
JxK W>L L>W W>L L>W 
3x3 0.556 0.001 0.480 0.004 
3x6 0.556 0.000 0.542 0.002 
3x9 0.569 0.000 0.538 0.002 

3x12 0.581 0.000 0.557 0.001 
6x3 0.569 0.000 0.484 0.000 
6x6 0.559 0.000 0.487 0.000 
6x9 0.557 0.000 0.497 0.000 

6x12 0.588 0.000 0.567 0.000 
9x3 0.550 0.000 0.474 0.000 
9x6 0.568 0.000 0.493 0.000 
9x9 0.585 0.000 0.510 0.000 

9x12 0.597 0.000 0.514 0.000 
12x3 0.550 0.000 0.484 0.000 
12x6 0.557 0.000 0.560 0.000 
12x9 0.572 0.000 0.556 0.000 

12x12 0.589 0.000 0.562 0.000 
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TABLE 6: DD stochastic dominance test 
The second column of this table reports the p values for the null hypothesis that the winner portfolio 
stochastically dominates the loser portfolio(W>L) in the second order sense for all the momentum 
strategies considered for the period January 1973 to May 2004, while the third column reports p values 
for the opposite hypothesis, that the losers stochastically dominate the winners(L>W) in the second order 
sense. Columns four and five give the same results as columns two and three for third order stochastic 
dominance. 
 

 s=2 s=3 
JxK W>L L>W W>L L>W 
3x3 0.683 0.007 0.678 0.061 
3x6 0.680 0.004 0.373 0.039 
3x9 0.679 0.006 0.672 0.041 

3x12 0.680 0.005 0.674 0.033 
6x3 0.676 0.000 0.669 0.009 
6x6 0.679 0.000 0.675 0.012 
6x9 0.677 0.000 0.674 0.011 

6x12 0.678 0.001 0.673 0.015 
9x3 0.670 0.000 0.672 0.003 
9x6 0.674 0.000 0.671 0.001 
9x9 0.677 0.000 0.668 0.004 

9x12 0.677 0.000 0.668 0.007 
12x3 0.672 0.000 0.662 0.001 
12x6 0.671 0.000 0.660 0.003 
12x9 0.670 0.000 0.660 0.008 

12x12 0.669 0.001 0.662 0.014 
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TABLE 7: Chow’s Test  
This table reports the values of the  statistic, where k denotes the winner portfolio, l the losers and 
i the decile of the distribution of the market portfolio used as the reference. High enough values of this 
statistic lead to the rejection of the null hypothesis that the winners do not dominate the losers, where the 
critical value is 2.81 for a 5% level. 

)( i
lkZ τ−

 
 

 )( i
lkZ τ−   

JxK 1 2 3 4 5 6 7 8 9 10 
3x3 1.01 2.39 3.09 3.58 3.83 4.36 4.34 3.39 3.49 3.40 
3x6 1.45 2.25 3.10 3.82 4.20 4.84 5.31 4.67 4.66 4.69 
3x9 1.59 2.60 3.17 3.93 4.10 4.80 5.62 5.20 5.09 5.15 
3x12 2.06 3.10 3.58 4.27 4.83 5.53 6.37 5.97 5.95 5.80 
6x3 1.91 2.46 3.20 3.76 4.03 4.67 5.28 4.69 4.47 4.49 
6x6 1.62 2.10 2.64 3.39 3.53 4.19 5.05 4.75 4.66 4.75 
6x9 1.74 2.56 2.97 3.68 4.02 4.70 5.64 5.35 5.30 5.22 
6x12 1.64 2.53 2.87 3.58 4.09 4.80 5.78 5.46 5.50 5.09 
9x3 1.66 2.60 3.35 4.18 4.39 4.95 5.64 5.19 4.96 5.03 
9x6 1.94 2.93 3.52 4.36 4.82 5.45 6.27 5.96 5.88 5.82 
9x9 1.70 2.77 3.20 3.97 4.47 5.13 5.99 5.69 5.72 5.47 
9x12 1.65 2.54 2.90 3.60 4.15 4.79 5.73 5.42 5.45 4.93 
12x3 2.04 3.28 3.62 4.34 4.70 5.29 5.97 5.49 5.38 5.28 
12x6 1.74 2.87 3.18 3.88 4.26 4.86 5.57 5.31 5.43 5.19 
12x9 1.45 2.41 2.64 3.32 3.62 4.20 5.03 4.77 4.90 4.51 
12x12 1.35 2.14 2.23 2.81 3.21 3.79 4.62 4.41 4.41 3.87 

 

 33

Page 34 of 35

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 
TABLE 8: Chow’s test.  Winners and Losers 
Panel A of this table reports the values of the  statistic, where k denotes the winner portfolio and i 
the decile of the distribution of the market portfolio used as the reference. High enough values of this 
statistic lead to the rejection of the null hypothesis that the winners do not dominate the market, where the 
critical value is 2.81 for a 5% level. Panel B of this table presents the results for the  statistic in an 
analogous fashion. 

)( i
kZ τ

)( i
lZ τ

 
Panel A: Dominance of Winners over the market  

 )( i
kZ τ   

JxK 1 2 3 4 5 6 7 8 9 10 
3x3 -0.63 -0.33 0.65 0.76 1.06 0.95 0.98 0.42 1.11 1.15 
3x6 -0.83 -0.94 0.27 0.55 0.88 0.88 1.25 0.96 1.75 1.79 
3x9 -0.75 -0.68 0.31 0.60 0.76 0.75 1.29 1.09 1.90 1.92 
3x12 -0.54 -0.46 0.39 0.63 1.03 0.98 1.53 1.35 2.27 2.12 
6x3 -0.09 -0.10 1.01 1.39 1.90 1.88 2.21 1.88 2.63 2.57 
6x6 -0.26 -0.41 0.59 1.10 1.37 1.47 2.12 1.85 2.62 2.53 
6x9 -0.20 -0.13 0.59 1.06 1.37 1.47 2.20 1.91 2.78 2.58 
6x12 -0.52 -0.27 0.35 0.82 1.25 1.34 2.07 1.79 2.71 2.32 
9x3 0.19 0.80 1.87 2.37 2.79 2.91 3.36 3.01 3.72 3.60 
9x6 0.27 0.70 1.49 2.14 2.67 2.86 3.46 3.19 3.99 3.68 
9x9 -0.16 0.41 1.00 1.61 2.17 2.34 2.98 2.71 3.54 3.16 
9x12 -0.38 0.09 0.62 1.20 1.76 1.90 2.55 2.32 3.11 2.61 
12x3 0.34 1.03 1.55 2.06 2.46 2.62 3.10 2.71 3.48 3.15 
12x6 -0.16 0.37 0.86 1.44 1.98 2.13 2.66 2.52 3.37 2.91 
12x9 -0.49 -0.12 0.34 0.95 1.40 1.52 2.14 1.98 2.78 2.35 
12x12 -0.69 -0.41 -0.06 0.42 0.85 0.98 1.59 1.49 2.16 1.65 

 
 
Panel B: Dominance of Losers over the market 

 )( i
lZ τ    

JxK 1 2 3 4 5 6 7 8 9 10 
3x3 -1.76 -3.01 -2.90 -3.42 -3.41 -3.95 -3.93 -3.37 -2.91 -2.85 
3x6 -2.19 -3.03 -2.96 -3.45 -3.46 -3.98 -4.15 -3.77 -3.11 -3.12 
3x9 -2.32 -3.24 -3.00 -3.45 -3.38 -3.94 -4.21 -3.90 -3.15 -3.13 
3x12 -2.48 -3.40 -3.21 -3.58 -3.64 -4.12 -4.36 -4.09 -3.34 -3.18 
6x3 -2.31 -2.88 -2.94 -3.28 -3.09 -3.74 -4.17 -3.76 -2.99 -3.02 
6x6 -2.17 -2.77 -2.70 -3.13 -2.96 -3.56 -4.00 -3.81 -3.12 -3.22 
6x9 -2.26 -3.08 -3.00 -3.35 -3.36 -3.88 -4.30 -4.13 -3.40 -3.38 
6x12 -2.13 -2.97 -2.91 -3.25 -3.32 -3.82 -4.19 -4.03 -3.35 -3.13 
9x3 -2.21 -2.85 -2.85 -3.45 -3.21 -3.73 -4.16 -3.83 -3.03 -3.06 
9x6 -2.46 -3.31 -3.31 -3.78 -3.77 -4.21 -4.64 -4.43 -3.71 -3.73 
9x9 -2.29 -3.20 -3.20 -3.61 -3.62 -4.09 -4.45 -4.24 -3.62 -3.48 
9x12 -2.21 -3.02 -2.98 -3.31 -3.36 -3.80 -4.19 -3.98 -3.41 -3.11 
12x3 -2.58 -3.55 -3.50 -3.97 -3.97 -4.41 -4.82 -4.49 -3.74 -3.76 
12x6 -2.39 -3.38 -3.40 -3.78 -3.70 -4.16 -4.52 -4.25 -3.71 -3.64 
12x9 -2.13 -3.07 -3.01 -3.35 -3.25 -3.71 -4.09 -3.85 -3.39 -3.17 
12x12 -2.00 -2.85 -2.73 -3.04 -3.07 -3.49 -3.87 -3.65 -3.17 -2.86 
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