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On Option Pricing Models in the Presence of Heavy Tails∗

Michel Vellekoop† and Hans Nieuwenhuis‡

October 19, 2006

Abstract

We propose a modification of the option pricing framework derived by Borland [4, 5]
which removes the possibilities for arbitrage within this framework. It turns out that such
arbitrage possibilities arise due to an incorrect derivation of the martingale transformation in
the non-Gaussian option models which are used in that paper. We show how a similar model
can be built for the asset price processes which excludes arbitrage. However, the correction
causes the pricing formulas to be less explicit than the ones in the original formulation, since
the stock price itself is no longer a Markov process. Practical option pricing algorithms will
therefore have to resort to Monte Carlo methods or partial differential equations and we show
how these can be implemented. An extra parameter, which needs to be specified before the
model can be used, will give market makers some extra freedom when fitting their model to
market data.

1 Introduction
Models for equity option pricing in which the underlying asset exhibit tails which are heavier than
those of a lognormal distribution have been researched for many years now. A lot of empirical
evidence suggests that such heavy-tailed models can provide a better fit for many equity price
processes (or indices thereof) and it is therefore only natural that many authors have tried to
develop new models which go beyond the standard lognormal assumptions of the celebrated Black
and Scholes model [3]. Among the many possible assumptions made by different authors for the
distribution of future asset prices are jump-diffusion models [2], level-dependent volatilities [6, 7],
or hypergeometric and inverse Gaussian models that are analytically tractable and allow level-
dependent volatilities as well [1]. Another class of possible models is characterised by the fact that
the asset price process itself is no longer a Markov process. Perhaps the most well-known of the
models in this class are the stochastic volatility models, such as those defined by Hull and White
[10, 13], Heston [8] and Hobson and Rogers [9].
Recently, a very interesting new approach was proposed in a paper by Borland [4]. In it, the author
defines a diffusion process, in the usual form of a stochastic differential equation driven by a Wiener
process, which has heavy tails. Its distribution at future times can be characterized explicitly as
a Tsallis distribution [14], which implies a probability density function for the logarithm of the
assets which is asymptotically equal to x−γ for certain values of γ > 3. In the paper, a riskneutral
pricing argument is then used to derive closed-form option pricing formulas for European calls and
puts. It is shown that the implied volatility smile observed in practice can be represented well in
this model if one chooses the model parameters carefully. The model has a stochastic volatility
but it still generates a complete market, since no extra Brownian Motions are introduced for the
volatility process and in this way the model resembles the approach taken in Hobson and Rogers

∗Both authors would like to thank The Derivatives Technology Foundation for partial funding of their research,
and for drawing attention to some of the problems addressed in this paper.

†Corresponding Author: Financial Engineering Laboratory, University of Twente, P.O. Box 217, 7500 AE En-
schede, The Netherlands. Tel +31 53 489 2087, Fax + 31 53 489 3800, m.h.vellekoop@math.utwente.nl

‡University of Groningen, Faculty of Economics, PO Box 800, 9700 AV Groningen.
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[9]. Since it is also possible to find a closed-form solution for the future distributions of asset
prices, the model therefore seems to provide a very clever combination of analytical tractability
(since everything is defined in terms of diffusions, with distributions which can be characterized
explicitly) and sufficient complexity to be of use in market practice.
Unfortunately, the model as is stands admits arbitrage. Some mathematical conditions which
need to be fulfilled to carry out the Girsanov transformation from the real world measure to the
riskneutral measure, are not satisfied for this particular model. The closed-form option formulas
defined in the paper are therefore not valid and for options with long maturities they do not even
form a useful approximation. This is a pity, since the ideas underlying the model are very interest-
ing and deserving of further analysis. Indeed, the Borland model provides a nice hybrid between
the Heston model and the Black-Scholes model. It has a volatility which varies stochastically, but
since the volatility is driven by the same Brownian Motion as the asset process itself, the model
is still complete.
One of the most important feautures of any practical option pricing model is that it should be
guaranteed to be arbitrage-free. Since this is not the case for the original model in [4] or the
slighly different approximations given in the later paper [5], we will change the model in such a
way that it can be guaranteed to be arbitrage-free and we will show how option prices can still
be calculated. Our analysis should not be interpreted as an indication that the Borland model is
not useful; we merely try to repair the mathematical problems associated with it. We believe the
ideas behind the model to be innovative, and very useful for practical option trading.
In our approach, it is no longer possible to give closed-form formulas of European option prices.
However, we show how we can use a partial differential equation (which is totally different from
the one used in [4]) to find these prices, and we check the results using Monte Carlo methods. It
turns out that many of the nice features of the original model are retained after our modification.
The organization of the paper is as follows. In the next section we will formulate the model used in
[4], with a slighly different notation at some places to emphasize some important characteristics of
the parameters, and we show why arbitrage occurs in this model. Section 3 derives an alternative
model which excludes this arbitrage. Section 4 shows how option prices can be calculated using
this model, and we use the methods defined there to show some examples of the option prices in
section 5. In the last section we formulate conclusions and possible subjects for further research.

2 The Earlier Model
In [4], the stochastic process driving the rates of return of the stock price process is not Brownian
Motion but a continuous Markov process defined as

dΩt = f(t, Ωt) dWt (1)
Ω0 = 0 (2)

where {Wt, t ≥ 0} is an Ft-adapted Brownian Motion process on a filtered probability space
(Ω̄,F , (Ft)t∈[0,T ], P ), and f is defined by

P(t, w) = (1 + β(t)αw2)−
1
α /Zα

t , t > 0

f(t, w) =

{
ξ P(t, w)−

1
2α = ξ (Zα

t )
1
2α
√

1 + β(t)αw2 t > 0
0 t = 0

where α ∈]0, 1
2 [ is a constant 1. The starting value for Ω0 need not be zero, and we will change it

later in the paper, but for now we will use this assumption from the Borland model. The timescale
1We use a slightly different notation than the one in Borland’s paper to emphasize which constants are positive

or negative, α = q − 1 in the Borland paper. We also take α smaller than 1
2

instead of Borland’s 2
3

to make sure
that the expectation of quadratic variation E 〈Ω, Ω〉t is finite for all t ∈ [0, T ], as shown later. Also note that the
constant ξ that we introduce here was taken ξ = 1 in the Borland paper.

2
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β is given by

β(t) = [ (1 − α)(2 − α) t ]−
2

2−α

and Zα
t , Aα and ξ are given by

Zα
t =

∫
R

(1 + β(t)αu2)−
1
α du =

Aα√
β(t)

, Aα =

√
π
α Γ( 1

α − 1
2 )

Γ( 1
α )

, ξ = (Aα)−α/2.

Note that if ν = 2
α − 1 happens to be an element of N, then

√
(2 − α)β(t)Ωt has a Student’s

t-distribution with ν degrees of freedom. We can write

dΩt = c

√
t

α
2−α + Kt−1 Ω2

t dWt

where K ∈ R+, c ∈ R+ are constants which depend on α but not on the time t. The Kolmogorov
Forward (or Fokker-Planck) equation

∂

∂t
p(t, z) =

1
2

∂2

∂z2
[f2(t, z)p(t, z)] (3)

then shows that the probability density funcion p of Ωt, which satisfies

P(Ωt ∈ A) =
∫

A

p(t, z)dz

for all Borel sets A, is given by the function P mentioned before: p = P .

In the paper, Ωt is now used to define a stock price process {St, t ≥ 0} using

Ωt =
ln St/S0 − μt

σ

for strictly positive constants μ, σ. This defines a continuous Markov process S since

d(ln St) = μdt + σdΩt

= μdt + σf(t, Ωt)dWt

= μdt + σf(t, 1
σ (ln St/S0 − μt))dWt

The distribution of ln S has tails which are heavier than those for a Gaussian distribution.
The risk free rate of return r is assumed to be constant, with 0 < r < μ, and Bt = B0e

rt thus
models a bank account. Option prices are then derived for this model, under the assumption that
the underlying asset price process S follows the stochastic differential equation given above. The
calculations lead to the following option price function C(S, T ) for a European call with strike K
and time to maturity T which pays Φ(ST ) = max(0, ST − K) at time T :

C(s, T ) = e−rT

∫
R

(
serT+σw− 1

2γσ2T
2

2−α (1+αβ(T )w2) − K

)+

P(T, w) dw

where γ = 1
2 (2 − α) [(2 − α)(1 − α)]−

α
2−α is a strictly positive constant. However, this formula

cannot be correct.

Theorem 1. The call option formula given above admits arbitrage.

Proof.
Since bx − 1

2x2a ≤ 1
2b2/a for a > 0, we have that

σw − 1
2w2γσ2T

2
2−α αβ(T ) ≤ 1

2 (γT
2

2−α αβ(T ))−1

3
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so

serT+σw− 1
2γσ2T

2
2−α (1+αβ(T )w2) ≤ Smax(T, α)

where the value of Smax(T, α) does not depend on w. This means that the price of a European
Call with maturity T and strike K > Smax has the value zero. But there is a positive probability
that the option ends up in the money because under P the probability density function of ST is
positive for values higher than Smax(T, α). This clearly constitutes an arbitrage. �
In the later paper [5] slightly different call option price formulas are given, but one may construct
arbitrage opportunities for these formulas in a way similar to the one given above. We will now
analyze how the arbitrage arises.

Borland would like to work in a complete and arbitrage-free market, and she therefore wants to
construct a measure Q, equivalent with P, such that the discounted process S̃t = St/Bt becomes
a martingale under Q, i.e. EQ[St/Bt | Fu] = Su/Bu for all t ≥ u ≥ 0. To find such a measure Q

Borland writes

d(ln St) = μdt + σf(t, Ωt)dWt

dSt = (μ + 1
2σ2f2(t, Ωt))Stdt + σStf(t, Ωt)dWt

so the discounted asset price process satisfies

dS̃t = (μ − r + 1
2σ2f2(t, Ωt))S̃tdt + σS̃tf(t, Ωt)dWt

= σS̃tf(t, Ωt) (utdt + dWt)

where

ut =
μ − r + 1

2σ2f2(t, Ωt)
σf(t, Ωt)

An equivalent measure Q which makes S̃t a martingale must be such that the process W +
∫

udt
is a Brownian Motion under Q and to construct such a measure one may try to use the Girsanov
Theorem. Define for all A ∈ F

Q(A) =
∫

A

ζT (ω)dP(ω), ζT (ω) = exp

(
−
∫ T

0

us(ω)dWs(ω) − 1
2

∫ T

0

u2
s(ω)ds

)
(4)

The Girsanov Theorem states that W +
∫

udt is indeed a Brownian Motion under Q if EζT = 1.
A sufficient condition for this to be true is the Novikov condition which is stated in equation (45)
of [4] as

exp

(
− 1

2

∫ T

0

u2
sds

)
< ∞

but which should in fact be

EP exp

(
1
2

∫ T

0

u2
sds

)
< ∞ (5)

Theorem 2. The Novikov condition (5) is not satisfied for the model proposed above.

Proof. See Appendix. �

The arguments given in the Borland paper are therefore not sufficient to conclude that an equiv-
alent martingale measure Q exists. Since the Novikov condition is a sufficient but not a necessary

4
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condition, this does not automatically imply that such a measure Q does not exist. However, it is
easy to see from the proof of Theorem 2 that the tails of the Borland model seem to be too heavy
to be of practical use anyway. In fact, under our original measure P we have that

St = S0e
μt+σΩt

and since for t ∈]0, T ]

EPeσΩt =
1

Zα
t

∫
R

eσw(1 + αβ(t)w2)−
1
α dw = ∞

this implies that in Borland’s model

EPSt = ∞

for all t ∈]0, T ]. This means that the expectations of the asset price process values are not finite
under P, which is a serious limitation for practical use.

At the same time this indicates how we can try to change the model to remove this problem, as
we will now show in the next section.

3 A Different Option Pricing Model
The tails of the asset price process S can be made less heavy if we use the model (under the
original measure P)

dSt = μStdt + σStdΩt (6)
d(ln St) = (μ − 1

2σ2f2(t, Ωt))dt + σdΩt (7)

instead of the earlier model

d(ln St) = μdt + σdΩt

dSt = (μ + 1
2σ2f2(t, Ωt))Stdt + σStdΩt

The equation (6) is a special case of a class of models proposed in [5], but this special case was
assumed to be equivalent to the earlier model, which is not the case.
If the asset price process S defined by (6) exists, then it has a finite expectation at all times:
EPSt = eμt. However, before we can proceed we first have to check whether the stochastic
differential equation (1) used as a definition of the process Ω does indeed have a solution. It is
by no means clear that this is the case, since standard results on the existence of solutions would
assume f(t, Ω) to be uniformly Lipschitz in its second variable, i.e. |f(t, x) − f(t, y)| ≤ L|x − y|
for all t > 0, with L a constant which does not depend on t. This condition is clearly not satisfied
in this case. However, we can still show that this stochastic differential equation admits a strong
solution Ωt on the finite time interval [0, T ] (for the proof, see the Appendix).

Theorem 3. The stochastic differential equation

dΩt = f(t, Ωt) dWt

Ω0 = 0,

admits a strong solution in the sense2 that for all T > 0 there exists an a.s. continuous stochastic
process X such that

• The process X is adapted to the filtration (FW
t )t∈[0,T ] generated by the Brownian Motion.

2The formulation from the book of Karatzas and Shreve [11] has been used.
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• P(

∫ T

0
f2(t, Xt)dt < ∞) = 1.

• We have almost surely, for all t ∈ [0, T ], that Xt =
∫ t

0

f(u, Xu)dWu.

The probability density funcion p of Ωt, which satisfies

P(Ωt ∈ A) =
∫

A

p(t, z)dz

for all Borel sets A, can therefore indeed be found using the Fokker-Planck equation:

∂

∂t
p(t, z) =

1
2

∂2

∂z2
[f2(t, z)p(t, z)] (8)

As mentioned before, the solution3 to this equation is the earlier defined function P , but it is
important to stress that the conditional probabilities do not follow this Tsallis distribution:

Lemma 1. The distribution of Ω is given by a Tsallis-distribution, in particular we have for t > 0
for all Borel sets A

P(Ωt ∈ A) =
1

Zα
t

∫
A

(1 + β(t)αz2)−
1
α dz

but the conditional distribution of Ω is not given by a Tsallis-distribution, i.e. if t > s > 0 it is
not necessarily true for all Borel sets A that

P(Ωt ∈ A | Ωs = w) =
1

Zα
t−s

∫
A

(1 + β(t − s) · α · (z − w)2)−
1
α dz

Proof.
The first result follows from substituting p(t, z) = P(t, z) in (3), and the second result follows from
substituting p(t, z) = P(t − s, z − w) in that equation. Notice that p(t, z) = P(t − s, z − w) does
satisfy the equation

∂

∂t
p(t, z) =

1
2

∂2

∂z2
[f2(t − s, z − w)p(t, z)]

mentioned in [4], but that is not the correct Fokker-Planck equation for the Ω process defined in
(1). �
Notice that from the above we can conclude in particular that

EΩt = 0, EΩ2
t =

1
(2 − 3α)β(t)

∼ t
2

2−α . (9)

We will from now on work with the model defined in (6). In Appendix A of [4] this model is
mentioned as well, and it is argued there that both models give the same option prices since their
only difference is a drift term which will be removed in the Girsanov transformation. We now
know that this is not the case because the violation of the Novikov condition makes the Girsanov
transformation itself impossible. Under the model (6), however, the transformation can be carried
out, since we would now like to construct a measure Q under which W +

∫
udt is a Brownian

Motion, where this time

ut =
μ − r

σf(t, Ωt)
=

μ − r

σ

(Zα
t )−

1
2α

ξ
√

1 + αβ(t)Ω2
t

≤ μ − r

σ
β(t)

α
4 ≤ μ − r

σ
[(1 − α)(2 − α)t]−

α
4−2α = C t

− α
4−2α

3Note that in Borland’s paper, the constant ξ was taken to be one, but then P will not satisfy the Fokker-Planck
equation. We thank the anonymous referee for pointing this out to us.
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where the positive constant C is defined in an obvious way, and therefore

EP exp

(
1
2

∫ T

0

u2
sds

)
≤ exp

(
1
2C2

∫ T

0

s
− α

2−α ds

)

The integral on the righthand side is convergent around zero for α ∈ ]0, 1
2 [, which shows that the

Novikov condition can be met and that therefore the construction of Q as given in (4) is well-
defined. Under this new equivalent measure W Q = W +

∫
udt is a Brownian Motion and therefore

we have

dSt = μStdt + σStdΩt

= μStdt + σStf(t, Ωt)dWt

= rStdt + σStf(t, Ωt)d(Wt +
∫ t

0

usds)

= rStdt + σStf(t, Ωt)dW Q
t

= rStdt + σStdΩQ
t

where

ΩQ
t =

∫ t

0

f(s, Ωs)dW Q
s

is not just a local Q-martingale but a Q-martingale, since4 for all t ∈]0, T ]

d
dtE 〈Ω, Ω〉t = Ef2(t, Ωt) = ξ2(Zα

t )αE(1 + β(t)αΩ2
t ) ∼ t

α
2−α (1 + β(t)αEΩ2

t ) ∼ t
α

2−α

so E 〈Ω, Ω〉t is finite for all t ∈]0, T ] by our assumption that α ∈]0, 1
2 [.

It seems that we now arrive at the same model as in the Borland paper under the risk-neutral
measure Q. But there is an important difference. We have that under P

St = S0 exp
[
μt − 1

2σ2

∫ t

0

f2(s, Ωs)ds + σΩt

]
(10)

In the original model of Borland we had under P

St = S0 exp [μt + σΩt]

so we could always write Ωt as a function of St i.e.

Ωt =
ln(St/S0) − μt

σ

and the process St was therefore a Markov process. However, in our corrected model we lose this
property, due to the integral in (10). This integral

It =
∫ t

0

f2(s, Ωs)ds

depends on the whole history of the Ω process up to time t, and cannot be written in terms of
the final value Ωt alone. In the Borland paper it is suggested that this can be done, indeed it is
mentioned in equation (71) of that paper that Ωs equals√

β(T )
β(s)

ΩT

4Local martingales with finite quadratic variation processes are martingales, see Protter [12] II.6 coll. 3.
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That equality should of course mean equality in distribution but Borland then applies this equality
as an almost sure equality in her equation (72). This is incorrect, and it explains the arbitrage we
found in the option formulas derived in the rest of that paper.
In the second paper [5] another approximation is used for the integral IT , of the form g0(T ) +
g2(T )Ω2

T for certain deterministic functions g0 and g2, but this still suggests that the entire path
integral can be expressed in terms of ΩT which is not true. Even if the distributions would be
close (which they do not seem to be, witnessing the scale of the errors in figure 11 of the paper)
then ST could still have a very different distribution from its approximation. Even if IT and
g0(T ) + g2(T )Ω2

T were close in distribution, this would not necessarily mean that the term which
defines the risk-neutral distribution of ln ST , i.e. σΩT +IT , is close to σΩT +g0(T )+g2(T )Ω2

T , since
correlation plays a role there. As shown before, arbitrage is possible in this approximated model,
and we expect the arbitrage possibilities to be even more severe for path-dependent options, such
as American or barrier-type options.

The integral It in (10) represents the quadratic variation process which on the one hand makes
sure that the expectation of the stock price process is now finite under both P and Q (and hence
that conditional expectations and option prices exist) but on the other hand it causes our process
S to lose the Markov property. The stochastic processes (S, Ω) do form a Markov process together,
but not S alone. In particular, when we want to price an option at a time t ∈ [0, T [, we should not
just observe the stock price St at that time but also the stochastic variable Ωt, since it governs the
future quadratic variation of S and it cannot be calculated from S directly. This is no problem at
time zero (when Ω0 = 0) but it will be at later times. There can therefore not be a Black-Scholes
like formula C(St, t) for the option price C in terms of S and t alone, but instead C = C(t, St, Ωt).

In a sense the model thus resembles a stochastic volatility model since it has an unknown parameter
which varies stochastically and the value of which is needed to calculate the price of an option. But
there is an important difference too: in stochastic volatility models the stock and the volatility are
driven by two Wiener processes, while in this model, there is only one which drives both (which is
also the case in the earlier mentioned model by Hobson and Rogers). This is the reason that we
can still define a complete and arbitrage free model, even though the quadratic variation processes
varies stochastically. And we thus retain the nice feauture of the Borland model that it is a hybrid
which lies in between the standard Black-Scholes model and for example the Heston model with
stochastic volatility.

However, the downside is that it is not possible to use explicit expressions for option values in
terms of S alone, and even when Ω and S are both known, we cannot calculate call option values
C(t, St, Ωt) with strike K in closed form. The discounted asset price process

St

Bt
=

S0

B0
eσΩt− 1

2σ2 ∫ t
0 f2(s,Ωs)ds

must be an exponential martingale under the risk-neutral measure Q and the pricing formula can
be written as

C(t, s, w) = e−r(T−t)EQ

[
(Ste

r(T−t)+σ(ΩT −Ωt)− 1
2σ2 ∫ T

t
f2(s,Ωs)ds − K)+

∣∣∣∣ St = s, Ωt = w

]

but we cannot write this in a closed form, due to the presence of the quadratic variation integral
in the exponent. Note that the same was true for the formulas in the Borland paper at any time
after t = 0, because the closed form solution for the European Call is not valid for t > 0, even as an
approximation. This can be seen from the second part of Lemma 1, which states that distributions
at later times (which are conditional distributions given the information at that time) are no longer
Tsallis-distributions.

But we can still calculate option prices with Monte Carlo simulation methods, or by using a finite
difference implementation based on a partial differential equation, as we will now show.
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4 Calculation of Price Functions
We define the operator L with domain DL, the set of functions F : R+×R×R+ → R with function
values F (S, Ω, t) which are continuously differentiable with respect to t and twice continuously
differentiable with respect to S an Ω:

LF = 1
2σ2S2f2(t, Ω)

∂2F

∂S2
+ σSf2(t, Ω)

∂2F

∂S∂Ω
+ 1

2f2(t, Ω)
∂2F

∂Ω2
+ rS

∂F

∂S
− λ

∂F

∂Ω
− rF

where λ = μ−r
σ represents a market price of risk parameter.

Theorem 4. If the partial differential equation

∂F

∂t
+ LF = 0

F (S, Ω, T ) = Φ(S), (∀Ω ∈ R)

has a unique solution in DL, then the European-style contingent claim paying Φ(ST ) at time T
can be replicated (using a self-financing strategy in the asset and the bank account) after an initial
time t < T from an initial investment F (St, Ωt, t) at time t.

Proof.
Under the martingale measure Q we have

dSt = rStdt + σStf(t, Ωt)dW Q
t

dΩt = f(t, Ωt)dWt

= f(t, Ωt) · [dW Q
t − μ−r

σf(t,Ωt)
dt]

= f(t, Ωt)dW Q
t − λdt

Let F be a solution as mentioned in the Theorem. Then we have by Ito’s rule,

dF (St, Ωt, t) = (rF (St, Ωt, t) +
∂F

∂t
+ LF )dt + (

∂F

∂Ω
(St, Ωt, t) + σSt

∂F

∂S
(St, Ωt, t))f(t, Ωt)dW Q

t

= rF (St, Ωt, t)dt + (
∂F

∂Ω
(St, Ωt, t) + σSt

∂F

∂S
(St, Ωt, t))f(t, Ωt)dW Q

t

so if we define

φS
t =

∂F

∂S
(St, Ωt, t) +

1
σSt

∂F

∂Ω
(St, Ωt, t)

φB
t = (F (t, St, Ωt) − φS

t St)/Bt

then we have that

dF (St, Ωt, t) = φS
t dSt + φB

t dBt

F (St, Ωt, t) = φS
t St + φB

t Bt

while F (ST , ΩT , T ) equals Φ(ST ), the payoff of the contingent claim. This proves the Theorem.
�
Notice that we have not specified the precise conditions under which a solution to the partial
differential equation (with the desired properties) exists. Indeed, the exact conditions which
guarantee existence of a classical solution to the Cauchy problem posed here (with nonlinear and
time-inhomogeneous terms) will require further study.

It is interesting to see the role played by the market price of risk here. Since the volatility of the
underlying asset price process is stochastic, there is a market price of volatility risk. But since
the driving noise term of the volatility is the same as the one of the underlying process itself, this

9
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market price of risk simply boils down to the market price of risk for the asset process that we
find in a standard Black-Scholes model:

λ = μ−r
σ .

This again illustrates how the Borland model represents a tractable alternative for a full stochastic
volatilty model such as Heston’s, where there is a second Brownian Motion to drive the volatility
process which therefore brings with it a new market price of risk which cannot be determined
directly but must be estimated from market data.
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5 Numerical Results
In this section we use the partial differential equation of the previous section to calculate option
prices for European call options. We use St0 = 100, r = 3%, σ = 30%. The starting value for the
model t0 was taken to be 0.2 to show the influence of different values of Ω at that time, and the
option characteristics (strike K and maturity T ) are varied in the graphs. In all the numerical
results shown here we took λ = 0. We used an explicit finite difference method with a 100 × 100
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grid for the values of S and Ω and 20000 timesteps. The boundary conditions used for the S
and Ω variables were a vanishing second derivative of the option price with respect to S and Ω
respectively.
The prices we found are shown as implied volatilities in the Black-Scholes model for European
options. We have used the values α ∈ {0.10, 0.20, 0.30, 0.40} and Ωt0 ∈ {0, 0.50} to show the
effect of changing these important model parameters. We checked some option prices using Monte
Carlo simulations of the risk-neutral asset price process, and found good agreement. Using 500000
simulations with 1000 timesteps per simulation the maximal relative error we found between prices
generated by finite differences and by Monte Carlo simulations was 0.3% for the calls we considered.
In all Monte Carlo simulations we used Black-Scholes dynamics to define control variates for the
payoffs. Monte Carlo calculation times took 3 to 4 times as much CPU time as finite differences.
In figures 1 to 4, we have Ωt0 = 0, while in figure 5 to 8, Ωt0 = 0.50. We notice that we have
a clear volatility smile, which is more pronounced for shorter maturities. Also notice that if the
current value of Ω is not zero, the steepness of the smile increases and it shifts a little bit as
well. The fact that we get different curves for different values of Ω shows that it is essential to
include this parameter in the process of fitting the model to market data. In fact, this may provide
an interesting opportunity for market makers to use a richer class of possible volatility surfaces
instead of the single possibility provided when Ω is just taken to be zero.
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6 Conclusions and Future Research
It has been shown that the tails in the Borland model for non-Gaussian option pricing are so heavy
that conditional expectations, and hence option prices, do not exist in this model. However, we
have shown that a different model can be defined which remedies this by making the tails less
heavy, and option prices can then be calculated as soon as an additional parameter (the value of
Ωt, which governs the future quadratic variation of the asset price) has been specified. However,
we can no longer find closed-form formulas for Europan vanilla options.
We like to stress that the main innovatove idea of the Borland model, i.e. letting the volatility be
stochastic but keeping the completeness of the model, is not changed by our modification. But
the option pricing formulas we get are very different indeed, as can be seen by comparing the
partial differential equations generated by the two models. We believe that the model provides
very interesting perspectives for practical applications, and more particularly for improved fitting
of option prices. In future work we also hope to investigate the more general class of models given
by

St = S0e
rt+σΩt−1

2 σ2〈Ω,Ω〉t

dΩt = g(t, Ωt, St) dWt

for suitably chosen functions g.
To determine how well the model presented in this paper can be fitted in practice, further inves-
tigation is needed of the relationship between the observed volatility smiles and the parameter Ω
which needs to be specified in the modified model, but which was not present in the original one.
As we have pointed out, the extra flexibility that this parameter provides could be an advantage
in practical fitting problems. The fact that the model seems to generate volatility smiles which
steepen as time to maturity decreases is very promising. Obviously, the types of smile and skew
patterns that can be generated within this framework (for example by using different functions g
in the equation above) should be researched more extensively.

The authors would like to thank an anonymous referee for his very helpful comments,
which have improved this paper considerably.
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Appendix: Proofs of Theorems 3 and 2
Proof of Theorem 3.
Since f is not uniformly Lipschitz in its second variable we will use the following bound:

|f(t, x) − f(t, y)| = ∂xf(t, θ)|x − y|, for some θ ∈ [min{x, y}, max{x, y}]
= ξ (Zα

t )
1
2α|x − y| ·

∣∣∣∣ 2αβ(t)θ

2
√

1+αβ(t)θ2

∣∣∣∣
≤ ξ |x − y|

√
αβ(t)

(
Aα√
β(t)

)1
2α

= |x − y| · [(1 − α)(2 − α)t]−
1
2
√

α

but since α
(1−α)(2−α) ≤ 1 for all α ∈]0, 1

2 [ this gives

|f(t, x) − f(t, y)|2 ≤ |x − y|2
t

(11)

for all t > 0 and all x, y ∈ R.
Now define the sequence of adapted processes

X0
t ≡ 0, Xk+1

t =
∫ t

0

f(s, Xk
s )dWs

and let

Ek
t = E|Xk+1

t − Xk
t |2.

Notice that

X1
t = ξ

∫ t

0

(Zs)
1
2αdWs = Ãα

∫ t

0

s
α

4−2α dWs, Ãα = [(1 − α)(2 − α)]
α

4−2α

Since

sup
α∈]0,

1
2 [

Ãα ≤ 2

we have that

E0
t = E|X1

t |2 ≤ 4
∫ t

0

s
α

2−α ds = 4t
2

2−α 2−α
2 ≤ 4t

4
3

which shows that X1
t is a well-defined continuous martingale. We will make use of the following

Lemma.

Lemma 2. For all k ∈ N and all t ≥ 0 we have

Ek
t = E|Xk+1

t − Xk
t |2 ≤ 4 t

2
2−α (1 − α

2 )k

E|Xk
t |2 ≤ 8

α t
2

2−α .

Proof of Lemma.
We have shown that this claim is true for k = 0. Assuming the claim to be true for a certain
k ∈ N, we calculate (using the bound on f proven before)

Ek+1
t = E|Xk+2

t − Xk+1
t |2 = E

(∫ t

0

[f(s, Xk+1
s ) − f(s, Xk

s )]dWs

)2

= E

∫ t

0

(
f(s, Xk+1

s ) − f(s, Xk
s )
)2

ds (12)

≤ E

∫ t

0

s−1
(
Xk+1

s − Xk
s

)2
ds =

∫ t

0

s−1E
(
Xk+1

s − Xk
s

)2
ds

=
∫ t

0

s−1Ek
s ds ≤ 4(1 − α

2 )k

∫ t

0

s−1s
2

2−α ds = 4t
2

2−α (1 − α
2 )k+1
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so the first claim of the Lemma is proven by induction. From this result we then conclude that

E|Xk
t |2 ≤

k−1∑
m=0

E|Xm+1
t − Xm

t |2 =
k−1∑
m=0

Em
t ≤ 4t

2
2−α

k−1∑
m=0

(1 − α
2 )m = 8

α t
2

2−α (13)

and we’re done. Note that this result implies that E [ t−1(Xk
t )2 ] < ∞ for all t > 0. �

Continuation of Proof of Theorem 3.
For fixed k ∈ N we define

V k
t = Xk+2

t − Xk+1
t =

∫ t

0

[f(s, Xk+1
s ) − f(s, Xk

s )]dWs

This process V k
t is a local martingale and in fact even a martingale since by the Lemma and (12)

E
〈
V k
〉

t
= E

∫ t

0

(
f(s, Xk+1

s ) − f(s, Xk
s )
)2

ds

= Ek+1
t ≤ 4 t

2
2−α (1 − α

2 )k+1,

so V is a local martingale which has finite expected value for its quadratic variation process at all
times and hence5 it is a continuous martingale. We then use the standard martingale inequality
which states that

E

[
max

s∈[0,T ]
|V k

s |2
]

≤ 4E
〈
V k
〉

T

to derive that

E

[
max

s∈[0,T ]
|Xk+2

s − Xk+1
s |2

]
≤ c(1 − α

2 )k

for c = 16T
2

2−α . The Chebyshev inequality then allows us to conclude that

P

(
max

s∈[0,T ]
|Xk+2

s − Xk+1
s |2 ≥ (1 − α

4 )k

)
≤ ( 4

4−α )k E

[
max

s∈[0,T ]
|Xk+2

s − Xk+1
s |2

]
≤ c( 4

4−α )k(2−α
2 )k = c(1 − α

4−α )k

and since the series on the righthand side converges when we sum over all k ∈ N we can use the
Borell-Cantelli lemma to conclude that for almost all ω there exists an N(ω) ∈ N such that for all
k ≥ N(ω) and all m ∈ N+

max
t∈[0,T ]

|Xk+m
t (ω) − Xk+1

t (ω)| ≤ (1 − α
4 )

1
2k

1 −√1 − α
4

.

This shows that the sequence {Xk
t (ω), t ∈ [0, T ]}k∈N of continuous paths convergences uniformly

in the sup-norm and thus has a limit Xt(ω) = limk→∞ Xk
t (ω) which is a.s. continuous itself.

Clearly this limiting process is adapted, almost surely equal to zero for t = 0, and the requirement
P(
∫ T

0 f2(t, Xt)dt < ∞) = 1 follows from equations (11) and (13) and dominated convergence. To
prove the last requirement we let k go to infinity in the equation

Xk+1
t =

∫ t

0

f(s, Xk
s )dWs

5See for example the book by Protter [12], II.6 coll. 3.
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The lefthand side converges to Xt while the righthand side converges as well since

E

∣∣∣∣
∫ t

0

[f(s, Xk
s ) − f(s, Xs)]dWs

∣∣∣∣
2

= E

∫ t

0

∣∣f(s, Xk
s ) − f(s, Xs)

∣∣2 ds

≤
∫ t

0

s−1E
∣∣Xk

s − Xs

∣∣2 ds.

This last expression goes to zero for k → ∞ by dominated convergence, since E|Xk
t |2 ≤ 8

α T
2

2−α <
∞ by the Lemma, which implies E|Xt|2 < ∞ by dominated convergence as well. �

Proof of Theorem 2.
Since μ − r, σ and the values of the function f are all strictly positive we have that

1
2u2

t ≥ 1
2 (1

2σf(t, Ωt))2

≥ 1
8σ2(1 + β(t)αΩ2

t )β(t)−
1
2α

≥ 1
8σ2β(T )1−

1
2ααΩ2

t

≥ ηΩ2
t

where η = 1
8σ2β(T )1−

1
2αα is a positive constant which does not depend on t. Take a t1 ∈]0, T [

and define for t ∈ [t1, T ]

Mt = Ωt − Ωt1

Ht = EP[M2
t | Ft1 ]

Using elementary properties of the Wiener integral and Fubini’s Theorem we now calculate for
t1 ≤ t ≤ t2

Ht = EP[M2
t | Ft1 ] = EP[

(∫ t

t1

f(s, Ωs)dWs

)2

| Ft1 ]

= EP[
∫ t

t1

f2(s, Ωs)ds | Ft1 ] = EP[
∫ t

t1

ξ2(Zα
s )α(1 + β(s)αΩ2

s)ds | Ft1 ]

= ξ2

∫ t

t1

(Zα
s )αEP[(1 + β(s)αΩ2

s) | Ft1 ]ds = ξ2

∫ t

t1

(Zα
s )α(1 + αβ(s)Hs + αβ(s)Ω2

t1 )ds

Let K = ξ2(Zα
T )α max{1, αβ(t1)}, then

Ht1 = 0
d

dt
Ht = ξ2(Zα

t )α(1 + αβ(t)Ω2
t1 + αβ(t)Ht)

≤ K(1 + Ω2
t1 + Ht)

and Gronwall’s Lemma then gives that

Ht ≤ (eK(t−t1) − 1)(1 + Ω2
t1), t ∈ [t1, T ]

Now take t2 ∈]t1, T ] such that eK(t2−t1) − 1 ≤ 1
32 , then

Ht2 ≤ 1
32 (1 + Ω2

t1) (14)

Let

X = sup
t1≤s≤t2

M2
s
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and let m be any real number larger than one. The set

C = {ω : Ωt1(ω) ≥ 2m, X(ω) ≤ m2}

is a subset of the set {ω : inft1≤s≤t2 Ω2
t (ω) ≥ m}, so on C we have that 1

2u2
t ≥ 1

2ηm2. We then
bound the expectation in the Novikov condition as follows

L = EP exp

(
1
2

∫ T

0

u2
sds

)
≥ EP exp

(
1
2

∫ t2

t1

u2
sds

)

≥ EP1{C} exp
(

1
2

∫ t2

t1

u2
sds

)

≥ e
1
2ηm2(t2−t1)

EP1{C}

= e
1
2ηm2(t2−t1)

EP
(
EP[1{Ωt1≥2m}1{X≤m2} | Ft1 ]

)
= e

1
2ηm2(t2−t1)

EP
(
1{Ωt1≥2m} EP[1{X≤m2} | Ft1 ]

)
But

EP[X | Ft1 ] = EP[ sup
t1≤s≤t2

M2
s | Ft1 ] ≤ 4EP[M2

t2 | Ft1 ] = 4Ht2 ≤ 1
8 (1 + Ω2

t1)

where we have used a standard martingale inequality and (14). But then

m2EP[1{X≥m2} | Ft1 ] ≤ EP[X | Ft1 ] ≤ 1
8 (1 + Ω2

t1)

⇒ EP[1{X≤m2} | Ft1 ] ≥ 1 − 1
m2

1
8 (1 + Ω2

t1)

so

L ≥ e
1
2ηm2(t2−t1) EP

(
1{Ωt1≥2m}(1 − 1

m2
1
8 (1 + Ω2

t1))
)

= e
1
2ηm2(t2−t1) (1

2 − 1
8m2 ) P(Ωt1 ≥ 2m)

= e
1
2ηm2(t2−t1) (1

2 − 1
8m2 )

∫ ∞

2m

(1 + 4αβ(t1)u2)−
1
α du/Zα

t1

Letting m go to infinity now proves the result. �
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On Option Pricing Models in the Presence of Heavy Tails∗

Michel Vellekoop† and Hans Nieuwenhuis‡

October 19, 2006

Abstract

We propose a modification of the option pricing framework derived by Borland [4, 5]
which removes the possibilities for arbitrage within this framework. It turns out that such
arbitrage possibilities arise due to an incorrect derivation of the martingale transformation in
the non-Gaussian option models which are used in that paper. We show how a similar model
can be built for the asset price processes which excludes arbitrage. However, the correction
causes the pricing formulas to be less explicit than the ones in the original formulation, since
the stock price itself is no longer a Markov process. Practical option pricing algorithms will
therefore have to resort to Monte Carlo methods or partial differential equations and we show
how these can be implemented. An extra parameter, which needs to be specified before the
model can be used, will give market makers some extra freedom when fitting their model to
market data.

1 Introduction

Models for equity option pricing in which the underlying asset exhibit tails which are heavier than
those of a lognormal distribution have been researched for many years now. A lot of empirical
evidence suggests that such heavy-tailed models can provide a better fit for many equity price
processes (or indices thereof) and it is therefore only natural that many authors have tried to
develop new models which go beyond the standard lognormal assumptions of the celebrated Black
and Scholes model [3]. Among the many possible assumptions made by different authors for the
distribution of future asset prices are jump-diffusion models [2], level-dependent volatilities [6, 7],
or hypergeometric and inverse Gaussian models that are analytically tractable and allow level-
dependent volatilities as well [1]. Another class of possible models is characterised by the fact that
the asset price process itself is no longer a Markov process. Perhaps the most well-known of the
models in this class are the stochastic volatility models, such as those defined by Hull and White
[10, 13], Heston [8] and Hobson and Rogers [9].
Recently, a very interesting new approach was proposed in a paper by Borland [4]. In it, the author
defines a diffusion process, in the usual form of a stochastic differential equation driven by a Wiener
process, which has heavy tails. Its distribution at future times can be characterized explicitly as
a Tsallis distribution [14], which implies a probability density function for the logarithm of the
assets which is asymptotically equal to x−γ for certain values of γ > 3. In the paper, a riskneutral
pricing argument is then used to derive closed-form option pricing formulas for European calls and
puts. It is shown that the implied volatility smile observed in practice can be represented well in
this model if one chooses the model parameters carefully. The model has a stochastic volatility
but it still generates a complete market, since no extra Brownian Motions are introduced for the
volatility process and in this way the model resembles the approach taken in Hobson and Rogers

∗Both authors would like to thank The Derivatives Technology Foundation for partial funding of their research,
and for drawing attention to some of the problems addressed in this paper.

†Corresponding Author: Financial Engineering Laboratory, University of Twente, P.O. Box 217, 7500 AE En-
schede, The Netherlands. Tel +31 53 489 2087, Fax + 31 53 489 3800, m.h.vellekoop@math.utwente.nl

‡University of Groningen, Faculty of Economics, PO Box 800, 9700 AV Groningen.
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[9]. Since it is also possible to find a closed-form solution for the future distributions of asset
prices, the model therefore seems to provide a very clever combination of analytical tractability
(since everything is defined in terms of diffusions, with distributions which can be characterized
explicitly) and sufficient complexity to be of use in market practice.
Unfortunately, the model as is stands admits arbitrage. Some mathematical conditions which
need to be fulfilled to carry out the Girsanov transformation from the real world measure to the
riskneutral measure, are not satisfied for this particular model. The closed-form option formulas
defined in the paper are therefore not valid and for options with long maturities they do not even
form a useful approximation. This is a pity, since the ideas underlying the model are very interest-
ing and deserving of further analysis. Indeed, the Borland model provides a nice hybrid between
the Heston model and the Black-Scholes model. It has a volatility which varies stochastically, but
since the volatility is driven by the same Brownian Motion as the asset process itself, the model
is still complete.
One of the most important feautures of any practical option pricing model is that it should be
guaranteed to be arbitrage-free. Since this is not the case for the original model in [4] or the
slighly different approximations given in the later paper [5], we will change the model in such a
way that it can be guaranteed to be arbitrage-free and we will show how option prices can still
be calculated. Our analysis should not be interpreted as an indication that the Borland model is
not useful; we merely try to repair the mathematical problems associated with it. We believe the
ideas behind the model to be innovative, and very useful for practical option trading.
In our approach, it is no longer possible to give closed-form formulas of European option prices.
However, we show how we can use a partial differential equation (which is totally different from
the one used in [4]) to find these prices, and we check the results using Monte Carlo methods. It
turns out that many of the nice features of the original model are retained after our modification.
The organization of the paper is as follows. In the next section we will formulate the model used in
[4], with a slighly different notation at some places to emphasize some important characteristics of
the parameters, and we show why arbitrage occurs in this model. Section 3 derives an alternative
model which excludes this arbitrage. Section 4 shows how option prices can be calculated using
this model, and we use the methods defined there to show some examples of the option prices in
section 5. In the last section we formulate conclusions and possible subjects for further research.

2 The Earlier Model

In [4], the stochastic process driving the rates of return of the stock price process is not Brownian
Motion but a continuous Markov process defined as

dΩt = f(t, Ωt) dWt (1)

Ω0 = 0 (2)

where {Wt, t ≥ 0} is an Ft-adapted Brownian Motion process on a filtered probability space
(Ω̄,F , (Ft)t∈[0,T ], P ), and f is defined by

P(t, w) = (1 + β(t)αw2)−
1
α /Zα

t , t > 0

f(t, w) =

{

ξ P(t, w)−
1
2α = ξ (Zα

t )
1
2α
√

1 + β(t)αw2 t > 0
0 t = 0

where α ∈]0, 1
2 [ is a constant 1. The starting value for Ω0 need not be zero, and we will change it

later in the paper, but for now we will use this assumption from the Borland model. The timescale

1We use a slightly different notation than the one in Borland’s paper to emphasize which constants are positive
or negative, α = q − 1 in the Borland paper. We also take α smaller than 1

2
instead of Borland’s 2

3
to make sure

that the expectation of quadratic variation E 〈Ω,Ω〉
t

is finite for all t ∈ [0, T ], as shown later. Also note that the
constant ξ that we introduce here was taken ξ = 1 in the Borland paper.
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β is given by

β(t) = [ (1 − α)(2 − α) t ]
−

2
2−α

and Zα
t , Aα and ξ are given by

Zα
t =

∫

R

(1 + β(t)αu2)−
1
α du =

Aα
√

β(t)
, Aα =

√

π
α Γ( 1

α − 1
2 )

Γ( 1
α )

, ξ = (Aα)−α/2.

Note that if ν = 2
α − 1 happens to be an element of N, then

√

(2 − α)β(t)Ωt has a Student’s
t-distribution with ν degrees of freedom. We can write

dΩt = c

√

t
α

2−α + Kt−1 Ω2
t dWt

where K ∈ R+, c ∈ R+ are constants which depend on α but not on the time t. The Kolmogorov
Forward (or Fokker-Planck) equation

∂

∂t
p(t, z) =

1

2

∂2

∂z2
[f2(t, z)p(t, z)] (3)

then shows that the probability density funcion p of Ωt, which satisfies

P(Ωt ∈ A) =

∫

A

p(t, z)dz

for all Borel sets A, is given by the function P mentioned before: p = P .

In the paper, Ωt is now used to define a stock price process {St, t ≥ 0} using

Ωt =
lnSt/S0 − µt

σ

for strictly positive constants µ, σ. This defines a continuous Markov process S since

d(lnSt) = µdt + σdΩt

= µdt + σf(t, Ωt)dWt

= µdt + σf(t, 1
σ (lnSt/S0 − µt))dWt

The distribution of lnS has tails which are heavier than those for a Gaussian distribution.
The risk free rate of return r is assumed to be constant, with 0 < r < µ, and Bt = B0e

rt thus
models a bank account. Option prices are then derived for this model, under the assumption that
the underlying asset price process S follows the stochastic differential equation given above. The
calculations lead to the following option price function C(S, T ) for a European call with strike K
and time to maturity T which pays Φ(ST ) = max(0, ST − K) at time T :

C(s, T ) = e−rT

∫

R

(

serT+σw−
1
2γσ2T

2

2−α (1+αβ(T )w2) − K

)+

P(T, w) dw

where γ = 1
2 (2 − α) [(2 − α)(1 − α)]−

α

2−α is a strictly positive constant. However, this formula
cannot be correct.

Theorem 1. The call option formula given above admits arbitrage.

Proof.

Since bx − 1
2x2a ≤ 1

2b2/a for a > 0, we have that

σw − 1
2w2γσ2T

2

2−α αβ(T ) ≤ 1
2 (γT

2

2−α αβ(T ))−1

3
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so

serT+σw−
1
2γσ2T

2

2−α (1+αβ(T )w2) ≤ Smax(T, α)

where the value of Smax(T, α) does not depend on w. This means that the price of a European
Call with maturity T and strike K > Smax has the value zero. But there is a positive probability
that the option ends up in the money because under P the probability density function of ST is
positive for values higher than Smax(T, α). This clearly constitutes an arbitrage. �

In the later paper [5] slightly different call option price formulas are given, but one may construct
arbitrage opportunities for these formulas in a way similar to the one given above. We will now
analyze how the arbitrage arises.

Borland would like to work in a complete and arbitrage-free market, and she therefore wants to
construct a measure Q, equivalent with P, such that the discounted process S̃t = St/Bt becomes
a martingale under Q, i.e. EQ[St/Bt | Fu] = Su/Bu for all t ≥ u ≥ 0. To find such a measure Q

Borland writes

d(lnSt) = µdt + σf(t, Ωt)dWt

dSt = (µ + 1
2σ2f2(t, Ωt))Stdt + σStf(t, Ωt)dWt

so the discounted asset price process satisfies

dS̃t = (µ − r + 1
2σ2f2(t, Ωt))S̃tdt + σS̃tf(t, Ωt)dWt

= σS̃tf(t, Ωt) (utdt + dWt)

where

ut =
µ − r + 1

2σ2f2(t, Ωt)

σf(t, Ωt)

An equivalent measure Q which makes S̃t a martingale must be such that the process W +
∫

udt
is a Brownian Motion under Q and to construct such a measure one may try to use the Girsanov
Theorem. Define for all A ∈ F

Q(A) =

∫

A

ζT (ω)dP(ω), ζT (ω) = exp

(

−
∫ T

0

us(ω)dWs(ω) − 1
2

∫ T

0

u2
s(ω)ds

)

(4)

The Girsanov Theorem states that W +
∫

udt is indeed a Brownian Motion under Q if EζT = 1.
A sufficient condition for this to be true is the Novikov condition which is stated in equation (45)
of [4] as

exp

(

− 1
2

∫ T

0

u2
sds

)

< ∞

but which should in fact be

EP exp

(

1
2

∫ T

0

u2
sds

)

< ∞ (5)

Theorem 2. The Novikov condition (5) is not satisfied for the model proposed above.

Proof. See Appendix. �

The arguments given in the Borland paper are therefore not sufficient to conclude that an equiv-
alent martingale measure Q exists. Since the Novikov condition is a sufficient but not a necessary

4
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condition, this does not automatically imply that such a measure Q does not exist. However, it is
easy to see from the proof of Theorem 2 that the tails of the Borland model seem to be too heavy
to be of practical use anyway. In fact, under our original measure P we have that

St = S0e
µt+σΩt

and since for t ∈]0, T ]

EPeσΩt =
1

Zα
t

∫

R

eσw(1 + αβ(t)w2)−
1
α dw = ∞

this implies that in Borland’s model

EPSt = ∞

for all t ∈]0, T ]. This means that the expectations of the asset price process values are not finite
under P, which is a serious limitation for practical use.

At the same time this indicates how we can try to change the model to remove this problem, as
we will now show in the next section.

3 A Different Option Pricing Model

The tails of the asset price process S can be made less heavy if we use the model (under the
original measure P)

dSt = µStdt + σStdΩt (6)

d(ln St) = (µ − 1
2σ2f2(t, Ωt))dt + σdΩt (7)

instead of the earlier model

d(ln St) = µdt + σdΩt

dSt = (µ + 1
2σ2f2(t, Ωt))Stdt + σStdΩt

The equation (6) is a special case of a class of models proposed in [5], but this special case was
assumed to be equivalent to the earlier model, which is not the case.
If the asset price process S defined by (6) exists, then it has a finite expectation at all times:
EPSt = eµt. However, before we can proceed we first have to check whether the stochastic
differential equation (1) used as a definition of the process Ω does indeed have a solution. It is
by no means clear that this is the case, since standard results on the existence of solutions would
assume f(t, Ω) to be uniformly Lipschitz in its second variable, i.e. |f(t, x) − f(t, y)| ≤ L|x − y|
for all t > 0, with L a constant which does not depend on t. This condition is clearly not satisfied
in this case. However, we can still show that this stochastic differential equation admits a strong
solution Ωt on the finite time interval [0, T ] (for the proof, see the Appendix).

Theorem 3. The stochastic differential equation

dΩt = f(t, Ωt) dWt

Ω0 = 0,

admits a strong solution in the sense2 that for all T > 0 there exists an a.s. continuous stochastic
process X such that

• The process X is adapted to the filtration (FW
t )t∈[0,T ] generated by the Brownian Motion.

2The formulation from the book of Karatzas and Shreve [11] has been used.
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• P(

∫ T

0
f2(t, Xt)dt < ∞) = 1.

• We have almost surely, for all t ∈ [0, T ], that Xt =

∫ t

0

f(u, Xu)dWu.

The probability density funcion p of Ωt, which satisfies

P(Ωt ∈ A) =

∫

A

p(t, z)dz

for all Borel sets A, can therefore indeed be found using the Fokker-Planck equation:

∂

∂t
p(t, z) =

1

2

∂2

∂z2
[f2(t, z)p(t, z)] (8)

As mentioned before, the solution3 to this equation is the earlier defined function P , but it is
important to stress that the conditional probabilities do not follow this Tsallis distribution:

Lemma 1. The distribution of Ω is given by a Tsallis-distribution, in particular we have for t > 0
for all Borel sets A

P(Ωt ∈ A) =
1

Zα
t

∫

A

(1 + β(t)αz2)−
1
α dz

but the conditional distribution of Ω is not given by a Tsallis-distribution, i.e. if t > s > 0 it is
not necessarily true for all Borel sets A that

P(Ωt ∈ A | Ωs = w) =
1

Zα
t−s

∫

A

(1 + β(t − s) · α · (z − w)2)−
1
α dz

Proof.

The first result follows from substituting p(t, z) = P(t, z) in (3), and the second result follows from
substituting p(t, z) = P(t − s, z − w) in that equation. Notice that p(t, z) = P(t − s, z − w) does

satisfy the equation

∂

∂t
p(t, z) =

1

2

∂2

∂z2
[f2(t − s, z − w)p(t, z)]

mentioned in [4], but that is not the correct Fokker-Planck equation for the Ω process defined in
(1). �

Notice that from the above we can conclude in particular that

EΩt = 0, EΩ2
t =

1

(2 − 3α)β(t)
∼ t

2
2−α . (9)

We will from now on work with the model defined in (6). In Appendix A of [4] this model is
mentioned as well, and it is argued there that both models give the same option prices since their
only difference is a drift term which will be removed in the Girsanov transformation. We now
know that this is not the case because the violation of the Novikov condition makes the Girsanov
transformation itself impossible. Under the model (6), however, the transformation can be carried
out, since we would now like to construct a measure Q under which W +

∫

udt is a Brownian
Motion, where this time

ut =
µ − r

σf(t, Ωt)
=

µ − r

σ

(Zα
t )−

1
2α

ξ
√

1 + αβ(t)Ω2
t

≤ µ − r

σ
β(t)

α
4 ≤ µ − r

σ
[(1 − α)(2 − α)t]

−
α

4−2α = C t
−

α
4−2α

3Note that in Borland’s paper, the constant ξ was taken to be one, but then P will not satisfy the Fokker-Planck
equation. We thank the anonymous referee for pointing this out to us.

6

Page 32 of 43

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
where the positive constant C is defined in an obvious way, and therefore

EP exp

(

1
2

∫ T

0

u2
sds

)

≤ exp

(

1
2C2

∫ T

0

s
−

α
2−α ds

)

The integral on the righthand side is convergent around zero for α ∈ ]0, 1
2 [, which shows that the

Novikov condition can be met and that therefore the construction of Q as given in (4) is well-
defined. Under this new equivalent measure W Q = W +

∫

udt is a Brownian Motion and therefore
we have

dSt = µStdt + σStdΩt

= µStdt + σStf(t, Ωt)dWt

= rStdt + σStf(t, Ωt)d(Wt +

∫ t

0

usds)

= rStdt + σStf(t, Ωt)dW Q
t

= rStdt + σStdΩQ
t

where

ΩQ
t =

∫ t

0

f(s, Ωs)dW Q
s

is not just a local Q-martingale but a Q-martingale, since4 for all t ∈]0, T ]

d
dtE 〈Ω, Ω〉t = Ef2(t, Ωt) = ξ2(Zα

t )αE(1 + β(t)αΩ2
t ) ∼ t

α
2−α (1 + β(t)αEΩ2

t ) ∼ t
α

2−α

so E 〈Ω, Ω〉t is finite for all t ∈]0, T ] by our assumption that α ∈]0, 1
2 [.

It seems that we now arrive at the same model as in the Borland paper under the risk-neutral
measure Q. But there is an important difference. We have that under P

St = S0 exp

[

µt − 1
2σ2

∫ t

0

f2(s, Ωs)ds + σΩt

]

(10)

In the original model of Borland we had under P

St = S0 exp [µt + σΩt]

so we could always write Ωt as a function of St i.e.

Ωt =
ln(St/S0) − µt

σ

and the process St was therefore a Markov process. However, in our corrected model we lose this
property, due to the integral in (10). This integral

It =

∫ t

0

f2(s, Ωs)ds

depends on the whole history of the Ω process up to time t, and cannot be written in terms of
the final value Ωt alone. In the Borland paper it is suggested that this can be done, indeed it is
mentioned in equation (71) of that paper that Ωs equals

√

β(T )

β(s)
ΩT

4Local martingales with finite quadratic variation processes are martingales, see Protter [12] II.6 coll. 3.

7

Page 33 of 43

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
That equality should of course mean equality in distribution but Borland then applies this equality
as an almost sure equality in her equation (72). This is incorrect, and it explains the arbitrage we
found in the option formulas derived in the rest of that paper.
In the second paper [5] another approximation is used for the integral IT , of the form g0(T ) +
g2(T )Ω2

T for certain deterministic functions g0 and g2, but this still suggests that the entire path
integral can be expressed in terms of ΩT which is not true. Even if the distributions would be
close (which they do not seem to be, witnessing the scale of the errors in figure 11 of the paper)
then ST could still have a very different distribution from its approximation. Even if IT and
g0(T ) + g2(T )Ω2

T were close in distribution, this would not necessarily mean that the term which
defines the risk-neutral distribution of lnST , i.e. σΩT +IT , is close to σΩT +g0(T )+g2(T )Ω2

T , since
correlation plays a role there. As shown before, arbitrage is possible in this approximated model,
and we expect the arbitrage possibilities to be even more severe for path-dependent options, such
as American or barrier-type options.

The integral It in (10) represents the quadratic variation process which on the one hand makes
sure that the expectation of the stock price process is now finite under both P and Q (and hence
that conditional expectations and option prices exist) but on the other hand it causes our process
S to lose the Markov property. The stochastic processes (S, Ω) do form a Markov process together,
but not S alone. In particular, when we want to price an option at a time t ∈ [0, T [, we should not
just observe the stock price St at that time but also the stochastic variable Ωt, since it governs the
future quadratic variation of S and it cannot be calculated from S directly. This is no problem at
time zero (when Ω0 = 0) but it will be at later times. There can therefore not be a Black-Scholes
like formula C(St, t) for the option price C in terms of S and t alone, but instead C = C(t, St, Ωt).

In a sense the model thus resembles a stochastic volatility model since it has an unknown parameter
which varies stochastically and the value of which is needed to calculate the price of an option. But
there is an important difference too: in stochastic volatility models the stock and the volatility are
driven by two Wiener processes, while in this model, there is only one which drives both (which is
also the case in the earlier mentioned model by Hobson and Rogers). This is the reason that we
can still define a complete and arbitrage free model, even though the quadratic variation processes
varies stochastically. And we thus retain the nice feauture of the Borland model that it is a hybrid
which lies in between the standard Black-Scholes model and for example the Heston model with
stochastic volatility.

However, the downside is that it is not possible to use explicit expressions for option values in
terms of S alone, and even when Ω and S are both known, we cannot calculate call option values
C(t, St, Ωt) with strike K in closed form. The discounted asset price process

St

Bt
=

S0

B0
eσΩt−

1
2σ2

∫

t

0
f2(s,Ωs)ds

must be an exponential martingale under the risk-neutral measure Q and the pricing formula can
be written as

C(t, s, w) = e−r(T−t)EQ

[

(Ste
r(T−t)+σ(ΩT −Ωt)−

1
2σ2

∫

T

t
f2(s,Ωs)ds − K)+

∣

∣

∣

∣

St = s, Ωt = w

]

but we cannot write this in a closed form, due to the presence of the quadratic variation integral
in the exponent. Note that the same was true for the formulas in the Borland paper at any time
after t = 0, because the closed form solution for the European Call is not valid for t > 0, even as an
approximation. This can be seen from the second part of Lemma 1, which states that distributions
at later times (which are conditional distributions given the information at that time) are no longer
Tsallis-distributions.

But we can still calculate option prices with Monte Carlo simulation methods, or by using a finite
difference implementation based on a partial differential equation, as we will now show.
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4 Calculation of Price Functions

We define the operator L with domain DL, the set of functions F : R+×R×R+ → R with function
values F (S, Ω, t) which are continuously differentiable with respect to t and twice continuously
differentiable with respect to S an Ω:

LF = 1
2σ2S2f2(t, Ω)

∂2F

∂S2
+ σSf2(t, Ω)

∂2F

∂S∂Ω
+ 1

2f2(t, Ω)
∂2F

∂Ω2
+ rS

∂F

∂S
− λ

∂F

∂Ω
− rF

where λ = µ−r
σ represents a market price of risk parameter.

Theorem 4. If the partial differential equation

∂F

∂t
+ LF = 0

F (S, Ω, T ) = Φ(S), (∀Ω ∈ R)

has a unique solution in DL, then the European-style contingent claim paying Φ(ST ) at time T
can be replicated (using a self-financing strategy in the asset and the bank account) after an initial
time t < T from an initial investment F (St, Ωt, t) at time t.

Proof.

Under the martingale measure Q we have

dSt = rStdt + σStf(t, Ωt)dW Q
t

dΩt = f(t, Ωt)dWt

= f(t, Ωt) · [dW Q
t − µ−r

σf(t,Ωt)
dt]

= f(t, Ωt)dW Q
t − λdt

Let F be a solution as mentioned in the Theorem. Then we have by Ito’s rule,

dF (St, Ωt, t) = (rF (St, Ωt, t) +
∂F

∂t
+ LF )dt + (

∂F

∂Ω
(St, Ωt, t) + σSt

∂F

∂S
(St, Ωt, t))f(t, Ωt)dW Q

t

= rF (St, Ωt, t)dt + (
∂F

∂Ω
(St, Ωt, t) + σSt

∂F

∂S
(St, Ωt, t))f(t, Ωt)dW Q

t

so if we define

φS
t =

∂F

∂S
(St, Ωt, t) +

1

σSt

∂F

∂Ω
(St, Ωt, t)

φB
t = (F (t, St, Ωt) − φS

t St)/Bt

then we have that

dF (St, Ωt, t) = φS
t dSt + φB

t dBt

F (St, Ωt, t) = φS
t St + φB

t Bt

while F (ST , ΩT , T ) equals Φ(ST ), the payoff of the contingent claim. This proves the Theorem.
�

Notice that we have not specified the precise conditions under which a solution to the partial
differential equation (with the desired properties) exists. Indeed, the exact conditions which
guarantee existence of a classical solution to the Cauchy problem posed here (with nonlinear and
time-inhomogeneous terms) will require further study.

It is interesting to see the role played by the market price of risk here. Since the volatility of the
underlying asset price process is stochastic, there is a market price of volatility risk. But since
the driving noise term of the volatility is the same as the one of the underlying process itself, this
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market price of risk simply boils down to the market price of risk for the asset process that we
find in a standard Black-Scholes model:

λ = µ−r
σ .

This again illustrates how the Borland model represents a tractable alternative for a full stochastic
volatilty model such as Heston’s, where there is a second Brownian Motion to drive the volatility
process which therefore brings with it a new market price of risk which cannot be determined
directly but must be estimated from market data.
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5 Numerical Results

In this section we use the partial differential equation of the previous section to calculate option
prices for European call options. We use St0 = 100, r = 3%, σ = 30%. The starting value for the
model t0 was taken to be 0.2 to show the influence of different values of Ω at that time, and the
option characteristics (strike K and maturity T ) are varied in the graphs. In all the numerical
results shown here we took λ = 0. We used an explicit finite difference method with a 100 × 100
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grid for the values of S and Ω and 20000 timesteps. The boundary conditions used for the S
and Ω variables were a vanishing second derivative of the option price with respect to S and Ω
respectively.
The prices we found are shown as implied volatilities in the Black-Scholes model for European
options. We have used the values α ∈ {0.10, 0.20, 0.30, 0.40} and Ωt0 ∈ {0, 0.50} to show the
effect of changing these important model parameters. We checked some option prices using Monte
Carlo simulations of the risk-neutral asset price process, and found good agreement. Using 500000
simulations with 1000 timesteps per simulation the maximal relative error we found between prices
generated by finite differences and by Monte Carlo simulations was 0.3% for the calls we considered.
In all Monte Carlo simulations we used Black-Scholes dynamics to define control variates for the
payoffs. Monte Carlo calculation times took 3 to 4 times as much CPU time as finite differences.
In figures 1 to 4, we have Ωt0 = 0, while in figure 5 to 8, Ωt0 = 0.50. We notice that we have
a clear volatility smile, which is more pronounced for shorter maturities. Also notice that if the
current value of Ω is not zero, the steepness of the smile increases and it shifts a little bit as
well. The fact that we get different curves for different values of Ω shows that it is essential to
include this parameter in the process of fitting the model to market data. In fact, this may provide
an interesting opportunity for market makers to use a richer class of possible volatility surfaces
instead of the single possibility provided when Ω is just taken to be zero.
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6 Conclusions and Future Research

It has been shown that the tails in the Borland model for non-Gaussian option pricing are so heavy
that conditional expectations, and hence option prices, do not exist in this model. However, we
have shown that a different model can be defined which remedies this by making the tails less
heavy, and option prices can then be calculated as soon as an additional parameter (the value of
Ωt, which governs the future quadratic variation of the asset price) has been specified. However,
we can no longer find closed-form formulas for Europan vanilla options.
We like to stress that the main innovatove idea of the Borland model, i.e. letting the volatility be
stochastic but keeping the completeness of the model, is not changed by our modification. But
the option pricing formulas we get are very different indeed, as can be seen by comparing the
partial differential equations generated by the two models. We believe that the model provides
very interesting perspectives for practical applications, and more particularly for improved fitting
of option prices. In future work we also hope to investigate the more general class of models given
by

St = S0e
rt+σΩt−

1
2 σ2〈Ω,Ω〉

t

dΩt = g(t, Ωt, St) dWt

for suitably chosen functions g.
To determine how well the model presented in this paper can be fitted in practice, further inves-
tigation is needed of the relationship between the observed volatility smiles and the parameter Ω
which needs to be specified in the modified model, but which was not present in the original one.
As we have pointed out, the extra flexibility that this parameter provides could be an advantage
in practical fitting problems. The fact that the model seems to generate volatility smiles which
steepen as time to maturity decreases is very promising. Obviously, the types of smile and skew
patterns that can be generated within this framework (for example by using different functions g
in the equation above) should be researched more extensively.

The authors would like to thank an anonymous referee for his very helpful comments,

which have improved this paper considerably.
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Appendix: Proofs of Theorems 3 and 2

Proof of Theorem 3.

Since f is not uniformly Lipschitz in its second variable we will use the following bound:

|f(t, x) − f(t, y)| = ∂xf(t, θ)|x − y|, for some θ ∈ [min{x, y}, max{x, y}]

= ξ (Zα
t )

1
2α|x − y| ·

∣

∣

∣

∣

2αβ(t)θ

2
√

1+αβ(t)θ2

∣

∣

∣

∣

≤ ξ |x − y|
√

αβ(t)

(

Aα√
β(t)

)

1
2α

= |x − y| · [(1 − α)(2 − α)t]−
1
2
√

α

but since α
(1−α)(2−α) ≤ 1 for all α ∈]0, 1

2 [ this gives

|f(t, x) − f(t, y)|2 ≤ |x − y|2
t

(11)

for all t > 0 and all x, y ∈ R.
Now define the sequence of adapted processes

X0
t ≡ 0, Xk+1

t =

∫ t

0

f(s, Xk
s )dWs

and let

Ek
t = E|Xk+1

t − Xk
t |2.

Notice that

X1
t = ξ

∫ t

0

(Zs)
1
2αdWs = Ãα

∫ t

0

s
α

4−2α dWs, Ãα = [(1 − α)(2 − α)]
α

4−2α

Since

sup
α∈]0,

1
2 [

Ãα ≤ 2

we have that

E0
t = E|X1

t |2 ≤ 4

∫ t

0

s
α

2−α ds = 4t
2

2−α 2−α
2 ≤ 4t

4
3

which shows that X1
t is a well-defined continuous martingale. We will make use of the following

Lemma.

Lemma 2. For all k ∈ N and all t ≥ 0 we have

Ek
t = E|Xk+1

t − Xk
t |2 ≤ 4 t

2
2−α (1 − α

2 )k

E|Xk
t |2 ≤ 8

α t
2

2−α .

Proof of Lemma.

We have shown that this claim is true for k = 0. Assuming the claim to be true for a certain
k ∈ N, we calculate (using the bound on f proven before)

Ek+1
t = E|Xk+2

t − Xk+1
t |2 = E

(
∫ t

0

[f(s, Xk+1
s ) − f(s, Xk

s )]dWs

)2

= E

∫ t

0

(

f(s, Xk+1
s ) − f(s, Xk

s )
)2

ds (12)

≤ E

∫ t

0

s−1
(

Xk+1
s − Xk

s

)2
ds =

∫ t

0

s−1E
(

Xk+1
s − Xk

s

)2
ds

=

∫ t

0

s−1Ek
s ds ≤ 4(1 − α

2 )k

∫ t

0

s−1s
2

2−α ds = 4t
2

2−α (1 − α
2 )k+1
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so the first claim of the Lemma is proven by induction. From this result we then conclude that

E|Xk
t |2 ≤

k−1
∑

m=0

E|Xm+1
t − Xm

t |2 =

k−1
∑

m=0

Em
t ≤ 4t

2
2−α

k−1
∑

m=0

(1 − α
2 )m = 8

α t
2

2−α (13)

and we’re done. Note that this result implies that E [ t−1(Xk
t )2 ] < ∞ for all t > 0. �

Continuation of Proof of Theorem 3.

For fixed k ∈ N we define

V k
t = Xk+2

t − Xk+1
t =

∫ t

0

[f(s, Xk+1
s ) − f(s, Xk

s )]dWs

This process V k
t is a local martingale and in fact even a martingale since by the Lemma and (12)

E
〈

V k
〉

t
= E

∫ t

0

(

f(s, Xk+1
s ) − f(s, Xk

s )
)2

ds

= Ek+1
t ≤ 4 t

2
2−α (1 − α

2 )k+1,

so V is a local martingale which has finite expected value for its quadratic variation process at all
times and hence5 it is a continuous martingale. We then use the standard martingale inequality
which states that

E

[

max
s∈[0,T ]

|V k
s |2
]

≤ 4E
〈

V k
〉

T

to derive that

E

[

max
s∈[0,T ]

|Xk+2
s − Xk+1

s |2
]

≤ c(1 − α
2 )k

for c = 16T
2

2−α . The Chebyshev inequality then allows us to conclude that

P

(

max
s∈[0,T ]

|Xk+2
s − Xk+1

s |2 ≥ (1 − α
4 )k

)

≤ ( 4
4−α )k E

[

max
s∈[0,T ]

|Xk+2
s − Xk+1

s |2
]

≤ c( 4
4−α )k(2−α

2 )k = c(1 − α
4−α )k

and since the series on the righthand side converges when we sum over all k ∈ N we can use the
Borell-Cantelli lemma to conclude that for almost all ω there exists an N(ω) ∈ N such that for all
k ≥ N(ω) and all m ∈ N+

max
t∈[0,T ]

|Xk+m
t (ω) − Xk+1

t (ω)| ≤ (1 − α
4 )

1
2k

1 −
√

1 − α
4

.

This shows that the sequence {Xk
t (ω), t ∈ [0, T ]}k∈N of continuous paths convergences uniformly

in the sup-norm and thus has a limit Xt(ω) = limk→∞ Xk
t (ω) which is a.s. continuous itself.

Clearly this limiting process is adapted, almost surely equal to zero for t = 0, and the requirement

P(
∫ T

0 f2(t, Xt)dt < ∞) = 1 follows from equations (11) and (13) and dominated convergence. To
prove the last requirement we let k go to infinity in the equation

Xk+1
t =

∫ t

0

f(s, Xk
s )dWs

5See for example the book by Protter [12], II.6 coll. 3.
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The lefthand side converges to Xt while the righthand side converges as well since

E

∣

∣

∣

∣

∫ t

0

[f(s, Xk
s ) − f(s, Xs)]dWs

∣

∣

∣

∣

2

= E

∫ t

0

∣

∣f(s, Xk
s ) − f(s, Xs)

∣

∣

2
ds

≤
∫ t

0

s−1E
∣

∣Xk
s − Xs

∣

∣

2
ds.

This last expression goes to zero for k → ∞ by dominated convergence, since E|Xk
t |2 ≤ 8

α T
2

2−α <
∞ by the Lemma, which implies E|Xt|2 < ∞ by dominated convergence as well. �

Proof of Theorem 2.

Since µ − r, σ and the values of the function f are all strictly positive we have that

1
2u2

t ≥ 1
2 (1

2σf(t, Ωt))
2

≥ 1
8σ2(1 + β(t)αΩ2

t )β(t)−
1
2α

≥ 1
8σ2β(T )1−

1
2ααΩ2

t

≥ ηΩ2
t

where η = 1
8σ2β(T )1−

1
2αα is a positive constant which does not depend on t. Take a t1 ∈]0, T [

and define for t ∈ [t1, T ]

Mt = Ωt − Ωt1

Ht = EP[M2
t | Ft1 ]

Using elementary properties of the Wiener integral and Fubini’s Theorem we now calculate for
t1 ≤ t ≤ t2

Ht = EP[M2
t | Ft1 ] = EP[

(
∫ t

t1

f(s, Ωs)dWs

)2

| Ft1 ]

= EP[

∫ t

t1

f2(s, Ωs)ds | Ft1 ] = EP[

∫ t

t1

ξ2(Zα
s )α(1 + β(s)αΩ2

s)ds | Ft1 ]

= ξ2

∫ t

t1

(Zα
s )αEP[(1 + β(s)αΩ2

s) | Ft1 ]ds = ξ2

∫ t

t1

(Zα
s )α(1 + αβ(s)Hs + αβ(s)Ω2

t1 )ds

Let K = ξ2(Zα
T )α max{1, αβ(t1)}, then

Ht1 = 0

d

dt
Ht = ξ2(Zα

t )α(1 + αβ(t)Ω2
t1 + αβ(t)Ht)

≤ K(1 + Ω2
t1 + Ht)

and Gronwall’s Lemma then gives that

Ht ≤ (eK(t−t1) − 1)(1 + Ω2
t1), t ∈ [t1, T ]

Now take t2 ∈]t1, T ] such that eK(t2−t1) − 1 ≤ 1
32 , then

Ht2 ≤ 1
32 (1 + Ω2

t1) (14)

Let

X = sup
t1≤s≤t2

M2
s
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and let m be any real number larger than one. The set

C = {ω : Ωt1(ω) ≥ 2m, X(ω) ≤ m2}

is a subset of the set {ω : inft1≤s≤t2 Ω2
t (ω) ≥ m}, so on C we have that 1

2u2
t ≥ 1

2ηm2. We then
bound the expectation in the Novikov condition as follows

L = EP exp

(

1
2

∫ T

0

u2
sds

)

≥ EP exp

(

1
2

∫ t2

t1

u2
sds

)

≥ EP
1{C} exp

(

1
2

∫ t2

t1

u2
sds

)

≥ e
1
2ηm2(t2−t1)

EP
1{C}

= e
1
2ηm2(t2−t1)

EP
(

EP[1{Ωt1
≥2m}1{X≤m2} | Ft1 ]

)

= e
1
2ηm2(t2−t1)

EP
(

1{Ωt1
≥2m} EP[1{X≤m2} | Ft1 ]

)

But

EP[X | Ft1 ] = EP[ sup
t1≤s≤t2

M2
s | Ft1 ] ≤ 4EP[M2

t2 | Ft1 ] = 4Ht2 ≤ 1
8 (1 + Ω2

t1)

where we have used a standard martingale inequality and (14). But then

m2EP[1{X≥m2} | Ft1 ] ≤ EP[X | Ft1 ] ≤ 1
8 (1 + Ω2

t1)

⇒ EP[1{X≤m2} | Ft1 ] ≥ 1 − 1
m2

1
8 (1 + Ω2

t1)

so

L ≥ e
1
2ηm2(t2−t1) EP

(

1{Ωt1
≥2m}(1 − 1

m2

1
8 (1 + Ω2

t1))
)

= e
1
2ηm2(t2−t1) (1

2 − 1
8m2 ) P(Ωt1 ≥ 2m)

= e
1
2ηm2(t2−t1) (1

2 − 1
8m2 )

∫ ∞

2m

(1 + 4αβ(t1)u
2)−

1
α du/Zα

t1

Letting m go to infinity now proves the result. �
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