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Abstract 

This paper investigates the dynamics of stocks in the S&P500 index for the last 30 years. Using 

a stochastic geometry technique, we investigate the evolution of the market space and define a new 

measure for that purpose, which is a robust index of the dynamics of the market structure and 

provides information on the intensity and the sectoral impact of the crises. With this measure, we 

analyze the effects of some extreme phenomena on the geometry of the market. Nine crashes 

between 1987 and 2001 are compared by looking at the way they modify the shape of the manifold 

that describes the S&P500 market space. 

 

Keywords: financial markets, stochastic geometry, complexity, market spaces, market 

structures. 

JEL C0, G1 

1 Introduction 
 
In 1999, R. Mantegna [1] defined a distance metric based on correlation coefficients 

between the log-price difference of a pair of market securities. This metric allows for 

determining a distance between stocks evolving in time in a synchronous fashion. Since 

the metric was further discussed by Mantegna and Stanley [2] in the book that coined the 

term “Econophysics”, it has been applied in a considerable number of research works ([3]-

[11]). The fact that the metric is a properly defined distance gives a meaning to geometric 

notions in the study of the market. As Mantegna did when the distance was first introduced 

[1], many papers using the metric follow a topological approach.  

Provided that a distance between stocks exists, it is sufficient to form an additional 

hypothesis on the topological space of the stocks (as for example, choosing the 

subdominant ultrametric space, which is obtained from the minimal-spanning tree that 

links the stocks [2]) in order to end up with a connectivity pattern for the stocks. In so 

doing, one can naturally move away from a situation in which all the stocks were 

connected to a network of stocks, in which the connectivity pattern was endogenously 

determined. From the topological point of view, it opens a large set of promising 

possibilities to explore.  

Using Mantegna’s metric we followed a different perspective. In a previous 

contribution [12] we developed a method for the reconstruction of an economic space. By 

using a stochastic geometry technique, we proved that economic spaces are low-

dimensional entities and that this low-dimensionality is caused by the small proportion of 
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systematic information present in correlations among stocks. Using our reconstruction 

method we found that part of the correlation contribution is virtually indistinguishable 

from random and surrogate data (obtained by independent time permutation for each 

stock) 

In the present paper, we investigated the hypothesis that market spaces uniformly 

contract during crashes along their effective dimensions and concluded that, otherwise, 

some crashes may act differently on specific directions, causing interesting changes in the 

shape of the market space. In order to capture that distortion effect a structure index is used 

to compute the lack of uniformity among the market effective dimensions. As a 

consequence, we are able to characterize the structures that emerge in relevant historical 

periods and to identify the economic sectors that are associated to important changes in the 

leading directions of the evolving market space. 

It is empirically observed that both during expansion and normal periods the market 

tends toward randomness whereas in the disturbed periods its structure is reinforced, not 

only in the topological sense (as revealed by the clustering measures) but also in the 

geometrical sense, considering distortions of form. From this observation we propose a 

new measure of the dynamics of the market structure, which captures that distortion effect 

in the shape of the market space. 

Some other authors also discussed the existence of a dynamic pattern during market's 

crashes ([10], [13]-[20]).  Sornette and his co-authors successfully demonstrated that some 

dynamic patterns can often be found in preceding events. For several extreme phenomena, 

they found evidence of incoming instabilities in the precursory patterns of time trajectories 

of market data (as price, volume and volatility variables). Among their main contributions, 

there is an issue that appears to be crucial for understanding the behavior of the market: the 

identification of distinct signature for endogenous and exogenous shocks originating 

crashes. In particular, they proved a systematic association of large events with positive 

feedback processes. Later in the paper we shall address that issue while applying our 

structure index to discriminate distinct processes at work in the S&P500 stock market. 

The identification of economic sectors as clusters of stocks with a similar economic 

dynamics was discussed in references [9] to [11]. In reference [9], Gopikrishnan et al used 

techniques that are related to the metric we use, although under a different perspective. 

Diagonalizing the correlation matrix, they have tried to identify particular eigenvectors 

with the traditional industrial sectors. In our analysis, the effective dimensions of a market 

space may not correspond to economic sectors. We argue that the lack of uniformity 

among the effective dimensions reveals the existence of a dynamic pattern (which we 

empirically verify to correspond to crashes). To evaluate the impact of those extreme 

phenomena in different economic sectors (and the sectoral dynamics among different 

crashes), we compute the index of market structure for different market spaces, each of 

them comprising stocks that belong to a specific economic sector. 

The fact that the correlation matrix changes in crash periods has also been shown by 

Onnela et al [13], [14] and [18]. With the use of clustering techniques, they discussed the 

occurrence of changes in the stock market from a topological perspective. From the 

minimal-spanning tree that links the stocks they showed that, during a market crisis, there 

may be (as in Black Monday) a topological shrinking of the tree.   

However, less important market crashes can not be observed from the correlation 

matrix itself. While extreme events like Black Monday are captured through changes in the 

correlation matrix, those with a smaller impact in the market synchronous behavior require 

a fine grain approach in order to be identified.  
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In our method, after using the correlation matrix to prove that economic spaces are low-

dimensional entities (see also reference [12]), we focus on the geometrical aspects of those 

reduced spaces and show the impact of market crashes along the dimensions that carry the 

systematic information related to the market correlation structure. During a crash, the 

specific directions corresponding to the effective dimensions of a market space are 

differently affected, causing changes in the space shape. Experimentally, we observe that 

in the disturbed periods the market space increases its structured evolution, not only in the 

topological sense (as revealed by the clustering measures) but also in the geometrical 

sense, generating distortions of form. 

In sections 2 and 3 the method is explained in detail and it is applied to a set of 

companies that are or have been in the S&P500 index. In section 4 we discuss the results 

obtained for specific sectors and the role of those sectors in some important market 

crashes. Finally, a summary and conclusions are presented. 

2 Method 
 

The idea is simply stated in the following terms: 

1) Pick a representative set of N stocks and their historical data of returns over some 

time interval.  

2) From the returns data, using an appropriate metric, compute the matrix of 

distances between the N stocks.  

The problem now is reduced to an embedding problem in which, given a set of 

distances between points, one asks what is the smallest manifold that contains the set. 

Given a graph G and an allowed distortion there are algorithmic techniques [24] to map the 

graph vertices to a normed space in such a way that distances between the vertices of G 

match the distances between their geometric images, up to the allowed distortion. 

However, these techniques are not directly applicable to our problem because in the 

distances between assets, computed from their return fluctuations, there are systematic and 

unsystematic contributions. Therefore, to extract factor information from the market, we 

have somehow to separate these two effects. The following stochastic geometry1 technique 

is used: 

3) From the matrix of distances compute the coordinates for the N stocks in an 

Euclidean space of dimension smaller than N. 

4) Apply the standard analysis of reduction of the coordinates to the center of mass2 

and compute the eigenvectors of the inertial tensor. 

5) Apply the same technique to surrogate data, namely to data obtained by 

independent time permutation for each stock3.   

                                                 
1 Stochastic Geometry concerns the study of random geometric structures. References [26] and [27] 

provide detailed information on the subject. 
2 The concept of the center of mass is that of an average of the masses of the components of a object 

multiplied by their distances from a reference point. It is also called the centroid or center of gravity, 

corresponding to the point of a body (or object) at which the force of gravity can be considered to act 

and which undergoes no internal motion. It is a point at which the object's mass can be assumed to 

be concentrated 
3 Surrogate data is generated by permuting data (one-day return) of each stock randomly in time. As 

each stock is independently permuted, time correlations among stocks disappear while the resulting 

surrogate data preserve the mean and the variance that characterize actual data.  

Page 4 of 28

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

4 

6) Compare the eigenvalues in (4) with those in (5) and identify the directions for 

which the eigenvalues are significantly different as being the market characteristic 

dimensions. 

In so doing, we are attempting to identify the empirically constructed variables that 

drive the market and the number of surviving eigenvalues is the effective dimension of this 

economic space.  

7) From the eigenvalues of order smaller than the number of characteristic 

dimensions, compute the difference between eigenvalues in (4) with those in (5). The 

normalized sum of those differences is the index S, which measures the evolution of the 

distortion effect in the shape of the market space. 

For both surrogate and actual data, the sorted eigenvalues, from large to small, decrease 

with their order. In the surrogate case, the amount of decrease is linear in the order 

number, proving that the directions are being extracted from a spherical configuration. The 

display of a uniform and smooth decrease in the values of the sorted eigenvalues is 

characteristic of random cases and is also experimentally observed when the market space 

is built from historical data corresponding to a period of business as usual.  

Considering for the lack of uniformity among the market effective dimensions we are 

able to characterize the extent to which crashes act differently on specific directions, 

causing changes in the shape of the market space. Looking for relevant distortions in the 

shape of the S&P500 market space through the last 30 years, we found that amongst the 

highest values of the index are those computed in some important dates, as 19th October 

1987, 27th October 1997 and 11th September 2001.  

In addition to the geometrical analysis of the whole S&P500 market space, our measure 

is applied to sets of stocks that belong to specific economic sectors. Results show that 

some crashes act differently on specific sectors and that the deviation from random 

behavior may be limited to a few days after the day of the crash and also to a small number 

of sector-oriented groups of stocks. 

3 Measures 
 

From the returns )(kr  for each stock 

))(log())(log()(
1

kpkpkr
tt −

−=                     (1) 

 

a normalized vector  







 −

−
=

2
2 )()(

)()(
)(

krkrn

krkr
kρ       (2) 

 

is defined, where n is the number of components (number of time labels) in the vector 

)(kρ . With this vector one defines the distance between the stocks k and l by the 

Euclidian distance of the normalized vectors.  

 

)()()1(2 lkCd ijij ρρ −=−=                   (3) 
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as proposed in [1], with ijC  being the correlation coefficient of the returns )(ir , )( jr . 

The fact that ijd  is a properly defined distance gives a meaning to geometric notions and 

geometric tools in the study of the market. 

Given that set of distances between points, the question now is reduced to an 

embedding problem: one asks what is the smallest manifold that contains the set. If the 

proportion of systematic information present in correlations between stocks is small, then 

the corresponding manifold will be a low-dimensional entity. The following stochastic 

geometry technique was used for this purpose. 

3.1 The stochastic geometry technique 
 

After the distances ( ijd ) are calculated for the set of N stocks, they are embedded in 

Dℜ , where 1−≤ ND , with coordinates { })(kx . The center of mass R  is computed and 

coordinates reduced to the center of mass. 

k

kx
R

k∑
=

)(
                                    (4) 

Rkxky −= )()(             (5) 

and the inertial tensor 

        )()( kykyT j

k

iij ∑=                             (6) 

is diagonalized to obtain the set of normalized eigenvectors { ii e,λ }. The eigenvectors 

ie define the characteristic directions of the set of stocks. The characteristic directions 

correspond to the eigenvalues ( iλ ) that are clearly different from those obtained from 

surrogate data. They define a reduced subspace of dimension d, which carries the 

systematic information related to the market correlation structure [12]. In order to improve 

the decision criterion on how many eigenvalues are clearly different from those obtained 

from surrogate data, a normalized difference τ is computed: 

  

       )('1)()( iii λλτ −+=                (7) 

 

and the significantly different eigenvalues are those to which  τ(i) > 1/2. 

3.2 Index of the market structure 
 

Since the largest d eigenvalues define the effective dimensionality of the economic 

space, at time t, we compute S as: 
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where λ t(1), λ t(2), ..., λt(d) are the largest d eigenvalues of the market space and λt'(1), 

λ t'(2), ... λ t'(d) are the largest d eigenvalues obtained from surrogate data, namely from 

data obtained by independent time permutation of each stock. In computing S, at a given 

time t, both  λ t and λ t' are obtained over the same time window and for the same set of 

stocks.  
Vilela Mendes proposed in [16] an index that quantifies the effect of some structure-

generating mechanisms in dynamical models, based on the fact that a structure in a 

collective system acquires a characteristic length larger than that of the individual 

components of the system. We develop this strategy for the definition of our structure 

index S: as the dynamics of systems develop a structure-generating mechanism, the index 

S measures the normalized difference between the characteristic size of those structures 

and the characteristic size of the individual components of the system. This is a 

geometrical approach to define and to measure emergence. 

In portfolio optimization models, when the systematic and unsystematic contributions 

to the portfolio risk are distinguished, the former is associated to the correlation between 

stocks (collective structure) and the later to the individual variances of each stock [12]. 

Consequently, when S is applied to the market space, the eigenvalues obtained from 

surrogate data (λ t') may be taken as reference values that represent the characteristic size 

with which each leading direction contributes to the shape of a market whose components 

were uncorrelated. These eigenvalues correspond to the characteristic size of the individual 

(isolated) components of the market. On the other hand, the eigenvalues obtained from 

actual data (λ t) represent the characteristic size of each structure emerging from the 

dynamics of the market, that is, associated to each leading direction of the market space.  

Although the dynamical structure-generating mechanism in market spaces is not related 

to positive Lyapunov exponents as proposed in [16], the dynamical features we attempt to 

capture are those associated to changes occurring at the leading directions of the market 

space. As the eigenvalues obtained from actual data describe the structure emerging from 

the dynamics of the correlations between stocks, they may be taken as a measure of the 

collective structure of the market, being this structure generated by the dynamics of the 

market (i.e. by the synchronous behavior of stocks). 

4 Results and Discussion 
 

Results were computed in relation to actual daily returns data as well as to surrogate 

data that are generated by permuting each stock (one-day return data) randomly in time. As 

each stock is independently permuted, time correlations among stocks disappear while the 

resulting surrogate data preserve the mean and the variance that characterize actual data. 

4.1 The S&P500 effective dimensions 
 

The first set of actual data consists in 249 stocks present in S&P500 from July 1973 to 

March 2003, considering all the surviving firms for the whole period. Part of the ordered 

eigenvalue distributions obtained from actual data and surrogate data is shown in Fig.1. 
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Figure 1: S&P500 249-stocks: decrease of the largest 25 eigenvalues 

 
The plots in Fig.1 represent the largest 25 eigenvalues obtained for the first set of actual 

data. The largest 25 eigenvalues are compared to the largest 25 eigenvalues obtained from 

surrogate data. In the lower plot, the comparison between actual and surrogate data is 

emphasized by computing their normalized difference τ (equation (7)). 
Given the decrease obtained from the seventh eigenvalue, we conclude that the market 

structure is essentially confined to a six-dimensional subspace. This proves that this 

subspace captures the structure of the deterministic correlations that are driving the market 

and that the remainder of the market space may be considered, for the current purpose, as 

being generated by random fluctuations.  

To test the robustness of this conclusion, we have divided the data in two 

chronologically successive batches (the first consisting in daily data from July 1973 to 

March 1988, while the second batch includes data from March 1988 to March 2003) and 

performed the same operations. In spite of the changes in the market through time, in both 

cases the behavior of the eigenvalues distribution is very much the same.  

Apart from statistical fluctuations, the reconstructed spaces exhibit a reasonable degree 

of stability, confirming that the number of characteristic dimensions of the S&P500 market 

space is six. Considering this result, our analysis of the S&P500 market shape is based on 

six-dimensional subspaces. The question now is to assess the extent to which the 

occurrence of extreme phenomena modifies the shape of this subspace and the pattern of 

behavior of firms and sectors. 

4.2 The dynamics of crashes 
 

As extreme phenomena are dated events and as we look for their consequences in the 

distributions of the six leading directions, the geometry of the historical data is defined 
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considering short periods. In this sense, instead of the large time intervals that defined the 

reconstruction of the S&P500 space as in [12], we adopted a 16-days window as the 

chosen time interval and computed the index of structure with the time window centered at 

several different dates.  

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

λ
  
  
  
  
  
  
  
  
  
  
  
 λ

´

21−Oct−1987

o surrogate

* actual

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

λ
  
  
  
  
  
  
  
  
  
  
  
 λ

´

07−May−1997

o surrogate

* actual

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

λ
  
  
  
  
  
  
  
  
  
  
  
 λ

´

30−Oct−1997

o surrogate

* actual

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

λ
  
  
  
  
  
  
  
  
  
  
  
 λ

´

11−Sep−2001

o surrogate

* actual

 
Figure 2: S&P500 deviation from randomness at different dates,  

comparing crises and a business-as-usual day (6th May 1997) 

 

The plots in Figure 2 show some of these dates, namely the crashes of 19th October 

1987, the Black Monday, 11th September 2001 and 27th October 1997, the Second Black 

Monday. The second plot in this figure shows an unimportant date: May 6, 1997, as 

suggested in reference [11], was a typical normal day in the US stock market.  

The plots in figure 2 show λ(i) (with i=1,…,6) obtained from the S&P500 market space 

at four different dates. It is obvious that the values of S obtained for the first and the 

second Black Mondays and for 11th September 2001 are high, as there is a great difference 

in the decrease of the first six eigenvalues computed from actual and surrogate data.  

On the contrary, when the same calculation is performed around a typical normal date, 

the results show that, comparing actual data with surrogate data, there is a quite small 

difference in the decrease of the first six eigenvalues, which is still another piece of 

evidence for the robustness of our method. 

The geometrical changes in the shape of the market space describe the structural 

evolution of the characteristic dimensions. As previously indicated, the normal periods 

qualitatively tend to randomness while the disturbed periods will tend away from 

randomness. The null hypothesis for calculating S would state that, independently on the 

period (normal or disturbed) around which the index is computed, the decrease of the first 

six eigenvalues is equivalent to the one obtained from uncorrelated data (with the same 

mean, distribution and variance of the actual data and being S calculated using the same 

time window in both situations). 
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A less detailed but more extensive result is presented in Fig.3, where the plot shows the 

daily values of S for the 30 years period. We used a time moving window of 16 days on a 

market space including the 249 stocks, i.e. all firms surviving through the whole period. 

The eight highest values of S are marked on the plot.   
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Figure 3: the evolution of the index S, measuring the evolution of the S&P500 structure 

 

The highest peaks are identified and correspond to the following crashes: 

 

1. October 1987 

2. October 1989 

3. October 1997 

4. October 1998 

5. April 1999 

6. Dec.2000/Jan.2001 

7. April 2001 

8. September 2001 

 

The ranking of the crashes according to the measure of S and its explanation is as 

follows: 

 

1. October 1987: Black Monday. 

2. December 2000-Jan.2001: Argentinean Financial crisis (Argentina and Turkey 

bond market sell-off). 

3. October 1989: the US stock market falls almost 7%. 

4. September 2001: attack to the Twin Towers. 

5. April 1999: Nikkei Crash (Japan). 
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6. March/April 2001: according to the NBER a recession began in the US in March 

2001. 

7. October 1998: Russian Crash. 

8. October 1997: Asian Crash, the Second Black Monday. 

 
It is quite obvious from Fig 3 that we have two periods of crises, clustering in 1987-

1989 and in 1997-2001: the nature of these periods is discussed below. It should also be 

considered that some of the events in the list refer to crises in emergent market countries, 

with considerable effects on the dynamics of the world economy; others refer to the effect 

of different factors.  Indeed, the nature of the triggering factors widely varies. The 1987 

crash is well researched and corresponds to a major malfunctioning of the financial 

system. As Wright points out [25], the Dow Jones suffered a major loss of 22,61% the 19th 

October 1987, whereas the losses were 12,82% the 28th October 1929 and 11,73% the 29th. 

Considering the 55 days around the trough, the cumulated loss was of 39,6% in 1929 and 

of 36,1% in 1987.  

Having identified the events corresponding to the eight highest values (peaks) of S in 

the last 30 years (Fig.3), we reconsidered our data investigating the periods around each 

peak. Besides providing a more accurate view of the evolution, it allows for a better 

measurement since at each window we consider a larger number of companies in the 

S&P500. For the purpose of comparison, the first plot in Fig.4 shows the behavior of S in 

the nearby of the highest peak compared to the values of S around a typical normal day in 

the US stock market.  
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Figure 4: The Black Monday and a day of business-as-usual 

 

Considering shorter spans of time, we could include larger sets of stocks for each 

period; consequently, all the entrant firms at each period can be taken into our picture. This 

procedure highlighted the importance of another crash, which was previously hidden by 

our selection of the thirty years’ survivors. In fact, when the window used for scanning 

through our data is 40 days, the highest peaks (SMax= max{St}  ti ≤ t ≤ ti+40 ) organize in 

the following order (Table 1):  
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Ranking 

 

Date (T) 

 

SMax 

Number of 

Stocks 

included 

1 October 1987 37.7 312 

2 Dec.2000/Jan.2001 16.2 426 

3 October 1989 11.3 330 

4 Mar/April 2001 8.5 426 

5 April 2000          

(NASDAQ) 

8.6 424 

6 April 1999 8.1 417 

7 October 1997 7.1 408 

8 October 1998 6.4 414 

9 September 2001 6.3 426 

Table 1: Ranking of the crises according to the values of SMax 

 
Unsurprisingly, the highest peak corresponds to the Black Monday, being not only the 

larger one but also the long-lasting crisis. The most interesting change in the ranking of 

crashes concerns the appearance of the NASDAQ collapse in April 2000, which was 

hidden by the fact that some emerging firms in the nineties were not considered in our 

previous data set since they did not exist for the whole (30 years) period. Yet, when they 

are considered, the real picture of a turbulent market appears very clearly: it was in the 

Information Technology and Telecommunication sector that most speculation and stock 

activity concentrated in the late nineties, during the Internet bubble, and the NASDAQ 

crash marks its end. This crash proves the dimension of this speculative process. The 

NASDAQ attained its highest peak by early March 2000, and then its all-time highest loss 

by April (35% of loss in relation to the peak the previous month). 
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Figure 5: The crises of 1997, 1998, 1999 and  September 2001  
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Figure 6: 1989, 2000 and 2001 Crises 

 

In order to check the predictive character of our structure index a smaller time interval 

(10-days window) was chosen for the computation of S. The idea was to better observe the 

behaviour of S before the window hits the specific day of the crash, mainly in 19th October 

1987 and 27th October 1997. It is remarkable that the behaviour of S remains almost 

unchangeable before the 10-days window hits the day of the crash and after leaving the 

region comprised in that time interval. 

In the next section, sectoral dynamics is taken into account showing that some crises 

tend to concentrate in some specific sectors, while other crises tend to exhibit a pattern of 

perturbation in all sectors. 

4.3 Compared sectoral dynamics 
 

When, instead of the whole set of stocks, we consider sub-sets including the stocks of 

firms belonging to the same economic sector 4 and compute the index of market structure 

for each of these sub-sets, evidence for some interesting properties emerges.  

In a previous paper and using several topological indexes [12], we verified that in 

periods of expansion, sector-oriented sub-sets are characterized by a smaller average 

distance between stocks. The average behavior of companies belonging to the same 

economic sector is more synchronous than the behavior of the overall market taken as a 

whole: in the jungle of the crisis, tribes of firms act together. Now we analyze sectoral 

dynamics by considering the consequences of crashes on the leading directions of nine 

sector-oriented market spaces, being each of them restricted to stocks in one of the 

following sectors: Energy, Materials, Industry, Consumer Discretionary, Consumer 

Staples, Health Care, Financials, Information Technology and Utilities. 

                                                 
4 Detailed structures of sectors and other information from Global Industry Classification Standard 

(GICS®), available at  http://www.standardandpoors.com/, referenced in June, 2005. 
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In Figs.7 to 9, the histograms show the value of SMax obtained from those nine different 

market spaces, all of them built on the same time period, which is indicated in the title of 

the plots. The results show the remarkable impact of the Asian crisis in the Financial sector 

and the strong effect of the attack to the Twin Towers on the Materials and Industrial 

sectors. 
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Figure 7: Asian Crash 
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Figure 8: September 11th 
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From the plots in figures 7, 8 and 9 we see that some crises tend to concentrate in a few 

specific sectors (financial companies for the Asian Crash, industrial, materials and 

financial companies for the case of the reaction to the 11th September). In contrast, the 

Black Monday crisis exhibits a pattern of perturbation in all sectors (as Fig. 9 shows). 

The plot in Fig.9 shows the extraordinarily unique character of the 1987 Black Monday: 

this is the only case of a crash provoking a similar dynamics in all major sectors, whereas 

in all other crises the dynamics and time pattern of the main sectors is clearly divergent.  
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Figure 9: Black Monday 

 

The following table summarizes the sectoral pattern of the crashes, indicating the 

sectors leading the structural change: 

 

Date Leading Sectors 

October 1987 Black Monday All 

January 2001 Argentinean 

Crisis 

Financials 

October 1989 US stock market Consumer Staples/Financials 

September 2001  Twin Towers Industrials/Materials/Financials 

April 2000 NASDAQ Information Technology (IT) 

October 1998 Russian Crash Energy/Utilities 

April 1999 Nikkei Crash Consumer Discretionary 

April 2001 US recession Energy/IT 

October 1997 Asian Crash Financials 

Table 2: description of the sectors dominating each crash 

 

From the above results, one notices that the Financials sector is the sector that most 

frequently appears as a leading sector. Its appearance as the leading sector of both the 

Argentinean and the Asian crises is in accordance with the appropriate expectations, since 

each of these crises corresponds to a major malfunctioning of the financial system. 
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Another encouraging result refers to the Information Technology leadership at the 

NASDAQ crisis, settling the end of the Internet Bubble of the second half of the nineties. 

Finally, we compare the sectoral dynamics among different crashes, taking the 

examples of Materials and Financials. Because in the Black Monday crisis the index S 

reaches very high values in all sectors, this crisis was intentionally excluded from the plots 

in Fig.10. 
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Figure 10: Materials and Financials dynamics 

 

Back to the geometrical tale of our index, a three-dimensional look at the market space 

that evolves from October 1989 to September 2001 and comprises on average 80 Financial 

stocks (the lower plot in Fig.10), would reveal a manifold that: (i) starts from a elliptical 

form (in 1989), (ii) acquires prominences in a particular direction at the 1997 Asian Crash, 

and (iii) turns back to a close-to-spherical form until the Argentinean Financial crisis in 

December 2000. After a partial shape recovery, a new relevant distortion will arrive in 

September, 2001.  

A smoother dynamics characterizes the market space built from stocks in the Materials 

sector along the same time period (1989 to 2001). Accordingly to the results presented 

above (the upper plot in Fig.10), the only relevant shape distortion of that market space is 

the one taking place in 11th September, 2001; when the structure index S reaches a value 

three times higher than the highest value obtained so far for the Materials market space. 

 

5 Conclusions 
 

A stochastic geometry technique proved to be useful for the purpose of describing and 

interpreting the evolution and changes in the dynamics of a market. Furthermore, the index 

S, as defined in this paper, allowed for a useful taxonomy of the nine major stock market 

crises occurring in the last thirty years. The measure of SMax proved to be useful and 

capable of discriminating among the distinct processes at work in the stock market. 
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As the index S captures the lack of uniformity among the market effective dimensions, 

we are able to characterize the extent to which crashes act differently on specific 

directions, causing changes in the shape of the market space. Looking for relevant 

distortions in the shape of the S&P500 market space through the last 30 years, we 

identified the events corresponding to crises in emergent market countries, with 

considerable effects on the dynamics of the world economy. Others events that were also 

identified refer to the effect of different factors, showing that, the nature of the triggering 

factors widely varies. 

The identification of the characteristics of each crisis allows for their differentiation. 

Some crises were imposed either by disarrangements of national stock markets from 

emerging economies (Russia, Asia) and global players (Japan) or by purely exogenous 

factors (the 11th September attack). The crash provoked by exogenous factors is less 

consequential and is rapidly superseded. Instead, the Black Monday crisis followed another 

pattern: it is deeper, longer and involve a large number of sectors. The Argentinean crises 

(December 2000-January 2001) and the following NASDAQ crisis (April 2000) and the 

US recession (April 2001) initiated or followed the end of the Internet Bubble of the 

second half of the nineties.  

The Black Monday (1987) was the deeper and the longest of all the crashes as well as 

the more general, since it involved all economic sectors. The data suggest that another 

structural crisis may be at work in the clustering of six crashes between April 1997 and 

September 2001. 

Finally, we proved evidence of the existence of structure in the financial market 

dynamics and, furthermore, of relevant changes in structure, mostly in periods of crises 

and crashes. Considering this evidence, the predictive character of our structure index is to 

be explored in future work. 
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