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Abstract. We present an analysis of the VaR forecasts and the P&L-series of all 12 German banks
that used internal models for regulatory purposes throughout the period from the beginning of
2001 to the end of 2004. One task of a supervisor is to estimate the “recalibration factor”, i.e., by
how much a bank over- or underestimates its VaR. The Basel traffic light approach to backtesting,
which maps the count of exceptions in the trailing year to a multiplicative penalty factor, can be
viewed as a way to estimate the “recalibration factor”. We introduce techniques that provide a
much more powerful inference on the recalibration factor than the Basel approach based on the
count of exceptions. The notions “return on VaR (RoVaR)” and “well-behaved forecast system”
are keys to linking the problem at hand to the established literature on the evaluation of density
forecasts. We perform extensive bootstrapping analyses allowing (1) an assessment of the accuracy
of our estimates of the recalibration factor and (2) a comparison of the estimation error of different
scale and quantile estimators. Certain robust estimators turn out to outperform the more popular
estimators used in the literature. Empirical results for the non-public data are compared to the
corresponding results for hypothetical portfolios based on publicly available market data. While
these comparisons have to be interpreted with care since the banks’ P&L data tend to be more
contaminated with errors than the major market indices, they shed light on the similarities and
differences between banks’ RoVaRs and market index returns.

Keywords: banking supervision, VaR, exploratory data analysis, backtesting
JEL Classification: K23, G28

1. Introduction

In an important regulatory innovation the Basel Committee on Banking Supervision has
allowed banks to use their own internal models — so-called Value-at-Risk (VaR) models — to
calculate the regulatory capital cushion needed to cover the market risk of open positions
in their trading book. Compared with the standardized methods prescribed by the Basel
regulation the internal models approach offers a number of important advantages within
the process of risk management, i.e., in measuring, monitoring and managing market
risk for trading portfolios. These advantages include the convergence of economic and

*The first two authors point out that the views expressed herein should not be construed as being
endorsed by the BaFin. We thank several anonymous referees for numerous suggestions as well as
seminar participants from the Center of Financial Studies, Humboldt University, and the conference
of the Swiss Society for Financial Market Research for helpful discussions. Special thanks go to Andreas
Zapp for valuable pointers to literature, numerous discussions and support with regard to data and
R-coding.
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regulatory capital (Matten; 2000), the avoidance of duplicated efforts for internal and
regulatory risk measurement and the signaling of competence to the market, especially
to rating agencies, by the regulatory approval of a bank’s internal model.

The Basel paper on backtesting describes in-depth the regulatory requirements on the
forecast quality of the internal model in order to ensure an adequate calculation of regu-
latory capital (Basel Committee on Banking Supervision; 1996b). Numerous publications
reflect on VaR forecast evaluation, starting with Kupiec (1995), who points out the lack of
statistical power of a backtesting that is based on a binomial test statistic. Crnkovic and
Drachman (1996) propose the use of the Kuiper statistic, which is a goodness-of-fit type
statistic based on the whole forecast distribution. Christoffersen (1998) draws the atten-
tion to backtesting based on specification tests, focusing on the independence property to
evaluate forecast quality. On a more general level, questions of forecast evaluations are
studied by Dawid (Dawid; 1982a,b, 1984, 1986; Seillier-Moiseiwitsch and Dawid; 1993).
These papers are partly influenced by the literature on weather forecasting (Murphy and
Winkler; 1987, 1992). Diebold, Gunther and Tay (1998) study the evaluation of density
forecasts in general, making use of the Rosenblatt-transform (Rosenblatt; 1952). In a
similar spirit, Berkowitz (2000) proposes an approach to the evaluation of VaR forecasts
that is based on conditioned forecast distributions. Lopez (2001) studies the evalua-
tion of volatility forecasts under economic loss functions. He establishes the link to the
weather forecasting literature by transforming volatility forecasts to probability forecasts
of specific events, which are then subjected to probability scoring rules. A more detailed
overview of backtesting issues is given by Overbeck and Stahl (2000). More recent reviews
are given by Finger (2005) and Campbell (2005).

Before describing the contribution of this paper, let us introduce some notation. Con-
sider the hypothetical, or “clean”, P&L for the time period [t — 1,t]:

Cy= Ut(ﬂt—l) - Ut—1(7ft—1), (1)

where v(7) is the value of a given portfolio 7 at time ¢. The random variable vy (m—1)
denotes the at time ¢ — 1 frozen portfolio, evaluated at prices of time ¢t. The Value-at-Risk
of a portfolio m;_1 at the confidence level « is the a—quantile of the distribution of losses
—C} during time period [t — 1,¢]. This is interpreted as an upper bound of losses that
might be surpassed only with probability 1 — «. From now on we will use the shorthand
notation V; to denote the VaR forecast made at time ¢t — 1 for the distribution of (Y%, at
the confidence level 99%, which is the confidence level used in the Basel framework.

Within an observation period of 250 trading days 2.5 violations of the forecasts V; are
to be expected on the average. Hence, if too many violations occur there is good reason
to doubt that the internal model’s level of significance is correctly covered. In order
to ensure a sufficient forecast quality, the Basel Committee tied the capital requirement
to the number of VaR exceptions of the bank’s model (Basel Committee on Banking
Supervision; 1996a). The empirical analysis of the forecast quality conducted in this
paper is in the spirit of Dawid’s forecast evaluation, which is based on the whole forecast
distribution.

It is of great practical importance to note that freezing the portfolio — as in (1) — is
not imperative. The Basel Committee also acknowledges backtesting VaR that is based
on actual trading outcomes. In that case changes of the portfolio composition during the
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holding period, fees etc. are superimposed on the hypothetical P&L. From a statistician’s
point of view, the judgment of forecast quality should be based on the hypothetical P&L,
(1), because the VaR forecast assumes a static portfolio by construction. From a risk
manager’s point of view, however, the actual or economic P&L is actively managed and
reported. Obviously both ways to tackle the backtesting problem have their intrinsic mer-
its. German legislation prescribes a backtesting based on (1), whereas the US legislation
admits to base the backtesting on the actual P&L, see (Berkowitz and O’Brien; 2002).

This is the first article to provide a detailed empirical analysis of the performance of
the actual VaR forecasts of all German banks that used internal models for regulatory
purposes in the year 2001. Insofar, it is comparable to the empirical analysis of similar
data from six US banks by Berkowitz and O’Brien (2002). The methodology employed,
however, differs significantly. While Berkowitz and O’Brien fit an ARMA-GARCH model
directly to the P&L time series, we focus on the return on VaR time series Cy/V;. The P&L
time series show pronounced autocorrelations and volatility clustering. On the other hand,
most return on VaR time series show much less autocorrelations and volatility clustering.
(See section 3 for a more detailed explanation why the ratio Cy/V; has similarities with
“usual” returns.)

The theoretical contribution of this paper is to show under what conditions estimators
of scale — like the empirical standard deviation — can be used to draw conclusions about
the conservativeness of VaR forecasts. The theoretical results (in the appendix) can be
viewed as a generalization of the “conditions producing an iid z [the probability integral
transform| series” in (Diebold, Hahn and Tay; 1998). The fact that the whole forecast
distribution is not available, is bridged by the empirical observation that the forecasts are
relatively “well behaved”. We call a time series of VaR forecasts well-behaved if the return
on VaR comes from a scale family and is an independent series. This suggests to separate
the estimation of the shape of the scale family on the one hand and the estimation of the
scale of the distribution on the other hand.

The practical contribution of this paper is to compare the estimation errors of estima-
tors of scale and shape using an extensive bootstrap analysis on our data. Certain robust
methods turn out to provide the lowest estimation errors across the banks in our sample.
The estimator of the shape factor exploits the relationship between M-estimators and
quantile estimation, as described by Kozek (2002). This separation of the estimation of
scale and shape is similar in effect though different from the techniques used by Diebold,
Hahn and Tay (1998).

2. Description of the Data Set

The data set considered here contains data from all thirteen German banks that used
internal models for regulatory purposes in the year 2001. The data set for each bank
consists of daily VaR forecasts V; and the corresponding daily hypothetical P&L C for the
period 2001-2004. Most of the following figures and tables are based on the normalized
P&L and VaR time series. l.e., they are divided by the banks’ full sample standard
deviations of P&L to insure confidentiality.

Table 1 shows summary statistics of each bank’s data for the period 2001-2004. The
coefficient of variation (i.e., the ratio of the standard deviation and the mean) of VaR
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bank | kurtosis | skewness | 99%-quantile | average coefficient of average of the
name | of P&L | of P&L of losses VaR variation of VaR | loss exceeding VaR
A 22.81 0.75 2.26 2.28 0.68 0.91
B 9.63 —0.14 2.92 3.31 0.69 1.01
C 12.29 —0.38 2.91 2.43 0.66 0.64
D 5.47 —0.26 2.81 3.59 0.32 0.00
E 10.44 0.25 3.29 1.92 1.06 0.35
F 33.41 —2.25 2.74 2.05 0.73 2.15
G 4.77 —0.13 2.35 2.50 0.34 0.52
H 9.80 —0.23 2.64 2.57 0.36 0.86
I 28.61 —-1.77 2.93 1.58 0.72 1.06
J 9.90 —0.78 3.26 2.86 0.40 1.06
K 5.21 0.15 2.31 2.85 0.39 0.73
L 6.19 —0.36 2.79 3.89 0.24 1.61

Table 1: Summary statistics of P&L and VaR for the period 2001-2004. Both
P&L and VaR are divided by the empirical standard deviation of the P&L to
protect confidentiality.

in column 5 shows that for the majority of the banks (except banks C, E, and I) the
variability of the VaR is relatively small compared to its mean. The last column reports
the average loss exceeding VaR, i.e., the estimate of the expected shortfall E[—C; —
Vi| — C; > V4]. Note that for the standard normal distribution, the expected shortfall is
approximately 0.34 for the 99% confidence level. The comparatively large average losses
exceeding VaR indicate the presence of outliers or fat tails. Three out of the thirteen
banks had more than four violations in 2001 and only four had no violations at all. For
reasons of confidentiality, the individual numbers of violations are not reported here.

Figure 1 shows the time series C; and —V; of selected banks. As can be seen from
banks B and F, for example, it is not reasonable to assume stationarity of the P&L and
VaR time series. Hence, the summary statistics given in table 1 are to be interpreted
with care. Banks D and L give an example of relatively conservative VaR forecasts.

As the descriptive statistics show, banks tend to be conservative in the sense that
they overestimate their VaR. The traffic light approach implies a one-sided loss function.
Hence, this backtest does not recover the information in the data about forecast quality
of a VaR-model as a whole. In the following sections we will have a closer look at forecast
quality using more powerful tools.

3. Return on VaR

In their paper on backtesting, the Basel Committee on Banking Supervision (1996b)
encourages banks to apply backtesting procedures beyond the so-called traffic light ap-
proach. In the next three sections, we make proposals for possible refinements. The
proposed tools have been used by the Bundesanstalt fiir Finanzdienstleistungsaufsicht
(BaF'in), the German single regulator for integrated financial services supervision, for a
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Figure 1: Time series of P&L and -VaR. Diamonds are added to mark the violations.
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couple of years.
The key concept in the following analyses is the ratio of clean P&L over VaR

(2)

which we call the return on VaR (RoVaR). Note that both Cy, the P&L of period [t —1, ],
and the VaR V4, estimated at time ¢ — 1, are expressed in level terms, i.e., denominated
in Euros. V; predicts the variability of C; and is thus based on information available at
t—1.

There are several reasons why the RoVaR concept is important:

economic interpretation The numbers R, can be interpreted as a kind of (rate of) return
and are thus — after proper rescaling — in principle comparable to returns from other
investments like stocks and bonds.

The (rate of) return of an investment over a time period [t — 1,] is usually defined
as

profit over the period [t — 1,¢]

- capital invested at the beginning of the period’

For portfolios 7 of standard products like stocks and bonds this makes

Ut(ﬂ't—l) - ”Ut—l(ﬂ't—l).

R p—
! Vg1 (me—1)

This does not extend to products like swaps and futures, however. The present value
of swaps is zero at inception, vy fluctuates around zero, and it has no relation to the
capital invested. For the swap trading desk at an investment bank, for example,
the “capital invested” is the economic capital that the bank has assigned to the
trading desk. If regulatory and economic risk capital measures coincide, then the
“capital invested” is the desk’s VaR-limit. In fact, some banks use the VaR-limit
to quantify the economic capital used by a trading unit. Otherwise economic and
regulatory capital should at least be related. The definition and the utilization
of the VaR-limit is, however, very different across banks and thus the ratio P&L
over VaR-limit cannot be easily used for comparisons across banks. While the ratio
P&L/VaR-limit is the return from a shareholder view, the ratio P&L/VaR is the
return from the risk manager’s view. Both behave similarly over time if VaR-limit
utilization is nearly constant.

weather forecasting The literature on weather forecasting developed both theory and
statistical methodology for the evaluation of forecasts. The next section shows how
the RoVaR time series play a key role of linking VaR forecasts to forecasts of the
whole P&L-distribution, which are at the center of the general forecasting literature.

statistical tractability The most important source of non-stationarity for both time series
Cy and V; is the deliberate decision by banks to decrease or increase their risk
exposure. This can be seen from the time plots displayed in figure 1 for bank F, for
example. An even more pronounced case of a bank that transferred its portfolio to
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London in three steps is not shown. Both VaR and P&L volatility were reduced from
a few million EUR to some ten thousand EUR, and finally to 0. The assumption
of stationarity seems much more sensible for R; than for C;. Moreover, RoVaRs of
most banks display relatively little serial dependence, depicted by the cumulative
periodograms of the RoVaRs (figure 2) and their absolute values (figure 3).

Figure 2 shows that there is no significant autocorrelation in the RoVaR series, as ex-
pected. The excess weight at small frequencies, corresponding to positive autocorrelation,
of RoVaRs of banks A and G is barely significant and may point to data errors in the
computation of the P&L. Another explanation is that less liquid (time-lagged) prices
are used in the computation of CYy, thereby introducing positive autocorrelation in the
portfolio returns.

Unlike the RoVaRs of stocks (MSGERM. denotes the MSCI Germany stock index), the
RoVaRs of banks D, F, G, and L show no marked stochastic volatility (heteroscedasticity),
see figure 3. One possibly reason is that the risk control limit system filters out some of
the heteroscedasticity of the original returns. Another possible reason is that those banks
were not exposed to risk factors with high heteroscedasticity — like MSGERM. — but to
risk factors with low heteroscedasticity — like ICEUL5Y (denoting bond returns implied
by the 5-year EUR swap rate).

Due to the Basel requirement of an “effective observation period of at least one year”
almost all of the 12 banks use equally weighted estimators for covariance matrices or
for empirical distribution functions (*“historical simulation”) based on one year of daily
data for regulatory purposes. Estimators that are based on exponential weights, which
adapt more quickly to different volatility regimes can be used and are used for internal
control purposes, however. The VaR numbers used here are based on the equally-weighted
estimators. Consequently, the RoVaRs of the banks are compared to the appropriate
RoVaRs of bonds and stocks. For this reason, the bond returns implied by the 5-year-
EUR swap rate (ICEUL5Y) and the MSCI Germany index returns (MSGERM.) are
divided by their empirical standard deviation estimated from the last 250 daily returns.
We will later also consider the returns from the USD-EUR exchange rate (USEURSP)
and Brent oil (OILBREN).

An explanation for the excess weight at low frequencies for bank B may be the decreas-
ing conservativeness of bank B’s VaR forecast, as seen from figure 1. The heteroscedas-
ticity of the RoVaRs from bank A is explained by the fact that (longer) time periods
with relatively well diversified risks are interlaced with (shorter) time periods with a high
concentration of risks. Since the model is partial in the sense that it only models the
“general risk”, it cannot predict the higher variability of returns in those time periods
with higher concentration of risks (“specific risk”).

4. Well-Behaved Forecasts

The literature on weather forecasting has developed an elaborate set of concepts and
diagnostics for the evaluation of probability forecasts (Murphy and Winkler; 1987, 1992).
The two main concepts are calibration and refinement.

Given the joint distribution of an event a and a probability forecast p for this event,
the forecast p is called well-calibrated, if the probability of a conditional on the fact that
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the forecast p has been made, is p: FElalp] = p. The constant forecast p := Ela] (the
“climatological probability”) is well-calibrated, but not “refined”. The aspect how much
information the forecast p contains about the event a is called refinement or resolution
and is formalized and measured in different ways, see (Dawid; 1986). Partial orderings
among forecasts are based on the notion that p4 is at least as refined as pp, if the forecast
pp can be derived from p4 in a certain way. Complete orderings among forecasts can
be defined by the expected loss ES(a,p) for a loss function S, called scoring rule in this
context. Another way to define refinement for a sequence of forecasts and events (a;, p;) is
to say that the subsequence of events corresponding to a specific forecast p*, (ai){ﬂpi:p*},
should be stochastically independent. (Otherwise, it would be possible to improve the
forecast.) In the context where we have a forecast F for the probability distribution F' of
a continuous random variable C, the concept of well-calibration becomes

P{C < z|F} = F(x), (3)

i.e., the forecast of each event based on C' is well-calibrated (Dawid; 1984, p.281). If a
is continuous, (3) implies that F'(C) is uniformly distributed on [0,1]. The requirement
that a sequence of realized percentiles Ft(Ct) is stochastically independent is a kind of
refinement requirement.

While it has been proposed (Berkowitz; 2000) that banks should report the realized per-
centiles Ft(Ct) to the supervisory authorities, the current rules only require the reporting
of Cy and V; = —F;1(0.01). The forecast evaluation (“backtesting”) as laid down in the
Basel Amendment is defined in terms of the VaR-exceptions 1(y,>¢,;. The drawbacks of
this approach are discussed by Kupiec (1995). See also Lopez (1999) and (Jorion; 2001,
chapter 6).

Given that banks do not report the whole forecast distribution Fy but only a quantile
¢(0.01) := F~1(0.01) = —V;, the two key questions are:

1. Under what conditions can the “realized percentiles based on RoVaRs”

¢(0.01) 1
= F(Ci——-5) = F(—R:q(0.01 =F 4
b= FCAGEE) = F=Ru(0.01)  (a(e) == F (@) @
be used as substitutes for the true realized percentiles Ft(C’t), given some fixed base
distribution F'?

2. Under what conditions can a scale measure s(R;) of the RoVaRs be interpreted as a
recalibration factor that measures by how much the bank is over- or underestimating
its VaR? In other words, under what conditions does the well-calibration of the
forecast F' imply that s(Ry)/so = 1 for the appropriate constant sg?

It turns out

1. that the “realized percentiles based on RoVaRs” are perfect substitutes for the true
realized percentiles if and only if the banks’ forecasts F come from a scale family
F(x) = F(x/5), see proposition 1 in the appendix;

2. that if the RoVaRs R; = C}/3(0.01) come from a scale family R; ~ F(./o:), then
the well-calibration of the forecasts F; implies o = q(0.01), see proposition 2 in the
appendix. In other words, if R; comes from a scale family, then any scale measure
s(R) can serve as “recalibration factor” for the VaR forecast.

10
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The assumption that the banks’ forecasts F' come from a scale family is a rather strict
one. We actually know from those banks using historical simulation and various delta-
gamma-normal methods that the forecasts F do not in general come from such a family.
This means that we cannot use the theory of the evaluation of distributional forecasts
directly and rather base our analysis on the weaker, second result (proposition 2). We
call a VaR forecast system well-behaved' if the RoVaRs R; are an independent series and
come from a scale family.

The practically needed implication is

(I) If the estimated scale §(R) differs too much from its theoretical value sg,
then the supervisor can conclude with high confidence that the VaR forecast
is not well calibrated.

This implication is possible if (1) the implication would be possible with the absence of
statistical measurement error: “s(R) # so implies that the VaR forecast is not well cali-
brated”, (2) a consistent estimator for the scale s(R) exists, and (3) the base distribution
F of the scale family can be identified — either theoretically or statistically. Thus, the
implication (I) is valid for well-behaved VaR forecasts. The assumption that the RoVaRs
come from a scale family takes care of (1) and the independence assumption takes care
of (2) and (3).

The previous section showed that the independence assumption for RoVaRs is quite
natural for the majority of banks. The next section will show that the assumption that
the RoVaRs come from a scale family is quite natural as well.

5. The Scale Families

The boxplot of RoVaRs (figure 4) gives a first glimpse of the empirical distributions of
the RoVaRs. It shows that the RoVaRs are located relatively symmetrically around zero.
While the mean’s difference from zero is statistically significant for some banks, it is
certainly not economically relevant.? Skewness is not significantly different from 0 for all
banks.

The Q-Q plot against normal (figure 5) allows a comparison of the empirical distribution
of RoVaRs with the normal distribution. The observed distributions of the RoVaRs are
in line with the following “theoretical” considerations:

normality Bank G provides a striking picture: the RoVaRs are almost perfectly normal
(the small circles lie on the solid line) and the VaR forecast is well-calibrated (the
solid line and the dotted line almost coincide). Bank M’s RoVaRs are very close to
normal as well (not shown). Both of these are large, well-diversified banks, so that
it is plausible that the central limit theorem “works” here.

I'Note that “well-behaved” is not to be interpreted as “favorable from a supervisory point of view”. It
rather stands for “tractable from a statistical point of view”.

2This is one of the important differences between the hypothetical and the economic P&L. While the
mean of the economic P&L is highly significant and economically relevant, differences among banks
in the mean of the hypothetical P&L are almost solely explained by differences in the treatment of
theta.
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Figure 4: Boxplot of RoVaRs. The box shows the interquartile range and the bullet

inside shows the median. The “whiskers” are drawn 2 times the interquartile
range away from the box. Any point further away is shown individually.

fat tails Both swap returns (ICEUL5Y) and stock returns (MSGERM.) show fatter tails

than normal, as expected. A diversified portfolio of heavy-tailed investments is still
heavy-tailed, though with a faster rate of decay (larger tail index) and the center of
the distribution closer to the Gaussian. This is exactly the picture for most of our
banks: relatively close to normal at the center, but the tails are a bit heavier.

contamination The RoVaRs of some banks are contaminated by P&L-values that a closer

inspection reveals as being economically inconsequential (plain errors, data feed in-
consistencies, adjustment of illiquid prices, ...). This also means that the RoVaRs
from banks are not directly comparable to the returns from high quality stock in-
dexes. Since VaR exceptions (R; < —1) are reported to both senior management
and supervisors, however, these large losses are usually well understood and free of
simply correctable errors. The three largest losses of bank F, for example, corre-
spond exactly to the three largest losses (interest rate increases) in ICEUL5Y. On
the other hand, the 60-loss of bank A was economically irrelevant. The actual loss
—C} was not exceptionally large, but the forecast V; was “too low”. The reasons
for the latter are well understood by the bank’s management and supervisors.
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Figure 5: Q-Q plot of the standardized RoVaR ®71(0.99)R;. The small circles rep-
resent the empirical distribution, which is compared to the normal distribution
with mean and variance estimated from the sample, represented by the solid
line. The dotted line denotes the standard normal distribution, which represents
the case when the standardized RoVaRs come from the normal scale family and
are well-calibrated. All points below the horizontal line at ®(0.01) are VaR

exceptions, corresponding to Ry < —1.
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The three extremes described above correspond to Tukey’s “three corners”. As nicely
summarized by Randal (2002), Tukey criticized the usage of location and scale estima-
tors that are optimal for the normal distribution, but very far from optimal for certain
deviations from the normal distribution. The considered deviations are the “one-wild”,
where 1 out of the n-sample is drawn from N (0, (100)?) instead of N(0,0?), representing
“contamination”. The other deviation from normality is the “slash distribution”, which
is quite similar to the normal at the center but has very fat tails®>. An estimator’s tri-
efficiency is then defined as the minimal efficiency over the three “corner cases”. Randal
(2002) presents an overview of scale estimators that have high tri-efficiency in Tukey’s
sense and are thus robust w.r.t. deviations from normality in the direction of the two
other corners. While our distributions are not as extreme as Tukey’s two non-normal
“corners”, the analysis of robust estimators of scale in the next section is in the same
spirit as Randal’s.

6. Robust Estimation of Scale

This section provides a bootstrap analysis of the accuracy that different scale estimators
provide across the different banks and years. Let FJ denote the empirical distribution
function of the RoVaRs of bank i in year j. Given a scale estimator S that maps a
sample R = (Ry,...,R,) to S,(R), the distribution of Sp,—125(R},..., R;), R} ~ Fid s
computed by re-sampling subsamples of size 125 from FJ. This provides a picture of the
variability of the scale estimate S when applied to half of a year of daily returns, provided
the returns come from a distribution near the empirical distribution function of bank i’s
RoVaRs in year j.

A time window of half a year (n = 125) was chosen for the scale estimate because half
a year presents a practically useful time frame. Model changes or significant changes to
the trading strategies, possibly implying a changing shape F?, ask for shortest possible
time windows. On the other hand, n = 125 is long enough to allow a reasonably accurate
scale estimate.

The bootstrap distributions of the log scale log(S(R*)) are very close to normal, which
justifies to compute the two-sided confidence interval for the scale estimate tg := S, (F")
as [to/a,toa], where a = exp {20.9756 (log[S(R*)])}, R}, ~ Fd. We call a — 1 the “relative
accuracy at 95% of the scale estimator S at the distribution Fian,

Figure 6 shows this “relative accuracy at 95%” for a series of scale estimators. The
boxes and whiskers show the variability of the accuracy of a scale estimator across the 48
empirical distributions given by the 12 banks times the 4 years.

Figure 6 can be interpreted as follows. We do not intend to “identify” the “true” distri-
butions of RoVaRs, but search for a scale estimator that performs acceptably regardless
of what the “true” distribution is. For this purpose we consider 48 empirical distribution
functions of RoVaRs (12 banks times 4 years). In the spirit of Randal (2002), we believe
that these 48 empirical distributions span the area of RoVaR-distributions to be expected
in the future.

The length of the boxes and whiskers in figure 6 show that the p-norm with p = 0.75
(pnorm) is a reliable scale estimator in the sense that its accuracy does not depend a

3not even a first moment, like the Cauchy distribution
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Figure 6: Accuracy of scale estimators. The bootstrap provides an estimate of the
standard deviation of the log scale estimator &(log[S(R*)]) on samples of size
n = 125. We translate this standard deviation to a “relative accuracy at 95%”
of the scale estimator by computing exp {zp.9756 (log[S(R*)])} — 1. The boxes
and whiskers show the variability of this accuracy across banks and years. The
horizontal line shows the accuracy achieved by the standard deviation at the
normal distribution.

lot on the underlying distribution. On the opposite end, the accuracy of the standard
deviation (sd) depends very much on the underlying distribution. The location of the
boxes indicates the overall efficiency of the estimator. It shows the inefficiency of the
interquartile range iqr, regardless of the underlying distribution.

The following scale estimators are considered:

sd the empirical standard deviation s(R) = (1 Y, R?)'/? (with the mean assumed to
be zero),

iqr the interquartile range s(R) = qo.75(R) — qo.25(R),
The following estimators can be viewed as generalizations of the standard deviation:

pnorm The empirical p-norm s(z) = (2 3, |Ri|P)(1/P) reduces to sd for p = 2. p* = 0.75
was chosen for figure 6.

n—k*

tsd The trimmed standard deviation s(R) = (s—bz > p_1 4 R?k))l/ 2 (with mean as-
sumed to be zero), i.e., the k* smallest and the k* largest samples are dropped.
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kE*/n ~ 3% was chosen for figure 6.

tpnorm The trimmed p-norm, mixing the previous two approaches. k*/n ~ 1% and p = 1
were chosen for figure 6.

M-estimators for the scale parameter o maximize

—nlog(o) + > _log p(Rk/0),

k=1
or equivalently, solve
1 n
o? = - Zw(Rk/a)Rz
k=1
with ¢ := —[logp]’ and w(x) := ¥(z)/z. If p = f is a probability density, then the

M-estimator is a maximum likelihood estimator (MLE) for the scale family defined by f.
For the standard normal distribution, the MLE is given by ¥ (z) = z and w(x) = 1.

M.Huber Huber’s ¢-function is defined as ¢ (z, k) := min(—k, max(k,z)). k = 0.5 was
chosen for figure 6.

M.t This M-estimator is the MLE for the scale of the t-distribution. 5 degrees of freedom
were chosen for figure 6.

The parameters p* for pnorm, k*/n for tsd and so on were chosen to provide a good
median accuracy across the 64 distributions (the middle line in the boxes of figure 6),
though no specific optimization was performed.

In summary, figure 6 shows that any of the estimators except sd and iqr do comparably
well. In the following, we choose the trimmed mean absolute deviation (tpnorm with
p = 1 and k*/n =~ 1%) as scale estimator across all banks for its conceptional and
computational simplicitiy .

Figure 7 shows the scale estimates of the RoVaRs of selected banks, estimated from a
moving window of length 125. The moving scale estimates of the RoVaRs of banks A and
B show that the assumption of iid RoVaRs is inappropriate for some banks. Hence, we use
a block bootstrap* to compute the confidence intervals in figure 7. Given the statistical
uncertainty of the scale estimates, only banks A and B have significantly varying scale
estimates over time: bank B reduced the conservativeness of its VaR forecast in 2002 and
bank A had unusually large variability in returns in the second half of 2002. The latter
is explained by the fact that A has significant exposure to equity. With the exception of
A and B, variability of scale estimates tends to be larger across banks than across time.

7. Robust Estimation of the Shape Factor

Since the assumption of iid RoVaRs is inappropriate for some banks (A and B) we will
instead assume that the standardized RoVaRs

£ = Rt /0y

4See (Biithlmann; 2002) for an overview of bootstrapping time series.
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Figure 7: Moving scale estimates for selected banks. The scale of the RoVaRs
is estimated from a moving window of length 125. The solid, horizontal line
shows the scale value that is expected from a hypothetical bank with Gaussian
RoVaRs and well-calibrated VaR-forecast. The dotted lines indicate the two-
sided 95%-confidence intervals computed by block bootstrap.

are iid for a suitable estimate 64 of the scale of the distribution of R; ~ F(./oy). We
call minus the 1%-quantile of the distribution of & the shape factor. Note that if the
RoVaRs R; are iid, then 6; can be assumed constant and the shape factor is simply
the ratio between the 1%-quantile and the scale of the RoVaR distribution. In practice,
risk measurement means estimation of the scale, while Basel looks in theory at the 1%-
quantile. The shape factor relates both.

As in the previous section, we take as scale estimate 6; the trimmed mean absolute
deviation from a window of the last 125 values. This section uses a bootstrap analysis
to compare different estimators of the shape factor. Figure 8 shows the accuracy of the
following estimators:

linint This estimator uses the linear interpolation of the EDF to estimate the quantile
(and is the standard quantile estimator in R).

As described by Kozek (2002), classical M-estimators of location can also be used to
estimate quantiles. Interestingly, this corresponds to a smoothing (convolution) of the
EDF, as follows. M-estimators of location are of the form

0 = argminEx[M (R — 0)] (5)

where 6 is the location parameter and F' the EDF of R. If G is a probability distribution
function and

Mea(y) = /Oy(QG(z) —1)dz,

My a(y) := Ma(y) — (2p — 1)y,
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Figure 8: Accuracy of estimators of the shape factor. The bootstrap provides an es-
timate of the standard deviation of the log shape factor estimator ¢ (log[S(R*)])
on samples of size n = 500 (2 years). We translate this standard deviation to
a “relative accuracy at 95%” by computing exp {z0.9756 (log[S(R*)])} — 1. The
boxes and whiskers show the variability of this accuracy across banks. The
horizontal line shows the accuracy achieved by the empirical quantile at the

normal distribution.

then the M-estimator (5) applied to M = M, ¢ is the p-quantile of the convolution FxG
(Kozek; 2002, lemma 1). Le., the M-estimation of location (5) is equivalent to computing
the quantile of a smoothed version of the EDF F'. Since the scale of F'*x G is larger than
that of F, the quantile of F x @G is scaled back by 1/% to get an estimate of the

quantile of F.

M.probit If the smoothing kernel G is Gaussian, then the resulting M-function is the
probit M-function. The standard deviation ¢ = 0.6 is used for the smoothing kernel
G in figure 8.

M.Huber If the smoothing kernel is rectangular (uniform distribution on [—k, k]), then
the resulting M-function is Huber’s M-function, already used in the previous section.
k = 0.8 is used for figure 8.

MLE.t This uses maximum likelihood to fit a ¢-distribution and then infer the quantile
from that.
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Figure 9: Shape factor estimate per bank. The solid, horizontal line shows the value
that is expected from a hypothetical bank with Gaussian RoVaRs. The dot-
ted lines show two-sided 95%-confidence intervals computed by block boot-
strap. Also included are the shape factor estimates for the risk factors USEURSP,
OILBREN, MSGERM. and ICEULS5Y.

MLE.gpd This uses the peaks over threshold (POT) method. Le., the generalized Pareto
distribution is fitted to the 6% most severe losses using maximum likelihood esti-
mation. Alec Stephenson’s EVD package is applied, see (Stephenson; 2004).

Suprisingly, linInt, M.probit, M.Huber and MLE.gpd achieve roughly the same
accuracy on samples of size 500 near the 12 empirical distributions of the standardized
RoVaRs & = R;/d;. M.probit achieves the highest accuracy, likely due to the fact that
many banks’ RoVaR distributions are quite close to normal. Hence, we choose M.probit
to estimate the shape factor across all banks, which is shown in figure 9. Figure 10 shows
the resulting “recalibration factor”, which is the product of the moving scale estimator
and the shape factor estimated from the corresponding standardized RoVaRs.

A sample size of n = 500 was chosen because it is the smallest sample size that achieves
a relative accuracy of about 20%. This shows that much more data is needed to estimate
the shape factor than the scale.

A few differences between the method as presented here and the methods actually
employed should be noted. Both figures 9 and 10 assume that the standardized RoVaRs
& = Ry/6y are iid and the shape factor is constant over the whole period 2001-2004. This
assumption is not suitable for some banks (especially F and I) due to significant changes in
the model or the business strategy, which affect the shape of the RoVaR distribution. In
practice, we account for such significant model changes by assuming constancy of shape
only over certain time intervals. All in all, there are 16 German banks with internal
models that are approved for computing regulatory capital, some of which were approved
more recently than others. Those have to be treated accordingly, but cannot be discussed
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Figure 10: Estimate of the recalibration factor. The solid, horizontal line shows the

value that is expected from a well-calibrated VaR forecast. The dotted lines
show two-sided 95%-confidence intervals estimated by the block bootstrap.

here without exposing their identity.

Conclusion

1. Tt is useful to consider the returns on VaR (RoVaRs), defined as the ratio P&L over

VaR, for many economic and statistical reasons.

. Both theoretical and practical considerations center on the question how and under

what conditions a scale estimate of the empirical distribution of the RoVaRs of a
bank can be used to estimate a bank’s recalibration factor, i.e., by how much the
bank is over- or underestimating its VaR. The proposals for the estimation of the
recalibration factor made here can be viewed as a replacement for that table in
the market risk Amendment to the Basel Accord that maps the number of VaR
exceptions of the previous year to a multiplicative penalty factor.

. If RoVaRs are “well-behaved”, then scale and shape of the distribution of RoVaRs

tell how well the VaR-forecast is calibrated. Most banks can be considered “rela-
tively well-behaved”.

. Independently of whether banks’ forecasts are well-behaved, it is useful to disag-

greate the estimation of the recalibration factor into the estimation of scale and
shape of RoVaRs. Scale can be estimated from shorter periods (like half a year in
our case) or other methods like GARCH model estimators. The shape factor, on
the other hand, should be estimated from longer periods (like 2 years) to achieve a
similar accuracy.
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5. Extensive bootstrapping analyses show that certain robust estimators of scale and
shape perform well in comparison to other estimators used in the literature.

A. Appendix
If the forecast £ comes from a scale family of distributions, i.e.,
F(z) = F(z/6), (6)

then the “realized percentiles based on RoVaRs” F(—gq,R;) are obviously a perfect sub-
stitute for the “true” realized percentiles F'(C):

F(C)=F(C)6) = F(C) = F(—quR)  qa = F(a)

do

N

(The VaR forecast is —G, = —F~!(a).) Interestingly, the converse also holds.

Proposition 1 Let C' be a random variable and Fy its distribution under the true prob-
ability. Let F bea forecast for Fy and F a fized “benchmark” distribution. Assume F,
Fy, and F are continuous and have support (—oo,00). Let ¢ and ¢ denote the inverses
of F' and F, respectively. The value U = F(C’g—g) has the same distribution as the real-

ized percentile F(C) under the true probability measure if and only zfﬁ comes from the

scale-family F(z) = F(zl) .

Proof. We only have to show the non-trivial direction. Assume that
PA{U <p}=P{F(C)<p} Vpel01].

This implies

Py {CZ < F‘%p)} =R {C<F'p}

and

Fy (F‘l(p)q“> — R (F7'().

qo

Since Fp is invertible, this equation also holds for the arguments of Fy(.). Setting x :=
Ffl(p)g—z, this leads to

F(z)=p

which equals

=F <x({a>
qa

by definition of x. a
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An interesting question is now how the two concepts of well-calibration are related
under the additional assumption

o
—qaRZC(TNF(-/O') (7)
for some fixed benchmark distribution F' and scale o > 0.

Proposition 2 Let Fbea forecast for the distribution Fy of a random variable C' and F
a fized “benchmark” distribution. Assume F, Fy, and F are continuous and have support
(—00,00). Let q and ¢ denote the inverses of F and F, respectively. Assume that the
standardized RoVaRs —qo,R = Cg—z are known to come from the scale family (7) and the

forecast F' is well-calibrated as in (3). Then o =1 and the forecast F “comes on average
from a scale-family” in the sense of

Qo
In general it cannot be concluded, however, that each single forecast comes from a scale

family F(z) = F(z/5).
Proof. We first prove o = 1. Since F' is well-calibrated,

a = P{C < .|F}
= P{—qaR < qu|F}.

Taking expectation, this also holds unconditionally:
a=P{-¢.R < qu},

which equals F'(go/0) because of (7). But this implies o = 1.

Furthermore,
_ qo _ qo Sl ; o
F(z) = P{CA < az} =F [P{C’A < 93|F}} =F [F (:E)] .
qo qo qa
O
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