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Abstract

We discuss a Lévy multivariate model for financial assets which in-

corporates jumps, skewness, kurtosis and stochastic volatility. We use it

to describe the behavior of a series of stocks or indexes and to study a

multi-firm, value-based default model.

Starting from an independent Brownian world, we introduce jumps

and other deviations from normality, including non-Gaussian dependence.

We use a stochastic time-change technique and provide the details for a

Gamma change.

The main feature of the model is the fact that - opposite to other, non

jointly Gaussian settings - its risk neutral dependence can be calibrated

from univariate derivative prices, providing a surprisingly good fit.
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1 Introduction

The multivariate modelling of financial assets has become more and more im-
portant in modern finance. In many branches, such as equity, fixed income
and credit risk, derivatives depending on a variety of underlyers have found
their way. Basket options on equities, First-to-Default (FtD) and Collateral-
ized Debt Obligations (CDO), CDO2 are typical examples of these multivariate
structures. In modelling the underlyers, dependence plays a crucial role. Both
at the marginal and joint level, one would like to move from the typical Brow-
nian world into a more realistic setting, taking into account jumps, skewness,
kurtosis, stochastic volatility, etc. However, the resulting model, in order to be
useful in practice, should also remain tractable. This means that it should be
possible to calibrate it to the relevant market and to compute the prices of the
derivatives in a reasonable amount of time.

In this paper, we propose a multivariate model for financial assets which
aims at satisfying these requirements and discuss its applications in the context
of equity and credit risk. On the one side, we model the stochastic behavior of
a series of stocks or indexes, on the other we apply the model in a firm-value
based context to model default in a multivariate setting.

Starting from a independent Brownian world, we will introduce jumps, skew-
ness, kurtosis, stochastic volatility and non Gaussian dependence by the simple
but very strong technique of stochastic time-changing. We work out the details
in case of a Gamma time-change, which brings us in a multivariate Variance
Gamma (VG) setting. The VG model has already proven its power in a uni-
variate setting: we explore its multivariate properties.

We will show how one can calibrate the model to a set of basic - and above
all univariate - derivative instruments, namely vanilla options in the equity case
and Credit Default Swaps in the credit setting. The calibration on univariate
derivatives is peculiar of this model and extremely helpful. Indeed, whenever
the assumption of Girsanov’s theorem are not satisfied, for instance when finan-
cial returns are assumed to be marginally but not jointly normally distributed,
dependence under the historical and risk neutral measure do not coincide, and
the calibration of the joint behavior is usually restricted to the historical mea-
sure. Calibration under the risk neutral probability would require the existence
of actively traded multivariate derivatives. This is often not the case. The
difficulty is circumvented by the model presented here.

2 From an Independent Gaussian World to a

Dependent Lévy World

2.1 Motivation

The starting point of the model is the independent Black-Scholes world, where
a financial asset is typically modelled by a geometric Brownian Motion. For
stocks this model was developed in [3]; the same assumptions are underlying

2
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the default models by Merton [28], Black and Cox [4], Leland [18], Longstaff

and Schwartz [20] and the CreditGradestm approach of [8].
We start with recalling the univariate setting. In this model At, the price

process of an asset - say a stock, an index or a firm-value - is modelled as:

At = A0 exp(θt+ σWt), t ≥ 0.

There are several shortcomings of this model, which we briefly list below.

• Normal Distribution: log-returns are normally distributed, whereas it
would be better to have a more flexible distribution, in order to take into
account skewness and excess kurtosis, which are typically observed in the
market. As concerns equities, this was one of the main reason for the
consideration of Lévy processes (see [32]).

• Continuous Sample Paths: a Brownian motion has continuous sample
paths. However prices are in reality driven by jumps. Release of new
information, which is immediately absorbed by the market, leads to a
jump in the price process.

• Extreme Events: the model is not able to give realistic probabilities
of extreme events (crashes, defaults, ...). The underlying reason is that
the Normal distribution has too light tails and that the model produces
continuous sample paths. With a reasonable volatility parameter σ, say
around 20 percent, the probability of a significant move, say more than
5 percent, is completely unrealistic [2]. The Brownian motion needs a
substantial time to reach a low barrier, where in reality jumps can cause
an almost immediate move over the barrier.

If one likes to do multivariate modelling, in order to describe n dependent

price processes (A
(1)
t , . . . , A

(n)
t ), a natural way is to consider a vector of n depen-

dent Brownian Motions (W
(1)
t , . . . ,W

(n)
t ). The dependence is uniquely defined

by the correlation matrix. Each individual price process is modelled by a geo-
metric Brownian motion:

A
(i)
t = A

(i)
0 exp(θit+ σiW

(i)
t ), t ≥ 0.

Besides the shortcomings in the univariate situation, the multivariate model
has also some additional problems:

• Gaussian Dependence: the dependence between the assets is described
by a Gaussian structure: however, there is evidence that joint normality
is not realistic, mainly because it does not present tail dependency.

• Estimation of Correlation: typically, this is done on the basis of his-
torical data, hence leading to an estimate of the historical dependence
structure. For the Gaussian setting (under the assumptions of Girsanov’s
theorem) this dependence structure is also the risk neutral one. However,

3
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as soon as one introduces more sophisticated assumptions on the marginal
models, such as stochastic volatility features, while preserving a Gaussian
dependence structure, there is no guarantee any more that dependence un-
der the risk neutral and the historical measure coincide (see for instance
[9]). Moreover, as with all historical data, a sudden change into the regime
has only a marginal effect in the historical estimate, whereas the effect on
the risk-neutral one can be much more pronounced.

• Quadratic Number of Parameters: the number of parameters grows
quadratically in n through the correlation matrix. However the available
market data, say derivative instrument prices, are usually linear in n.

We will try to solve most of the above problems by the simple but very
powerful technique of stochastic time-changing. We will build a model, with a
non-Normal underlying distribution, with jumps, more realistic extreme events
probabilities, and, last but not least, a non-Gaussian dependence structure. The
model can be calibrated by using only the (liquid) standard derivatives available
in the market (historical data are not needed) and the number of parameters
only grows linearly in the number of assets.

We will start from the independent Gaussian case in which all assets are
driven by a geometric Brownian motion; the Brownian motions involved are
assumed to be independent of each other. In order to introduce dependence,
we time-change all the asset price processes by a common time-change. The
interpretation is that all firms operate in the same economic environment 1.
A jump in the time-change leads to a jump in the price processes and hence
all moves/jumps (small and big ones) occur simultaneously; the jump-sizes are
caused by the individual Brownian motions and the jumps size of the time-
change process. We thus introduce a new business time in which the general
market operates. This new business time can also be interpreted as a model
for the information arrival. Taking into account that the market will not forget
information, the amount of information cannot decrease. Moreover, it seems
reasonable that the amount of new information released should not be affected
by the amount already released, in other words, the information process should
have independent increments. Finally, one can also require that the increment
only depends on the length of that period and hence is stationary. This leads
us to a model where the information process is modelled by an non-decreasing
process with stationary and independent increments, i.e. a subordinator (a
special case of a Lévy process).

Here we opt to work with the Gamma time-change, for tractability reasons.
However, other time-changes, like the more general Generalized Inverse Gaus-
sian (GIG), can be used in the same manner. Using a Gamma-time change, we
enter the realm of Variance Gamma; the GIG time change for example would
lead to the Generalized Hyperbolic Model.

1For an extensive discussion of the economic interpretation of time change and its relation-
ship with the market activity, see Geman and Ané [16].
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The idea of describing dependence through a common time change dates
back to Madan and Seneta [24]: their construction however was able to capture
only symmetric distributions at the marginal level and elliptical dependence.
We will have a much more general model, both for the margins and for the joint
distribution. The idea of the common time change is mentioned also in Cont and
Tankov [13], who prefer to it an approach based on Lévy copulas. Here we do not
introduce a Lévy copula, but discuss dependence through the ordinary copula
concept (section 2.4 below), since we are interested in dependence measures
(concordance measures and lower tail dependence) which are defined in terms
of the latter.

2.2 A Multivariate Variance Gamma Model

Let G = {Gt, t ≥ 0} be a Gamma process, i.e. a process which starts at zero,
has stationary and independent increments; increments over the time interval
[s, s+ t] follow a gamma distribution. More precisely, we have that G is a Lévy
process (a subordinator) (see the Appendix), where the defining distribution of
G1 is a Gamma(a, b) distribution with density function

fGamma(x; a, b) =
ba

Γ(a)
xa−1 exp(−xb), x ≥ 0

and characteristic function given by

φGamma(u; a, b) = (1 − iu/b)−a.

Standard Lévy process theory (see for example [1], [30] or [32]) teaches us that
increments over intervals of length s then are Gamma(as, b) distributed. For
obvious, normalization reasons, we will work with a Gamma process such that
E[Gt] = t, which in terms of the parameters implies that a = b. Let us denote
by ν the common value 1/a = 1/b.

We thus model the asset values by geometrical Brownian Motions time-
changed by a common Gamma business time (stochastic clock):

A
(i)
t = A

(i)
0 exp(θiGt + σiW

(i)
Gt

), t ≥ 0. (1)

Now, it is well known that a Brownian Motion with drift time-changed by a
Gamma process leads to the Variance Gamma (VG) process. Furthermore,
a VG process is a Lévy process. The class of Variance Gamma distributions
was introduced by Madan and Seneta [24] in the late 1980s as a model for stock
returns. There (and in [25] and [23]) the symmetric case (θ = 0) was considered.
In [22], the general case with skewness is treated. In equity and interest rate
modelling the process has already proven its modelling capabilities. See for
example [32].

More precisely, we will have that the ith price process is the exponential of
a VG-process:

A
(i)
t = A

(i)
0 exp(X

(i)
t ), t ≥ 0,

5
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where X(i) = {X(i)
t , t ≥ 0} is a VG process with parameters (σi, ν, θi), i.e. Xt

follows a VG(σ
√

(t), ν/t, θt) distribution.
The variance, skewness and kurtosis of a VG-distribution with parameters

(σ, ν, θ), i.e. the distribution of a VG process at time one, are given in the next
table:

VG(σ, ν, θ)
mean θ
variance σ2 + νθ2

skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

kurtosis 3(1 + 2ν − νσ4(σ2 + νθ2)−2)

One thus can see that the variance decomposes into an idiosyncratic component
σ2 (coming from the original Brownian Motion) and an exogenous component
νθ2 (arising from the time-change); θ tells us how much a specific company is
exposed to a kind of global market uncertainty (ν). This leads to the inter-
pretation that the asset volatility decomposes in an idiosyncratic volatility on
top of which one adds a global common volatility. Note also that skewness and
kurtosis are affected by the companies’ own specific settings as well as by the
global parameter ν. In Figure 1, one sees the sample paths of two dependent
VG processes.

2.3 Risk Neutral Setting

By the introduction of a new source of randomness with respect to Brownian
motion (or equivalently by the introduction of jumps) the model belongs to the
class of the incomplete models. For such models, there is not a unique equivalent
martingale measure (EMM). For the pricing of derivatives and the calibration we
will work in this paper with the mean-correcting EMM; the change of measure
is completely analogous to the Black-Scholes setting, in which the (historical)
mean parameter was changed into a new parameter in order to make the model
risk-neutral. Here we do the same, we correct the process by shifting its mean
value. More precisely, our risk-neutral dynamics for the asset prices are given
by

A
(i)
t = A

(i)
0 exp((r − qi)t+X

(i)
t + ωit), (2)

where r is the constant continuously compounded interest rate, and we assume
the asset pays out a continuous dividend yield of qi. The risk-neutral drift rate

for the asset is r − qi and thus to have E[At] = A
(i)
0 exp((r − qi)t), we have to

set

ωi = ν−1 log

(

1 − 1

2
σ2

i ν − θiν

)

.

2.4 Dependence Structure

In this section, we investigate in detail the dependence or association structure
caused by the common Gamma-time change. We will work, for the sake of

6
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Figure 1: Sample path of correlated VG processes

simplicity, on their risk neutral log-returns, defined as

Z
(i)
t := log

(

A
(i)
t /A

(i)
0

)

. (3)

We focus on the t = 1 situation. Our purpose is that of writing down the

(risk neutral) joint distribution function of the vector
(

Z
(1)
1 , Z

(2)
1

)

, F (z1, z2),

possibly using the unconditional marginal distributions, F (i)(zi), which are easy
to obtain.

Conditional normality of log-returns allows us to perform the task in a
straightforward way. Let mi = r − qi + ωi. The distribution of each single
process, conditional on a realization x of the (Gamma) time change, is Normal,
with mean mi + θix and variance xσ2

i . Let us denote it as F (i)(zi | x) :

PQ(Z
(i)
1 ≤ zi|G1 = x) = F (i)(zi | x) = Φ

(

zi −mi − θix

σi
√
x

)

(4)

where Φ is the cumulative distribution function of the standard Normal random
variable.
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As for the unconditional distribution, F (i)(zi), we have

PQ(Z
(i)
1 ≤ zi) = F (i)(zi) =

∫ +∞

0

F (i)(zi | x)
ν−1/ν

Γ(1/ν)
x

1
ν
−1 exp(−x/ν)dx

=

∫ +∞

0

Φ

(

zi −mi − θix

σi
√
x

)

ν−1/ν

Γ(1/ν)
x

1
ν
−1 exp(−x/ν)dx.

A closed form expression for this integral has been given in Madan, Carr, Chang
[6], in terms of Hypergeometric functions and the modified Bessel functions. We
note that the integral can also be computed very fast using the inverse Fourier
transform approach or via Partial-Differential Integral Equations (PDIEs).

Starting from the marginal conditional distributions (4) also the joint un-
conditional one can be obtained, since conditional independency holds:

PQ(Z
(1)
1 ≤ z1, Z

(2)
1 ≤ z2) = F (z1, z2) = (5)

∫ +∞

0

2
∏

i=1

Φ

(

zi −mi − θix

σi
√
x

)

ν−1/ν

Γ(1/ν)
x

1
ν
−1 exp(−x/ν)dx.

The reader can appreciate the fact that, consistently with the construction
method, this distribution depends on the same parameters of the marginal ones:
this will be the key to our calibration procedure via marginal probabilities (and
marginal derivatives).

Conditional normality permits us also to obtain the characteristic function

of (Z
(1)
1 , Z

(2)
1 ), which is

φ(u) = exp(iu′m)

(

1 − iu′θν +
1

2
u′Σuν

)−1/ν

where u′ = (u(1), u(2)) is the evaluation point, m′= (m1,m2) is the shift vector,
θ is the vector of the parameters θi, Σ is the 2x2 matrix which collects the
idiosyncratic variances σ2

i on the main diagonal and zeroes elsewhere.
From this expression we can infer that in the asymmetric case log returns are

not elliptically distributed: we therefore abandon the realm of joint Gaussianity.

As concerns the possibility of writing down the distribution F (z1, z2) in
terms of the marginal ones, F (i)(zi), this can be accomplished via the copula
technique. For a general introduction to copulas, we refer the reader to Nelsen
[29], for its applications in finance to Cherubini, Luciano, Vecchiato [10]. Let
us first notice that the previous expression already contains the conditional
marginal distributions, via the factor copula C⊥(u, v) := u× v:

F (z1, z2) = (6)
∫ +∞

0

C⊥

(

Φ

(

z1 −m1 − θ1x

σ1
√
x

)

,Φ

(

z2 −m2 − θ2x

σ2
√
x

))

ν−1/ν

Γ(1/ν)
x

1
ν
−1 exp(−x/ν)dx.
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However, by the properties of the copula functions, in particular Sklar’s theo-
rem, we know that there exists a copula, which represents the asset processes’
dependence, and we will therefore denote it as CA, such that the joint distribu-
tion can be written also in terms of the unconditional marginal ones:

F (z1, z2) = CA
(

F (1)(z1), F
(2)(z2)

)

.

In turn, we know that the copula CA can be obtained as

CA (u, v) = F (G(1)(u), G(2)(v)), (7)

where the function G(i) is the inverse of F (i). Only this copula represents
correctly the dependence between log-returns. Indeed, the linear correlation

coefficient between Z
(1)
1 and Z

(2)
1 , which can be computed to be

ρ =
θ1θ2ν

√

σ2
1 + θ21ν

√

σ2
2 + θ22ν

, (8)

does not represent it correctly, as one can immediately understand from the
fact that it is zero whenever the VG variables are symmetric (θ1 = θ2 = 0).
Nonetheless, in the symmetric case, as well as in the non-symmetric one, they are
associated, since they are partially driven by the same common factor. Note also
that in the typical realistic case of negatively skewed underlying distributions
we have a positive correlation.

2.4.1 Contour Plots

Contour plots of the copula function give a first, immediately perceivable infor-
mation on the copula behavior, since we know that:

• the contours of the minimum copula, C−(u, v) := max(u+v−1, 0), which
represents maximal negative association or countermonotonicity, are the
straight lines with equation u = c− 1 − v, for c ∈ [0, 1];

• those of the maximum copula, C+(u, v) := min(u, v), which represents
maximal positive association or comonotonicity, are kinked lines, which
form a 90◦ angle on the main diagonal of the unit square;

• those of any other copula are included between the previous ones. The
closer they are to the former (latter) ones the more negatively (positively)
associated are the corresponding random variables.

To investigate the effect of the different parameters on the copula (7), there-
fore, we numerically evaluate the copula function and its contour lines for various
values of the parameters σi, θi, ν, as follows:

• for a grid {(ui, vj), i, j = 1, . . . , N} on [0, 1] × [0, 1] we calculate (numeri-
cally) the inverse functions G(1)(ui) and G(2)(vi);

9
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• we compute Cij = F (G(1)(ui), G
(2)(vj));

• we contour plot Cij versus the grid.

The results of this procedure can be seen in Figure 2. In each figure, we
plotted several level curves, on which the couples (ui, vj) give rise to a prede-
termined constant copula value.

2.4.2 Scatter Plots

Scatter plots, which are plots of the realizations (u, v) for a specific copula, are
informative of the dependence behavior too: essentially, the more dispersion
one observes, less dependence can be inferred. The more points one observes on
increasing (decreasing) lines - or close to them - the more positively (negatively)
associated are the underlying random variables. The more the points cluster in
the corners of the unit square, the more evident tail dependency is.

Scatter plots of the copula (7) can be constructed, for fixed values of the
parameters σi, θi, ν, as follows:

• simulate M couples of VG realizations from processes of the type (1). Let

them be
(

x
(1)
m , x

(2)
m

)

,m = 1, . . . ,M ;

• compute their transforms according to the F (i) functions:

u(i)
m := F (i)

(

x(i)
m

)

.

These are the cumulative probabilities associated to the realizations x
(i)
m .

It follows that the couples
(

u
(1)
m , u

(2)
m

)

are random realizations from the

copula CA.

The results of this procedure, with M = 1000 can be seen in Figure 3

2.4.3 Concordance and Tail Dependence Measures

Copulas can be used to define concordance measures, such as Spearman’s rho
and Kendall’s tau. These two measures are bounded between -1 and 1, with
-1 representing countermonotonicity and 1 representing comonotonicity: the
correspondence is one-to-one, provided that the underlying random variables,
as in our case, are continuous. It follows that concordance measures can make
the information provided by contour and scatter plots precise. Let us focus on
Spearman’s rho, the rank correlation coefficient, recalling that it is defined as
follows, in copula terms:

ρS = 12

∫ ∫

I2

C(v, z)dvdz − 3 = 12

∫ ∫

I2

vzdC(v, z) − 3. (9)

10
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σ1 θ1 σ2 θ2 ν ρ ρS λL(0.01)
0.2 -0.10 0.25 -0.15 1 0.23 0.04 0.16
0.2 -0.10 0.25 -0.15 2.5 0.43 0.10 0.21
0.2 -0.25 0.25 -0.20 1 0.49 0.14 0.20
0.2 -0.25 0.25 -0.20 2.5 0.70 0.25 0.38
0.2 -0.35 0.25 -0.30 1 0.67 0.45 0.32
0.2 -0.35 0.25 -0.30 2.5 0.83 0.49 0.55

Table 1: Correlation, Spearman’s rho and lower tail dependence

Table 1 below reproduces the empirical versions of the Spearman’s coeffi-
cient, using (9), for the cases of Figures 2 and 3, together with the corresponding
linear correlation coefficient, computed according to formula (8).

To end up with, copulas can be used to define upper and lower tail depen-
dency, which intuitively correspond to dependence of extreme events, as follows.
C is said to have upper tail dependence if and only if

λU := lim
v→1−

λU (v) := lim
v→1−

C(v, v) + 1 − 2v

1 − v

exists positive, and lower tail dependence if and only if

λL := lim
v→0+

λL(v) := lim
v→0+

C(v, v)

v
(10)

exists positive. The latter dependence coefficient is particularly interesting for
prices and returns, since it corresponds to concordance in market crashes. Its
empirical version can therefore formalize the existence, in the multivariate VG
model built so far, of crash dependence. For the VG cases of Figures 2 and 3
the values of λL(0.01) are also collected in Table 1.

2.4.4 Sensitivity Analysis of the Copula

From Figures 2 and 3, as well as from Table 1, we can attain some feeling on
the behavior of the copula (7).

Sensitivity w.r.t. ν: The behavior of returns with respect to the level of
economic activity, i.e. the common Gamma transform, is mainly measured in
terms of ν. An increase in ν increases marginal variance and kurtosis, according
to the expressions in Section 2.2 above. It also increases concordance: the
effect is evident on both the level curves of Figure 2 and on the corresponding
copula realizations of Figure 3. Indeed, when passing from the left column,
which corresponds to ν = 1, to the right one, which corresponds to ν = 2.5,
the copula level curves of Figure 2 become more kinked, and therefore closer
to the maximum copula ones: this could be confirmed by plotting on the same
graph the level curves of the maximum copula, or by calculating mean square
errors. Also, from the first to the second column, the points of the scatter

11
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plots in Figure 3 tend to cluster along the main diagonal, and in particular -
along it - towards the origin and at a second point, close to the upper corner of
the square. This - probably bimodal - behavior explains the appearance in the
second column graphs of a sort of ”anchor”, more pronounced for higher values
of the asymmetry parameters θi.

The increase in concordance is well captured by the empirical version of
Spearman’s rho, which goes, according to Table 1, from 4% to 10% in the first
row case (low θi’s), from 14% to 25% in the second line one (medium θi’s), from
45% to 49% in the last line one (high θi’s). It is also confirmed by the linear
correlation correlation coefficient, as the reader can check in Table 1.

Last but not least, increasing ν seems to increase also the lower tail depen-
dence, since the scatter plot points cluster in the lower left corner when going
from the left to the right column, starting from an already more clustered situ-
ation in the lower rows, i.e. when the asymmetry parameter is higher. This is
confirmed by the tail dependence estimators of Table 1.

The increase in concordance and lower tail dependency which results from
increasing ν can be explained as follows: without a time change the two asset
processes would be independent. They would remain independent under a de-
terministic time change. The stochastic clock adopted here has fixed average
and variance proportional to ν. Increasing ν then increases the impact of the
stochastic time change: this not only causes the processes to depart ”more”
from continuity and boosts their jumps at the marginal level, but it also causes
them to become more dependent, since the are affected by the same stochastic
pressure, but the latter is more ”powerful”.

Sensitivity w.r.t. θi: When we increase in absolute value the (negative)
asymmetry coefficients θi, i.e. when we go from top to bottom in each column
of Figures 2 and 3, we observe again increasing concordance, since level curves
become more kinked and scatter points cluster on the main diagonal. This is

consistent with intuition, since increasing θi in X(i) = θiGt + σiW
(i)
Gt

decreases
- ceteris paribus - the role of the idiosyncratic component.

In Figure 3, we can also remark an increase in lower tail dependency, since
the points tend to cluster around the origin. Both increases, in concordance
and lower tail dependence, are confirmed by the coefficients of Table 1.

As said above, the presence of lower tail dependency is a particularly nice
feature of the multivariate model just built, which makes it particularly prone
to use in equity and credit modelling, in order to incorporate higher dependence
of respectively low returns and defaults than of high returns and non-default
situations.

The sensitivity w.r.t. σi is not explored via the above cases, but can be
obtained from the Authors upon request: as expected, the copula does not seem
to be very sensitive to changes in this parameter, which drives the idiosyncratic
Brownian factors, W (1) and W (2), but leaves unchanged the common Gamma
one, G.
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The effect of increasing θ versus the one of increasing σ can be explained
as follows: in the first case we strengthen the linear component of the time
transform in the return dynamics. In the second we simply boost the variance
of the idiosyncratic risk.

Remark 1 We note here that it is tempting to compare the copula (7) with
the Archimedean Clayton one, which arises when mixing Exponentials random
variates by a Gamma distribution (see [31, Theorem 10.5] and [27]). As wrongly
reported in [17] other mixtures, like a mixture of Normals with a Gamma, as in
our setting, do not lead to a Clayton copula.

3 Applications

3.1 Equity Modelling

The model proposed above can be used in order to describe the joint behavior
of equities or equity indexes. It will be possible to calibrate it directly under
the risk neutral measure and using data on univariate derivative products due
to the fact that, as stressed above, its marginal and joint distributions at any
fixed point in time depend on the same parameters. This will allow us to price
rainbow products, such as options on the maximum, on the minimum, options
on the best or worst of, without introducing the adhockery of no premium for
market crashes and default dependence.

3.1.1 The Multivariate VG-Model

We model n dependent stock price, (S
(1)
t , . . . , S

(n)
t ) process as in (2). More

precisely, we have

S
(i)
t = S

(i)
0 exp((r − qi)t+ θiGt + σiW

(i)
Gt

+ ωit), (11)

where (W
(1)
t , . . . ,W

(n)
t ) is a vector of independent Brownian Motions and G =

{Gt, t ≥ 0} is a common Gamma process with parameters a = b = 1/ν inde-
pendent from all Brownian motions involved2.

The multivariate risk neutral distribution of such stock prices, having defined
log returns as in (3), is a straightforward extension of (5).

The pricing of European-type Basket-options can be done by Monte-Carlo
simulation. To simulate the paths of n dependent stock prices according to the
above model, one can proceed as follows.

Discretize the time-interval [0, T ] in to N equally spaced intervals: Let ∆t =

T/N and set tj = j∆t, j = 0, . . . , N . Set Si,0 = S
(i)
0 . Calculate Si,j = S

(i)
tj

: for
j from 1 to N do the following:

2Note that in theory we can make the Brownian motions dependent on each other (as in
[24]). However, this would lead to a quadratic increase in the parameters and would generate
an estimation problem of the correlation structure, as discussed before.
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• sample a random number gj out of the Gamma(∆t/ν, 1/ν) distribution;

• sample for each i = 1, ..., n an independent standard Normal random
number vi,j .

• Set
Si,j = Si,j−1 exp((r − qi)∆t+ θigj + σi

√
gjvi,j + ωi∆t).

This will give a realization of the dependent stock prices at the chosen time-
grid, as can be seen in Figure 1 .

3.1.2 The Stochastic Volatility VG-Model

One can even go a step further and build in stochastic volatility in the above
model. Incorporating stochastic volatility effects into the price process can be
done by making one more stochastic time change. Periods with high volatility
can be interpreted as if time runs faster than in periods with low volatility.
Applications of stochastic time change to asset pricing go back to Mandelbrot
and Taylor [26] (see also Clark [11]). We consider the model introduced by Carr,
Geman, Madan and Yor [5].

In order to have stochastic volatility we will have, on top of the setting in the
previous sections, for each individual price, an independent time-change taking
care of the companies’ own stochastic volatility3. The behavior of the price
processes will then be modeled by the exponential of dependent Lévy process
suitably (and independently) time-changed. Note that the time-change needed
to have stochastic volatility effects is of an other nature than the one in Section
2; here we need a mean-reverting effect.

Following [5], we opt here to use for the rate of time change of the ith price

a CIR-process y(i) = {y(i)
t , t ≥ 0} that solves the SDE:

dy
(i)
t = κi(ηi − y

(i)
t )dt+ λi(y

(i)
t )1/2dW̃

(i)
t ,

where W̃ (i) = {W̃ (i)
t , t ≥ 0} are independent standard Brownian motions in-

dependent of all other process which are into play. The economic time corre-
sponding to calendar time t is then

Y
(i)
t :=

∫ t

0

y(i)
s ds.

The characteristic function of Y
(i)
t (given y

(i)
0 ) is explicitly known (see [12]):

ϕCIR(u, t;κi, ηi, λi, y
(i)
0 ) = E[exp(iuY

(i)
t )|y(i)

0 ]

=
exp(κ2

i ηit/λ
2
i ) exp(2y

(i)
0 iu/(κi + γi coth(γit/2)))

(cosh(γit/2) + κi sinh(γit/2)/γi)2κiηi/λ2
i

,

3Extensions to common stochastic volatility time changes can be part of future research.
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where

γi =
√

κ2
i − 2λ2

i iu.

Due to (time)-scaling effects, one can w.l.o.g. scale the present rate of time

change to 1, i.e. set y
(i)
0 = 1. Other possible time-changes, based on Ornstein

Uhlenbeck-type processes (which can be jump process) as in [32], can readily
be used to.

The (risk-neutral) price process S(i) = {S(i)
t , t ≥ 0} is now modeled as

follows:

S
(i)
t = S

(i)
0

exp((r − qi)t)

E[exp(X
(i)

Y
(i)

t

)|y(i)
0 ]

exp(X
(i)

Y
(i)

t

),

where X(i) = {X(i)
t = θiGt + σiW

(i)
Gt
, t ≥ 0} is a VG process. The factor

exp((r−qi)t)/E[exp(X
(i)

Y
(i)

t

)|y(i)
0 ] puts us immediately into the risk-neutral world

by a mean-correcting argument. Essentially, the price process is modeled as
the ordinary exponential of a time-changed Lévy process (a VG process). The
process incorporates jumps (through the Lévy process) and stochastic volatility
(through the time change).

The corresponding log returns are

Z
(i)
t := logE[exp(X

(i)

Y
(i)

t

)|y(i)
0 ] + (r − qi)t+X

(i)

Y
(i)

t

The characteristic function φ(u, t) of the log-price process is given by:

φ(u, t) = E[exp(iu log(S
(i)
t ))|S(i)

0 , y
(i)
0 ]

= exp(iu((r − qi)t+ logS
(i)
0 ))

ϕ(i)(−iψ
(i)
X (u); t, y

(i)
0 )

ϕ(i)(−iψ
(i)
X (−i); t, y

(i)
0 )iu

, (12)

where
ψ

(i)
X (u) = logE[exp(iuX

(i)
1 )]

and ϕ(i)(u; t, y
(i)
0 ) denotes the characteristic function of Y

(i)
t given y

(i)
0 (for more

details, see [5] or [32]).
The log-return distribution at time 1 could be constructed by conditioning

first on the integrated CIR process, analogously to what we did for the VG
process. By doing so, at the multivariate level, one could exploit once more
conditional independence in order to arrive at a representation of the type (5).

3.2 Credit Risk Modelling

There are basically two main classes of models for credit pricing: intensity based
models and firm’s value models. Here, we essentially apply the model presented
above to produce a new dynamic multivariate firm’s value model in the style of
Merton, where default is triggered by the fact that the firm’s value at maturity
is too low, and in the style of Black and Cox, in which default is triggered by
the hitting of a low barrier.
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Most available firm’s value models for credit pricing have a stochastic pro-
cess with continuous paths modelling the firm’s asset value. However, one often
would like to have a more flexible underlying distribution than the Normal dis-
tribution in order to take into account skewness and excess kurtosis. Moreover,
default events are most of the time triggered by shocks and hence one would
like to have also jumps in the asset value. This can be accomplished by adding
a Poisson component, as in Zhou [33]. By doing so, one does not overcome an-
other modelling problem: very often, the dependence structure of the assets is
used in order to infer the one of the default intensities (see for instance Li [19]).
However, this is not correct, since, as pointed out by Duffie and Lando [15], a
continuous path asset value does not produce a totally inaccessible default time,
and therefore does not admit a corresponding intensity. Neither a continuous
asset process with superimposed jumps would have an intensity. Only a pure
jump structural model would admit an intensity.

We build a new multivariate Merton-type model and Black-Cox-type model,
where we assume that the asset price processes are described by an exponential
of dependent (non-Brownian) Lévy processes. By so doing, we take into ac-
count asymmetry and fat-tail behaviour. An other advantage by following this
approach is the fact that in contrast to Brownian motion the underlying Lévy
process is a jump process and hence instantaneous default is possible. Depen-
dence is build by making use of the common time-change. Again, we work out
the details in the popular case of a Variance Gamma Lévy process.

Default can be triggered either by the fact that the firm’s value at maturity
is too low to cover the facial value of debt, as in the traditional Merton’s model,
or by the hitting of a deterministic low-barrier, as in the traditional Black-Cox’s
model. In the second case early default is possible. After briefly introducing
the Merton-type model, in what follows we will put most emphasis on the more
involved Black-Cox-type model. Under this model we will discuss the pricing of
a Credit Default Swap (CDS). The pricing is based on the solution of a PDIE.
CDSs are the basic derivatives in the credit market on which one typically likes
to calibrate the model. We stress here that in under our model we are able of
calibrating on the CDS derivatives available in the market only; we do not need
historical data.

Next, we start with a brief description of a Merton’s type of which the
univariate case was introduced, for the VG process, in Madan [21]. We will
model in this context n firms; the risk-neutral firm’s value are modelled by (2).

3.2.1 Multivariate Merton-type VG Firm’s Value Model

Suppose the ith firm has a unique, zero-coupon debt issue with facial value Li

and maturity T . Then, debt holders receive either Li or the asset value A
(i)
T , if

the latter is smaller than the former. Therefore, the time to default of the ith
firm, τi is given by

τi =

{

T A
(i)
T < Li;

+∞ A
(i)
T ≥ Li.
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Debt holders on the ith firm in turn have a claim of Li and are short a put on
the firm’s value, with final payoff

max(Li −A
(i)
T , 0).

The debt value at any time before maturity coincides with this put price, while
the default probability is the corresponding exercise probability. Closed-form
formulas for both have been provided by Madan, Carr and Chang [6].

Under this model, the marginal conditional, pT
i (x), (onGT = x), the marginal

unconditional, P d
i (T ), and the joint unconditional, P d(T ), risk neutral default

probabilities are resp. given by:

pT
i (x) = F (i)(Li|x) = Φ

(

li − (r − qi + ωi)T − θix

σi
√
x

)

P d
i (T ) = F (i)(Li) =

∫ +∞

0

Φ

(

li − (r − qi + ωi)T − θix

σi
√
x

)

ν−T/ν

Γ(T/ν)
x

T
ν
−1 exp(−x/ν)dx

P d(T ) =

∫ +∞

0

n
∏

i=1

Φ

(

li − (r − qi + ωi)T − θix

σi
√
x

)

ν−T/ν

Γ(T/ν)
x

T
ν
−1 exp(−x/ν)dx

where li = ln(Li/A
(i)
0 ).

3.2.2 Multivariate VG Barrier Model

Let us now move to the barrier model, where the barrier corresponds to the
recovery value of the firm’s debt, net of bankruptcy costs. More precisely, the

ith firm defaults the first time its asset value process A(i) = {A(i)
t , t ≥ 0} hits a

low barrier Hi < A
(i)
0 . The time of default of the ith firm, τi, is hence given by

τi = inf{t ≥ 0|A(i)
t ≤ Hi}.

Let us denote by P s
i (t) the risk-neutral survival probability between 0 and t:

P s
i (t) = PQ

(

A(i)
s > Hi, for all 0 ≤ s ≤ t

)

;

= EQ

[

1

(

min
0≤s≤t

A(i)
s > Hi

)]

where we used again the indicator function 1(B); the subindex Q refers to the
fact that we are working in a risk-neutral setting.

Differently from the Merton-type case, the probability P s(t) cannot be writ-
ten in closed form: however, it can be easily computed, either via Montecarlo
techniques or as the solution of an appropriate PIDE (see [7]). The second
approach saves computational time. The probability P s

i (t) will be the main
ingredient in the pricing formula of the CDSs on which we will calibrate our
models.
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4 Calibration

Next, we will calibrate the models to a set of basic derivatives: vanilla options
in Equity and CDS term structures in Credit. We use the Nelder-Mead simplex
(direct search) method to minimize the difference between market prices and
model prices in a least-squares sense: we minimize the root mean square error
(rmse) given by

rmse =

√

∑

derivatives

(Market price − Model price)2

number of derivatives
.

4.1 Equity: Calibration on Vanilla Options

Carr and Madan [6] developed pricing methods for the classical vanilla options
which can be applied in general when the characteristic function of the risk-
neutral stock price process is known.

Let α be a positive constant such that the αth moment of the stock price
exists. Carr and Madan then showed that the price C(K,T ) of a European call
option with strike K and time to maturity T is given by:

C(K,T ) =
exp(−α log(K))

π

∫ +∞

0

exp(−iv log(K))̺(v)dv, (13)

where

̺(v) =
exp(−rT )E[exp(i(v − (α+ 1)i) log(ST ))]

α2 + α− v2 + i(2α+ 1)v

=
exp(−rT )φV G(v − (α+ 1)i;σ

√
T , v

T , T θ)

α2 + α− v2 + i(2α+ 1)v
.

Using Fast Fourier Transforms, one can compute within a second the com-
plete option surface on an ordinary computer. We apply the above calculation
method in our calibration procedure. The only difference with a univariate
calibration is that we simultaneously calibrate all stocks by using a common
ν-parameter

4.1.1 The Multivariate VG Model

In a univariate setting the VG model is know for its ability to fit option prices
(or equivalently implied volatilities) at one maturity. In order to illustrate that
our multivariate model is also able of doing that, we fit the model on a data set
of vanilla options on the SP-500, the Nikkei-225 and the Eurostoxx-50, all taken
at the same instant (April, 5, 2005). The maturity of the involved options is
approximately one year. As can be seen from Figure 4, our model is capable of
simultaneously fitting all market options at the given maturity very well.
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4.1.2 The Multivariate Stochastic Volatility VG Model

The VG model is not really able of globally fitting all option prices over all
maturities. Although the fits are much better than in the classical Black-Scholes
setting (see e.g. [32]), the fact that no stochastic volatility is built in still leads
in a global calibration to some discrepancy between model and market prices,
especially at long maturities. This was one of the driving motivations to include
stochastic volatility (by time-changing) into the VG model. As in the univariate
case our multivariate VG model with stochastic volatility (VG-SV) can nicely
fit the market situation and this over all maturities and all strikes. Again we fit
the model on a data set of vanilla options on the SP-500, the Nikkei-225 and the
Eurostoxx-50, again taken at the same instant (April, 5, 2005), but now taking
into account maturities ranging from one month to over five years. As can be
seen from Figure 5, our model is capable of simultaneously fitting all market
options over all maturities very well.

Company σ ν θ κ η λ y0
Eurostoxx-50 0.1306 0.1665 -0.1287 1.0701 0.8437 1.9926 1
Nikkei-225 0.1642 0.1665 -0.0429 0.3395 1.2268 1.0616 1
SP-500 0.1421 0.1665 -0.0816 0.9802 0.8667 2.4049 1

Table 2: Calibration on Eurostoxx50, Nikkei 225 and SP-500

The results obtained for the process parameters, which can be found in Table
2 are in line with previous implementations of both the VG and its stochastic
volatility version. The value of ν obtained for the VG case is ν = 0.7514,
while in the stochastic volatility case we get ν = 0.1665. In the former case
we know from the dependence analysis of section 2.4.4 that that value of the ν
parameter implies quite a strong dependence, which could be further explored
using the simulation tools of section 2.4: we can tentatively infer also a weaker
concordance with stochastic volatility.

4.2 Credit: Calibration on CDS Term Structure Curve

In the Credit setting, the CDSs will be the basic derivatives on which we will
calibrate our model. Consider a CDS with maturity T and a continuous spread
c. The price of a this CDS is then given by

CDS = (1 −R)

(

−
∫ T

0

exp(−rs)dP (s)

)

− c

∫ T

0

exp(−rs)P (s)ds,

where R is the asset specific recovery rate, P (s), the firm’s survival probability
and r is the default-free discount rate.

19

Page 20 of 31

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

From this, we find the par spread c∗ that makes the CDS price equal to zero:

c∗ =
(1 −R)

(

−
∫ T

0
exp(−rs)dP (s)

)

∫ T

0
exp(−rs)P (s)ds

=
(1 −R)

(

1 − exp(−rT )P (T ) − r
∫ T

0
exp(−rs)P (s)ds

)

∫ T

0
exp(−rs)P (s)ds

In [7] a fast numerical method for the pricing of CDSs under a VG model was
described. The technique is based on the pricing of digital barrier options by
solving Partial Integro-Differential Equations (PIDEs).

The advantage here is that we can still use this technique for the pricing of
individual CDSs. Moreover, calibration can easily be done by the same pricing
technique in a multivariate setting. One just has to calibrate all the CDS curves
simultaneous using a common ν-parameter.

Next, we will calibrate the model to a basket of CDS term structures which
were taken from the market situation on the 26th of October 2004. In Figure
6, the joint calibration for a set of five companies is visualized. In Table 4, one
finds the parameters coming out of the calibration procedure; Table 3 reports
the corresponding market and models prices. One sees clearly, that the model’s
CDS term structure curve captures nicely the market quotes.

Company Moody 1y 3y 5y 7y 10y
Autozone Baa2 Market 25 65 102 117 127
Autozone Baa2 Model 21 69 101 117 126
Ford Credit Co. A3 Market 75 154 203 225 238
Ford Credit Co. A3 Model 66 165 209 224 224
Kraft A3 Market 4 19 31 40 51
Kraft A3 Model 4 18 32 41 50
Walt Disney Baa2 Market 6 21 36 45 56
Walt Disney Baa2 Model 5 21 36 46 55
Whirlpool Baa1 Market 16 36 66 73 86
Whirlpool Baa1 Model 12 40 63 76 85

Table 3: Calibration on CDS (in bp) term structure

5 Conclusions and Further Research

We have presented a multivariate Lévy process for modelling financial assets:
prices are driven by a common, stochastic time change, which has to be un-
derstood as the effect of the economic activity, and which causes sudden jumps
in asset values, as well as by idiosyncratic Brownian motions. The model has
been fully specified for the case of a gamma time change, thus leading to the
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Company σ ν θ
AutoZone 0.2025 0.7068 -0.0250
Ford 0.2562 0.7068 -0.0252
Kraft 0.1510 0.7068 -0.0296
Walt Disney 0.1543 0.7068 -0.0330
Whirlpool 0.1745 0.7068 -0.0396

Table 4: Calibration on CDS (in bp) term structure

multivariate version of the quite popular VG model, both with and without
stochastic volatility.

Section 2 has highlighted the theoretical properties of the model, both in
terms of analytical tractability, clarity of the dependence structure and parsi-
mony of parameters. Section 3 has pointed out its easiness of simulation and
speed of calibration.

Based on the calibrations presented above, the model seems to match very
well price data, both on the equity and credit derivatives market. Obviously,
the empirical analysis has to be pursued further, both extending the database
and the goodness of fit analysis: in this sense, we should first of all consider not
only (percentage) pricing errors, but also their standard errors.

As concerns the equity risk application, we expect the model to outperform
traditional jointly Gaussian structures, mainly because of the inclusions of fat
tails, asymmetry and tail dependence.

As concerns the credit risk application, we aim at comparing the model
proposed here with some structural, diffusion based ones, in order to check
whether current shortcomings of the latter can be overcome by the former. We
expect for sure the problem of too low short term credit spreads to be eliminated
by the multivariate Lévy proposal.

In both cases, the possibility of calibrating the multivariate model directly
under the risk-neutral measure, without having to stick to multivariate normal-
ity and without assuming no risk premium for equity or default dependence, will
allow us to price multivariate derivatives and credit derivatives in a satisfactory,
credible way.

Appendix

Lévy Processes

Definition

Suppose φ(z) is the characteristic function of a distribution. If for every positive
integer n, φ(z) is also the nth power of a characteristic function, we say that
the distribution is infinitely divisible. One can define for every such an infinitely
divisible distribution a stochastic process, X = {Xt, t ≥ 0}, called Lévy process,
which starts at zero, has independent and stationary increments and such that
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the distribution of an increment over [s, s + t], s, t ≥ 0, i.e. Xt+s − Xs, has
(φ(z))t as characteristic function. A Lévy process is a stochastically continuous
process and has always a modification (with the same distribution) with cádlág
trajectories (i.e. continuous from the right and possessing limits from the left
in any time t), and furthermore this cádlág modification has a finite number
of large jumps (with absolute value greater than some positive number) in any
finite interval.

The function ψ(z) = log φ(z) is called the characteristic exponent and it
satisfies the following Lévy-Khintchine formula [1]:

ψ(z) = iγz − ς2

2
z2 +

∫ +∞

−∞

(exp(izx) − 1 − izx1{|x|<1})ν(dx),

where γ ∈ R, ς2 ≥ 0 and ν is a measure on R\{0} with
∫ +∞

−∞
(1∧x2)ν(dx) <∞.

We say that our infinitely divisible distribution has a triplet of Lévy character-
istics [γ, ς2, ν(dx)]. The measure ν(dx) is called the Lévy measure of X. From
the Lévy-Khintchine formula, one sees that, in general, a Lévy process consists
of three independent parts: a linear deterministic part, a Brownian part, and
a pure jump part. The Lévy measure ν(dx) dictates how the jumps occur.
Jumps of sizes in the set A occur according to a Poisson process with parameter
∫

A
ν(dx). If ς2 = 0 and

∫ +1

−1
|x|ν(dx) <∞ it follows from standard Lévy process

theory [1] [30], that the process is of finite variation.

The Variance Gamma Process

The characteristic function of the VG(σ, ν, θ) law is given by

φV G(u;σ, ν, θ) = (1 − iuθν + σ2νu2/2)−1/ν .

This distribution is infinitely divisible and one can define the VG-processX(V G) =

{X(V G)
t , t ≥ 0} as the process which starts at zero, has independent and station-

ary increments and where the increment X
(V G)
s+t −X

(V G)
s over the time interval

[s, t+ s] follows a VG(σ, ν/t, tθ) law:

E[exp(iuX
(V G)
t )] = φV G(u;σ

√
t, ν/t, tθ)

= (φV G(u;σ, ν, θ))t

= (1 − iuθν + σ2νu2/2)−t/ν .

In [22], it was shown that the VG-process may also be expressed as the
difference of two independent Gamma processes. This characterization allows
the Lévy measure to be determined:

νV G(dx) =

{

C exp(Gx)|x|−1dx x < 0
C exp(−Mx)x−1dx x > 0

,
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where

C = 1/ν > 0

G =

(
√

θ2ν2

4
+
σ2ν

2
− θν

2

)−1

> 0

M =

(
√

θ2ν2

4
+
σ2ν

2
+
θν

2

)−1

> 0.

The Lévy measure has infinite mass, and hence a VG-process has infinitely
many jumps in any finite time interval. Since

∫ +∞

−∞
|x|νV G(dx) < ∞, a VG-

process has paths of finite variation. A VG-process has no Brownian component
and its Lévy triplet is given by [γ, 0, νV G(dx)], where

γ =
−C(G(exp(−M) − 1) −M(exp(−G) − 1))

MG
.

With the parametrization in terms of C,G andM , the characteristic function

of X
(V G)
1 reads as follows:

φV G(u;C,G,M) =

(

GM

GM + (M −G)iu+ u2

)C

.

In this notation we will refer to the distribution by the notation VG(C,G,M).
When θ = 0 then G = M and the distribution is symmetric. Negative values

of θ lead to the case where G < M resulting in negatively skewness. Similarly,
the parameter ν = 1/C primarily controls the kurtosis.
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Figure 2: Contour plots of Copula for various parameter settings
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Figure 3: Scattered Plot of Copula for various parameter settings
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Figure 4: Multivariate Calibration of VG on Equity (Plus signs denote model
prices, o-signs market prices).
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Figure 5: Multivariate Calibration of VG-SV on Equity (Plus signs denote model
prices, o-signs market prices).

29

Page 30 of 31

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
0 2 4 6 8 10

0

20

40

60

80

100

120

140
CDS (in bp) −Autozone, σ=0.2025, ν=0.7068, θ=−0.025001

time

c
d

s
 (

in
 b

p
)

0 2 4 6 8 10
0

50

100

150

200

250
CDS (in bp) −Ford, σ=0.25616, ν=0.7068, θ=−0.025

time

c
d

s
 (

in
 b

p
)

0 2 4 6 8 10
0

10

20

30

40

50

60
CDS (in bp) −Kraft, σ=0.15096, ν=0.7068, θ=−0.02957

time

c
d

s
 (

in
 b

p
)

0 2 4 6 8 10
0

10

20

30

40

50

60
CDS (in bp) −Wall Disney, σ=0.15429, ν=0.7068, θ=−0.032992

time

c
d

s
 (

in
 b

p
)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90
CDS (in bp) −Whirlpool, σ=0.17445, ν=0.7068, θ=−0.039569

time

c
d

s
 (

in
 b

p
)

Figure 6: Multivariate Calibration
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