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Abstract

We discuss the application of gradient methods to calibrate mean

reverting stochastic volatility models. For this we use formulas based

on Girsanov transformations as well as a modification of the Bismut-

Elworthy formula to compute the derivatives of certain option prices

with respect to the parameters of the model by applying Monte Carlo

methods. The article presents an extension of the ideas to apply Malli-

avin calculus methods in the computation of Greek’s.
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Introduction

Models for financial markets depend in general on certain parameters, which
one can choose in a way that the market model resembles the corresponding
real market best. A simple one dimensional standard Black-Scholes model
would depend for example on the drift term b of the stock as well as the
volatility coefficient σ and a natural question would be : How should one
choose b and σ such that the option prices predicted by this Black-Scholes
model are closest to observed market prices ? As is well known, under risk
neutral valuation b does not affect prices and so the minimization affects only
the parameter σ alone. For most elementary options this problem could be
solved explicitly, however for certain exotic options it would be hard enough
to solve, at least when one is trying to get closed form solutions. Many people
working in Mathematical Finance do not consider the Black-Scholes model
as an appropriate market model anymore. Evidence for this is given for ex-
ample by volatility smiles. Nowadays many financial institutions work with
so called mean reverting stochastic volatility models. As the simple Black-
Scholes model involves certain parameters, so do mean reverting stochastic
volatility models and the question remains : How to chose the parameters
in a way that the option prices predicted by the models best fit observed
market prices ? Solving this problem by gradient methods from optimiza-
tion is the main theme of this article. We allow our models to depend on
the four parameters κ, θ, γ1 and γ2. The parameters κ and θ are classic pa-
rameters describing the mean reversion, γ1 is a measure for the correlation
between stock and volatility and γ2 is a parameter describing the volatility
of the volatility. When applying gradient methods we have to differentiate
the option prices Π(κ, θ, γ)(h(ST )) of a certain European style option on a
stock (St) with payoff function h with respect to κ, θ and γ. Problems oc-
cur when one has to differentiate h, since almost all options possess payoff
functions with singularities. In our approach we avoid differentiating h by
using a certain combination of Girsanov drift adjustment and Malliavin’s
integration by parts formula. These ideas build up on ideas by Fournie et
al. used for the computation of Greeks ( see [7] ). We give formulas for the
gradient of Π(κ, θ, γ)(h(ST )) which do not involve differentiating h and are
accessible by Monte Carlo methods. For the simulations we use plain Monte
Carlo simulation, which works well in our examples. The numerical results
can be improved by using the general machinery of importance sampling or
stratified sampling as well as certain variance reduction techniques. Since
these are standard techniques, well known to practical analysts and financial
programmers, we leave this aspect out of our considerations. The main goal
of the article is to illustrate the new idea, how to use Malliavin calculus and
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standard gradient methods for calibration. The presentation is given in a
way, that it is easy work for the practitioner to adjust the method and to
optimize it for his or her special needs.

The article is organized as follows. In section 1 we present the necessary
background about mean reverting stochastic volatility models as well as op-
tion pricing in such models. We consider the general problem of calibration of
such models in section 2. Using techniques from Malliavin calculus we prove a
modification of the Bismut-Elworthy formula in section 3. Section 4 provides
the formulas for the partial derivatives of the option prices Π(κ, θ, γ)(h(ST ))
with respect to the parameters κ, θ and γ and in section 5 we implement
the combined Malliavin gradient algorithm. Section 7 summarizes the main
ideas and conclusions of the article. As an example how the Malliavin gra-
dient method can be implemented, we study the case of a Vasicek model
in Appendix A. We give explicit formulas for this case and present some
simulations. Appendices B and C give background information on gradient
methods resp. Malliavin calculus, only as far as is needed to read this article.

All simulations have been done by using the Matlab c© software package.
Our thanks go to the Stochastic Control and Mathematical Finance Group
of the University of Kaiserslautern for presenting us with a rich and stimu-
lating working environment and Ralf Korn, Heinrich von Weizsäcker,David
Nualart and Klaus Schenk-Hoppé for fruitful discussions and advice. Ad-
ditionally the first author wants to thank in particular the BBSRC and the
University of Bristol for financial support. The second author wants to thank
Leeds University Business School as well as the University of Kaiserslautern
for financial support. Thanks also go to an anonymous referee for many use-
ful comments and suggestions which we used to improve an earlier version of
this article.

1 Option pricing in mean reverting stochastic

volatility models

In this section we introduce our market model. We assume right from the
beginning, that we work under a risk neutral measure. As is well known,
this is the right framework when doing option pricing. We concentrate on
so called mean reverting stochastic volatility models, which are widely used
among practitioners in finance. Such models are characterized by an affine
drift term of the form κ(θ − vt)dt in the SDE for the volatility. A detailed

2
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discussion of such models can be found for example in [8]. Within the whole
article we fix a probability space (Ω,F , P) which is rich enough to carry a
Brownian motion of at least dimension two and is filtered by the correspond-
ing Wiener filtration, which we denote with (Ft). We can always think of a
multidimensional Wiener space.

The models we consider are simple in a way that they only involve one
stock and the volatility process. Stock and volatility are assumed to follow
the dynamics

dSt = St(rdt + f(vt)dWt)

dvt = κ(θ − vt)dt + g(vt, ν)dW̃

where for simplicity we assume that the model parameters κ,θ and ν are
positive constants. The interest rate r is assumed to be deterministic and
by considering discounted stock prices instead of actual stock prices we can
as well assume that r ≡ 0, which we will do from now on. The functions
f and g are supposed to be smooth with bounded derivatives of all orders.
These are standard assumptions when Malliavin calculus methods are applied
to certain diffusion processes. A typical example where these assumptions
apply is the Vasicek model ( see [8], page 177 ). In some situations these
assumptions can be relaxed using localization or drift adjustment techniques
as in [5] and [3]. This is the case for example in the Heston model [13] and
the Hull and White model [14]. The two Brownian motions W and W̃ are
allowed to be correlated in a way that there exists a constant −1 < ρ < 1
such that

d < Wt, W̃t >= ρdt.

Setting µ :=
√

1 − ρ2 one can find a two dimensional Brownian motion
W = (W 1,W 2)⊤ such that the dynamics of stock and volatility can be written
as

dSt = Stf(vt)
(

µdW 1
t + ρdW 2

t

)

dvt = κ(θ − vt)dt + g(vt, ν)dW 2.

Setting Xt =

(

St

vt

)

and using a two dimensional notation we can write

dXt = β(Xt)dt + σ(Xt)dWt

where β(x1, x2) =

(

0
κ(θ − x2)

)

and σ(x1, x2) =

(

µx1f(x2) ρx1f(x2)
0 g(x2, ν)

)

.

3
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In our setup, we assume that agents in our model are aware of the gen-
eral mean reverting structure of the model, including the functions f and
g, but not on the precise numerical values of the model parameters κ, θ, ν

and ρ. This feature leads to the problem of calibration, which we are going
to discuss in the next section. However to include the dependence of the
model on these parameters we include them in the notation of the functions
β and σ, i.e. we write β(x1, x2, κ, θ) as well as σ(x1, x2, ρ, ν). We also set
γ = (ρ, ν) ∈ R

2. Certainly the process (Xt) depends on the parameters κ, θ

and γ and we think of Xt as a family of stochastic processes parametrized
by κ, θ, γ defining solutions to the family of stochastic differential equations

dXt = β(Xt, κ, θ)dt + σ(Xt, γ)dWt

( see [19], Theorem 39 for the existence of families of solutions ). In addition
to the parameters introduced one can add the initial condition as another
parameter. The dependence of option prices on initial conditions however,
already has been studied extensively. In this article we fix initial conditions
as

x =

(

S0(κ, θ, γ)
v0(κ, θ, γ)

)

= X0(κ, θ, γ)

for all κ, θ, γ. Instead of a family of stochastic differential equations, one can
as well think of a family of market models described by the parameters κ, θ, γ

and a natural question is, which of the models within the family one should
chose.

Let us now consider the problem of pricing a contingent claims of the form
h(ST ) where h : R → R is a Borel measurable function and T is the expiry
time. Such contingent claims correspond to European style options. Since
we chose a risk neutral setup in the beginning, we can compute an arbitrage
free price at time t = 0 via the following formula

Π(κ, θ, γ)(h(ST )) := EP(h(ST (κ, θ, γ)))

This price naturally depends on the parameters κ, θ and γ. The parameters
κ and θ determining the drift term of the volatility and in a way represent
the agents choice of the risk neutral measure, as long as a mean reverting
structure is assumed. The parameter γ reflects the agents assessment of the
correlation and volatility of volatility.

4
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2 Calibration of stochastic volatility models

Options on stocks and other financial derivatives are traded on financial
markets throughout the world. Often traders use certain models to price
derivatives, but not always consistently and even worse, they do not tell us
which model they use. A good model should reflect the market prices. There
are conceptual problems with the widely used Black-Scholes model and it
is common knowledge that mean reverting stochastic volatility models solve
some of these problems. The question however remains how to determine the
parameters of the model in a way that the approximation to market prices
is best. In our setting this means we have to determine the parameters
κ, θ and γ in a way that our choice minimizes a certain functional which
measures the distance of model prices to market prices. This is a classical
optimization problem. From an economic point of view the choice of the
parameters κ and θ is of particular interest, since this choice correspond
to the martingale measure chosen by the traders within the market. A lot
of theoretical research has been done to characterize equivalent martingale
measures by certain criteria. Only to mention a few, there are minimal
distance martingale measure ( see [11],[12] ), minimal entropy martingale
measures ( see [9] ) or minimax martingale measures ( see [1], [11] ). These
considerations however, do not help to determine which martingale measures
are actually used on the market. Our considerations do not only affect the
choice of an equivalent martingale measure, but also choices of parameters
determining the volatility. Let us assume, that we have a mean reverting
stochastic volatility model described by the parameters κ, θ and γ which we
would like to test on real market data. Then we can consider a number n

of European style options hi(STi
) with maturity times Ti and their observed

market-prices Πobs(hi(STi
)). The functional

L(κ, θ, γ) =
n
∑

i=1

[

Π(κ, θ, γ)(hi(STi
)) − Πobs(hi(STi

))
]2

is a measure for the error corresponding to the model described by the pa-
rameters κ, θ and γ. Calibration of our model now means to find minimizers
for this functional, i.e.

(κ∗, θ∗, γ∗) = argmin L(κ, θ, γ).

In section 5 we will demonstrate a method for the computation of κ∗, θ∗ and
γ∗.

5
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3 First variation processes and a modified

Bismut-Elworthy formula

In this section we apply Malliavin calculus techniques in order to derive a
modified version of the Bismut-Elworthy formula. The construction of the
Malliavin derivative operator as well as its fundamental properties are sum-
marized in Appendix C. Let us consider the stochastic differential equation

dXt = β(Xt)dt + σ(Xt, γ)dWt.

where (Wt) is an n-dimensional Brownian motion on (Ω,F , P) and γ ∈ R
n

is a parameter determining the volatility of the solutions. We assume that
the coefficient functions β : R

n → R
n and σ : R

n × R
n → GL(n, R) are two

times continuously differentiable and denote with Dxβ the Jacobian of β with
respect to x as well as with Dxσj respectively Dγσj the Jacobians of the j-th
column of σ with respect to x respectively γ. The function β could be allowed
to depend on more parameters, as in the previous sections where it depended
on κ and θ, but this is not of importance for our considerations in this
section, which will deal exclusively with the parameter γ. We therefore omit
any possible dependencies of β on additional parameters from the notation.
However, under these assumptions it follows from Theorem 39, page 305 in
[19] that there exists a family of solutions (Xt(x, γ)) such that X0(x, γ) = x

a.s. and the map

(x, γ) 7→ Xt(x, γ)(ω)

is continuously differentiable a.s. for all t defined up to an explosion time
ζ(x, γ). We assume here that this explosion time is infinity for all choice of
x and γ and moreover that the process (Xt) belongs to L2(Ω × [0, T ], Rn).
Criteria to assure this can be found in [15] ( Theorem 2.4 Chapter IV, page
163 ). Then the R

n×n valued processes (DxXt) and (DγXt) satisfy

dDxXt = Dxβ(Xt)D
xXtdt +

n
∑

j=1

Dxσj(Xt, γ)DxXtdW
j
t

with DxX0 = Id a.s. as well as

dDγXt = Dxβ(Xt)D
γXtdt+

n
∑

j=1

Dxσj(Xt, γ)DγXtdW
j
t +

n
∑

j=1

Dγσj(Xt, γ)dW
j
t

with DγX0 = 0. Here 0 denotes the n × n zero matrix whereas above
Id denotes the n × n identity matrix. The process (DxXt) is often called

6
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the first variation process corresponding to (Xt) and is in fact a GL(n, R)-
valued process. The process (DγXt) so far has not been appeared in the
literature and therefore has not been named. We refer to this process as
γ-variation process. Both, the stochastic differential equation for the first
variation process as well as the stochastic differential equation for the γ-
variation process are linear and can therefore be solved explicitly in terms of
the process (Xt). Using general results about the uniqueness of a solution to
a linear stochastic differential equation, one also obtains that if one computes
solutions to the stochastic differential equations above, then these solutions
are necessarily the first variation respectively the γ-variation process. As it
is easily verified the first variation process and the γ-variation process are
related by the following formula :

DγXt = (DxXt) ·
(

n
∑

j=1

∫ t

0

(DxXs)
−1

Dγσj(Xs, γ)dW j
s

−
n
∑

j=1

∫ t

0

(DxXs)
−1

Dxσj(Xs, γ)Dγσj(Xs, γ)ds

)

Furthermore, the first variation process is closely connected to the Malliavin
derivative via the following proposition (compare [18], Theorem 2.2.1).

Proposition 3.1. If under the assumptions from above DxXt(D
xXs)

−1σ(Xs, γ)
is in L2(Ω) for all s ∈ [0, T ], then Xt ∈ D1,2 and its Malliavin derivative is

given by

DsXt = DxXt(D
xXs)

−1σ(Xs, γ) · 1{s≤t}

The relationship of the first variation process and the Malliavin derivative
together with the integration by parts formula can be used to achieve the
Bismut-Elworthy formula which appeared in several versions ( see for exam-
ple [18] page 125 or [7] Proposition 3.2 ).

Proposition 3.2. If under the assumption of Proposition 3.1. the weight

πT =
1

T

∫ T

0

(

σ(Xt, γ)−1DxXt

)⊤
dWt

is in L2(Ω) and h ∈ L2
loc(R

n, R) with at most linear growth at infinity, such

that h(XT ) ∈ L2(Ω), then

Dx
E(h(XT )) = E(h(XT )πT )

7
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The Bismut Elworthy formula gives an expression for the derivative with
respect to the initial condition and has so far very successfully been used
to accelerate the computations of the Greek’s Delta, Gamma and Vega (
see [7] ). These Greek’s play a major role in hedging derivatives. The fol-
lowing proposition presents a modification of the Bismut-Elworthy formula
concerning the derivative with respect to the parameter γ.

Proposition 3.3. Under the assumptions of Proposition 3.1. define the

weight

ΓT :=
n
∑

j=1

∫ T

0

(DxXs)
−1

Dγσj(Xs, γ)dW j
s

−
n
∑

j=1

∫ T

0

(DxXs)
−1

Dxσj(Xs, γ)Dγσj(Xs, γ)ds

and assume that the process ρ̃T defined by

ρ̃T,t :=
1

T
σ(Xt, γ)−1DxXt · ΓT

belongs to dom(δ). Furthermore, let h ∈ L2
loc(R

n, R) with at most linear

growth at infinity such that h(XT ) ∈ L2(Ω), then

Dγ
E(h(XT )) = E(h(XT )ρT )

for the R
n-valued weight ρT := δ(ρ̃T ).

Proof. Let us first assume the function h has bounded partial derivatives.
Then one can interchange differentiation and expectation in order to obtain

Dγ
E(h(XT )) = E(∇h(XT )DγXT )

by the same argument as in the proof of Proposition 3.2. in [7]. By Propo-
sition 3.1 we have

DtXT = DxXT (DxXt)
−1σ(Xt, γ)

or equivalently

DxXT = DtXT σ(Xt, γ)−1DxXt

Integrating this equation over t ∈ [0, T ] and dividing by T gives

8
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DxXT =

1

T

∫ T

0

DtXT σ(Xt, γ)−1DxXtdt.

The discussion preceding Proposition 3.1 showed DγXT = DxXT · ΓT . Fur-
thermore by definition ρ̃T,t = 1

T
σ(Xt, γ)−1DxXt ·ΓT . Therefore, by multiply-

ing the equation from above with ΓT we obtain

DγXT = DxXT ·ΓT =
1

T

∫ T

0

DtXT σ(Xt, γ)−1DxXt·ΓT dt =

∫ T

0

(DtXT )ρ̃T,tdt.

and furthermore

Dγ
E(h(XT )) = E

(

∇h(XT )

∫ T

0

(DtXT )ρ̃T,tdt

)

.

By Proposition C3 and Proposition C2 in Appendix C we obtain

Dγ
E(h(XT )) = E

(
∫ T

0

(Dth(XT ))ρ̃T,tdt

)

= E(h(XT )δ(ρ̃T ))

and therefore Dγ
E(h(XT )) = E(h(XT )ρT ).

Now consider the general case, when h ∈ L2
loc(R

m, R) with at most linear
growth at infinity. We prove the last formula by approximation of h by
continuously differentiable functions as follows. First note that h can be
written as h = h̃+ g where h̃ ∈ L2(Rn, R)and g is continuously differentiable
with bounded derivatives. By the argument above, our formula is correct
for g and in order to prove our formula for h we only have to prove the
formula for h̃ by additivity of the expectation. Therefore, we can as well
assume that h ∈ L2(Rn, R). Now since the algebra of smooth functions with
compact support C∞

c (Rn, R) is dense in L2(Rn, R), we can find a sequence
of functions hn ∈ C∞

c (Rn, R) such that hn → h in L2(Rn, R). It follows
from Theorem 2.3.1, page 110 in [18], that for each triple (κ, θ, γ) the law of
XT (κ, θ, γ) is absolutely continuous with respect to the Lebesgue measure µ

on R
n. It therefore follows that hn(XT (κ, θ, γ)) → h(XT (κ, θ, γ)) in L2(Ω)

for each (κ, θ, γ). Using Egorovs Theorem ( [23] page 16 ) it follows that the
sequence hn converges in fact µ-uniformly on compacts to h, where µ denotes
the Lebesgue measure on R

n. This can be used to show that the convergence

E
[

(hn(XT ) − h(XT ))2]→ 0

is uniformly on compacts in the parameters κ, θ and γ. Denoting

9
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C := E (h(XT )δ(ρ̃T ))

we have by applying the obtained result for hn as well as the Cauchy-Schwartz
inequality that

∣

∣

∣

∣

∂

∂v
E(hn(XT )) − C

∣

∣

∣

∣

= |E ((hn(XT ) − h(XT )) · δ(ρ̃T ))

= E
[

(hn(XT ) − h(XT ))2
]1/2 · E

[

δ(ρ̃T )2
]1/2

As noted before, the first expression on the right hand side of the equality
above converges uniformly ( in κ, θ, γ ) on compacts to zero. As a continuous
function in (κ, θ, γ), the second expression on the right hand side of the
equality is bounded on any compact set. It therefore follows that

Dγ
E(hn(XT )) → C

uniformly on compacts ( in κ, θ, γ ). A well-known result from basic calculus
then implies that E(h(XT )) is differentiable with respect to γ and that the
derivative is given by

Dγ
E(h(XT )) = C = E (h(XT )δ(ρ̃T )) ,

which was to prove.

The technical integrability conditions in Propositions 3.1, 3.2 and 3.3 are
in general satisfied when the coefficient functions β and σ have bounded
derivatives of all orders and σ is assumed to be uniformly coercitive. If this
is not the case, one has to check these conditions for the individual case.

The explicit computation of the weight function ρT := δ(ρ̃T ) in the Proposi-
tion above can turn out to be difficult unless the Wiener chaos decomposition
of the integrand is known. For approximation of Skorohod integrals in the
one dimensional case see for example [18], page 150. To avoid Skorohod
integrals at all, we use the following lemma.

Lemma 3.1. Let el denote the l-th standard base vector in R
n and let (Mt) be

an R
n×n-valued (Ft)-adapted process such that for each component (Mt)i,k of

(Mt) and each 1 ≤ l ≤ n the n-dimensional process (Mt)i,k · e⊤l is in dom(δ).
Furthermore, let Γ be an FT measurable random variable in D1,2 such that

E

(

‖Γ‖2
∫ T

0
‖Mt‖2dt

)

< ∞ where ‖Γ‖ and ‖Mt‖ denote the Euclidean norm

10
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of the matrices. Then the R

n×n-valued process (Mt ·Γ) is Skorohod integrable

and the i-th component of the R
n-valued random variable δ(Mt · Γ) is given

by the following formula :

δ(Mt · Γ)i =
n
∑

l,k=1

Γk,l

∫ T

0

(Mt)i,kdW l
t −

n
∑

l,k=1

∫ T

0

Dl
tΓk,l · (Mt)i,kdt.

Here the integrals with respect to dW j
s are ordinary Itô integrals.

Proof. The i-th component of δ(Mt ·Γ) is given by δ ((Mt · Γ)i,·), where (Mt ·
Γ)i,· denotes the i−th row of Mt · Γ. We write this row as follows :

(Mt · Γ)i,· =
n
∑

l=1

n
∑

k=1

Γk,l · (Mt)i,k · e⊤l .

Using Proposition 4.9 in [20] ( see also [18] formula 1.49, page 40 ) we obtain

δ ((Mt · Γ)i,·) =
n
∑

l=1

n
∑

k=1

Γk,lδ
(

(Mt)i,k · e⊤l
)

−
n
∑

l=1

n
∑

k=1

< DΓ⊤
k,l, (Mt)i,k · el >L2([0,T ],Rn)

=
n
∑

l,k=1

Γk,l

∫ T

0

(Mt)i,kdW l
t −

n
∑

l,k=1

∫ T

0

Dl
tΓk,l · (Mt)i,kdt

where in order to obtain the last equality we used Proposition C1 in Appendix
C.

Using the previous lemma we obtain the following corollary of Proposition
3.2.

Corollary 3.1. Assume that the assumptions in Lemma 3.1 hold for Γ = ΓT

and (Mt) defined by

(Mt)ik =
1

T

n
∑

m=1

σ(Xt, γ)−1
im

∂

∂xk

Xm
t

for i, k = 1, .., n. Then under the same assumptions as in Proposition 3.1

the i-th component of the R
n valued weight function ρT from Proposition 3.3

can be computed by the formula

11
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ρT,i =

1

T

n
∑

l,k,m=1

ΓT,k,l

∫ T

0

σ(Xt, γ)−1
im

∂

∂xk

Xm
t dW l

t

− 1

T

n
∑

l,k,m=1

(

Dl
tΓT,k,l

)

σ(Xt, γ)−1
im

∂

∂xk

Xm
t dt.

Proof. This follows immediately from Proposition 3.2 and Lemma 3.1.

4 The derivatives of option prices with re-

spect to the model parameters

Let us now reconsider the family of mean reverting stochastic volatility mod-
els discussed in section 1:

dXt = β(Xt, κ, θ)dt + σ(Xt, γ)dWt,

In this section, we study the derivatives of the option price Π(κ, θ, γ)(h(ST ))
with respect to the parameters κ, θ, γ. These derivatives will later be used to
apply gradient methods for the search of the “best” model within the family.
As in section 3, it follows from our assumptions and Theorem 39 in [19] that
we can assume w.l.o.g. that for each t and P-almost all ω ∈ Ω the function

(κ, θ, γ) → Xt(κ, θ, γ)

is continuously differentiable. For notational reasons we suppress the vari-
ables κ, θ and γ in most of the notation, with exception of the coefficient
functions. Nevertheless one should always keep in mind, that all processes
occurring are considered as functions in κ, θ and γ. Let us now assume that
for all ǫ sufficiently small and all positive κ and θ as well as γ ∈ R

2, the
process (Zt(ǫ, κ, θ, γ)) defined by

Zt(ǫ, κ, θ, γ) = E
(

−
∫ t

0

σ(Xs, γ))−1

(

0
ǫ(θ − vs(κ, θ, γ))

)

dWs

)

,

is a martingale. Here E denotes the stochastic exponential ( also known as the
Doléans-Dade exponential see [19], II.8 page 85 ). Under the assumption that
the coefficient function σ is uniformly coercitive, Zt is always a martingale,
if not, this must be checked in each case individually by using the Novikov
condition. We assume at this point, that the function g is bounded away from
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zero. The process (Zt(ǫ, κ, θ, γ)) is precisely the Girsanov density process
changing the law of (Xt(κ, θ, γ)) to the law of (Xt(κ+ ǫ, θ, γ)). In particular,
we have for any Borel-measurable function h : R → R the following identity:

E [h(XT (κ + ǫ, θ, γ))] = E [h(XT (κ, θ, γ))ZT (ǫ, κ, θ, γ)] .

Computing ZT (ǫ, κ, θ, γ) yields

ZT (ǫ, κ, θ, γ) = exp

(

ǫ

(

∫ T

0

γ1(θ − vt)
√

1 − γ2
1g(vt, γ2)

dW 1
t −

∫ T

0

(θ − vt)

g(vt, γ2)
dW 2

t

− ǫ

2

∫ T

0

(θ − vt)
2

(1 − γ2
1)g(vt, γ2)2

dt

))

Furthermore, we have for all ǫ 6= 0 that

1
ǫ
(ZT (ǫ, κ, θ, γ) − 1) = 1

ǫ

∫ T

0
dZt(ǫ, κ, θ, γ)

= 1
ǫ

∫ T

0
Zt(ǫ, κ, θ, γ) · ǫ ·

(

γ1(θ−vt)√
1−γ2

1
g(vt,γ2)

dW 1
t − (θ−vt)

g(vt,γ2)
dW 2

t

)

=
∫ T

0
Zt(ǫ, κ, θ, γ)

(

γ1(θ−vt)√
1−γ2

1
g(vt,γ2)

dW 1
t − (θ−vt)

g(vt,γ2)
dW 2

t

)

Since g is bounded away from zero and Z0(ǫ, κ, θ, γ) = 1 we have

lim
ǫ→0

1

ǫ
(ZT (ǫ, κ, θ, γ) − 1) =

∫ T

0

γ1(θ − vt)
√

1 − γ2
1g(vt, γ2)

dW 1
t −

∫ T

0

(θ − vt)

g(vt, γ2)
dW 2

t

as a limit in L2(ω). Similarly, the process (Z̃t(ǫ, κ, θ, γ)) defined by

Z̃t(ǫ, κ, θ, γ) = E
(

−
∫ t

0

σ(Xs, γ)−1

(

0
κǫ

)

dWs

)

= exp

(

ǫ

(

∫ T

0

γ1κ
√

1 − γ2
1g(vt, γ2)

dW 1
t −

∫ T

0

κ

g(vt, γ2)
dW 2

t

− ǫ

2

∫ T

0

κ2

(1 − γ2
1)g(vt, γ2)2

dt

))

is the Girsanov density process changing the law of (Xt(κ, θ, γ)) to the law
of (Xt(κ, θ + ǫ, γ)) and in the same way as before, one obtains
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lim
ǫ→0

1

ǫ

(

Z̃T (ǫ, κ, θ, γ) − 1
)

=

∫ T

0

γ1κ
√

1 − γ2
1g(vt, γ2)

dW 1
t −

∫ T

0

κ

g(vt, γ2)
dW 2

t

The following proposition shows how to compute the derivatives of the option
prices Π(κ, θ, γ)(h(ST )) with respect to κ and θ.

Proposition 4.1. Under our general assumptions, we have for any Borel

measurable function h s.t. h(ST (κ, θ, γ)) ∈ L2(Ω) for all κ, θ and γ

∂

∂κ
Π(κ, θ, γ)(h(ST )) = E

[

h(ST )

(

∫ T

0

γ1(θ − vt)
√

1 − γ2
1g(vt, γ2)

dW 1
t −

∫ T

0

(θ − vt)

g(vt, γ2)
dW 2

t

)]

and

∂

∂θ
Π(κ, θ, γ)(h(ST )) = E

[

h(ST )

(

∫ T

0

γ1κ
√

1 − γ2
1g(vt, γ2)

dW 1
t −

∫ T

0

κ

g(vt, γ2)
dW 2

t

)]

Proof. The result follows more or less directly from the discussion above. We
have

lim
ǫ→0

1

ǫ
[Π(κ + ǫ, θ, γ)(h(ST )) − Π(κ, θ, γ)(h(ST ))]

= lim
ǫ→0

1

ǫ
[E(h(ST (κ + ǫ, θ, γ))) − E(h(ST (κ, θ, γ)))]

= lim
ǫ→0

E

(

1

ǫ
(ZT (ǫ, κ, θ, γ) − 1) h(ST (κ, θ, γ))

)

= E

(

lim
ǫ→0

1

ǫ
(ZT (ǫ, κ, θ, γ) − 1) h(ST (κ, θ, γ))

)

= E

((

∫ T

0

γ1(θ − vt)
√

1 − γ2
1g(vt, γ2)

dW 1
t −

∫ T

0

(θ − vt)

g(vt, γ2)
dW 2

t

)

h(ST (κ, θ, γ))

)

.

To interchange the order of taking the limit and expectation above, we used
the L2-convergence of the limit as well as the assumptions that h(ST (κ, θ, γ))
∈ L2(Ω). This proves that the partial derivative of Π(κ, θ, γ)(h(ST )) with
respect to κ exists and is given by the expression stated in the proposition.
The same argument works for the partial derivative of Π(κ, θ, γ)(h(ST )) with
respect to θ by using the density Z̃T (ǫ, κ, θ, γ) defined in the discussion above.
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Since Girsanov transformations do not affect the volatility coefficients, the
method just discussed does not help to compute the partial derivative of the
option prices Π(κ, θ, γ)(h(ST )) with respect to γ. This derivative however,
can be computed by using Proposition 3.3. For this let us define processes
(At) and (Bt) via

At :=

∫ t

0

√

1 − γ2
1f

′(vs)BsdW 1
s +

∫ t

0

γ1f
′(vs)BsdW 2

s −
∫ t

0

f(vs)f
′(vs)Bsds

Bt := exp(−κt) exp

(
∫ t

0

∂

∂x2

g(vs, γ2)dW 2
s −

∫ t

0

1

2

∂

∂x2

g(vs, γ2)
2ds

)

,

Again, these processes depend explicitly on the parameters κ, θ and γ, but
we avoid the extensive notation At(κ, θ, γ) respectively Bt(κ, θ, γ) for the
purpose of improving readability of the formulas. With this notation one
can easily verify that the first variation process of Xt is given by

DxXt =

(

St

x
St · At

0 Bt

)

.

We define the R
2×2-valued adapted process (Mt) via

Mt :=
1

T

(

1√
1−γ2

1
f(vt)x

Atg(vt,γ2)−γ1Btf(vt)√
1−γ2

1

0 Bt

g(vt,γ2)

)

A straightforward computation shows Mt = 1
T
σ(Xt, γ)−1DxXt. Furthermore,

we define the following FT -measurable random variables

CT :=

∫ T

0

γ1xf ′(vs) −
xAs

∂
∂x2

g(vs, γ2)

Bs

∂

∂γ2

g(vs, γ2)ds

as well as K
j
T and L

j
T for j = 1, 2 via

K1
T :=

(

−2γ1x
∫ T

0
f(vs)

2ds 0
0 0

)

K2
T :=

(

γ1x
∫ T

0
f(vs)

2ds CT

0 0

)

L1
T :=

(

−2x γ1√
1−γ2

1

∫ T

0
f(vs)dW 1

s 0

0 0

)

15

Page 17 of 30

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
L2

T :=

(

x
∫ T

0
f(vs)dW 2

s −
∫ T

0
Asx

∂
∂γ2

g(vs, γ2)dW 2
s

0
∫ T

0

∂
∂γ2

g(vs,γ2)

Bs
dW 2

s

)

In the situation of this section with the notation from above, the random
variable ΓT in Proposition 3.3 is precisely given by

ΓT = L1
T + L2

T − (K1
T + K2

T ).

We obtain the following proposition.

Proposition 4.2. With the notation from above, assume that (Mt) and

ΓT satisfy the assumptions in Proposition 3.3 and Corollary 3.1. Let h ∈
L2

loc(R, R) with at most linear growth at infinity s.t. h(ST (κ, θ, γ)) ∈ L2(Ω)
for all κ, θ and γ, then

(

∂

∂γ1

Π(κ, θ, γ)(h(ST )),
∂

∂γ2

Π(κ, θ, γ)(h(ST )

)

= E(h(ST (κ, θ, γ)) · ρT )

for the (1 × 2) matrix valued weight function ρT given by

ρT := δ(Mt · ΓT )

Proof. The result follows from Proposition 3.3 after solving all the linear
stochastic differential equations for the first variation process and performing
some (2 × 2)-matrix calculus. That the integrand in the Skorohod integral
is indeed in the domain of δ follows from our assumptions on the market
models.

The expression δ(Mt · ΓT ) in the proposition above, can be computed using
Lemma 3.1

5 The Malliavin gradient method for calibra-

tion

As discussed in section 2, calibrating our mean reverting stochastic volatility
model means picking out that model of our family, which has the property
that the corresponding parameters κ, θ and γ minimize a certain functional.
This functional should measure the distance of theoretical prices based on
the model to observed market prices. There are several possibilities to choose
this functional. The most natural is the one discussed in section 2
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L(κ, θ, γ) =

n
∑

i=1

[

Π(κ, θ, γ, )(hi(STi
)) − Πobs(hi(STi

))
]2

where hi(STi
) are European style options and Πobs(hi(STi

)) are observed
market prices corresponding to these options. Let us now use gradient
methods to find minimizers for the functional above. The partial deriva-
tives of L with respect to κ, θ and γ are as follows : With Di(κ, θ, γ) =
Π(κ, θ, γ, )(hi(STi

)) − Πobs(hi(STi
)) one has

∂

∂κ
L(κ, θ, γ) = 2

n
∑

i=1

Di(κ, θ, γ) · ∂

∂κ
Π(κ, θ, γ)(hi(STi

))

∂

∂θ
L(κ, θ, γ) = 2

n
∑

i=1

Di(κ, θ, γ) · ∂

∂θ
Π(κ, θ, γ)(hi(STi

))

∂

∂γj

L(κ, θ, γ) = 2
n
∑

i=1

Di(κ, θ, γ) · ∂

∂γj

Π(κ, θ, γ)(hi(STi
))

for j = 1, 2. The computation of Di(κ, θ, γ) only involves the computation
of the option prices in the corresponding model. If closed form solutions
exist we take them. If not we use Monte Carlo Simulation. For the compu-
tation of the partial derivatives ∂

∂κ
Π(κ, θ, γ)(hi(STi

)), ∂
∂θ

Π(κ, θ, γ, )(hi(STi
))

and ∂
∂γj

Π(κ, θ, γ, )(hi(STi
)) we use the formulas computed in section 4. To

compute these formulas we also use Monte Carlo simulation. To simulate
the process (Xt) describing the stock price and the volatility we use general
methods for simulating solutions of stochastic differential equations like the
stochastic Euler-scheme or the Milstein-scheme ( see [16] ). Always when
Monte Carlo methods are used, one can think about variance reduction. In
general, one can say that all the general theory like importance sampling,
stratified sampling and the methods discussed in [7] which particularly suit
the Malliavin calculus can be applied. When using gradient methods with
step-size control, it can be said that for computation of the step-size one also
has to use Monte Carlo Simulation, but in general one can run these with a
much lower number of simulations of the process (Xt). We will discuss the
case of the Vasicek model in Appendix A. We have chosen this model, be-
cause it is one of the simplest stochastic volatility models and the formulas
obtained in the last section turn out to be of reasonable length. Corre-
sponding formulas for other stochastic volatility models turn out to be quite
lengthy instead. The case of the Heston model, which is certainly one of the
most popular stochastic volatility models deserves special attention. One of
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the difficulties when dealing with the Heston model comes from the fact that
the volatility of the volatility is a square-root function and therefore does
not satisfy the technical conditions in the previous section. One can avoid
these difficulties by using a multidimensional model and a drift adjustment
technique such as in [3] ). On the other side, it has recently be proved that
the Heston volatility is indeed Malliavin differentiable, see [5]. The localiza-
tion techniques in this article combined with the techniques from the last
section in fact prove, that Proposition 4.1 and proposition 4.2 remain valid
in the context of the Heston model. The same holds for the case of the Hull
and White model. The formulas given in section 4 can easily be extended to
cover second order derivatives and the Hessian of Π(κ, θ, γ, )(hi(STi

)) so that
one can implement the Newton method as discussed in Appendix B.

6 Conclusions

The method proposed in the article presents the new idea, to combine Malli-
avin calculus and standard methods from Optimization, in order to calibrate
stochastic volatility models. The method is presented in a way, that it can
easily be adapted to the special needs of financial engineers working in prac-
tice on individual problems. It has been tested successfully in cooperation
with several institutes at the ITWM Fraunhofer Institute in Kaiserslautern.
There is open space to optimize the method, by using standard tricks to
fasten up Monte Carlo methods. The Malliavin Gradient Method appears
to be a real alternative to classical calibration methods from numerical par-
tial differential equations and statistics. We should also mention that the
formulas for the derivatives obtained in this article can be used to get good
estimates for Value at Risk in stochastic volatility models. We will present
this interesting application in a future publication.

Appendix A : Examples and simulations

We consider the case of a family of Vasicek models given by the family of
stochastic differential equations

dSt = St

(

√

1 − γ2
1vtdW 1

t + γ1vtdW 2
t

)

dvt = κ(θ − vt)dt + γ2dW 2
t

for positive parameters κ and θ and γ ∈ R
2. As in the previous section

we write Π(κ, θ, γ)(h(ST )) for the price of a European style option h(ST ) in
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this model, where h is assumed to satisfy the technical assumptions made
in section 4. In the notation of section 1 we have to chose f(x2) = x2 and
g(x2, γ2) = γ2. This choice results in the following derivatives

f ′(x2) = 1,
∂

∂x2

g(x2, γ2) = 0,
∂

∂γ2

= 1.

It follows from Proposition 4.1. that

∂

∂κ
Π(κ, θ, γ)(h(ST )) = E

[

h(ST ) ·
(

γ1

γ2

√

1 − γ2
1

(

θW 1
T −

∫ T

0

vtdW 1
t

)

− 1

γ2

(

θW 2
T −

∫ T

0

vtdW 2
t

))]

as well as

∂

∂θ
Π(κ, θ, γ)(h(ST )) = E

[

h(ST ) · κ

γ2

(

γ1√
1 − γ1

2W 1
T − W 2

T

)]

.

The processes (At) and (Bt) defined in preparation for Proposition 4.2. can
easily be computed as

At =
√

1 − γ2
1

∫ t

0

e−κsdW 1
s + γ1

∫ t

0

e−κsdW 2
s −

∫ t

0

vse
−κsds

Bt = e−κt

It then follows that

∂

∂γ2

Π(κ, θ, γ)(h(ST )) = E

[

h(ST )
1

γ2

((
∫ T

0

eκsdW 2
s

)(
∫ T

0

e−κsdW 2
s

)

+ T

)]

.

The formula for ∂
∂γ1

Π(κ, θ, γ)(h(ST )) is quite lengthy and rather suited for
typing into a computer program than in a scientific article. We therefore
omit it here and assume in the following that the correlation parameter γ1 is
given and set up a gradient method involving the remaining parameters κ, θ

and γ2. This assumption has been made, also to provide a nice three dimen-
sional rather than 4 dimensional graphical output. We use the techniques
presented in section 5 using the formulas above for the partial derivatives
of Π(κ, θ, γ)(h(ST )). The setup is now as follows. We consider three digital
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call options with strike prices 0.8, 1.0 and 1.2 respectively and maturity time
T = 1, i.e.

h1(ST ) = 1{S1≥0.8}

h2(ST ) = 1{S1≥1.0}

h3(ST ) = 1{S1≥1.2}.

We assume that the real market parameters are given as

κ = 0.5

θ = 0.2

γ1 = −0.2

γ2 = 0.1

and that the initial price of the stock is S0 = 1 whereas the initial volatility is
v0 = 0.2. Prices for the digital calls h1(ST ), h2(ST ) and h3(ST ) can be com-
puted by Monte Carlo simulation. The results of our simulation, where we
used 50 ∗ 106 simulated paths of (St) and (vt) each with a time discretization
of ∆ = 0.01, are shown in the following table :

Table 1:

strike price
0.8 0.81909648
1.0 0.43567714
1.2 0.13018866

The trader at the market observes these prices, but does not know about the
values of κ, θ and γ2. He does know though that the market is given by a
Vasicek model and that the covariation γ1 between the two driving Brownian
motions is γ1 = −0.2. He can then start Monte Carlo simulations by himself,
trying various parameters he might be lucky and get close to the observed
market prices. More systematically he can try the gradient method proposed
in the previous section in order to get some idea where to look for a good
set of parameters κ, θ, γ2. The results of such a gradient method, where we
used 105 simulated paths for the computation of the gradient with a time-
discretization of ∆ = 0.01 in each step, as well as 1000 simulations for the
step size control and a step size discretization of 0.0025 with maximum step
size 0.05, are shown in the following table and the figure on the next page.
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Table 2:

initial 250 500 750 1000
κ 0.8 0.6164 0.5912 0.5792 0.5718
θ 0.5 0.2468 0.2371 0.2320 0.2290

γ2 0.3 0.1431 0.1480 0.1283 0.1273

The first row in the table shows the number of steps performed by the gra-
dient method. Simulations were done under Matlab c© using a PC with an
AMDAthlon64 c© processor. The computing time for this simulation was
approximately four hours. The results in the table show that in the end
the convergence becomes very slow and a considerable higher computational
effort has to be made to get closer to the real parameters. A closer look
at the figure also shows that the convergence of the γ2 component is af-
fected by the high variance of the corresponding weight in the formula for

∂
∂γ2

Π(κ, θ, γ)(h(ST )). The algorithm can be significantly improved by using
general variance reduction methods as mentioned in the introduction.

Figure 1:
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Appendix B : Gradient methods

In this appendix we present the general idea behind gradient methods for
solving minimization problems. We do not go into a detailed discussion of the
numerics ( for this see the abundant literature on optimization, for example
[6], [2] ) but rather illustrate the algorithm. Consider the unconstrained
problem:

• given a function f : R
n → R find a minimizer x∗ ∈ R

n for f .

We assume that the function f is at least of class C2. Under these as-
sumptions a necessary condition for x∗ minimizing f is that the gradient of
∇f(x∗) vanishes. Given an arbitrary point x0 ∈ R

n and a direction γ ∈ R
n,

the function f at x0 increases in direction γ, if the scalar product (∇f(x0), γ)
is greater than 0 and decreases in direction γ, if (∇f(x0), γ) is less than 0.
In the latter case γ is called a direction of descent. If x0 is already a mini-
mizer we stop. Otherwise, assuming that x0 is no saddle point, we choose a
direction γ0 of descent, i.e. γ0 ∈ R

n such that

(∇f(x0), γ0) < 0.

We then choose a step-size t0 and make a step from x0 into direction γ0 of
size t0. Then we arrive at x1 := x0 + t0 · γ0. If x1 is a ( local ) minimizer we
stop. If not we go on, chose a direction γ1 of descent and a step-size t1 in
order to get x2 and so on. Inductively :

• find γk s.t. (∇f(xk), γk) < 0, choose a step-size tk and set

xk+1 = xk + tk · γk.

In an iterative procedure we may hope to find a minimizer for f or at least to
get close to one. Obviously the question remains how to choose the direction
of descent γk and the step-size tk in each iterative step. One possibility, is to
choose

γk = −∇f(xk).

Then obviously

(∇f(xk), γk) = (∇f(xk),−∇f(xk)) = −‖∇f(xk)‖ ≤ 0.
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A natural idea is to incorporate not only first order data but also second
order data, i.e. the curvature of the function f . In fact, for any symmetric
positive definite matrix Hk one has

(∇f(xk),−Hk · ∇f(xk)) < 0

and therefore one can choose for the descent directions the vectors

γk = −Hk · ∇f(xk).

If one chooses Hk to be the inverse of the Hessian of f at xk and chooses
the step-size to be constant one speaks of the Newton method ( see Satz
3.1. section 7.3, page 192 in [22] for convergence of this method ). Often
however, the computational effort to compute the Hessian at every iterative
step is to big and one takes Hk to be some approximation of the Hessian.
Better convergence results can be obtained by an intelligent step-size control.
In principle, the following idea helps in determining the right step-size :

• at step k take tk > 0 to be the first local minimizer of the function

t 7→ f(xk + t · γk)

If the function f is not given explicitly by a formula and the evaluation of f

at some point leads to computational effort which is not negligible, this idea
leads to difficulties. What one can do and what we do in the setup of the
Malliavin gradient method is the following :

• choose a maximum step-size tmax and a grid constant m ∈ N at the
beginning and at each iterative step choose l∗ s.t.

f

(

xk +
l∗

m
tmax · γk

)

= min

{

f

(

xk +
l

m
tmax · γk

)

|l = 1, ..,m

}

and set tk = l∗

m
tmax.

For a convergence result with variable step-size see [22], Satz 2.5, Kapitel
7.2.2. More advanced methods do not only use information about the gradi-
ent at the k-th step but also use information on the previous directions. For
example, one can determine the direction in the k-th step via the formula

γk = −∇f(xk) + βk · γk−1.

where βk is a scalar which determines the portion of the previous direction
to be added to determine the new direction. The following choices for βk are
often used :
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• Fletcher-Reeves formula :

βk =
< ∇f(xk),∇f(xk) >

< ∇f(xk−1),∇f(xk−1) >

• Polak-Riebiere formula :

βk =
< ∇f(xk−1) −∇f(xk),∇f(xk) >

< ∇f(xk−1),∇f(xk−1) >

Appendix C : A brief review on Malliavin cal-

culus

In this appendix, we summarize the construction of the Malliavin deriva-
tive operator and shortly revise its main properties. Though changed by
its appearance, the material presented here has mainly been taken from the
classical references [18] and [21].

Assume we have a probability space (Ω,F , P) on which there is defined an m-
dimensional Brownian motion W. We would like to differentiate functionals
of the form

F : Ω → R

or at least those of a certain nice subclass. For this we first assume that the
functional is given by

F = f (Wt1 , ..., Wtl)

where f ∈ C∞
b

(

(Rm)l
)

is a smooth function with bounded derivatives of all
orders. Given h ∈ L2([0, T ], Rm) we have that

∫ ·

0
h(s)ds ∈ C0([0, T ], Rm)

where the integral is computed component wise and the dot indicates that
the upper bound of the integral is taken as a variable. The subspace of
C0([0, T ], Rm) generated by this kind of functions is called the Cameron-
Martin space. The directional derivative of F in direction

∫ ·

0
h(s)ds at ω is

given by

DhF (ω) :=
d

dǫ

∣

∣

∣

∣

ǫ=0

F̃

(

W(ω) + ǫ ·
∫ ·

0

h(s)ds

)

=
d

dǫ

∣

∣

∣

∣

ǫ=0

f

(

Wt1(ω) +

∫ t1

0

h(s)ds, ..., Wtl(ω) +

∫ tl

0

h(s)ds

)

=
m
∑

i=1

∇if (Wt1(ω), ..., Wtl(ω))⊤ ·
∫ ti

0

h(s)ds.
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where F̃ is the functional on the m-dimensional Wiener space through which
F factorizes and ∇i denotes the gradient with respect to the i-th m-dimensional
argument in f . Now for fixed ω consider the linear bounded functional on
L2([0, T ], Rm) given by

h 7→ DhF (ω).

By the Riesz-representation theorem there is an element DF (ω) in
L2([0, T ], Rm) which is considered as a row vector such that

DhF (ω) = < h,DF (ω)⊤ >L2([0,T ],Rm)=

∫ T

0

DF (ω)(s)h(s)ds

∀h ∈ L2([0, T ], Rm). In the following we denote DF (ω)(s) with DsF (ω). Let
us now consider ω as a variable. The assumption that f has bounded deriva-
tives of all orders ensures that for all p ≥ 1 we have DF ∈ Lp (Ω, L2([0, T ], Rm))
when considered as an L2([0, T ], Rm) valued functional in ω

Assume now that the functional F is not necessarily cylindrical but there
exists a sequence of cylindrical functionals Fi such that (Fi) converges to F

in Lp(Ω) and (DFi) converges to G in Lp(Ω, L2([0, T ], Rm)). Then we define

DF := G = lim
i→∞

DFi.

Using the Cameron-Martin Theorem it is not hard to show that if one has
another sequence (F̃i) converging to F in Lp(Ω) such that (DF̃i) converges
to G̃ in Lp(Ω, L2([0, T ], Rm)), then G = G̃ in Lp(Ω, L2([0, T ], Rm)). This
basically shows that the operator

D : Lp(Ω) → Lp(Ω, L2([0, T ], Rm))

defined on the cylindrical functionals is closable.

Definition C 1. For p ≥ 1 we define the Malliavin derivative operator

D : Lp(Ω) → Lp(Ω, L2([0, T ], Rm))

as the closure of the operator above. For F in the domain of D we define

‖F‖1,p := ‖F‖Lp(Ω) + ‖DF‖Lp(Ω,(L2[0,T ],Rm)).

Then the domain of D is precisely the closure of the cylindrical functionals

under the norm above. It will be denoted with D1,p.
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If the functional F is vector-valued then the Malliavin derivative is computed
component wise and considered as a Matrix in the same way as the Jacobian
matrix in standard calculus. In the following, we restrict ourselves to the
case where p = 2. Then we are dealing with Hilbert spaces.

Definition C 2. The adjoint operator δ = D∗

δ : L2(Ω × [0, T ], Rm) → L2(Ω)

is called the Skorohod integral. We denote its domain with dom(δ).

The word “integral“ is motivated by the following proposition.

Proposition C 1. The class L2
a(Ω× [0, T ], Rm) of adapted square integrable

processes is contained in dom(δ) and on this class the Skorohod integral co-

incides with the Itô-integral.

The following formula is called the integration by parts formula of Malli-
avin calculus.

Proposition C 2. If F ∈ D1,2 and u ∈ dom(δ) then

E

(
∫ T

0

DtF · u(·, t)dt

)

= E(F · δ(u)). (1)

Proof. This follows directly from the definition of δ as the adjoint operator
of D.

Another useful formula for computing Malliavin derivatives is the following
chain-rule ( see [17], Lemma 2.1 ) :

Proposition C 3. Let φ : R
k → R be a continuously differentiable function

and F = (F1, ..., Fk) such that Fi ∈ D1,2. Then φ(F ) ∈ D1,2 if and only if

φ(F ) ∈ L2(Ω) and ∇φ(F )⊤DF ∈ L2(Ω × [0, T ], Rm) and in this case

Dtφ(F ) = ∇φ(F )⊤ · DtF.
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