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Abstract As heritability is high in attention-deficit/

hyperactivity disorder (ADHD), genetic factors must play

a significant role in the development and course of this

disorder. In recent years a large number of studies on

different candidate genes for ADHD have been published,

most have focused on genes involved in the dopaminergic

neurotransmission system, such as DRD4, DRD5, DAT1/

SLC6A3, DBH, DDC. Genes associated with the norad-

renergic (such as NET1/SLC6A2, ADRA2A, ADRA2C)

and serotonergic systems (such as 5-HTT/SLC6A4,

HTR1B, HTR2A, TPH2) have also received considerable

interest. Additional candidate genes related to neuro-

transmission and neuronal plasticity that have been

studied less intensively include SNAP25, CHRNA4,

NMDA, BDNF, NGF, NTF3, NTF4/5, GDNF. This

review article provides an overview of these candidate

gene studies, and summarizes findings from recently

published genome-wide association studies (GWAS).

GWAS is a relatively new tool that enables the identifi-

cation of new ADHD genes in a hypothesis-free manner.

Although these latter studies could be improved and need

to be replicated they are starting to implicate processes

like neuronal migration and cell adhesion and cell divi-

sion as potentially important in the aetiology of ADHD

and have suggested several new directions for future

ADHD genetics studies.

Keywords Genetics � ADHD � Candidate gene studies �
GWAS � Aetiology

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a

common, clinically heterogeneous (in terms of co-

morbidities, gender effects, courses and outcomes),

etiologically complex disorder characterized by early

onset of age-inappropriate persistent and pervasive

symptoms of inattention, hyperactivity, and impulsivity;

twin and adoption studies show ADHD to be highly

heritable, i.e., a heritability of around 0.76 [53]. Con-

verging evidence from animal and human studies
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implicates the dysregulation of frontostriatal and

frontocerebellar catecholaminergic circuits in the path-

ophysiology of ADHD [18]. In addition to prefrontal

cortical areas, the basal ganglia, cerebellum, temporal

and parietal cortex have been implicated in this con-

dition [27, 141]. ADHD is associated with various

neuropsychological alterations, such as deficits in vigi-

lance-attention, cognitive control, namely executive

function deficits, non-executive memory deficits, and

motivation, namely delay aversion, as well as milli-

second timing deficits, state regulation failures, intra-

individual fluctuations in performance over time, and an

altered sensitivity to stimulation [142, 163].

Up to now more than 1,800 publications, dealing with

the genetics of ADHD, have been published and the

following review will be representative and comprehen-

sive, but not exhaustive, and is meant to give the reader

an overview of current findings from genetic associa-

tion studies of this disorder including both candidate gene

studies and genome-wide association studies (GWAS).

Studies on gene-environment interaction in ADHD are

not included in this overview, but are reviewed in another

article in this edition [186]. For the detection of small

effects of individual genes, such as those likely to occur

in ADHD, genetic association studies [144] are generally

more suitable than genetic linkage analyses. However,

population stratification differences between case and

control samples can give rise to both type I and II errors

if case and control samples are not well matched for

ethnic background. Linkage studies have been extremely

successful in elucidating the causes of monogenic disor-

ders, but much less so in multifactorial disorders. ADHD

linkage studies have identified a number of genetic loci

(potentially) harbouring genes for ADHD and some

chromosome regions such as 5p13, 14q12, and 17p11

have been indicated in multiple studies [3, 7, 9, 50, 54,

73, 96, 131, 146]. In the most recent meta-analysis of

seven ADHD linkage studies, genome-wide significant

linkage was only confirmed for one locus on chromosome

16 [196].

Until recently, association approaches were restricted to

hypothesis-driven studies on candidate genes, as described

in the following paragraphs. Such approaches are sub-

stantially influenced by the amount of existing knowledge

regarding disease aetiology. Since this knowledge is still

limited for ADHD, candidate gene based studies are likely

to miss at least part of the genetic variance. Up to now,

such studies can explain no more than 3–5% of the total

genetic components of ADHD [98]. At the end of 2008, the

first unbiased, hypothesis-free GWAS were published for

ADHD, these will be reviewed below, after the candidate

gene studies.

Candidate gene approaches

Genes belonging to the dopaminergic neurotransmission

system—in particular the D4 dopamine receptor gene

(DRD4) and the human dopamine transporter gene (DAT1/

SLC6A3)—have been the most frequently investigated

genes. In addition, genes of the noradrenergic and the

serotonergic system have also been frequently studied. To

date, individual gene variants have only shown small

effects, rarely reaching an odds ratio of 1.3 (e.g. [53], a

figure consistent with that obtained from meta-analyses of

other complex traits [78].

Dopaminergic system

The effectiveness of methylphenidate, which acts by

blocking the dopamine transporter, in ADHD treatment as

well as the association of ADHD with those executive

neuropsychological functions and frontostriatal pathways,

that are dependent on an intact dopaminergic neurotrans-

mission make the dopaminergic system the most inten-

sively analyzed neurotransmitter system in ADHD [166].

D4 dopamine receptor gene (DRD4)

The association between ADHD and a 48 base-pair (48 bp)

repeat polymorphism of exon III of the DRD4 gene—

encoding a receptor expressed primarily in the prefrontal

cortex—is the strongest and most consistently replicated

molecular genetic finding in ADHD. A meta-analysis of

more than 30 studies found that the DRD4 7-repeat

(DRD4-7r) allele increases the risk for ADHD, although

this increase is only moderate with a pooled odds ratio of

1.34 [51, 98]. Importantly this finding was supported in

Caucasian as well as several non-Caucasian populations

[10, 17, 29, 66, 194]. In functional terms the DRD4 7-

repeat allele seems to alter the function of the encoded

receptor by making it less sensitive to dopamine than the

alternative alleles [5].

Studies of the cognitive correlates of the DRD4 7-repeat

allele in ADHD have found mixed results. A hypothesis

that the DRD4 7-repeat allele is particularly associated with

inattentiveness rather than hyperactivity or impulsivity, has

not yet been consistently confirmed [88, 120, 180].

Swanson et al. [165] were the first to report that carrier of

at least one 7-repeat allele with ADHD did not display

neuropsychological deficits. Moreover, the subgroup of

probands with ADHD but without a 7-repeat allele (non-

carriers) showed longer reaction times. Therefore, the 7-

repeat allele might be associated with behavioural features

rather than cognitive deficits. These findings were con-

firmed by the results of Manor and colleagues [117] and
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Bellgrove and colleagues [16], who showed that children

with ADHD with the 7-repeat allele exhibit better com-

mission and omission scores and lower reaction time var-

iability. Johnson et al. [79] support this hypothesis with a

spectral analysis of reaction time variability revealing that

absence of the 7-repeat allele is associated with drifting

sustained attention resulting in inconsistent performance

within a larger sample of Irish children with ADHD.

Contrary to these findings, Langley and colleagues [93]

report that carriers of the 7-repeat allele showed greater

impulsiveness (faster reaction time) than non-carriers;

Waldman et al. [179] referred to longer reaction times for

homozygous carriers of the 7-repeat allele and Kieling

et al. [82] described that presence of the 7-repeat allele was

associated with more commission errors during a contin-

uous performance task (CPT). Finally, Barkley and col-

leagues [12] reported no differences across a range of tests.

However, in summary association of high reaction time

variability with the 7-repeat allele absence appears to be

the most consistent result and seems to be specific to

ADHD [81]. The overall importance of these studies

seeking to link genotype with neuropsychological func-

tioning are limited by a range of methodological issues the

most important of which are, relatively small sample sizes,

a failure to account for the neuropsychological heteroge-

neity of ADHD, a lack of standardisation of neuropsy-

chological tasks between studies and the use of clinically

focused tasks rather than tasks that are based in neurosci-

ence [33]. For a more detailed review of the relationship

between candidate genes for ADHD and neuropsycholog-

ical phenotypes see [81].

Regarding correlates between specific DRD4 genotypes

and structural anatomical findings, Durston et al. [44]

suggested that variations in DRD4 influence prefrontal grey

matter volume in a sample of subjects that included indi-

viduals with ADHD as well as their unaffected siblings,

and healthy controls. Monuteaux et al. [125] also reported

findings in adults with ADHD showing that 7-repeat allele

carriers have a significantly smaller mean volume in the

superior frontal cortex and cerebellum cortex when com-

pared to subjects without this particular allele. Whilst Shaw

et al. [156] found that carrying the DRD4 7-repeat allele

was associated with having a thinner right orbitofrontal/

inferior prefrontal and posterior parietal cortex—regions

overlapping those found to be thinner in ADHD—this same

group were found to have better clinical outcomes. They

also had a distinct trajectory of cortical development with a

normalization of right parietal cortical thickening during

adolescence. This has also previously been linked to having

a better clinical outcome. However, two other studies

reported that possession of the DRD4 7-repeat allele was

associated with greater persistence of ADHD over time

[92]. Based on the finding that 7-repeat allele carriers more

likely exhibit antisocial behaviour, an alternative hypoth-

esis has been proposed which suggests that possession of

the DRD4 7-repeat allele influences the association

between ADHD and conduct disorder [76].

The most frequently investigated gene 9 gene or mar-

ker 9 marker interaction in ADHD is the interaction of

DRD4 (7-repeat allele) and DAT1 (10-repeat allele; see

below). Based on results of two studies on Chilean families,

Carrasco et al. [26] and Henriquez et al. [74] suggested that

neither the DRD4 7-repeat nor the DAT1 10-repeat allele

result in genotype frequency differences between affected

children and their healthy siblings. However, the simulta-

neous presence of both, DRD4 7-repeat heterozygosity and

DAT1 10-repeat allele homozygosity was more frequent in

affected children as compared to their healthy siblings. Qian

et al. [135] failed to replicate these initial findings. A fourth

study which tried to confirm the interaction in a Mexican

sample revealed no association with ADHD, neither for the

individual markers nor for their combination [59]. Kebir

et al. [81] analysed these markers and their relationship to

IQ in a French sample. Besides their not detecting an

association, they suggest that the verbal quotient as a spe-

cific domain of the IQ is correlated to the level of exter-

nalizing behaviour in boys with ADHD who carry the risk

genotypes of both markers. In fact Mill et al. [122] were the

first to suggest that DRD4 (and DAT1) exert their effects on

ADHD by influencing IQ in a population-based sample,

although it should be noted that Sonuga-Barke et al. [161]

were unable to replicate these findings in the sample of

the International Multi-centre ADHD Gene (IMAGE) pro-

ject. In sum, the publications on gene 9 gene interactions

are inconclusive and require further investigations in

much larger samples or a meta-analysis to rule out false

conclusions.

Other dopamine receptors

The 148 bp allele of a dinucleotide (CA)n repeat poly-

morphism located 18.5 kb 50 of the dopamine D5 receptor

gene (DRD5), has also received considerable attention.

While two meta-analyses supported an association with

ADHD (pooled odds ratio *1.3) [98, 112], Mill et al. [123]

and Loo et al. [110] found no evidence for a relationship

between DRD5 status and a range of cognitive endophe-

notypes of ADHD in samples of moderate size (for a more

detailed discussion of the endophenotype approach see

below). Recently, Langley et al. [92] reported an associa-

tion of the 148 bp allele with persistence of ADHD from

childhood to adolescence in a longitudinal study.

Allelic variants of the dopamine D1, D2 and D3

receptors have also been investigated with conflicting

results. A first study reported evidence for an association

between variants of DRD1 and ADHD. The receptor
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encoded by this gene is mainly located in the prefrontal

cortex and in the striatum and it was suggested that it may

modulate working memory capacity and may be associated

specifically with inattention. The re-analysis of genotype

data of a GWAS of the IMAGE sample revealed nominal

significance of single nucleotide polymorphisms (SNPs) in

DRD1 for association to ADHD [130] as well as an asso-

ciation to time-to-onset of ADHD [94]. Two polymor-

phisms in the non-translated 50 region and one marker in

the non-translated 30 region were associated with an

increased risk for ADHD (odds ratio *1.3, each) [124].

This particular finding, however, was not replicated in a

candidate study in the IMAGE sample [21]. An association

of DRD2 SNPs with CPT phenotypes in ADHD has been

brought up by Kollins et al. [87]. Moreover, there is also

some evidence for an involvement of the dopamine D3

receptor gene (DRD3) in the aetiology of ADHD: Guan

et al. [65] reported a nominally significant association in a

Chinese Han population, whereas the results of Davis et al.

[37] indicate a role of the DRD3 in the manifestation of

hyperactive/impulsive symptoms of ADHD. However, the

findings concerning both DRD2 [87, 120, 180] and DRD3

[21, 37, 120, 180] are inconsistent and require further

investigation in independent samples.

Dopamine transporter gene (DAT1/SLC6A3)

The dopamine transporter is expressed primarily in the

striatum and the nucleus accumbens and is a site of action

of methylphenidate. Consequently, the association between

ADHD and variations in the DAT1 gene has been exten-

sively studied. The DAT1 gene contains a 40 bp variable

number tandem repeat (VNTR) polymorphism in the non-

translated 30 region. The 9-repeat allele (440 bp) (23.4%)

and the 10-repeat allele (480 bp) (71.9%) are the most

frequent alleles [177] in Caucasian populations. The 10-

repeat allele is possibly related to an increased mesolimbic

expression of the transporter [177].

Although there have been many reports supporting a

positive association between DAT1 and ADHD, there are

also negative findings. A recent meta-analysis found a

significant heterogeneity between family-based European

association studies (stronger effects) and Asian case–con-

trol studies (weaker effects), and did not support an overall

significant association between DAT1 and ADHD [98].

Further evidence of possible ethnicity effects comes from

studies that indicated associations in case–control studies

in Afro-Caribbean subjects [10] which were not detected in

Middle-Eastern subjects [10]. Similarly, a small Indian

family study found evidence for association of ADHD and

the shorter 9-repeat allele rather than the 10-repeat allele

usually found to be associated with ADHD in other studies

[36]. Another group has suggested that the 10-repeat allele

of DAT1 is associated with increased risk for ADHD only

in the presence of another functional variant. In two studies

they found increased risk only if a combination of the 10-

repeat allele and a 6-repeat allele of a 30-bp VNTR in

intron 8 of the DAT1 gene were both present [6, 23].

Whereas Brüggemann and co-workers [25] did not find an

association for this haplotype with the adult form of

ADHD, Franke et al. [55] reported that the 9–6 haplotype

rather than the 10–6 haplotype is more likely to be asso-

ciated with childhood ADHD. This finding was recently

replicated in a sample of 1,440 ADHD cases which per-

sisted into adulthood and 1,769 controls from the Interna-

tional Multicentre persistent ADHD CollaboraTion

(IMpACT) project [57]. In a Brazilian sample, Genro et al.

[61, 62] found preferential transmission of a common

haplotype in the 50 region to offspring with ADHD whereas

they found no association to any haplotype in the 30 region

of the gene. Recently, further evidence for the presence of

at least two loci associated with ADHD within the DAT1

was described. While Friedel et al. [58] detected a haplo-

type spanning the first three introns of the gene with rela-

tive risks of 1.95 and 2.43 for heterozygous and

homozygous carriers, respectively, Brookes et al. [24]

replicated their initial association of SNPs at the 50 end of

the gene and identified a haplotype spanning the 50 and 30

markers. Underlining these observations, Xu et al. [193]

report an association of genetic variation in the promoter

region of DAT1 with ADHD in samples from both the UK

and Taiwan. Zhou et al. [195] suggested that the presence

or absence of conduct disorder might influence the asso-

ciation of DAT1 with ADHD. They analysed genotypes of

20 DAT1 markers in 576 trios, 141 of whom had comorbid

conduct disorder and found that DAT1 was only associated

with ADHD when conduct disorder was not present;

interestingly two independent association signals were

present in ADHD without CD (but not ADHD ? CD) at

both, the 50 and 30 end of the DAT1 gene. In addition, three

studies suggested that the genetic associations to ADHD

and in particular those for DAT1 may depend on gender:

While the effect sizes for the ADHD association observed

by Biederman et al. [19] were stronger when stratified by

sex, e.g. for DAT1 in males, Hawi et al. [72] reported

paternal over-transmission of risk alleles for ADHD,

especially for the VNTR in the 30 non-translated region. A

second study of the same group in 1,248 ADHD nuclear

families also provided support for a parent of origin effect

for the intron 8 and 30 non-translated region VNTRs as well

as the paternal risk haplotype of both [71]. Exploring

parent of origin effects in the IMAGE sample, Anney et al.

[2] found no evidence to support an overall parent of origin

effect for 554 independent markers of 47 ADHD candidate

genes, including markers in DAT1. Based on these con-

tradictory findings further studies of the association of the
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DAT1 alleles and ADHD in large datasets that allow

investigating the role of age-related changes, ethnicity and

gender effects, gene-environmental interactions, parent of

origin effects, and the influence of comorbidity patterns are

needed.

Regarding structural anatomical correlates, Durston

et al. [44] reported that DAT1 variability influences cau-

date, but not prefrontal cortex volume. A functional

imaging study suggested that the DAT1 genotype affects

activation in the striatum and cerebellar vermis and that the

familial risk of ADHD is related to the striatum but not to

the vermis which requires further support [45].

There is also evidence that variations in the DAT1 gene

have a significant effect on aspects of executive neuro-

psychological functioning [80]. Significant genotype

effects were found for performance on the ‘‘Tower of

London’’ and on the ‘‘Wechsler Intelligence Scale for

Children Freedom From Distractibility Index’’; children

with ADHD with the 9-repeat/10-repeat genotype exhibited

poorer performance on these measures as compared to

children with the 10-repeat/10-repeat genotype [80]. Con-

trary to these findings, Bellgrove et al. [14] found that

ADHD patients with the 10-repeat/10-repeat genotype had

a greater attentional bias in a CPT than those with the other

allele combinations. Barkley et al. [12] again found effects

of DAT1 status on neuropsychological functioning, but

only in their control group where those with the 9-repeat/

10-repeat genotype performed less well on a CPT. Also,

Loo et al. [110] detected no relationship between DAT1

status and a range of cognitive performance measures in

children with ADHD. A systematic review of studies

investigating links between the VNTR in the 30 untrans-

lated region of the DAT1 and neurophysiological and

neuropsychological measures concluded that the majority

of studies did not find a relation between DAT1 and either

of these measures [148]. An associated study of 350 chil-

dren and adolescents with ADHD and 195 non-affected

siblings using a broad set of executive/cognitive and motor

tests concluded that whilst several of the DAT1 polymor-

phisms were associated with ADHD and whilst ADHD was

associated with impaired neuropsychological functioning,

none of the DAT1 polymorphisms was convincingly asso-

ciated with neuropsychological dysfunctions [148]. As

before the relevance of the studies investigating potential

links between genotype and neuropsychological function-

ing are limited by design issues.

The DAT1 gene may also influence the response to

medication. Thus, Loo et al. [111] reported that DAT1

alleles may mediate medication-related EEG changes in

ADHD, with children with ADHD and two copies of the

10-repeat allele showing increased and 9-repeat carriers

with ADHD showing decreased cortical activation and

arousal after a single 10-mg dose of methylphenidate.

Other dopaminergic genes

No clear evidence has been reported to support an asso-

ciation between ADHD and variations in the tyrosine

hydroxylase gene (TH), which catalyzes the conversion of

tyrosine to dopa. Ribases et al. [143] found the dopamine

decarboxylase gene (DDC)—whose enzyme is responsible

for catalyzing the conversion of dopa to dopamine and L-

5 hydroxytryptophan to serotonin—to be strongly asso-

ciated with both adult and childhood ADHD. Two further

studies support this finding: one analysis of the IMAGE

data [95] as well as a study on a Chinese Han sample also

found a nominally significant association [65]. There are,

however, also negative results from an earlier analysis

that included a subsample of patients from the IMAGE

sample [21].

Several studies have reported an association between

ADHD and a polymorphism (TaqI) of the dopamine beta

hydroxylase gene (DBH) that encodes for the enzyme that

catalyzes the conversion of dopamine to noradrenaline

(pooled odds ratio *1.3). However, there were differences

between studies with increased risk being associated with

the A2 allele in some studies, but with the A1 allele in

others [120, 180]. Bellgrove et al. [15, 16] reported an

association between the A2 allele of the TaqI DBH poly-

morphism and impaired temporal resolution and sustained

attention, with those homozygous for the A2 allele per-

forming worse than those without this genotype. Barkley

et al. [12] found the A2 allele to be associated with poor

performance on a card playing task in adulthood and, when

for individuals homozygous for A2, in adolescence. Kiel-

ing et al. [82] reported an association between a different

polymorphism of DBH—the -1021C[T polymorphism,

which may account for up to 50% reduction of the enzy-

matic activity—and measures of executive functioning in

64 drug-naive patients with ADHD. Cognitive performance

measured by a composite score was significantly different

between genotype groups, with the CC homozygous car-

riers having a poorer global executive performance. In

contrast, Hess et al. [75] detected no association between

the -1021C[T polymorphism and ADHD, but suggested

that the marker may be related to impulsive personality

traits in an adult ADHD sample. Finally, the re-analysis of

the IMAGE GWAS data revealed a nominally significant

association finding at the DBH locus and ADHD [95]; the

same finding was also described in a Chinese Han popu-

lation [65].

A recent meta-analysis of studies investigating the

association between the Val/Met polymorphism of the

catechol-o-methyltransferase (COMT) gene at codon 158

and ADHD concluded that the current evidence does not

support an association with the disorder [29]. This con-

clusion is supported by results from the IMAGE project on
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this polymorphism [21]. Subsequent studies have reported

both association [47, 94, 95], no association [160] or a

more complicated mode of action. Halleland and co-

workers identified a haplotype including the Val158Met

polymorphism associated with adult ADHD [68]. A study

by Sengupta et al. [155] showed that the Val/Met poly-

morphism modulates task-oriented behaviour, but it does

not modulate the response of this behaviour to MPH

treatment. Moreover, a study by Retz et al. [140] reported

that a specific haplotype combination of COMT variants

and variants of the noradrenaline transporter gene (NET/

SLC6A2, see below) may be related to low ADHD scores.

Furthermore, a report by Thapar et al. [171] suggests that

the Val158Met variation in the COMT gene previously

associated with altered executive functioning is actually

associated with antisocial behaviour in ADHD, rather than

with ADHD itself. Caspi et al. [28] reported similar find-

ings showing that homozygous valine carriers at codon 158

of the COMT gene were more aggressive than those with

the other two genotypes. Consequently, other studies

focused on the relationship between COMT genotypes and

ADHD comorbid disorders, such as conduct disorder (CD)

and oppositional defiant disorder (ODD). Monuteaux et al.

[125] did not detect an association between SNPs in the

COMT gene and the risk for CD in an ADHD sample,

whereas Qian et al. [136] reported on an association of the

Val/Met variant with ADHD and comorbid ODD in a

Chinese sample.

A number of studies have reported on additional dopa-

minergic genes. A potential involvement of the MAOA

gene in ADHD was reported [35, 65, 149, 189] even

though these positive findings were inconsistent regarding

the risk alleles [120, 180]. Moreover, others failed to find

association [114, 136]. While it may still be possible that

variations in the MAOA gene are associated with persis-

tence of ADHD into adolescence [100] and play a role in

the variation in neuropsychological performance [149],

Thapar et al. [172] suggested that variation in MAOA is

associated with antisocial behaviour in ADHD, but not

with ADHD itself. Gender is a further factor that could

mask effects of the gene on ADHD, Rommelse et al. [149],

Das et al. [35] and recently Biederman et al. [19] reported

gender differences in the association between gene varia-

tion and ADHD traits and suggested that the MAOA gene

may explain some of the known gender differences in

ADHD. As a possible mode of action, Rommelse et al.

[149] described that an ATT haplotype of MAOA was

associated with poor motor control in boys whereas it was

associated with better visuo-spatial working memory in

girls. Besides the MAOA gene, there are also reports on

variants of the MAOB gene that were described to be

associated with adult ADHD in a Spanish sample [143] and

two additional studies [101, 143].

Noradrenergic system

While stimulant medications appear to act primarily by

regulating dopamine levels in the brain, noradrenergic and

serotonergic functions may also be affected by ADHD

medications [159]. In addition, adrenergic neurotransmitter

systems are hypothesized to influence attentional processes

and certain aspects of executive control [4]. The most

frequently investigated genes of the noradrenergic system

are those encoding the noradrenaline transporter (NET1/

SLC6A2) and the adrenergic alpha receptors 2A and 2C

(ADRA2A and ADRA2C). Additionally, there is some evi-

dence for a potential involvement of the genes for alpha

receptors-1A and 1B (encoded by ADRA1A and ADRA2B)

and beta receptor 1 and 2 (ADRB1 and ADRB2) in the

aetiology of ADHD [95].

An initial positive finding for the noradrenaline trans-

porter (NET1/SLC6A2) [34] was followed by several

studies that found no association [13, 30, 119]. Recently,

several additional variants of the noradrenaline transporter

have been associated to ADHD [20, 22, 65, 83, 84, 86, 95,

191, 192] and require further attention and more elaborate

analyses. One example of such an analysis was already

described above, suggesting that variations in the nor-

adrenaline transporter may show effects in the presence of

specific variants in the COMT gene (and vice versa), only

[140]. Additionally, two studies also suggested gender-

specific effects: Biederman et al. [19] found variants in

NET1/SLC6A2 to be associated more strongly with ADHD

in females, whereas Anney et al. [2] reported about

paternal over transmission of risk alleles to affected

individuals.

Regarding other candidate genes of the noradrenergic

system, there is growing evidence for involvement of

genetic variants of the adrenergic receptor alpha-2A gene

(ADRA2A) in ADHD [2, 30, 39, 145, 152, 184]. It may be

that these variants are more relevant for inattentive than

hyperactive/impulsive symptoms [145, 152]. Also it has

been suggested that there is a relationship between

ADRA2A polymorphisms and neuropsychological func-

tioning that may moderate but not mediate the association

to ADHD [181].

Investigating another adrenergic receptor gene, Cho

et al. [31] reported associations between variants of the

alpha-2C adrenergic receptor gene (ADRA2C) and ADHD

in their sample of Korean subjects. They found that

homozygous carriers of the C allele of the Dral polymor-

phism in ADRA2C showed a trend towards increased

response time variability while individuals homozygous for

the G allele at the Mspl polymorphism had a trend towards

decreased response time variability. Guan et al. [65]

reported suggestive significance for an association of

ADRA2C variants with ADHD combined type.
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Finally, the alpha-1A adrenergic receptor gene

(ADRA1A) and the beta-2 adrenergic receptor gene

(ADRB2) were two of the genes with nominal significance

in the study of Brookes et al. [21] that were also identified

by Lasky-Su et al. [95]. Very recently, Elia et al. [47] also

described a potential association between ADRA1A and

ADHD.

Serotonergic system

Serotonin dysregulation has been related to impulsive

behaviour in children [69], and thus has been hypothesized

to play a causal role in ADHD [129]. ‘‘Knockout’’ gene

studies in mice, in which the behavioural effects of the

deactivation of specific genes are examined, have further

demonstrated the potential relevance of serotonergic genes

[60]. The main candidate genes studied within the seroto-

nergic system are those coding for the serotonin transporter

(5-HTT/SLC6A4), the 1B and 2A serotonin receptors

(HTR1B) and (HTR2A) and the dopamine decarboxylase

(DDC) and tryptophan hydroxylase (TPH2) genes. Several

other serotonin receptor genes have also been studied much

less extensively.

A meta-analysis has supported an association between

ADHD and a 44-base-pair insertion/deletion (5-HTTLPR)

in the promoter region of the serotonin transporter gene (5-

HTT/SLC6A4); this insertion/deletion causes long or short

alleles with the long variant coding a functionally more

active transporter which may contribute to the ADHD

association (pooled odds ratio *1.3) [53]. However,

although there have been further replications since this

meta-analysis [89, 104, 139] several studies have failed to

replicate this finding [21, 64, 120, 187, 188] while still

others have found the other allele to be associated [1, 104].

Moreover, there have also been reports that the association

of 5-HTTLPR may only be present when paired with an

intron-2 (STin2) polymorphism [11] and that the intron-2

(STin2) polymorphism itself may be the variant more rel-

evant for ADHD.

There are also contradictory findings for the potential

association of the serotonin receptors with ADHD. A meta-

analysis supported an association between the HTR1B gene

and ADHD (pooled odds ratio *1.44; [53]), and although

there are subsequent additional replications for HTR1B [70,

137], there are again also negative findings [21, 77]. Sim-

ilarly, several groups have reported positive findings for

HTR2A [67, 143], whilst others have failed to find an

association [40, 146]. An analysis of the IMAGE study

reported an association with the previously unstudied

HTR1E gene but did not find an association to HTR2C or

HTR3B [95]. Isolated findings in Chinese Han subjects and

others have been reported for several other serotonin

receptor genes including those coding for HTR1D [108,

109], HTR2C [106, 190] and HTR4 [102] but not others

HTR5A and HTR6 [103]. Li et al. [99] also reported that

polymorphisms of the HTR2A and HTR2C genes are rela-

ted to functional remission in ADHD.

Li and colleagues have also reported on ADHD asso-

ciations for the tryptophan hydroxylase 2 gene (TPH2)

which mediates the transformation of tryptophan to 5-hy-

droxytryptophan [105, 107]. These findings have been

replicated in independent samples [21, 95, 157, 182].

Moreover, an analysis of the IMAGE data revealed nomi-

nal significance for an association between TPH2 variants

and overt aggressive impulsivity [130]. Baehne et al. [8]

reported that TPH2 gene variants modulate response con-

trol processes in adult ADHD patients and healthy indi-

viduals. Regarding tryptophan hydroxylase 1 (TPH1), no

ADHD association was found in the IMAGE sample [21].

Finally, Ribases et al. [143] reported that the DDC gene,

which mediates the transformation of 5-hydroxytryptophan

to serotonin, is associated to both adult and childhood

ADHD.

Other candidate genes

Additional candidate genes that have been studied include

genes related to the following non-exhaustive list of gene

products: Synaptosome-associated protein of 25,000 Da

(SNAP25), nicotinic acetylcholine receptor alpha 4

(CHRNA4), the glutamate (NMDA) receptor, brain derived

neurotrophic factor (BDNF), nerve growth factor (NGF)

and its receptor (NGFR), neurotrophins 3 and 4/5 (NTF3

and NTF4/5), ciliary neurotrophic factor (CNTF) and its

receptor (CNTFR), glial derived neurotrophic factor

(GDNF) and the receptors for neurotrophic tyrosine kinase,

type 1–3 (NTRK1, NTRK2 and NTRK3), low affinity nerve

growth factor receptor (LNGFR or p75 neurotrophin

receptor), solute carrier family member 9A9 (SLC9A9),

cannabinoid receptor 1 (CNR1/CB1) and nitric oxide syn-

thase 1 (NOS1) [21, 95].

For SNAP25, meta-analyses of studies indicated signif-

icance of association findings for ADHD [52], for SLC9A9

also cytogenetic findings point to a role in ADHD [38], and

for the functional Val66Met variant of BDNF, a very recent

meta-analysis of the IMpACT project data showed no

association with ADHD with or without comorbid mood

disorders, in a large clinical sample of clinical adult ADHD

cases (n = 1,445) and controls (n = 2,247) [151]. For the

other genes mentioned above the results of the association

analyses are either first reports based on samples of small

or moderate size or where there is more than one report

with contradictory findings. Obviously, contradictory

results can arise for many reasons, but inadequate power to
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detect associations with small effect sizes and inexplicit

analysis plans with multiple post hoc comparisons are the

most common and obvious problems. To address this issue,

carefully planned meta-analyses on studies with adequate

quality or primary studies of sufficient size are needed.

Genome-wide association studies in ADHD

Genome-wide association studies have been a very suc-

cessful tool for the recent identification of multiple risk

genes for multifactorial (complex) disorders [116]. They

combine the power to detect genetic variants of small

effect size, like the association studies, with the possibility

to perform hypothesis-free analyses of the entire genome.

However, large sample sizes are needed in order to detect

genetic risk factors with modest effects. So far, GWAS in

ADHD have been published for two different samples, a

subsample of the International Multicentre ADHD Genet-

ics (IMAGE) study on childhood ADHD and a sample of

adults with ADHD. These studies will be reviewed below.

For a more detailed review see also [56].

The various GWAS analyses of the IMAGE sample that

were published together in a special issue on ADHD

genetics in the Am. J. Med. Genet. Part B (2008), used

different approaches to identify risk genes. The IMAGE

GWAS sample comprised a sample of 958 case-parent

trio’s with most of the cases diagnosed with combined

subtype ADHD. The data were analysed using both quan-

titative [95] and categorical [127] phenotype definitions.

The quantitative analysis revealed two significant findings:

one for a genetic variant in the CDH13 gene associated

with total ADHD symptom count, the other for a genetic

variant in GFOD1, the gene coding for glucose-fructose

oxidoreductase domain containing protein 1, associated

with inattentive symptoms. Another interesting finding

from this study (though not statistically significant) inclu-

ded a variant in NOS1, which had previously been identi-

fied as a candidate gene for ADHD [138]. The categorical

analysis did not reveal any genes or variants of genome-

wide significance, but CDH13 was also among the top-

findings identified in this analysis, as was a variant in

CNR1/CB1, a gene found associated with ADHD in earlier

candidate gene based association studies [113, 133].

A whole genome gene-environment interaction study of

parental expressed emotion (maternal warmth and criti-

cism) looking at ADHD severity (and conduct problems)

was also conducted using the same dataset, although there

were again no genome-wide significant findings [162].

Additional GWAS in the IMAGE dataset so far included a

study of time of onset of hyperactive/impulsive and inat-

tentive symptoms [94] and one on conduct problems in

ADHD [2].

The GWAS of adult ADHD patients used a pooled

approach involving 343 adult ADHD patients and 304

controls [96]. The results of this study were compared to

those of a linkage analysis carried out earlier by the same

group [146] to prioritize the most interesting findings for

further analysis. Although no genome-wide significant

variants resulted from this study, the highest ranking

findings also include the CDH13 gene. This gene emerges

hitherto as one of the most consistent findings from the

ADHD GWAS. In addition, it is supported by other sour-

ces, e.g. being located on chromosome 16q24 within the

only significant linkage peak from a meta-analysis of seven

linkage studies in ADHD [196]. Since CDH13 also showed

association with different addiction-related phenotypes in

GWAS (review by Uhl et al. [175]), was among the top-

findings from a GWAS of the personality trait extraversion

[170], showed strong association with schizophrenia in a

genome-wide study [164], and may contain copy number

variants (CNV) related to autism [32], it seems to be a

generalist gene, predisposing to multiple brain phenotypes

[90]. CDH13 encodes cadherin 13, a protein expressed in

neurons regulating cell migration and cell–cell communi-

cation [56].

Although only very few significant findings emerged

from the individual ADHD GWAS, so far, and overlap

between studies is still very limited, there are a few sys-

tems that seem to be overrepresented in the top-ranks of the

different studies and a number of general themes seem to

be emerging from the data. The most striking one is the

possible involvement of genes related to cell adhesion and

cell migration in ADHD aetiology, such as genes from

cadherin, catenin and integrin families (Table 1), with

CDH13 as the top-finding.

A second system showing up in these studies is that of

potassium-related signalling (Table 2). This type of sig-

nalling is involved in regulating synaptic excitability and

neuronal plasticity [85]. An interesting finding from the

GWAS is that whilst signals relating to cell–cell commu-

nication genes related to glutamate, vasopressin and TAFA

mediated signalling are observed the classical catechol-

aminergic and serotonergic neurotransmission ADHD

candidate genes are absent from the high-ranking findings.

However, since the power of these studies is still rather

limited, the involvement of the genes for the classical

neurotransmission systems in ADHD aetiology is not

precluded.

Notably, nearly all of the genes listed in the top-ranks of

the published ADHD GWAS belong to the largest genes

within the human genome (Franke, unpublished observa-

tion), which may also point to insufficient power of the

studies to detect association with smaller genes. As indi-

cated above, some of the genes from candidate gene studies

do show up in the GWAS, most notably CNR1 and NOS1.
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Also more basic cell processes related to cell division, gene

transcription, cell polarity and extracellular matrix regula-

tion, as well as cytoskeletal remodeling could be involved

in ADHD [95, 96, 127]; see [56] for a review.

Whilst the current GWAS published for ADHD are far

from providing a full understanding of the processes con-

tributing to ADHD, they do provide us with new directions

and suggest avenues follow. Comparing the findings to

those from GWAS and linkage studies in other psychiatric

disorders suggests extensive overlap between disorders. If

this is due to overlap at the level of diagnostics or to

genetic overlap between disorders remains to be explored.

Future directions in ADHD genetics research

To date, the findings from genetic studies in ADHD have

been somewhat inconsistent and disappointing. Despite the

high heritability of the disorder, linkage studies have not

shown extensive overlaps, with only one significant finding

in the meta-analysis of studies [196]. Candidate gene based

association studies have similarly only explained a small

percentage of the genetic component of ADHD and the first

GWAS did not report many significant findings. Never-

theless, the latter approach is likely to redirect future

ADHD research given the apparent involvement of new

gene systems and processes, as summarized above.

Comparing GWAS in psychiatric disorders in general

with those in other multifactorial diseases one finds that

the performance of GWAS in psychiatric disorders has

been particularly poor, explaining less than 10% of the

observed variance for most of the disorders, so far [115].

The failure of the GWAS to identify the genes involved

in psychiatric disorders with high heritability may have a

number of causes: (1) multiple genetic factors may be

involved that may have very small individual effects and

might only be identified through studies with extremely

large sample sizes; (2) gene–gene (G 9 G) and gene-

environment (G 9 E) interactions may be making a

strong contribution to the observed heritability of psy-

chiatric disorders; (3) genetic factors other than the single

nucleotide polymorphisms (SNPs) investigated in most

studies may play important roles; thus, CNVs, i.e.,

structural variations in DNA, such as insertions, deletions

and duplications, which are frequently occurring but

widely varying in the population, might be involved in

ADHD aetiology; (4) the role of rare genetic variants with

large effect sizes in disease aetiology may be greater than

anticipated; (5) the currently available nosological sys-

tems used for the clinical diagnosis of psychiatric disor-

ders may be clinically valid but may not be strongly

related to the biological underpinnings of such disorders,

or may not be specific enough to pick up genes; and (6) itT
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must be kept in mind, that the samples studied differ in

age (persistent vs. non-persistent ADHD), method of

recruitment and ascertainment, ethnicity, gender and

comorbidity and that each of these factors might have an

impact. These issues need to be dealt with, before we can

fully understand the genetic architecture of ADHD. The

issue of sample size is currently tackled by establishing

large international collaborations, such as the ADHD

Molecular Genetics Network [49] and the Psychiatric

GWAS Consortium [134], and large (meta-analytic)

studies of GWAS in ADHD can be expected within the

next year. The G 9 G and G 9 E effects are not yet

taken into account in most current studies, but some

potentially important G 9 G and G 9 E interactions have

been demonstrated. It is likely that new statistical

approaches will need to be developed, before we can

sufficiently handle these effects with confidence. Until

now, most studies have focussed on SNPs only, however,

this type of polymorphism is not informative for all

genetic factors present in the human genome, and we

might need to use other techniques, such as next gener-

ation sequencing [153] to get more information on these

other genetic factors. This approach may also solve the

problem with rare variants. Point (5), the potential limi-

tations through the use of the current diagnostic system

for genetic studies, can potentially be addressed by using

more refined phenotypes. Refinement of the ADHD phe-

notype may be possible by concentrating on the most

heritable subtypes of ADHD. This has already been

implemented in the IMAGE study, which concentrated on

combined subtype ADHD [91]. Recently, the IMpACT

project was set up by research groups from The Nether-

lands, Germany, Spain, Norway, the UK and the US to

perform and promote genetic research in the persistent,

adult form of ADHD [57]. Although the heritability of

this form of the disorder has not formally been estab-

lished, it seems that it may be higher than that of the

childhood disorder [48]. To date, IMpACT coordinates

the largest clinical sample of adult ADHD, with more

than 2,700 cases and 3,500 controls. A more radical

adaptation in phenotypes for genetic studies in ADHD is

the use of endophenotypes. Endophenotypes, or interme-

diate phenotypes, are thought to represent heritable phe-

notypic constructs that are more directly related to genes

than clinical symptoms or disease categories [63, 169,

183]. The success of an endophenotype strategy requires

either a higher heritability of the endophenotype as

compared to the disease phenotype (which is not gener-

ally observed, [167]) or a reduced complexity of the

genetic architecture of the endophenotype due to the

involvement of fewer genes. ADHD endophenotypes have

been identified at different levels, based on neuropsy-

chological performance [41, 147] and on neuroimaging

[43] i.e. brain activity and structure. Such studies seem to

work well, the first examples of linkage studies show

significant findings in samples of relatively limited size

(e.g. [42, 150]) and so do (candidate gene based) asso-

ciation findings (e.g. references to Durston et al. [45]).

Especially the latter seem to produce more highly pow-

ered studies due to larger effect sizes of individual genetic

variants [121, 126]. The penetrance of genetic variants

may be especially high for functional neuroimaging

[121]). However, it needs to be taken into account that

initial studies of genetic associations frequently tend to

over-estimate true effect sizes [174]; thus, we need to be

cautious about interpretation of the initial studies of

endophenotypes in relatively small sample sizes.

Endophenotype approaches come at the cost of reduced

specificity for ADHD, so not all genes explaining variance

of an endophenotype will also increase ADHD risk in the

end; however, it is not yet clear whether factors such as

course or treatment response are more closely related to

ADHD per se or to a particular endophenotype.

Furthermore, endophenotype studies will also help to

characterize the neural systems affected by risk gene

variants and to elucidate quantitative, mechanistic aspects

of brain function implicated in ADHD, and thus improve

our understanding of the functional role of genes in ADHD

and the specific pathways from gene to behaviour.

In conclusion, genetic studies have started to unravel the

molecular architecture of ADHD, and several new exciting

directions have recently been suggested. Future success in

identifying more ADHD genes will critically depend on

collaboration between researchers and an improvement of

approaches at the level of the phenotype definition, the

molecular genetic techniques, as well as statistical analysis

methods. Even if the ADHD risk genes have such small

effect sizes in the population, their identification may still

be highly relevant clinically, because low frequency gene

variants may actually explain most of the heritability in

individual patients and because a subsequent understanding

of their functions and the pathways between each gene and

behaviour may finally translate into an improvement of

diagnostic processes and treatment strategies as well as a

development of prediction and prevention programs with

substantial impact [132].
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