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of Non-stationary Volatility∗

Giuseppe Cavalierea and A.M. Robert Taylorb

aDepartment of Statistical Sciences, University of Bologna
bSchool of Economics, University of Nottingham

September 17, 2007

Abstract

In this paper we consider tests for the null of (trend-) stationarity against
the alternative of a change in persistence at some (known or unknown) point
in the observed sample, either from I(0) to I(1) behaviour or vice versa, of,
inter alia, Kim (2000). We show that in circumstances where the innovation
process displays non-stationary unconditional volatility of a very general form,
which includes single and multiple volatility breaks as special cases, the ratio-
based statistics used to test for persistence change do not have pivotal limiting
null distributions. Numerical evidence suggests that this can cause severe over-
sizing in the tests. In practice it may therefore be hard to discriminate between
persistence change processes and processes with constant persistence but which
display time-varying unconditional volatility. We solve the identified inference
problem by proposing wild bootstrap-based implementations of the tests. Monte
Carlo evidence suggests that the bootstrap tests perform well in finite samples.
An empirical illustration using U.S. price inflation data is provided.

Keywords: Persistence change; non-stationary volatility; wild bootstrap.
JEL Classification: C22.

1 Introduction

Recently, both applied economists and econometricians have questioned whether, rather
than simply being either I(1) or I(0), series might experience a change in persistence

∗We are very grateful to two anonymous referees, Jiti Gao, Michael McAleer, Peter Robinson, and
participants at the TSEFR conference held in Perth, 29th June to 1st July, 2006, for helpful comments
on earlier versions of this paper. This paper extends upon earlier research in the authors’ working
paper ‘Testing for a Change in Persistence in the Presence of a Volatility Shift’. Correspondence to:
Robert Taylor, School of Economics, University of Nottingham, University Park, Nottingham, NG7
2RD, U.K. E-mail: Robert.Taylor@nottingham.ac.uk
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between separate I(1) and I(0) regimes. There is now a relatively large body of ev-
idence on changes of this kind in macroeconomic and financial time series; see, inter
alia, Kim (2000), Busetti and Taylor (2004) [BT], and Leybourne et al. (2003), and the
citations therein. Commensurately, a number of procedures designed to test against
changing persistence have been suggested in the literature. The most popular of these,
which we therefore choose to focus attention on in this paper, are the ratio-based per-
sistence change tests of, inter alia, Kim (2000), Kim, J. et al. (2002) and BT, inter
alia. These test the null hypothesis that a series is a constant I(0) process against the
alternative that it displays a change in persistence from I(0) to I(1), or vice versa.1

The persistence change tests proposed in the literature are all based on the main-
tained assumption that, both under the null hypothesis of no change in persistence
and the alternatives of I(0)-I(1) or I(1)-I(0), the time series of interest displays stable
(unconditional) volatility. This assumption contrasts with a growing body of recent
empirical evidence which documents that many of the main macro-economic and finan-
cial variables across developed countries are characterized by the existence of significant
non-stationarity in unconditional volatility, in particular, single and multiple (possible
smooth transition) breaks in volatility and/or (broken) trending volatility; see, inter
alia, Busetti and Taylor (2003), Sensier and van Dijk (2004), Kim and Nelson (1999),
McConnell and Perez Quiros (2000), and the references therein. Sensier and van Dijk
(2004), for example, find that over 80% of the real and price variables in the Stock and
Watson (1999) data-set reject the null hypothesis of constant unconditional innovation
variance. Considerable evidence against the constancy of unconditional variances in
stock market returns and exchange-rate data has also been reported; see, inter alia,
Loretan and Phillips (1994). Hansen (1995) also notes that empirical applications of
autoregressive stochastic volatility [SV] models to financial data generally estimate the
dominant root in the SV process to be close to one, such that volatility is non-stationary.

It has recently been demonstrated that both conventional unit root and stationar-
ity tests suffer from potentially large size distortions in the presence of non-stationary
unconditional volatility; cf., Kim, T.-H. et al. (2002), Busetti and Taylor (2003), Cava-
liere (2004a,b) and Cavaliere and Taylor (2005,2007a). These findings cast doubt over
the reliability of the inferences from persistence change tests when applied to series
which are subject to non-stationary volatility effects. For instance, a rejection of the
null hypothesis of no change in persistence by these tests might in fact be attributable
to a structural break in the unconditional volatility process rather than a true change
in persistence, making these events hard to distinguish between in practice. In this
paper we address this issue formally by examining the behaviour of persistence tests un-

1In contrast, Banerjee et al. (1992) and Leybourne et al. (2003), inter alia, test the null hypothesis
of constant I(1) against a change in persistence, using regression-based methods. Their tests are
based around sub-sample fluctuations in the dominant autoregressive root within a Dickey-Fuller-
type framework. While it would be interesting to investigate the impact of non-stationary volatility
on these tests and to what extent bootstrap version of these tests would ameliorate such effects, this
would require an investigation quite separate to that conducted here and is left as a topic for further
research.
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der a class of non-stationary unconditional volatility processes which includes smooth
volatility changes, multiple volatility shifts and trending volatility, among other things.

In Section 2 the model of persistence change which we focus on will be outlined.
This model extends that previously considered in the literature by allowing not only for
a change in persistence in the series but also for non-stationarity in the unconditional
volatility process which may be present under the constant I(0) null hypothesis or
under the persistence change alternative. In doing so, rather than assuming a specific
parametric model for the volatility dynamics, we do not impose any constraint on the
volatility dynamics, apart from the requirement that the (unconditional) variance is
bounded, deterministic and displays a finite number of jumps. In Section 3 we provide
a brief review of the ratio-based persistence change test statistics of Kim (2000), Kim,
J. et al. (2002) and BT. In Section 4 we derive the large sample null distributions of
these statistics against processes which display non-stationary volatility.

Monte Carlo methods are used to explore the effects of a variety of non-stationary
volatility processes, including single and multiple breaks in volatility and near-integrated
autoregressive stochastic volatility, on the finite sample size and power properties of
the persistence change tests. In most of these cases the size properties of the per-
sistence change tests are found to be highly unreliable. Consequently, in Section 5
we follow the approach successfully adopted by Cavaliere and Taylor (2005) to robus-
tify the stationarity test of Kwiatkowski et al. (1992) [KPSS] against non-stationary
volatility, by proposing wild bootstrap-based versions of the persistence change tests
of Section 3. The testing problem considered in the present paper, which requires the
analysis of sequences of sub-sample ratio statistics, is quite distinct from that consid-
ered for (full sample) KPSS statistics in Cavaliere and Taylor (2005), although some
of the underlying tools used are clearly common to both papers. It should also be
stressed that the class of non-stationary volatility processes considered in this paper
is somewhat more general than that considered in Cavaliere and Taylor (2005). Our
proposed bootstrap-based persistence change tests are shown to solve the identified in-
ference problem, providing asymptotically pivotal inference under the class of volatility
processes considered here, without requiring the practitioner to specify any paramet-
ric model for the volatility process nor to pre-test for the presence of non-stationary
volatility. Monte Carlo results presented in Section 6 suggest that they also perform
well in finite samples. Section 7 reports an application of the tests of section 3 and their
bootstrap counterparts to U.S. price inflation rate series from the Stock and Watson
(2005) database. Section 8 concludes. Proofs of our main results are provided in the
accompanying working paper, Cavaliere and Taylor (2006).

Throughout the paper we will use the notation: C := C[0, 1] to denote the space
of continuous processes on [0, 1], and D := D[0, 1] the space of right continuous with
left limit (càdlàg) processes on [0, 1]; ‘

w→’ to denote weak convergence in the space D
endowed with the Skorohod metric, and ‘

p→’ convergence in probability, in each case as
the sample size diverges; b·c to denote the integer part of its argument; I(·) to denote
the indicator function, and ‘x := y’ (‘y =: x’) to mean that x is defined by y. Reference
to a variable being Op(T

k) is taken throughout to hold in its strict sense, meaning that
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the variable is not op(T
k). Finally, given two processes X,Y on [0, 1], for any s ∈

[a, b] ⊆ [0, 1] we define PXY (s; a, b) :=
∫ b

a
Y (r) X (r)′ dr

(∫ b

a
X (r) X (r)′ dr

)−1

X (s),

QXY (s; a, b) :=
∫ b

a
dY (r) X (r)′

(∫ b

a
X (r) X (r)′ dr

)−1 ∫ s

a
X (r) dr, P⊥

XY (s; a, b) := Y (s)

−PXY (s; a, b), and Q⊥
XY (s; a, b) := Y (s)−QXY (s; a, b).

2 The Persistence Change Model

Generalising Kim (2000,p.99), inter alia, consider the null hypothesis, denoted H0,
that the scalar time-series process yt is formed as the sum of a purely deterministic
component, dt, and a short memory (I(0)) component which displays a time-varying
unconditional volatility process; that is,

yt = dt + zt,0 , t = 1, ..., T (1)

dt = x′
tβ (2)

zt,0 = σtεt (3)

This DGP generalizes that of Kim (2000,p.99), reducing to Kim’s model only where
the process displays constant unconditional volatility; that is, σt = σ, t = 1, ..., T .
Throughout the paper we assume that the following conditions hold on σt, εt and dt in
(1)-(3):

Assumption V . For some strictly positive deterministic sequence {aT}, the term {σt}
satisfies a−1

T σbsT c = ω (s), where ω (·) ∈ D is a non-stochastic function with a finite
number of points of discontinuity; moreover, ω (·) > 0 and satisfies a (uniform) first-
order Lipschitz condition except at the points of discontinuity.

Assumption E . {εt} is a zero-mean, unit variance, strictly stationary mixing pro-
cess with E|εt|p < ∞ for some p > 2 and with mixing coefficients {αm} satis-

fying
∑∞

m=0 α
2(1/r−1/p)
m < ∞ for some r ∈ (2, 4], r ≤ p. The long run variance

λ2
ε :=

∑∞
k=−∞ E(εtεt+k) is strictly positive. As is standard, we refer to {εt} as an

I(0) process.

Assumption X . xt is a (k+1)×1 deterministic vector with x1t = 1, all t, and satisfying
the condition that there exists a scaling matrix δT and a bounded piecewise continuous
function F (·) on [0, 1] such that δTxb·T c → x (·) uniformly on [0, 1], and where, for all
τ ∈ Λ, Λ = [τl, τu] the compact subset of [0, 1] used in section 3 below,

∫ τ

0
x (s)x (s)′ ds

and
∫ 1

τ
x (s)x (s)′ ds are both positive definite.

Under Assumption V , zt,0 := σtεt is heteroskedastic; however, zt,0 is still short
memory in the sense that its scaled partial sums admit a functional central limit the-
orem (see the proof of Lemma 1) and we shall therefore refer to such processes as
I(0) throughout the paper. Observe, that {yt} in (1) is therefore also I(0) and het-
eroskedastic. Assumption V requires the variance process only to be non-stochastic,
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bounded and to display a countable number of jumps and therefore allows for an ex-
tremely wide class of possible volatility processes. Models of single or multiple variance
shifts satisfy Assumption V with ω (·) piecewise constant. For example, the function
ω (s) := σ0 + (σ1 − σ0) I (s ≥ m) gives the single break model with a variance shift at
time bmT c, 0 < m < 1. If ω (·)2 is an affine (linear transformation with translation)
function, then the unconditional variance of the errors displays a linear trend. Piece-
wise affine functions are also permitted, allowing for variances which follow a broken
trend. Moreover, smooth transition variance shifts also satisfy Assumption V : e.g., the
function ω (s)2 := σ2

0 + (σ2
1 − σ2

0)S (s), S (s) = (1 + exp (−γ (s−m)))−1, which corre-
sponds to a smooth (logistic) transition from σ2

0 to σ2
1 with transition midpoint bmT c

and speed of transition controlled by γ. In contrast to the corresponding assumptions
on the volatility process in Cavaliere and Taylor (2005,2007a), our set-up also allows
for models with explosive deterministic volatility; for instance, polynomially trending
volatility such as, e.g., σt := δtν , ν > 0, satisfies Assumption V with aT := T ν and
ω (s) := δsν . The case of constant unconditional volatility where σt = σ, for all t,
clearly satisfies Assumption V with ω(s) = σ.

Remark 1. The requirement in Assumption V that the volatility function ω (·) is non-
stochastic allows for a considerable simplification of the theoretical set-up. However,
we conjecture that most of the results given in this paper continue to hold even if
Assumption V is replaced by the more general assumption that a−1

T σbsT c
w→ ω (s)

where ω (·) ∈ D is a stochastic process, independent of εt; see also the discussion
in Cavaliere and Taylor (2007b). This more general set-up allows for non-stationary
autoregressive stochastic volatility models by, e.g., setting ω (s) = h (J (s)), J (·) a
diffusion process in D and h (·) a strictly positive continuous function; see Hansen
(1995). Non-stationary Markov-switching variances can be obtained by assuming that
ω (·) is a strictly positive, continuous-time Markov chain with a finite number of states.
Near-integrated GARCH are also covered, with the limiting volatility process ω (·)
now being a diffusion process (cf. Nelson, 1990, Th. 3.5). Similarly, many of the ‘non-
stationary non-linear heteroskedastic’ (NNH) time series models of Park (2002) can also
be cast within this framework. See Cavaliere and Taylor (2007b) for further discussion.

Remark 2. It is also important to briefly discuss volatility processes that are not
permitted under either Assumption V or the weaker conditions outlined in Remark 1.
A key element of Assumption V is that it does not permit for (pathological) cases where
the volatility in any non-decreasing subset of the sample is asymptotically negligible
relative to that in the rest of the sample. Here the extreme nature of the volatility
change would mimic a true persistence change and, as such, any test for a change
in persistence which did not parametrically model the (true) volatility process would
be expected to reject the null of persistence change considerably more often than the
nominal significance level. An example of this is given by the volatility process σt = a,
t = 1, ..., bκT c, and σt = a+bt, t = bκT c+1, ..., T , with a and b non-zero constants and
κ ∈ (0, 1). Here the volatility in the second sub-sample is explosive while that in the
first sub-sample is bounded. Setting aT = T bounds the variance in the second sample,

5



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

but forces that in the first sample to zero as the sample size diverges, violating the
condition that ω(·) is strictly positive. However, a volatility process of the form σt = a,
t = 1, ..., bκT c, and σt = a + c(t/T ), t = bκT c + 1, ..., T , with c a further non-zero
constant is permitted under Assumption V and is arguably more plausible. Moreover,
for any given finite sample size these two processes are observationally equivalent.

Remark 3. Assumption E imposes the familiar strong mixing conditions of, inter
alia, Phillips and Perron (1988, p.336). If ω (·) is non-constant then {zt,0} is an un-
conditionally heteroskedastic process. Conditional heteroskedasticity is also permitted
through Assumption E ; see, e.g., Hansen (1992). The strict stationarity assumption is
made without loss of generality and may be weakened to allow for weak heterogeneity
of the errors, as in, e.g., Phillips (1987). Moreover, the results presented in this paper
are not wedded to the mixing aspect of Assumption E , and remain valid provided the
partial sum processes involved in the construction of the statistics admit a functional
central limit theorem. An important further example satisfying this condition is the
linear process assumption of, inter alia, Phillips and Solo (1992).

Remark 4. The conditions placed on the vector xt in Assumption X are based on
the mild regularity conditions of Phillips and Xiao (1998). A leading example satis-
fying these conditions is given by the k-th order polynomial trend, xt = (1, t, ..., tk)′.
Furthermore, broken intercept and broken intercept and trend functions are also per-
mitted. Notice that, since the first element of xt is fixed at unity throughout, model
(1) always contains an intercept. �

Following Kim (2000) we consider two alternative hypotheses: the first, denoted
H01, is that yt displays a change in persistence from I(0) to I(1) behaviour2 at time
t = bτ ∗T ], while the second, H10, is that there is a change in persistence from I(1) to
I(0) behaviour at time t = bτ ∗T c. Both may be expressed conveniently within a gener-
alization of the persistence change data generating process (DGP) of Kim (2000,p.100)

yt = dt + zt,1, t = 1, ..., bτ ∗T c, τ ∗ ∈ (0, 1) (4)

yt = dt + zt,2, t = bτ ∗T c+ 1, ..., T. (5)

The I(0)-I(1) persistence change alternative is obtained under the alternative

H01 : zt,2 = zt−1,2 + σtεt (6)

zt,1 = σtut, zbτ∗T c,2 = zbτ∗T c,1

while the I(1)-I(0) alternative is given by

H10 : zt,1 = zt−1,1 + σtεt (7)

zt,2 = σtut + zbτ∗T c,1.

Both (6) and (7) embody end-effect corrections, as are also used in Banerjee et al.
(1992,p.278) and BT, which ensure that a given realization of the process will not

2An I(1) series is defined to be one formed from the accumulation of an I(0) series.
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display a spurious sharp jump in level at the break point. Under both H01 and H10

we require Assumptions V and X to hold on σt and xt, respectively. Furthermore, we
require that both εt and ut are I(0), as stated in the following assumption.

Assumption E ′. Both {εt} and {ut} satisfy Assumption E with strictly positive long-run
variances, denoted by λ2

ε and λ2
u, respectively.

Remark 5. Again, notice that under both H01 and H10, (4)-(5) reduces to the corre-
sponding persistence change model in Kim (2000) only where σt = σ, t = 1, ...T .

3 Persistence Change Tests

Kim (2000), Kim, J. et al. (2002) and BT, develop tests which reject H0 in favour of
the I(0)-I(1) change alternative, H01, based on the ratio statistic

K(τ) :=
(T − bτT c)−2

∑T
t=bτT c+1(S̆t(τ))2

bτT c−2
∑bτT c

t=1 (Ŝt(τ))2
(8)

where

S̆t(τ) :=
t∑

i=bτT c+1

ε̆i,τ , Ŝt(τ) :=
t∑

i=1

ε̂i,τ (9)

where, in order to obtain exact invariance to β (the vector of parameters characterising
dt), ε̂t,τ are the residuals from the OLS regression of yt on xt, for t = 1, . . . , bτT c.
Similarly, ε̆t,τ are the OLS residuals from regressing yt on xt for t = bτT c+ 1, ..., T .3

Where the potential changepoint, τ ∗, is known the null of no persistence change is
rejected for large values of K(τ ∗). In the more realistic case where τ ∗ is unknown, Kim
(2000), Kim, J. et al. (2002) and BT consider three statistics based on the sequence of
statistics {K(τ), τ ∈ Λ}, where Λ = [τl, τu] is a closed subset of (0, 1). These are:

K1 := max
s∈{bτlT c,...,bτuT c}

K(s/T ), K2 := T−1
∗

bτuT c∑
s=bτlT c

K(s/T )

K3 := ln

T−1
∗

bτuT c∑
s=bτlT c

exp(
1

2
K(s/T ))

 ,

where T∗ ≡ bτuT c−bτlT c+1. In each case the null is rejected for large values of these
statistics.

3When constructing the sub-sample residuals, ε̂t,τ and ε̆t,τ , if any of the elements of xt, other than
the first, are constant throughout the sub-sample they must be omitted from xt, in accordance with
the requirement that both

∫ τ

0
x (s)x (s)′ ds and

∫ 1

τ
x (s)x (s)′ ds must be positive definite.

7
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In order to test H0 against the I(1)-I(0) change DGP (H10), BT propose further
tests based on the sequence of reciprocals of K(τ), τ ∈ Λ; precisely,

K′
1 := max

s∈{bτlT c,...,bτuT c}
K(s/T )−1, K′

2 := T−1
∗

bτuT c∑
s=bτlT c

K(s/T )−1

K′
3 := ln

T−1
∗

bτuT c∑
s=bτlT c

exp(
1

2
K(s/T )−1)

 ,

and, in order to test against an unknown direction of change (that is, either a change
from I(0) to I(1) or vice versa), they also propose K4 := max(K1,K′

1) , K5 :=
max(K2,K′

2), and K6 := max(K3,K′
3).

Representations for and critical values from the limiting null distributions of the
foregoing statistics in the constant unconditional volatility case, σt = σ, for all t, are
given in Kim, J. et al. (2002) and BT. Notably, these representations do not depend
on the long run variance of {εt}, λ2

ε, even though neither the numerator nor the de-
nominator of K(τ) of (8) is scaled by a long run variance estimator.

Although the above tests are based on statistics where no variance estimator is
employed, Leybourne and Taylor (2004) have recently discussed tests based on statistics
where the numerator and denominator of (8) are scaled by appropriate sub-sample long
run variance estimators. Precisely, they consider replacing K(τ) of (8), for each τ ∈ Λ,
by the modified (standardized) statistic

K∗(τ) :=
λ̂2

mT ,bτT c

λ̆2
mT ,bτT c

K(τ) (10)

where, following KPSS,

λ̂2
mT ,bτT c : =

1

bτT c

bτT c∑
t=1

ε̂2
t,τ +

2

bτT c

bτT c−1∑
j=1

k (j/mT )

bτT c∑
t=j+1

ε̂t,τ ε̂t−j,τ

λ̆2
mT ,bτT c : =

1

T − bτT c

T∑
t=bτT c+1

ε̆2
t,τ +

2

T − bτT c

T−bτT c−1∑
j=1

k (j/mT )
T∑

t=j+bτT c+1

ε̆t,τ ε̆t−j,τ ,

with k(·) any suitable kernel function (see Assumption K below), are long run variance
estimators applied to the first bτT c and last T − bτT c sample observations respec-
tively. The various tests for a change in persistence occurring at an unknown date
are then constructed as above, replacing K(τ) by K∗(τ) throughout. With an obvi-
ous notation we denote these statistics as K∗

j , j = 1, ..., 6 and K′∗
j , j = 1, ..., 3. The

limiting null distribution of each of these statistics coincides with that of the corre-
sponding un-standardized statistic. Using the Bartlett kernel function, k (j/mT ) =
ωB (j/mT ) , ωB (x) := (1− x) I (x ≤ 1), Leybourne and Taylor (2004) find significant

8
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improvements in the finite sample size properties of the tests based on K∗(τ) in the
presence of weak dependence in {εt}. The bandwidth parameter mT used in K∗(τ)
is not required to grow to infinity as the sample size diverges to obtain pivotal limit-
ing distributions. Indeed, Leybourne and Taylor (2004) find that setting mT = 1 or
mT = 2 provides a useful pragmatic balance between re-dressing the finite size prob-
lems of the tests under weakly dependence yet keeping power losses, relative to the
un-standardized tests, when there is persistence change relatively small.

4 The Effects of Non-stationary Volatility

In this section we derive the asymptotic distribution of the persistence change tests of
section 3 in the presence of time-varying unconditional variances satisfying Assumption
V . In section 4.1, we derive representations for the asymptotic (null) distributions of
the persistence change tests under H0, and in section 4.2, we analyze their large sample
behaviour under the persistence change alternatives, H01 and H10.

In what follows, two key processes will play a fundamental role. The first is given
by the following function in C:

η (s) :=

(∫ 1

0

ω(r)2dr

)−1 ∫ s

0

ω(r)2dr ; (11)

which we term the variance profile. The second is the process Bω (s) :=
∫ s

0
ω(r)dB(r)×

(
∫ 1

0
ω(r)2dr)−1/2 which, up to a scaling factor, is the diffusion solving the stochastic

differential equation, dBω (s) = ω (r) dB (r), B(·) a standard Brownian motion.

Remark 6. The variance profile satisfies η (s) = s under constant unconditional
volatility, while it deviates from s if σt is non-constant. Under Assumption V , the
square of the denominator of (11), say ω̄2 :=

∫ 1

0
ω(r)2dr, is the limit of T−1

∑T
t=1 σ2

t ,
and may therefore be interpreted as the (asymptotic) average (unconditional) variance.

Remark 7. Since Bω is Gaussian, has independent increments and unconditional vari-
ance E(Bω (s)2) = η (s), Bω is a time-change Brownian motion; see Cavaliere (2004b)
and Cavaliere and Taylor (2007a) for further discussion on such process.

4.1 Asymptotic Size

Theorem 1 provides representations for the limiting null distributions of the persis-
tence change tests of Section 3 under non-stationary volatility satisfying Assumption
V . Initially, we assume that the potential persistence change date τ is specified a priori.

Theorem 1 Suppose that {yt} is generated according to the DGP (1)–(3) under As-
sumptions V, E and X . Then, for any τ ∈ Λ, K (τ) of (8) satisfies

K (τ)
w→ Lω (τ) :=

(1− τ)−2
∫ 1

τ
B̆ω (s, τ)2 ds

τ−2
∫ τ

0
B̂ω (s, τ)2 ds

9
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where B̆ω (s, τ) := Q⊥
XBω (s; τ, 1)−Bω (τ) and B̂ω (s, τ) := Q⊥

XBω (s; 0, τ).

Remark 8. The key implication of Theorem 1 is that under non-stationary volatility,
the asymptotic null distributions of the persistence change tests of section 3 depend on
the sample path of the volatility process, ω (·). Only where ω (·) = σ, such that Bω(·)
is a standard Brownian motion, do these distributions reduce to those given in Kim
(2000), Kim, J. et al. (2002) and BT. �

We now derive the asymptotic null distributions of the tests when the variance
standardization of Leybourne and Taylor (2004) is employed. To that end, we make
the following assumption regarding the bandwidth, mT , and kernel function, k (·).
Assumption K (de Jong, 2000). (K1) For all x ∈ R, |k (x)| ≤ 1 and k (x) = k (−x);
k(0) = 1; k (x) is continuous at 0 and for almost all x ∈ R;

∫ ∞
−∞ |k (x) |dx < ∞;

|k (x)| ≤ l (x), where l (x) is a non-increasing function such that
∫ ∞
−∞ |x| |l (x)| dx < ∞;

(K2) mT →∞ as T →∞, and mT = o (T γ), γ ≤ 1/2− 1/r, where r is given in E .

Remark 9. Notice that under Assumption K, the bandwidth parameter, mT , is
assumed to increase as the sample size increases. This requirement is, however, not
strictly necessary and most of the results given in this paper continue to hold if mT =
O (1). In such cases, λ̂2

mT ,bτT c and λ̆2
mT ,bτT c no longer consistently estimate the long

run variance, even in the homoskedastic case. Consistent estimation of the long run
variance is, however, not required to obtain (asymptotically) similar tests under H0. �

Theorem 2 Under the conditions of Theorem 1 and provided that Assumption K also
holds, then for any τ ∈ Λ, K∗ (τ) of (10) satisfies

K∗ (τ)
w→ κω (τ) Lω (τ) =: L∗

ω (τ) (12)

where κω (τ) := 1−τ
τ

[η(τ)/(1 − η(τ))] is the ratio of the asymptotic average volatilities
in the first and second sub-samples.

Remark 10. As Theorem 2 demonstrates, the standardization suggested in Leybourne
and Taylor (2004) introduces the additional term κω (τ) into the asymptotic null distri-
butions of the statistics, relative to those for the un-standardized statistics. This term
depends on the time-path of the volatility process, and equals unity if and only if the
asymptotic average volatilities are equal in the first and second sub-samples. Notice,
however, that κω (·) does not depend on the long run variance λ2

ε.

Remark 11. As in Remark 8, in the special case where ω(·) = σ, Bω(·) reduces to the
standard Brownian motion B(·) and κω (τ) = 1, and, hence, the representation in (12)
reduces to that given in Kim (2000), Kim, J. et al. (2002) and BT.

Remark 12. Interestingly, in the special case of a single break in volatility occurring
at time bτεT c, it can be shown that K∗ (τε)

w→ L (τε), which is therefore independent
of the break in volatility. Hence, under these circumstances, a test based on K∗ (τε)
would be correctly sized in the limit. �

In Theorem 3 we now establish results for the statistics appropriate to the case of
an unspecified persistence change date.

10
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Theorem 3 Under the conditions of Theorem 1, and defining a := (τu − τl)
−1,

K1
w→ sup

τ∈Λ
Lω (τ) =: K1,∞, K′

1
w→ sup

τ∈Λ
Lω (τ)−1 =: K′

1,∞

K2
w→ a

∫ τu

τl

Lω (τ) dτ =: K2,∞, K′
2

w→ a

∫ τu

τl

Lω (τ)−1 dτ =: K′
2,∞

K3
w→ ln

{
a

∫ τu

τl

exp(
1

2
Lω (τ))dτ

}
=: K3,∞, K′

3
w→ ln

{
a

∫ τu

τl

exp(
1

2
Lω (τ))dτ

}
=: K′

3,∞

while K4
w→ max(K1,∞,K′

1,∞), K5
w→ max(K2,∞,K′

2,∞), and K6
w→ max(K3,∞,K′

3,∞).

Moreover, if Assumption K also holds,

K∗
1

w→ sup
τ∈Λ

L∗
ω (τ) =: K∗

1,∞, K′∗
1

w→ sup
τ∈Λ

L∗
ω (τ)−1 =: K′∗

1,∞

K∗
2

w→ a

∫ τu

τl

L∗
ω (τ) dτ =: K∗

2,∞, K′∗
2

w→ a

∫ τu

τl

L∗
ω (τ)−1 dτ =: K′∗

2,∞

K∗
3

w→ ln

{
a

∫ τu

τl

exp(
1

2
L∗

ω (τ))dτ

}
=: K∗

3,∞, K′∗
3

w→ ln

{
a

∫ τu

τl

exp(
1

2
L∗

ω (τ))dτ

}
=: K′∗

3,∞

while K∗
4

w→ max(K∗
1,∞,K′∗

1,∞), K∗
5

w→ max(K∗
2,∞,K′∗

2,∞), and K∗
6

w→ max(K∗
3,∞,K′∗

3,∞).

Remark 13. Notice that, even under the conditions of Remark 12, K∗
j , j = 1, ..., 6, and

K′∗
i , i = 1, ..., 3, will not have pivotal limiting null distributions because the (asymp-

totic) invariance to the break in that case occurs only at τ = τε.

4.2 Consistency

We now turn to an analysis of the consistency properties of the persistence change
tests of section 3 under non-stationary volatility satisfying Assumption V . In sections
4.2.1 and 4.2.2 we derive the large sample distributions of the basic and standardized
statistics, respectively, of section 3, together with the consistency rates of the associated
tests, under the persistence change model H01; recall from Section 2 that this model
corresponds to a change in persistence from I(0) to I(1) at time bτ ∗T c for some τ ∗ ∈
(0, 1). Results for the tests under H10 are briefly discussed in section 4.2.3.

4.2.1 H01: ratio tests

We first analyze the behaviour of a test based on K (τ) in the following theorem, where
the following notation is used: B∗

ω (·) := Bω (·) I (· ≥ τ ∗), Bω (·) :=
∫ ·

0
Bω (s) ds and

B∗
ω (·) :=

∫ ·
0
B∗

ω (s) ds.

11
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Theorem 4 Suppose that {yt} is generated according to the DGP (4)-(5) under H01

of (6) and Assumptions V, E ′ and X . Then, for 0 < τ ∗ < τ < 1, K (τ) of (8) satisfies

K (τ)
w→

τ 2
∫ 1

τ

(
Q⊥

x Bω (s; τ, 1)− Bω (τ)
)2

ds

(1− τ)2 ∫ τ

0
(Q⊥

x B∗
ω (s; 0, τ))2 ds

(13)

while, for 0 < τ ≤ τ ∗ < 1,

T−2K (τ)
w→

τ 2λ2
ε

∫ 1

τ

(
Q⊥

x B∗
ω (s; τ, 1)− B∗

ω (τ)
)2

ds

(1− τ)2 λ2
u

∫ τ

0
B̂ω (s, τ)2 ds

. (14)

For the case of an unknown persistence change date, we have the following corollary:

Corollary 1 Under the conditions of Theorem 4, provided [0, τ ∗] ∩ [τl, τu] 6= ∅, Ki,
i = 1, ..., 6, are of Op (T 2). Conversely K′

i, i = 1, ..., 3, are of Op (1).

As can be seen from the results in Theorem 4, a persistence change test based on
K (τ) will be consistent at rate Op (T 2) provided τ ≤ τ ∗, as will the tests based on the
Ki, i = 1, ..., 6, statistics provided τ ∗ ∈ Λ (i.e. provided the persistence changepoint is
included in the search set). These are the same rates of consistency as hold for these
tests in the constant unconditional volatility case; see BT. However, since all of these
statistics (scaled by T−2) have distributions which depend upon the dynamics of the
volatility process, it is anticipated that the finite sample power of the associated tests
will depend on the time-series behaviour of the underlying volatility process. Notice
also that although not consistent under H01, the behaviour of tests based on the K (τ)
statistic for τ > τ ∗ and on K′

i, i = 1, ..., 3, will also depend on the volatility process.

4.2.2 H01: standardized ratio tests

We now derive the large sample properties of the standardized persistence change tests
of Leybourne and Taylor (2004) under H01. As discussed in section 3, these require
a choice of the bandwidth parameter, mT , which, as would be expected, affects the
consistency rate under the alternative. This result is formalized in Theorem 5.

Theorem 5 Let the conditions of Theorem 4 hold and let Assumption K hold. Then,
for 0 < τ ∗ < τ < 1, K∗ (τ) of (10) satisfies

K∗ (τ)
w→ τ

1− τ


(∫ τ

0

(
P⊥

x B∗
ω (s; 0, τ)

)2
ds

) (∫ 1

τ

(
Q⊥

x Bω (s; τ, 1)− Bω (τ)
)2

ds
)

(∫ 1

τ
(P⊥

x Bω (s; τ, 1))2 ds
) (∫ τ

0
(Q⊥

x B∗
ω (s; 0, τ))2 ds

)


while, for 0 < τ ≤ τ ∗ < 1,

mT

T
K∗ (τ)

w→ τη (τ)

(1− τ)
∫ +∞
−∞ k (s) ds

 ∫ 1

τ

(
Q⊥

x B∗
ω (s; τ, 1)− B∗

ω (τ)
)2

ds(∫ 1

τ
(P⊥

x B∗
ω(s; τ, 1))2 ds

) (∫ τ

0
B̂ω (s, τ)2 ds

)


where k(·) is the kernel function defined in Assumption K.

12
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For the case of an unknown persistence change date, we have the following corollary:

Corollary 2 Under the conditions of Theorem 5, provided [0, τ ∗] ∩ [τl, τu] 6= ∅, the
K∗

i , i = 1, ..., 6, are of Op (T/mT ). Conversely, the K′∗
i , i = 1, ..., 3, are of Op (1).

As with the results in section 4.2.1, the standardized persistence change statistics
have limiting distributions which depend on the underlying volatility process, so that
again the volatility process is anticipated to impact on the finite sample behaviour of
the tests. Moreover, the rate of consistency of tests based on K∗ (τ) is also slowed down,
relative to those based on K (τ), since, under H01, K∗ (τ) is of Op (T/mT ), provided
τ ≤ τ ∗. Again, these are the same rates of consistency as apply to these tests in the
constant unconditional volatility case; see Leybourne and Taylor (2004).

Remark 14. It can be shown that Leybourne and Taylor’s (2004) suggestion of
mT = 1 yields tests, K∗

i , i = 1, ..., 6, which are consistent at rate Op (T ), provided
τ ∗ ∈ Λ. This result holds for any finite integer value of mT .

4.2.3 Results under H10

Under H10, the alternative of a change from I(1) to I(0) behaviour at time bTτ ∗c, a
very similar analysis (omitted in the interests of brevity) to that given above under H01

shows that for τ ≥ τ ∗, K(τ)−1 [K∗(τ)−1] is of Op(T
2) [Op(T/mT )], while for τ < τ ∗,

K(τ)−1 and K∗(τ)−1 are both of Op(1). Consequently, if the intersection of the intervals
[τ ∗, 1] and Λ is non-empty then K′

j, j = 1, ..., 3, and Kk, k = 4, ..., 6, [K′∗
j , j = 1, ..., 3,

and K∗
k, k = 4, ..., 6] are each of Op(T

2) [Op(T/mT )], but are otherwise of Op(1), while
the Kj and K∗

j j = 1, ..., 3, are each of Op(1) for all τ ∈ Λ. As with the results under
H01, the limiting distributions of all of these statistics (scaled where appropriate) can
be shown to depend on the dynamics of the underlying volatility process.

5 Bootstrap Persistence Change Tests

In order to overcome the inference problems identified above with the persistence
change tests of section 3, in this section we propose bootstrap versions of these tests.
We demonstrate that in the presence of volatility satisfying Assumption V the boot-
strap tests provide asymptotically pivotal inference under H0. We also derive their
consistency properties under H01 and H10. In order to account for xt, the test builds
on Hansen’s (2000) heteroskedastic fixed regressor, or wild, bootstrap; see also Cav-
aliere and Taylor (2005). This allows us to construct bootstrap persistence change
tests which are robust to volatility processes satisfying Assumption V . In the context
of the present problem, the wild bootstrap scheme is required, rather than standard
residual or block bootstrap re-sampling schemes, because unlike these schemes the wild
bootstrap can replicate the pattern of non-stationary volatility present in the shocks;
see the discussion below. Our proposed wild bootstrap approach constitutes a non-
parametric treatment of volatility since it does not require the practitioner to specify

13
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any parametric model for volatility nor to perform any pre-test, such as for example
the test of Horváth et al. (2006), for the presence of non-stationary volatility.4

Our bootstrap tests for both the known and unknown changepoint cases are outlined
in section 5.1. Their large sample size and power properties are established in sections
5.2 and 5.3 respectively.

5.1 The Bootstrap Algorithm

The first stage of the bootstrap algorithm is to compute the full sample residuals, say
ε̃t, from regressing yt on xt for t = 1, ..., T . A bootstrap sample is then generated as

yb
t := ε̃twt , t = 1, ..., T, (15)

with {wt}T
t=1 an independent N (0, 1) sequence. Notice, therefore, that under the

null hypothesis the bootstrap residuals, yb
t , replicate the pattern of heteroskedastic-

ity present in the original shocks since, conditionally on ε̃t, yb
t is independent over time

with zero mean and variance ε̃2
t . Now, let ε̆b

t,τ be defined as the residuals obtained from
the OLS projection of yb

t on xt for t = bTτc + 1, ..., T ; similarly, let ε̂b
t,τ be defined as

the residuals obtained from the OLS projection of yb
t on xt for t = 1, ..., bTτc.

The bootstrap analogue of K (τ) of (8) is then given by the statistic

Kb (τ) :=
(T − bτT c)−2 ∑T

t=bτT c+1

(∑t
i=bτT c+1 ε̆b

i,τ

)2

bτT c−2
∑bτT c

t=1

(∑t
i=1 ε̂b

i,τ

)2 (16)

which corresponds to the statistic in (8) except that it is constructed from the pseudo-
residuals ε̆b

t,τ and ε̂b
t,τ rather than the residuals based on the original time series, ε̆t,τ

and ε̂t,τ , respectively. The associated bootstrap p-value is given by pb
T (τ) := 1 −

Gb
T (K (τ) ; τ), where Gb

T (·; τ) denotes the cumulative distribution function (cdf) of
Kb (τ). For Leybourne and Taylor’s (2004) studentized statistic, K∗ (τ) of (10), the
bootstrap p-value is given by p∗bT (τ) := 1−G∗b

T (K∗ (τ) ; τ), where G∗b
T (·; τ) denotes the

cdf of the bootstrap statistic

K∗b (τ) =
λ̂b 2

mb
T ,bτT c

λ̌b 2
mb

T ,bτT c

Kb(τ)

where λ̂b 2
mb

T ,bτT c and λ̌b 2
mb

T ,bτT c are long run variance estimators of the same form as used

in (10), with bandwidth mb
T , applied to, respectively, the first bτT c and last T − bτT c

observations from the bootstrap sample, yb
t , t = 1, ..., T .

Where the (potential) changepoint τ ∗ is known, the foregoing quantities are evalu-
ated at τ = τ ∗. Where the potential persistence change point is not specified a priori

4An alternative approach which we do not pursue in this paper, would be to assume a specific
model for the volatility process and derive tests specifically for that model, as is done in the context
of testing for change-points in GARCH processes by Berkes et al. (2004).
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we form the corresponding bootstrap equivalents of the Kj and K∗
j , j = 1, ..., 6, and K′

j

and K′∗
j , j = 1, ..., 3, tests of section 3. For brevity, but without loss of generality, we

confine our discussion to the K1 and K∗
1 tests. The analysis extends straightforwardly

to the other tests in an obvious way. The bootstrap analogue of K1 is constructed as

Kb
1 := max

s∈{bτlT c,...,bτuT c}
Kb(s/T ),

with the associated bootstrap p-value given by pb
1,T := 1 − Gb

1,T (K1), where Gb
1,T (·)

denotes the cdf of Kb
1. The bootstrap version of the K∗

1 test is constructed in a similar
manner. Specifically, the bootstrap analogue of K∗

1 is given by

K∗b
1 := max

s∈{bτlT c,...,bτuT c}
K∗b(s/T )

with associated p-value p∗b1,T := 1 − G∗b
1,T (K∗

1), where G∗b
1,T (·) denotes the cdf of K∗b

1 .
The bootstrap analogues of the Kj and K∗

j , j = 2, ..., 6, and K′
j and K′∗

j , j = 1, ..., 3,
statistics will be denoted similarly as Kb

j and K∗b
j , j = 2, ..., 6, and K′b

j and K′∗b
j ,

j = 1, ..., 3, respectively.

Remark 15. In practice the cdfs Gb
T (·; τ), G∗b

T (·; τ), Gb
1,T (·) and G∗b

1,T (·) will be un-
known. However, they can be approximated in the usual way. Taking the K1 statistic to
illustrate the procedure is as follows. Generate N conditionally independent bootstrap
statistics, Kb

1,i, i = 1, ..., N , computed as above but from yb
i,t := ε̃twi,t, t = 1, ..., T

with {{wi,t}T
t=1}N

i=1 a doubly independent N(0, 1) sequence. The simulated bootstrap

p-value is then given by p̃b
1,T := N−1

∑N
i=1 I

(
Kb

1,i ≥ K1

)
. By standard arguments, see

e.g. Hansen (1996), p̃b
1,T is consistent for pb

1,T as N →∞.

Remark 16. As is well known in the wild bootstrap literature (see Davidson and
Flachaire, 2001, for a review) in certain cases improved accuracy can be obtained by
replacing the Gaussian distribution used for generating the pseudo-data wt in (15)
by an asymmetric distribution with E (wt) = 0, E (w2

t ) = 1 and E (w3
t ) = 1, a well

known example of which being Mammen’s (1993) two-point distribution. We found no
discernible differences between the finite sample properties of the bootstrap persistence
tests based on the Gaussian or Mammen’s distribution. �

5.2 Asymptotic Size

We now show that in the presence of volatility satisfying Assumption V , the bootstrap
p-values defined above are asymptotically pivotal and uniformly distributed and, hence,
that the associated bootstrap tests are correctly sized for samples of sufficiently large
dimension. In the following, the notation ‘

w→p’ denotes weak convergence in probability,
as defined by Giné and Zinn (1990),5 and U [0, 1], a uniform distribution on [0, 1]

5As noted in Hansen (2000,p.107), “The concept weak convergence in probability’ generalizes
convergence in distribution to allow for conditional (i.e. random) distribution functions. This is
necessary for bootstrap theory as the empirical distribution used for re-sampling is data dependent.”
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Theorem 6 Under the conditions of Theorem 1: (i) for all τ ∈ Λ, Kb (τ)
w→p Lω (τ),

and pb
T (τ)

w→ U [0, 1]; (ii) Kb
1

w→p K1,∞ and pb
1,T

w→ U [0, 1].

Provided we additionally assume that εt has finite fourth moments, the following
results hold for the studentized bootstrap statistics, K∗b (τ) and K∗b

1 , under H0.

Theorem 7 Under the conditions of Theorem 2, and if E (ε4
t ) < ∞ and mb

T /T 1/2 → 0
as T → ∞, then: (i) for all τ ∈ Λ, K∗b (τ)

w→p L∗
ω (τ) and p∗bT (τ)

w→ U [0, 1], and (ii)

K∗b
1

w→p K∗
1,∞ and p∗b1,T

w→ U [0, 1].

Remark 17. Theorems 6-7 show that as the sample size diverges, the bootstrap
statistics, Kb (τ), Kb

1, K∗b (τ) and K∗b
1 , have the same null distribution as K (τ), K1,

K∗ (τ) and K∗
1, respectively, and, hence, that the associated bootstrap p-values are

uniformly distributed under the null hypothesis, leading to tests with (asymptotically)
correct size. These results hold for any volatility process satisfying Assumption V .

Remark 18. In relation to the bootstrap K∗b (τ) and K∗b
1 statistics, it is worth noting

that mb
T can either be fixed or diverge at rate o(T 1/2). Moreover, mb

T needs not equal
the bandwidth parameter, mT , used to compute the original statistic, K∗ (τ). �

5.3 Consistency Rates

We now consider the behaviour of the bootstrap tests of section 5.1 under the I(0)-
I(1) persistence change alternative, H01. We will demonstrate that the bootstrap tests
attain exactly the same rates of consistency as the corresponding standard tests.

Theorem 8 Under the conditions of Theorem 4, for 0 < τ < 1, Kb (τ) = Op (1)

and Kb
1 = Op (1). Consequently, provided τ ≤ τ ∗, pb

T (τ ∗)
p→ 0. Moreover, provided

[0, τ ∗] ∩ [τl, τu] 6= ∅, pb
1,T

p→ 0.

Theorem 9 Under the conditions of Theorem 5, and if E (ε4
t ) < ∞ and mb

T /T 1/2 → 0
as T → ∞, then for 0 < τ < 1, K∗b (τ) = Op (1) and K∗b

1 = Op (1). Consequently,

provided τ ≤ τ ∗, p∗bT (τ ∗)
p→ 0; furthermore, provided [0, τ ∗] ∩ [τl, τu] 6= ∅, p∗b1,T

p→ 0.

Remark 19. An important consequence of the results in Theorems 8 and 9 is that, as
with their standard counterparts, the bootstrap Kb (τ) and K∗b (τ) tests are consistent
at rates Op (T 2) and Op (T/mT ), respectively, provided τ ≤ τ ∗. This is the case because
while the bootstrap Kb (τ) and Kb

1 statistics are both of Op(1) for all τ , the K (τ) and
K∗ (τ) statistics diverge at rates Op (T 2) and Op (T/mT ), respectively, provided τ ≤ τ ∗;
cf. Theorems 4 and 5. Similarly, the bootstrap Kb

i and K∗b
i , i = 1, ..., 6, tests are also

consistent at rates Op (T 2) and Op (T/mT ), respectively, provided τ ∗ ∈ Λ. Notice,
moreover, that these results hold irrespective of the choice of mb

T .

Remark 20. As demonstrated in the Appendix of Cavaliere and Taylor (2006), the
limiting distributions of the bootstrap statistics under H01 depend on the behaviour
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of the underlying volatility process through ω(·) of (11). However, these distributions
are not the same as those obtained under H0 (cf. Theorems 6 and 7) nor do they
coincide with those of the (scaled) standard tests under H01 (cf. Theorems 4 and 5).
The asymptotic theory therefore predicts that the finite sample power properties of the
standard and corresponding bootstrap tests will not, in general, coincide.

Remark 21. Under H10 the bootstrap statistics all remain of Op(1) for all τ and,
hence, the bootstrap tests will all have same rates of consistency as noted in section
4.2.3. For example, bootstrap implementations of the K′

j, j = 1, 2, 3 and Ki, i = 4, 5, 6
tests will therefore all be consistent at rate Op(T

2). Full details are available on request.

6 Numerical Results

In this section we use Monte Carlo simulation methods to compare the finite sample
size and power properties of the K1, K′

1, K4, K∗
1, K′∗

1 and K∗
4 persistence change tests

of section 3, the tests being run at the nominal (asymptotic) 5% level using the critical
values from BT (Table 1, p.38), with their bootstrap counterparts of section 5, based
on de-meaned (xt = 1) data, for a variety of volatility processes.6 The finite sample size
and power properties of the tests are discussed in sections 6.1 and 6.2 respectively. As
is typical we take the search set Λ to be [0.2, 0.8]. Results are reported for T = 100 and
200, with all experiments conducted using 10, 000 replications and the rndKMn random
number generator of Gauss 5.0. All bootstrap tests used N = 400 bootstrap replica-
tions; cf. Remark 15. For the standardized ratio tests we set mT = 1 (thereby yielding
OLS sub-sample variance estimators), as suggested by Leybourne and Taylor (2004),
and, accordingly, we also set a bandwidth of mb

T = 1 in their bootstrap counterparts.
Results are reported for the following models for σt:

Model 1. (Single volatility shift): σt = σ∗
0 + (σ∗

1 − σ∗
0)I (t ≥ τεT ), with τε = 0.5.

Model 2. (Trending volatility): Volatility follows a linear trend, between σ∗
0 for

t = 1 and σ∗
1 for t = T ; that is, σt = σ∗

0 + (σ∗
1 − σ∗

0) ( t−1
T−1

), t = 1, ..., T .

Model 3. (Exponential (near-) integrated stochastic volatility): Follow-
ing Hansen (1995, p.1116), the volatility process is generated as σt = σ∗

0 exp(1
2
νbt/

√
T )

where bt is generated according to the first-order autoregression, bt = (1−c/T )bt−1+kt,
t = 1, ..., T , with kt ∼ NIID(0, 1) and b0 = 0.

Without loss of generality, we set σ∗
0 = 1 in all cases. For Model 1 we let the ratio

δ := σ∗
0/σ

∗
1 vary among {1, 1/3, 3} (notice that δ = 1 yields a benchmark constant

volatility process) so that both positive (δ < 1) and negative (δ > 1) breaks in volatility
are allowed. For Model 2 we let δ := σ∗

0/σ
∗
1 take values among {1/3, 3} so that both

6Results for the other persistence change tests discussed in this paper and for tests based on
de-trended data are qualitatively similar and are available on request.
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positively and negatively trending volatilities are generated. For Model 3 we consider
ν = 5 and vary c among {0, 10}.7

6.1 Size Properties

Table 1 reports the empirical rejection frequencies (sizes), for the K1, K′
1, K4, K∗

1, K′∗
1

and K∗
4 tests for data generated according to the null DGP (no persistence change)

(1)-(3) with β = 0 (without loss of generality) and σt generated according to the
models detailed above. The innovation process {εt} was generated according to the
ARMA(1, 1) design, εt = φ εt−1 + vt − θvt−1, with vt ∼ NIID(0, 1) and (φ, θ) ∈
{(0, 0), (0.5, 0), (0, 0.5)}, thereby allowing for IID, AR(1) and MA(1) innovations.
Corresponding size results for the bootstrap counterpart tests are reported in Table 2.

Consider first the single break in volatility case, Model 1. Where δ 6= 1 the results
in Table 1 highlight the presence of large size distortions in the basic persistence change
tests. For δ = 1/3 the K1 test for a change in persistence from I(0) to I(1) is severely
over-sized when δ = 1/3 and severely under-sized when δ = 3. The reverse pattern
holds for the K′

1 test for a change from I(1) to I(0). The K4 test for either direction of
change is severely over-sized for both δ = 1/3 and δ = 3. These size distortions vary
slightly with φ and θ, with sizes increased (decreased), relative to φ = θ = 0, when
φ > 0 (θ > 0): this pattern is also observed under Models 2 and 3. The studentized K∗

1,
K′∗

1 and K∗
4 tests appear much better behaved, avoiding the large over-size problems

that are seen with the basic tests when δ 6= 1. It should be stressed that these statistics
do not have pivotal limiting null distributions (cf. Theorems 2 and 3) and so while the
distortions are modest for the models considered here this should not be expected to
hold in general. The studentized tests also appear somewhat less dependent on φ and
θ than the basic tests. Turning to Table 2, it is seen that the bootstrap tests also
generally avoid the size distortions seen in the basic tests under the non-stationary
volatility models considered and appear to deliver further improvements relative to the
size properties of studentized tests, as should be expected; cf. Theorems 6 and 7.

Tables 1− 4 about here.

The results for Model 2 in Tables 1 and 2 suggest that in general, linear trending
volatility has a lower impact on the size of the standard tests than abrupt changes, for
a given value of δ, although where under-sizing occurs it tends to be slightly worse than
under Model 1. The basic conclusions drawn for the relative performance of the various
tests for Model 1 above appears germane here also. For Model 3, severe over-sizing
is again seen in the basic tests which is greatest, other things equal, for c = 0. The
studentized tests again behave better but are still significantly over-sized for c = 0.
The bootstrap tests again appear to deliver a further improvement overall.

7For each model other combinations of parameter values were also considered, but these qualita-
tively add little to the reported results.
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Overall, across the volatility models considered, the bootstrap K∗b
1 , K′∗b

1 and K∗b
4

tests deliver the best size control among the tests considered in the presence of both
non-stationary volatility and serially correlated innovations.

6.2 Power Properties

Tables 3 reports size-adjusted powers for the K1, K′
1, K4, K∗

1, K′∗
1 and K∗

4 tests8 for
data generated according to the I(0) to I(1) switching AR(1) DGP,

yt = ρtyt−1 + zt,0, t = 1, ..., T

zt,0 = σtεt, εt ∼ NIID(0, 1)

where ρt = 0.8 for t = −100, ..., bτ ∗T c and ρt = 1.0 for t = bτ ∗T c + 1, ..., T . The
persistence change-point is varied among τ ∗ ∈ {0.25, 0.50, 0.75}, for the same set of
models for σt as considered in section 6.1. Results for the corresponding bootstrap
tests are reported in Table 4. Recall that under H01 the K′

1 and K′∗
1 tests and their

bootstrap analogues are not consistent.9

For the case of homoskedastic errors, that is Model 1 with δ = 1, there tends to be a
drop in power in using the bootstrap analogues of the basic K1 and K4 tests, although
in all but the case of τ ∗ = 0.75 these losses are generally quite modest. Consequently, in
general, our bootstrap procedure does not seem to cause significant power losses when
unnecessary. In contrast, significant power losses are seen throughout in using the
studentized K∗

1 and K∗
4 tests and their bootstrap analogues, which display considerably

lower power than both the basic and bootstrapped basic tests under homoskedasticity.
This ranking also holds true, in general, under the non-stationary volatility models
considered. The effect of non-stationary volatility on power is mixed with different
volatility models having different impacts on the power rankings between the various
tests; cf. Theorems 4 and 5 and Remark 19. For example, under Model 3 the size-
adjusted power of the basic tests is much lower than for their bootstrap equivalents,
while under Models 1 and 2 the opposite tends to be the case.

Taking both size and power results into consideration, we recommend the use of
the bootstrap Kb

1, K′b
1 and Kb

4 tests. Although these do not control size quite as well as
the bootstrap studentised K∗b

1 , K′∗b
1 and K∗b

4 tests in the presence of serially correlated
innovations, they do not suffer the large power losses associated with the latter and do
not require the additional assumption of finite fourth moments in {εt}; cf. Theorem 7.

7 Application to U.S. Inflation Data

In this section we apply, again for Λ = [0.2, 0.8], the Ki and K′
j, i = 1, ..., 6, j = 1, ..., 3,

tests, and their counterpart bootstrap tests to the monthly U.S. price inflation series

8The corresponding size-unadjusted powers are also reported in Cavaliere and Taylor (2006).
9Results for a corresponding I(1)-I(0) switching AR(1) DGP were also computed and gave quali-

tatively similar conclusions. These results are available on request.
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from Stock and Watson (2005).10 Specifically, we consider twenty series of inflation
rates, measured as the first difference of the logarithm of the relevant monthly (season-
ally adjusted) price indices/deflators. The data are identified by the reference codes
given in Stock and Watson (2005, p.47). The sample period for all series was 1967:1-
2003:12.

The series are graphed in Figure 1. To help assess the time-series behaviour of
volatility in these series we also graph in Figure 2 Cavaliere and Taylor’s (2007a, section
4.1) estimate of the variance profile, η(s) of (11), for each series. For almost all of the
series the estimated variance profile shows substantial deviations from the 45◦ line
which pertains to a constant variance process11; cf. Remark 6.Typically these patterns
are consistent with the presence of multiple breaks in variance. For some series the
breaks appear to follow relatively abrupt transition paths (e.g. PWIMSA and PU83),
while for others (e.g. PSM99Q and PUCD) the transition path tends to be slower,
consistent with smooth-transition breaks. The estimated variance profile for PU85
follows a relatively smooth arc above the 45◦ line, consistent with negatively trending
volatility, or possibly a single (relatively slow) smooth-transition variance break.

Figures 1− 2 and Table 5 about here

Table 5 reports the outcome of the persistence change statistics for these data. All
of the statistics were computed on de-meaned data. For each outcome two bootstrap
p-values are reported. The first, denoted phom, is obtained from a standard bootstrap
and the second, denoted phet, from using the wild bootstrap method of section 5. The
standard bootstrap was implemented exactly as detailed in section 5 except that the
bootstrap sample in (15) was replaced by yb

t := wt, t = 1, ..., T .
Following the testing procedure recommended in Busetti and Taylor (2004,pp.56-

58), we first consider the results for the K4 statistic (which does not assume a known
direction of persistence change, a priori). Using the homoskedastic bootstrap p values
it is seen that the null hypothesis of no persistence change can be rejected for 15 of the
20 series at the 1% level and for 18 of the 20 series at the 5% level. However, using the
heteroskedastic bootstrap p values reduces this to 10 out of 20 significant at the 1% level
and 15 out of 20 significant at the 5% level. In no case is the estimated p-value smaller
for the heteroskedastic bootstrap-based tests. The most striking difference between
the homoskedastic and heteroskedastic-based bootstraps is for PU84 where the former
yields a significant outcome at the 5% level while the latter is only significant at the
15% level. Continuing the testing sequence suggested in Busetti and Taylor (2004),
of the series where the Kb

4 test rejects the null hypothesis at the 1% level12, we now
make a comparison of the (heteroskedastic) p-values for the outcomes of the K1 and

10Corresponding results for the studentised ratio tests K∗
i , K′∗

j , i = 1, ..., 6, j = 1, ..., 3, tests and
their bootstrap analogues can be found in Cavaliere and Taylor (2006).

11This in spite of the fact that seasonal adjustment would be likely to smooth volatility across the
sample

12These are PUNEW, PU83, PUCD, PUS, PUXHS, PUXM, GMDC, GMDCD, GMDCN and
GMDCS.
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K′
1 statistics in an attempt to identify the most likely direction of persistence change.13

These results are suggestive of I(0)-I(1) changes for PU83, PUCD and GMDC, and
I(1)-I(0) changes for PUNEW, PUXHS, PUXM, GMDCD, GMDCN and GMDCS.

The results for the tests based on K6 are very similar to those discussed above for
K4, while those for K5 are again similar although both tests tend to be less significant in
general. Specifically, K6 yields 15 and 17 (11 and 15) out of 20 significant rejections at
the 1% and 5% levels level, respectively, based on the homoskedastic (heteroskedastic)
bootstrap, while K5 yields 11 and 12 (7 and 12) out of 20 significant rejections at the
1% and 5% levels, respectively, using the homoskedastic (heteroskedastic) bootstrap.

In summary, and consonant with the Monte Carlo evidence presented in section
6, bootstrap persistence change tests which control for the apparent non-stationary
volatility effects present in Stock and Watson’s (2005) price inflation data series (see
Figure 2), deliver fewer rejections overall in favour of persistence change than the
standard tests. However, even controlling for the effects of possible non-stationary
volatility, there still remained statistically significant evidence from the bootstrap tests
of persistence change in a number of the series.

8 Conclusions

In this paper we have analyzed the behaviour of tests for the null of trend station-
arity against the alternative of a change in persistence in circumstances where the
innovation process displays non-stationary volatility. We have shown that, under the
null hypothesis of no change in persistence, non-stationary volatility modifies the lim-
iting distributions of these test statistics, relative to the case of stationary volatility,
with these no longer being pivotal. Monte Carlo evidence suggests that for a range
of relevant volatility processes this often results in a considerable degree of over-size
in the tests. As a consequence, it is likely to be hard for practitioners to discrim-
inate between true persistence change processes and constant persistence processes
which display non-stationary volatility on the basis of these tests. In order to solve
the identified inference problem we have proposed bootstrap-based implementations of
the persistence change tests using a fixed regressor (wild) bootstrap algorithm. Our
proposed bootstrap tests were shown to deliver correctly sized inference in the limit,
within the class of non-stationary volatility processes considered, without necessitating
the practitioner to assume any specific parametric model for volatility. Monte Carlo
evidence presented suggests that our proposed bootstrap tests work well in finite sam-
ples being approximately correctly sized in the presence of a range of time-varying
volatility processes, yet not losing a significant degree of power relative to the standard
tests under persistence changes. An empirical application to the price inflation data

13Since, for example, K1 (K′
1) diverges (is Op(1)) under H01, and vice versa under H10, an heuristic

indicator of the possible direction of persistence change in cases where K4 rejects at a chosen signif-
icance level is given by which of K1 and K′

1 has the smaller p-value, with the same logic applying to
the other tests considered; see Busetti and Taylor (2004,pp.49,56-58).
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series from the Stock and Watson (2005) database was also reported. Although fewer
rejections were found overall when using our bootstrap tests, which control for the
possibility of spurious rejections due to non-stationary volatility, there still remained
significant evidence of persistence change in a number of the series analysed.
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Table 1: Empirical Size of Standard Persistence Change Tests: De-meaned Data.
Tests Based on Asymptotic 5% Critical Values.

Model 1 Model 2 Model 3
T φ θ δ = 1 δ = 1/3 δ = 3 δ = 1/3 δ = 3 c = 0 c = 10

100 0.0 0.0 K1 3.5 61.7 0.2 35.2 0.1 39.1 16.0
K′

1 3.3 0.3 60.2 0.1 31.6 39.7 15.0
K4 3.5 52.4 48.5 26.3 21.5 69.5 20.4
K∗

1 2.9 3.8 8.0 3.7 3.2 7.9 5.5
K′∗

1 2.7 6.0 3.4 3.0 2.2 9.3 4.9
K∗

4 2.2 5.2 4.8 2.9 2.8 10.6 4.6
0.5 0.0 K1 9.2 67.3 2.1 44.0 1.0 40.9 22.6

K′
1 8.1 1.5 65.0 1.3 40.3 41.5 18.6

K4 11.8 60.7 57.0 34.9 32.3 71.9 26.7
K∗

1 2.9 4.2 7.1 3.5 3.8 7.7 4.4
K′∗

1 2.6 6.1 2.7 3.4 2.5 8.3 3.9
K∗

4 3.3 4.9 4.5 3.1 3.0 8.3 4.4
0.0 0.5 K1 0.8 45.8 0.0 20.2 0.0 35.0 9.6

K′
1 0.5 0.0 43.5 0.0 16.1 35.8 7.7

K4 0.4 32.8 31.1 11.9 9.6 63.1 10.8
K∗

1 1.7 2.7 4.2 2.0 1.9 6.9 4.2
K′∗

1 0.9 4.1 1.6 1.9 0.8 7.6 3.8
K∗

4 0.7 3.1 2.2 1.1 0.8 7.4 4.2
200 0.0 0.0 K1 4.9 60.8 0.5 33.8 0.5 37.4 15.6

K′
1 3.3 0.2 59.3 0.1 33.6 37.8 14.1

K4 4.9 49.9 48.6 24.3 24.3 65.3 19.8
K∗

1 3.9 5.2 8.7 3.6 4.8 12.1 6.0
K′∗

1 2.9 7.1 5.2 4.1 3.0 11.9 6.6
K∗

4 3.6 6.7 8.3 4.2 4.5 14.4 6.8
0.5 0.0 K1 7.8 63.9 1.2 38.5 1.1 39.4 17.6

K′
1 5.2 0.8 60.8 0.5 37.8 39.8 16.7

K4 8.4 53.5 51.9 28.4 28.6 67.6 23.9
K∗

1 4.1 4.6 8.1 4.1 5.0 9.3 5.3
K′∗

1 2.8 6.5 3.9 3.0 2.7 9.3 4.7
K∗

4 3.4 6.2 6.4 3.8 4.3 10.5 5.8
0.0 0.5 K1 2.8 52.1 0.0 24.1 0.0 34.0 12.2

K′
1 1.1 0.0 50.4 0.0 22.7 36.2 8.5

K4 1.6 38.5 39.5 14.9 14.0 62.2 13.4
K∗

1 2.7 3.4 7.1 2.3 2.8 8.7 5.2
K′∗

1 2.1 5.1 4.1 3.1 2.3 11.8 4.3
K∗

4 1.8 3.9 4.7 2.0 3.0 12.4 4.9
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Table 2: Empirical Size of Bootstrap Persistence Change Tests: De-meaned Data.

Model 1 Model 2 Model 3
T φ θ δ = 1 δ = 1/3 δ = 3 δ = 1/3 δ = 3 c = 0 c = 10

100 0.0 0.0 K1 2.1 3.2 2.7 2.9 1.5 6.4 2.2
K′

1 1.9 2.4 3.2 1.9 2.4 6.0 2.7
K4 1.5 3.2 3.2 2.9 2.4 9.8 2.1
K∗

1 5.8 6.9 8.2 6.6 6.1 8.7 7.0
K′∗

1 5.4 7.1 7.0 6.1 5.6 9.8 6.9
K∗

4 5.7 7.0 8.3 6.7 5.5 9.3 8.1
0.5 0.0 K1 3.5 6.9 4.4 5.6 2.8 11.7 3.5

K′
1 3.5 4.3 5.7 3.5 4.9 10.9 3.7

K4 4.0 6.9 5.8 5.5 4.9 18.4 3.6
K∗

1 6.0 6.8 6.9 6.2 5.5 6.5 5.5
K′∗

1 5.4 6.2 5.3 5.6 4.8 8.0 5.5
K∗

4 5.6 6.3 6.3 6.0 5.5 7.1 5.8
0.0 0.5 K1 0.5 0.7 0.2 0.4 0.0 2.9 1.0

K′
1 0.2 0.2 0.2 0.0 0.2 2.8 1.0

K4 0.0 0.7 0.2 0.4 0.1 4.7 0.8
K∗

1 3.9 4.4 3.6 4.1 3.6 5.4 4.7
K′∗

1 2.4 4.9 2.8 2.8 2.6 6.3 4.7
K∗

4 2.7 4.6 3.3 2.8 2.3 6.2 4.7
200 0.0 0.0 K1 3.4 3.2 3.9 3.5 3.1 6.4 3.3

K′
1 2.6 3.4 3.6 2.9 2.6 6.5 3.4

K4 3.6 3.2 3.6 3.5 2.6 8.7 3.3
K∗

1 5.7 6.0 6.3 5.4 5.1 7.1 5.4
K′∗

1 4.5 6.0 6.3 5.0 5.4 7.1 6.0
K∗

4 5.5 5.7 7.9 5.4 5.3 7.6 6.6
0.5 0.0 K1 4.3 4.5 5.3 5.1 4.7 9.8 4.0

K′
1 3.1 3.8 4.9 3.2 3.4 7.5 4.1

K4 4.8 4.5 5.0 5.2 3.5 12.4 4.4
K∗

1 5.4 4.4 5.4 5.1 5.1 5.3 4.9
K′∗

1 4.0 5.1 5.0 3.8 4.3 5.4 4.4
K∗

4 4.5 4.9 5.7 4.5 4.7 5.4 4.9
0.0 0.5 K1 1.8 1.0 0.7 1.5 1.4 2.3 1.6

K′
1 1.0 0.6 1.4 0.8 1.2 1.9 1.2

K4 0.5 1.0 1.4 1.5 1.2 2.9 1.1
K∗

1 3.4 3.3 4.9 3.1 3.5 4.8 4.5
K′∗

1 3.3 3.4 4.6 3.9 3.4 5.9 3.8
K∗

4 3.6 3.4 3.8 3.1 3.5 5.5 4.3
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Table 3: Size-Adjusted Power of Standard Persistence Change Tests.
De-meaned Data.

Model 1 Model 2 Model 3
T τ ∗ δ = 1 δ = 1/3 δ = 3 δ = 1/3 δ = 3 c = 0 c = 10

100 0.25 K1 81.4 83.9 76.2 84.6 82.7 22.0 69.1
K′

1 49.6 51.7 50.3 51.7 53.9 15.3 41.5
K4 84.4 84.4 55.1 86.8 69.2 24.3 73.8
K∗

1 39.7 39.3 24.3 44.5 35.3 19.5 30.0
K′∗

1 15.6 8.9 15.2 13.0 18.3 12.3 13.8
K∗

4 37.5 28.2 23.0 39.0 31.3 20.4 29.8
0.50 K1 79.8 85.8 64.1 84.7 78.7 20.9 66.4

K′
1 32.0 46.7 19.8 38.0 32.5 9.9 26.8

K4 78.9 86.0 25.5 85.4 53.8 21.0 66.6
K∗

1 41.8 43.6 24.7 48.7 36.5 22.0 32.3
K′∗

1 8.1 6.1 5.6 6.8 8.6 6.3 8.6
K∗

4 34.6 28.2 17.7 38.5 28.6 19.1 28.3
0.75 K1 63.3 69.2 47.7 71.1 58.0 15.0 48.9

K′
1 8.4 10.9 7.6 9.0 11.3 6.6 8.3

K4 59.6 69.3 9.3 71.4 24.1 14.7 45.0
K∗

1 30.2 33.2 17.6 36.2 23.2 15.5 22.2
K′∗

1 1.9 0.9 1.3 1.3 1.9 2.3 2.0
K∗

4 21.3 18.5 11.5 24.5 16.0 11.9 17.9
200 0.25 K1 90.2 89.6 87.0 92.0 90.0 27.2 79.9

K′
1 50.3 50.2 52.2 52.8 53.5 14.1 41.6

K4 92.9 89.9 61.5 92.9 76.2 24.2 82.4
K∗

1 48.0 46.7 32.1 50.4 40.0 26.0 39.9
K′∗

1 15.9 7.8 13.9 12.8 16.2 8.1 10.6
K∗

4 44.4 36.8 30.2 44.0 42.8 20.8 35.0
0.50 K1 89.4 92.6 73.0 90.1 88.3 25.9 77.8

K′
1 29.7 45.0 14.3 35.0 27.9 7.4 22.9

K4 89.3 92.7 25.2 90.5 60.4 20.2 76.6
K∗

1 53.5 52.4 34.8 57.1 46.8 31.5 42.8
K′∗

1 9.0 6.0 3.7 7.9 7.6 4.6 5.9
K∗

4 48.2 41.7 28.4 48.2 42.5 23.7 35.9
0.75 K1 73.1 76.8 53.5 76.6 66.0 18.4 60.3

K′
1 2.7 4.1 1.9 2.9 3.4 3.2 3.1

K4 71.4 76.9 6.0 76.6 23.8 13.7 56.8
K∗

1 41.5 42.5 21.0 48.2 30.1 21.4 29.8
K′∗

1 0.5 0.4 0.4 0.5 0.6 0.7 0.7
K∗

4 32.7 27.2 14.6 35.1 24.5 15.0 21.3
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Table 4: Empirical Power of Bootstrap Tests: De-meaned Data.

Model 1 Model 2 Model 3
T τ ∗ δ = 1 δ = 1/3 δ = 3 δ = 1/3 δ = 3 c = 0 c = 10

100 0.25 K1 67.5 82.1 56.6 79.9 59.1 61.5 66.0
K′

1 43.7 37.9 60.4 35.3 58.3 46.7 47.0
K4 67.5 82.7 63.9 79.4 66.2 74.0 67.7
K∗

1 33.9 36.8 27.5 37.4 33.1 30.8 34.4
K′∗

1 14.5 12.9 16.8 13.9 15.9 15.4 15.3
K∗

4 30.1 31.2 27.0 32.1 30.6 29.9 30.9
0.50 K1 57.4 81.5 33.2 72.2 45.8 54.2 58.8

K′
1 34.9 37.4 34.9 28.2 45.0 40.0 37.5

K4 59.0 81.6 40.3 72.0 54.2 68.1 61.4
K∗

1 37.9 40.5 28.3 41.6 35.5 34.1 37.3
K′∗

1 8.7 9.2 6.6 8.7 8.4 8.6 8.4
K∗

4 28.3 31.2 23.0 31.1 27.7 27.8 28.6
0.75 K1 31.0 58.2 18.4 49.4 22.7 37.2 33.0

K′
1 7.5 8.2 10.8 5.7 12.7 20.4 10.2

K4 31.4 58.3 16.7 49.7 23.8 47.5 34.5
K∗

1 24.9 29.0 17.8 27.8 22.3 21.5 23.8
K′∗

1 2.0 1.7 1.5 1.7 1.7 2.8 1.8
K∗

4 17.1 19.4 14.6 18.8 16.8 16.0 17.2
200 0.25 K1 79.2 87.8 73.2 85.0 74.2 70.3 78.6

K′
1 42.2 37.4 60.5 34.5 56.3 48.6 47.3

K4 77.2 87.7 69.7 84.9 71.5 77.7 77.2
K∗

1 40.8 45.8 36.0 43.9 38.8 38.1 42.1
K′∗

1 14.6 11.4 17.0 13.2 15.9 14.8 13.8
K∗

4 36.6 37.7 35.1 37.7 37.5 36.0 38.2
0.50 K1 71.4 88.7 46.6 80.6 61.6 61.4 69.6

K′
1 33.1 35.9 29.3 27.2 43.3 34.3 35.4

K4 73.3 88.7 45.4 80.7 64.3 66.8 70.3
K∗

1 48.2 51.4 40.0 52.1 46.6 43.8 47.0
K′∗

1 7.9 9.3 4.6 7.7 7.5 6.9 7.0
K∗

4 40.2 42.0 33.6 42.9 38.8 37.2 39.6
0.75 K1 42.9 67.8 20.7 60.6 28.4 39.1 43.4

K′
1 3.4 4.2 4.6 2.7 6.5 11.4 6.2

K4 42.7 67.8 16.3 60.6 26.4 43.9 43.2
K∗

1 35.8 39.9 24.0 41.0 31.1 30.6 33.5
K′∗

1 0.5 0.5 0.4 0.5 1.0 1.3 0.8
K∗

4 25.4 28.9 17.6 29.3 22.7 23.4 23.8
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Table 5: Persistence Change Tests for Twenty US Inflation Series.

K1 K′
1 K4 K2 K′

2 K5 K3 K′
3 K6

PWFSA 2.848 50.945 50.945 0.393 18.787 18.787 0.251 21.727 21.727
phom 0.742 0.000 0.003 0.917 0.000 0.000 0.887 0.000 0.003
phet 0.727 0.013 0.018 0.922 0.005 0.005 0.902 0.010 0.013

PWFCSA 1.930 50.639 50.639 0.345 14.389 14.389 0.210 20.359 20.359
phom 0.860 0.000 0.003 0.947 0.000 0.000 0.917 0.000 0.003
phet 0.882 0.010 0.015 0.947 0.008 0.010 0.930 0.010 0.015

PWIMSA 1.635 48.612 48.612 0.232 17.323 17.323 0.131 19.581 19.581
phom 0.895 0.000 0.003 0.982 0.000 0.000 0.977 0.000 0.003
phet 0.887 0.040 0.048 0.947 0.013 0.015 0.950 0.038 0.048

PWCMSA 3.218 6.019 6.019 0.807 1.613 1.613 0.431 0.948 0.948
phom 0.704 0.426 0.707 0.739 0.436 0.782 0.767 0.511 0.830
phet 0.902 0.180 0.897 0.920 0.123 0.910 0.920 0.160 0.925

PSCCOM 2.614 27.197 27.197 0.473 3.451 3.451 0.258 8.490 8.490
phom 0.774 0.008 0.018 0.885 0.143 0.243 0.882 0.023 0.040
phet 0.677 0.080 0.088 0.820 0.246 0.306 0.827 0.100 0.113

PSM99Q 1.537 21.089 21.089 0.475 2.892 2.892 0.249 5.351 5.351
phom 0.902 0.035 0.065 0.885 0.193 0.333 0.887 0.058 0.100
phet 0.885 0.100 0.118 0.815 0.328 0.404 0.830 0.138 0.158

PUNEW 12.247 107.797 107.797 1.406 17.368 17.368 1.880 49.232 49.232
phom 0.125 0.000 0.000 0.454 0.000 0.000 0.206 0.000 0.000
phet 0.150 0.003 0.003 0.406 0.003 0.003 0.241 0.003 0.003

PU83 81.614 5.039 81.614 26.529 0.546 26.529 36.023 0.507 36.023
phom 0.000 0.531 0.000 0.000 0.900 0.000 0.000 0.749 0.000
phet 0.005 0.296 0.005 0.003 0.684 0.003 0.005 0.481 0.005

PU84 25.259 17.286 25.259 1.479 5.154 5.154 7.070 4.998 7.070
phom 0.015 0.065 0.035 0.429 0.053 0.095 0.028 0.065 0.058
phet 0.140 0.038 0.145 0.792 0.018 0.241 0.178 0.038 0.190

PU85 43.220 13.054 43.220 2.893 2.292 2.893 16.676 3.438 16.676
phom 0.003 0.120 0.003 0.140 0.276 0.333 0.003 0.118 0.003
phet 0.003 0.303 0.033 0.050 0.486 0.429 0.003 0.278 0.033

PUC 6.006 24.600 24.600 1.129 4.875 4.875 0.949 8.144 8.144
phom 0.393 0.020 0.038 0.561 0.060 0.108 0.439 0.023 0.040
phet 0.584 0.030 0.100 0.754 0.038 0.183 0.654 0.028 0.103

PUCD 338.640 6.571 338.640 6.045 0.959 6.045 163.729 0.795 163.729
phom 0.000 0.383 0.000 0.033 0.714 0.060 0.000 0.584 0.000
phet 0.000 0.429 0.000 0.053 0.669 0.115 0.000 0.541 0.000
PUS 69.395 205.224 205.224 3.774 39.122 39.122 29.138 99.154 99.154
phom 0.000 0.000 0.000 0.085 0.000 0.000 0.000 0.000 0.000
phet 0.008 0.005 0.005 0.033 0.005 0.005 0.008 0.005 0.005

PUXF 51.934 67.556 67.556 2.302 12.255 12.255 20.376 29.846 29.846
phom 0.003 0.000 0.000 0.206 0.003 0.003 0.003 0.000 0.000
phet 0.015 0.008 0.015 0.306 0.008 0.015 0.015 0.005 0.013

PUXHS 8.573 54.840 54.840 1.155 8.696 8.696 1.050 23.129 23.129
phom 0.233 0.000 0.003 0.541 0.010 0.018 0.393 0.000 0.000
phet 0.338 0.003 0.008 0.627 0.015 0.033 0.496 0.003 0.008

PUXM 10.263 99.367 99.367 1.289 17.269 17.269 1.487 45.014 45.014
phom 0.168 0.000 0.000 0.489 0.000 0.000 0.268 0.000 0.000
phet 0.193 0.003 0.003 0.436 0.003 0.003 0.286 0.003 0.003

GMDC 10.350 244.512 244.512 1.377 31.916 31.916 1.429 117.667 117.667
phom 0.165 0.000 0.000 0.464 0.000 0.000 0.283 0.000 0.000
phet 0.281 0.000 0.000 0.546 0.000 0.000 0.411 0.000 0.000

GMDCD 300.915 38.113 300.915 5.942 2.478 5.942 144.866 14.619 144.866
phom 0.000 0.003 0.000 0.035 0.243 0.068 0.000 0.003 0.000
phet 0.000 0.013 0.000 0.063 0.253 0.098 0.000 0.013 0.000

GMDCN 3.365 71.087 71.087 0.706 16.077 16.077 0.507 31.563 31.563
phom 0.684 0.000 0.000 0.784 0.000 0.000 0.714 0.000 0.000
phet 0.787 0.003 0.005 0.872 0.003 0.010 0.820 0.003 0.005

GMDCS 33.466 163.679 163.679 2.305 26.786 26.786 11.181 76.971 76.971
phom 0.008 0.000 0.000 0.206 0.000 0.000 0.008 0.000 0.000
phet 0.085 0.000 0.000 0.451 0.000 0.000 0.088 0.000 0.000
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Figure 1: Twenty U.S. inflation rates, 1967—2003.
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Figure 2: Twenty U.S. inflation rates, 1967—2003: estimated variance profiles.


