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Abstract. In the theory of graphical Markov models in which relations between many
variables are simplified via conditional independencies a special role is played by di-
rected acyclic graphs. They can be used to represent statistical models in which data
are generated in a stepwise fashion. Responses and intermediate variables may be event
histories.

We discuss such a system with sequentially administered treatments and a con-
founder, that is a variable which affects both the final outcome and one of its explana-
tory variables. The effect of not observing the confounder is to obtain the final and
an intermediate outcome as joint responses and leads to the important observation
by Robins and Wasserman (1997) that any univariate conditional distribution for the
final outcome will be inappropriate for analysis no matter whether the intermediate
outcome is conditioned on or not.

It means in particular that the independence structure of the observed variables
can no longer be fully described by a directed acyclic graph, that criteria for reading
indepencencies off graphs have to be modified and that joint instead of univariate
regression models are needed.

These modifications resolve directly the puzzling situation which has been discussed
by the above authors for randomized clinical trials as a case in which a true hypothe-
sis of no treatment effect is always falsely rejected. Joint response models provide an
alternative route for avoiding this unpleasant situation.

Keywords: Directed acyclic graphs, conditional independence, conditioning, con-
founder, generating process, intermediate variable, joint response models, marginal-
izing, summary graph, univariate recursive regressions
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1. Introduction

1.1 Generating processes and directed acyclic graphs

Sequences of univariate linear regression models have been introduced under the name

of path analysis by geneticist Sewall Wright at the beginning of this century. He used

them to describe hypotheses about how data might have been generated and to evaluate

these hypothesis in the light of observations. His main goal was to gain insight into

genetic processes. He attempted to ‘trace paths’ of development.

To a large extent he used directed graphs to represent these processes. Nodes

indicate variables. Arrows denote direct dependencies which are strong enough to be

of substantive interest. A path is an ordered set of distinct nodes having an edge

present in the graph for each consecutive pair. An ordering of the variables results

from the substantive context and often involves time. Of special interest are stepwise

processes, in which a full set of data is generated from knowledge of only the direct

dependencies for each of the ordered variables taken one at a time. Such graphs are

fully directed because there are no joint responses and they are acyclic because no

variable is taken to be explanatory for itself, i.e. it is impossible to start from any

node, follow the direction of arrows and return to the same node.

Directed acyclic graphs are also mere mathematical objects used to characterize

independence structures in probability distributions. An independence structure is a

set of independence statements sufficient to capture all independencies that the joint

distribution is to satisfy. A number of different sets of independence statements may

describe the same structure because, typically, sequences of such statements lead to

further independencies being satisfied as well. Accordingly, a number of different gen-

erating processes may give rise to the same independence structure.

If a full ordering of the variables is specified for a given directed acyclic graph then

all edges, present or absent, have a precise conditioning set attached to them, i.e. to

node i all nodes with higher indices are its potential ancestors. But, any edge present

remains compatible with conditional independence of the corresponding variable pair.

This differs from the meaning of an arrow present in the graph of a generating process,

i.e. in a graph representing a substantive research hypothesis (Wermuth and Lauritzen,
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1990).

It is therefore helpful to distinguish between the two types of graphs in the way

illustrated in Figure 1. The graph with boxes describes the hypothesis of a stepwise

generating process. As mentioned before, in it each arrow present corresponds to a

nonvanishing conditional dependence of substantive interest and each edge absent in

the graph has a specific conditional independence statement attached to it.

Figure 1: A generating graph representing a system of univariate recursive regressions (left)
and the underlying directed acyclic graph (right)

According to the left graph of Figure 1 the joint distribution is generated by starting

with the distribution of variable Y5 and generating separately, the conditional distribu-

tions of Y3 given Y5 and of Y4 given Y5. The conditional distribution of Y1 given Y3 and

the independently generated distribution of Y2 completes the stepwise process. We use

the terms univariate conditional distributions and univariate regressions exchangeably.

The graph obtained by deleting the boxes is directed and acyclic and is called the

graph underlying the generating process. It captures the independence structure of

the generating process. However, taken on its own without a prespecified ordering of

the variables, it does not attach a unique conditioning set to each arrow present and it

does not imply some strictly nonvanishing dependence for arrows present in the graph.

To illustrate the latter distinction in more detail, we take two special distributions

corresponding to Figure 1. If each variable in the generating process represented by

the left of Figure 1 is a Gaussian variable of mean zero then the regression equations

are linear and have independent residuals between equations. They can be written in

terms of conditional expectations as:
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E(Y1|Y2, . . . , Y5) = β12.3Y2 + β13.2Y3

E(Y2|Y3, . . . , Y5) = 0, E(Y3|Y4, Y5) = β35Y5, E(Y4|Y5) = β45Y5 E(Y5) = 0,

where these equations describe a process to generate a joint Gaussian distribution

satisfying some independencies, described in more detail below. The generating graph

in the left of Figure 1 indicates that each of the four regression coefficients corresponding

to the four arrows present in the left graph (β12.3, β13.2, β35, β45) is strictly nonzero.

By contrast, the directed acyclic graph in the right of Figure 1 is compatible with

null-values of these four coefficients. In particular, it is also compatible with mutual

independence of all five variables.

If instead each of the variables in Figure 1 is binary and each conditional distribu-

tion is logistic and if for variable 1 as response a two-factor interaction term is included

then the joint distribution generated is a log-linear model with only independencies as

restrictions. The regression coefficients are log-odds ratios. The independence state-

ments satified by the joint distribution coincide with those in a Gaussian distribution

generated over the same graph.

1.2 Independence structures

The defining independence structure can be read off either graph in Figure 1 as follows:

each response i is independent of other potentially explanatory variables j given its

direct influences. Written in terms of nodes the interpretation of any missing arrow

from j to i is

i ⊥⊥ j | (parents of i),

where parents of a node i are the nodes from which an arrow points to i.

Descendants of a node i are all those nodes which can be reached from it by following

the direction of the arrows. If i is a descendant of j then it is equivalent to say that j

is a (proper) ancestor of i. Parents denote direct influences, i.e. directly explanatory

variables, all other proper ancestors denote indirect influences, i.e. variables which are

indirectly explanatory. In the case of a generating process, each parent j of i in the

graph denotes, in addition, a variable which is of substantive importance in the process

and for predicting Yi given the remaining direct influences.
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From the boxed graph of a generating process, the defining independence structure

can also be read off in terms of the past, i.e. in terms of all nodes listed in boxes to

the right of the node(s) considered:

i ⊥⊥ (its past excluding parents of i) | (parents of i)

and mutual conditional independence of variables shown in stacked boxes, i.e.

(i1 ⊥⊥ i2 . . . ⊥⊥ is) | (their past).

For Figure 1 this gives with

Y1 ⊥⊥ (Y4, Y5) | (Y2, Y3), (Y2 ⊥⊥ Y3 ⊥⊥ Y4) | Y5 and Y2 ⊥⊥ Y5,

a slightly more compact way of writing the independence structure then by using the

definition in terms of each response, taken one at a time.

An example for an independence statement implied by the graph of Figure 1 is

Y2 ⊥⊥ (Y3, Y4, Y5). This and other independencies may be derived by combining proba-

bility statements (see, for instance, Dawid, 1979), by using the separation criterion for

directed acyclic graphs (Pearl, 1988), with the help of a matrix algorithm (Wermuth

and Cox, 2000) or by using the generalized version of Pearl’s path criterion stated

below in Section 2.3, which applies to joint and univariate response models that may

result by marginalizing over some nodes in a directed acyclic graph.

1.3 Some historical remarks

Wright (1921) used the notion of conditional independence only implicitly. Missing

arrows in his fully directed graphs without directed cycles point at variable pairs for

which the observed marginal correlations may deviate from the ones implied by the

generating process. Thus, missing arrows, which correspond to conditional indepen-

dences, are used to evaluate the generating process in the light of observations. It

was shown much later (Wermuth, 1980) under which conditions the sum of differ-

ences between these observed and implied correlations defines a component of the

likelihood-ratio-statistic, the general form of which was derived by Wilks (1938) to test

the goodness-of-fit of a model.
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By contrast, Andrej Andrejwich Markov used the notion of conditional indepen-

dence explicitly (1912) to simplify multivariable structures. Markov chain models can

be viewed as distributions defined over a special type of directed acyclic graph: over a

graph which consists of a single direction-preserving path, with Aj depending directly

only on Aj+1 for i = 1 . . . , p − 1, say. For example for five discrete variables Aj such a

joint distribution is given by

Pr(A1, A2, . . . , A5) = Pr(A1|A2)Pr(A2 | A3)Pr(A3|A4)Pr(A4|A5)Pr(A5),

i.e. at each stage only the most recent past is ‘remembered’ in the system.

The joint distribution defined over the graph of Figure 1 can be written as:

Pr(A1, A2, . . . , A5) = Pr(A1|A2, A3)Pr(A2)Pr(A3|A5)Pr(A4|A5)Pr(A5).

If all variables are binary then each of the conditional distribution could be, for

instance, logistic or probit regressions. Since, in general, some of the responses may

be discrete, others continuous it has become a convention to use in the graphs dots for

discrete and empty circles for continuous variables.

An essential extension of Sewell Wright’s method of tracing paths became possible

with Judea Pearl’s criterion for reading all independencies directly off the graph for

distributions of any type defined over directed acyclic graphs. Conditions under which

a lack of independence can be interpreted positively as the presence of an association

have been given for quasi-linear systems (Wermuth and Cox, 1998). However more work

is needed for general types of distributions generated over graphs to better understand

the type of the resulting association models.

In 1943 Trygve Haavelmo noted an important limitation of univariate linear recur-

sive equations. His result motivated the development of joint response models with

cyclic dependences. He showed that two linear equations with each response having a

direct dependence on the other response and – at the same time – independent resid-

uals between equations are incompatible with a definition of equation parameters in

terms of conditional expectations. For a simplified version of his argument see Cox and

Wermuth (1993). This has led to the development of simultaneous equation models

in econometrics and to linear structural relation models in psychometrics. A quite
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different approach to joint response models for discrete and continuous variables has

led to the graphical Markov models in which joint distributions are formulated which

satisfy independence restrictions. Systems of linear recursive regressions, such as those

described for Figure 1, represent an important subclass within either formulation of

two types of model classes (see e.g. Wermuth, 1992; Koster 1999)

1.4 Objectives

The main aims in the present paper are twofold. We first derive the independence

graphs that result from marginalizing over nodes in directed acyclic graphs, classify the

types of models which can result, and give the corresponding separation theorem to

read directly off the graph all independencies implied for the variables remaining after

marginalization. These results do not depend on the type of variables or distributions

involved.

Next we apply the results to a problem described by Robins and Wasserman (1997)

for randomized clinical trials in which treatments are administered sequentially and

there is no treatment effect given information on the health status of the patient prior

to entering the trial, see Figure 12 below. The authors show that if the health status is

unobserved then a naive use of regression models and of standard parametrizations can

lead to rejecting a true hypothesis of no treatment effect with probability approaching

one as the sample size increases. We show here, in particular, that such a naive use of

regression models can be avoided by deriving the proper independence graph for the

observed variables. We also point at alternative standard parametrizations which do

not share the deficiencies of conditional Gaussian distributions noted by the authors

in the context of their example.

2. Marginalizing over nodes in directed acyclic graphs

We take a joint distribution generated over a directed acyclic graph, GV
dag, having vertex

set, i.e. node set, V and derive the independence graph implied for the distribution of

YS, where S is the selected subset of nodes remaining after marginalizing over a subset

of nodes M of V , i.e. S = V \ M . The resulting graph is called the summary graph,

GS
sum, for the distribution of YS. It may contain three types of edge (Wermuth and
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Cox, 2000):

≺ ≺ .

Independence structures in graphs of this type have also been studied by Koster (1999),

Spirtes et al (1998), Richardson (1999) and Wermuth et al. (2000).

For the edge with two components there are two different paths between the node

pair. The graph is without directed cycles, i.e. it is impossible to start from a node,

follow a direction-preserving path of arrows and return to the starting node. However,

partially directed cycles may occur, the smallest configuration of this type is the edge

with two components.

In Section 2.1 we show how to modify such a graph by marginalizing over some of

its nodes and give some simple examples. In Section 2.2 we classify the types of models

which can be derived in this way for Gaussian distributions and we give a criterion to

read off all independencies specified with a summary graph.

2.1 A summary graph derived by marginalizing

In pictures of graphs we point at the nodes to be marginalized over by a double crossing

of the nodes, � �◦. We indicate that edges have been inserted due to marginalizing by

blacked in crossings such as in Figure 2, second row. Since it is important to be able

to do marginalizing in any order of the nodes and obtain the same summary graph we

give directly the effects of marginalizing over nodes in a summary graph in the table

below. Marginalizing over any single node in a directed acyclic graph is a special case.

To marginalize over nodes m = {� �◦} in GS
sum: an edge i, j is inserted within

s = S \ m for a common neigbour node t which is an element of {� �◦} as

t ≺ j t j t ≺ j t �j

i � t no no no �
i t no no no
i � t no no no �
i ≺ t ≺ ≺

After edges have been inserted accordingly for each node in the marginalizing set

the nodes and edges of {� �◦} are deleted.
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Figure 2 shows the effects of marginalizing in three-node directed acyclic graphs

over the common neighbour node. The common neighbour node is a transition node

in the left graph of Figure 2, a source node in the middle and a collision or sink node

in the right graph of Figure 2. For the transition node the inserted edge is an arrow,

i.e. marginalizing corresponds to a shortening of the direction-preserving path. For the

common source node the inserted edge is undirected. Finally, by marginalizing over a

common sink node, i.e by ignoring the common response, no edge is inserted.

Figure 2: Effects of marginalizing over the common neighbour node which is a transition node
(left), a source node (middle), a sink or collision node (right). Top: starting graphs; middle:
edges inserted due to marginalizing; bottom: summary graphs of the bivariate distributions

Figure 3 shows the summary graph obtained by marginalizing over the common

collision and a common source node in the graph of Figure 1, while Figure 4 shows the

summary graph resulting by marginalizing over a single node which is a common source

for each pair of four other nodes. In both cases the resulting graphs are covariance

graphs, i.e. an edge represents the marginal pairwise association of a variable pair (Cox

and Wermuth, 1993, 1996, 2000).

Figure 3: Marginalizing over a common sink and a common source node (left); the summary
graph is an incomplete covariance graph (right)
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Figure 4: Marginalizing over a source node common to all other variable pairs (left); the
summary graph is an complete covariance graph (right)

Figure 5 shows the summary graph resulting by marginalizing over a transition

node and over a node which is not a common neighbour in Figure 1. The resulting

graph is then again directed and acyclic.

Figure 5: Marginalizing over a transition node and a response node (left); the summary
graph is directed acyclic (right)

2.2 Types of model generated by marginalizing

Four different model subclasses can be identified which arise by marginalizing over

nodes in a directed acyclic graph and which are - in the case of a joint Gaussian

distribution - also within the class of linear structural relation models:

– univariate recursive systems with independent residuals,

– multivariate regression chains, including seemingly unrelated regressions,

– covariance graph models,

– univariate recursive systems with correlated residuals .

However, only models in the first two of these classes can be reinterpreted as generating

processes in those variables which correspond to nodes of the given graph. This may

permit simplified estimation and interpretation.
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As noted previously a stepwise generating process in the given observed variables

is specified by univariate recursive regression systems with independent residuals. The

corresponding independence graph contains only arrows, i.e. it is fully directed, and it

is acyclic, in addition.

A direct interpretation as generating process is also possible for multivariate regres-

sion chains (Cox and Wermuth, 1993; 1996). The corresponding independence graphs

have as edges arrows and dashed lines for joint responses. They are directed acyclic in

joint responses. This means that there are no fully directed and no partially directed

cycles, i.e. it is impossible to start on a path with an arrow on it and return to the

starting node without meeting an arrow head along the path.

Otherwise, no direct generating processes are specified after marginalizing. Two

broad model classes of this type are discussed in the literature for joint Gaussian dis-

tributions: covariance graph and noncyclic structural equation models. The models

with a pattern of zeros in marginal correlations had been introduced as linear in co-

variances models by Anderson (1973) and have more recently be called covariance

graph models. Their independence graph is undirected with exclusively dashed lines

as edges. Gaussian noncyclic structural equation models are the most general type of

summary graph models: in the econometric literature some of these are discussed as

linear univariate recursive system with correlated residuals (Goldberger, 1964) and as

sequences of seemingly unrelated regressions (Zellner, 1962).

Figure 6: Four types of summary graphs. For a joint Gaussian distribution each represents a
saturated model: univariate recursive regressions with independent errors (first), multivariate
regression (second), a covariance graph model (third), univariate recursive regressions with
correlated errors (fourth)

For each of the four types of model classes Figure 6 shows the graphs for saturated

models in three variables, i.e for a joint distribution without any independencies. In

a Gaussian distribution a marginal independence for Yi, Yj holds if and only if the
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covariance σij equals zero and a conditional independence, say for Yi, Yj given Yk,

holds if and only if the partial covariance σij.k equals zero. Edges in the first three

graphs in Figure 6 correspond to modelling two, one and no conditional association or,

equivalently one, two and three marginal associations as follows

first : β12.3 = σ12.3/σ22.3, β13.2 = σ13.2/σ22.3, β23 = σ23/σ33;

second : β12 = σ12/σ22, β23 = σ23/σ33, σ12.3;

third : σ12, σ13, σ23.

In general, whenever the graph represents a recursive system with some correlated

errors, it may be interpreted as confounding of some direct or indirect dependencies.

Then, a missing edge need no longer indicate an independency such as in the fourth

graph in Figure 6. This makes graphical representations somewhat less attractive. In

addition, different parametrizations are compatible in such situations. If we write the

relations corresponding to the fourth graph in Figure 6 for mean-centered Gaussian

variables as

Y1 = γ12Y2 + η1, Y2 = γ23Y3 + η2, Y3 = η3, cov(η1, η2) �= 0

then one parametrization corresponds to a structural equation model with γ12 =

σ13/σ12 and γ23 = σ23/σ33, another has equation parameters as in a system without

correlated residuals, i.e. with γ12 = σ12/σ22 and γ23 = σ23/σ33. In the former Y3 acts

like an ‘instrumental variable’ for the relation between Y1, Y2, in the latter the residual

correlation is regarded as a secondary feature of a system generated essentially over

a directed acyclic graph. Generalized systems of the second kind have recently been

investigated by John van Briezen-Raz (personal communication).

2.3 Separation criterion in summary graphs

Independencies implied by a given summary graph may be read directly off the graph

by using the following criterion.

Separation criterion in summary graphs, GS
sum: Let a, b, c be nonoverlapping subsets of

S, then Xa ⊥⊥ Xb | Xc if every path from a node in a to one in b breaks by conditioning

on nodes of c.
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A path in GS
sum breaks by conditioning on c if along the path there is

(i) a noncollision node in c, or

(ii) a collision node – together with all its descendants – is marginalized over since

they are not in c.

There are three types of collision nodes t in a summary graph which are said to

Figure 7: The three types of collision nodes in a summary graph

have visible or hidden arrow heads pointing to them. The heads are either both visible

(left), or one is hidden (middle) or both are hidden (right) due to marginalizing. The

reason is that every dashed line is generated by marginalizing over all nodes along a

common source path present in the generating graph, i.e. via a path which had arrow

heads at both path ends.

We give examples of three types of paths typical for directed acyclic graphs in

Figures 8 to 10. The path in Figure 8 is a collisionless, descendant-ancestor path.

Node i is the descendant of node j and node j is the ancestor of node i. The path is

direction-preserving. It breaks if any node along the path is in c.

Figure 8: A noncollision, descendant-ancestor path

The path in Figure 9 is a collisionless, common source path. Nodes i and j have

a common source along the path. This is a node from which one direction-preserving

path leads to node i and another to node j. The path breaks if any node along it is in

c.

Figure 9: A noncollision, common-source path

The path in Figure 10 is of the most general type possible in a directed acyclic graph.

It is a collision path because it contains collision nodes, but there are transition nodes
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and a source node as well. This path breaks like the previous ones if any noncollision

node is conditioned on. But it breaks also if a single collision node and all of its

descendants are marginalized over.

i j...

Figure 10: A collision path

The separation criterion for summary graphs may be applied to variables and dis-

tributions of any type, distributions may even be degenerate. This becomes different if

we want to conclude from a and b not being separated by c that there is some strictly

nonvanishing dependence between Xa and Xb given Xc. In general, a single path be-

tween a and b which does not break relative to c only means that Xa ⊥⊥ Xb | Xc is

not implied by the generating process (but that it may still hold under very special

parametric constellations sometimes called parametric cancellations).

We call a path active if it does not break. In linear and quasi-lineear systems an

active path introduces an association for i, j given c if some special additional conditions

hold (Wermuth and Cox, 1998). A more direct definition of an active path is as follows.

A path in GS
sum is active relative to c if along the path

(i) every collision node is in c or is an ancestor of a node in c, and

(ii) every noncollision node is marginalized over since it is not in c.

To illustrate this definition we use a symbol for conditioning as c = {✷}, in addition

to the one for marginalizing � �◦. Figure 11 displays conditions under which the path

of Figure 10 becomes active.

3. No treatment effect of sequential treatments

We now use the results summarized in the previous section to investigate properties

of models used to study effects of sequentially administered treatments in randomized

clinical trials.

Robins and Wasserman (1997) describe the following situation in which a naive use

of regression models leads to false conclusions. It is a clinical trial in which AIDS pa-
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i j...

...

Figure 11: An active collision path: every collision node is in c, or is an ancestor of a node
in c, every other node along the path is marginalized over.

tients have received AZT treatment twice. At both times dose of treatment is assigned

at random. Randomization probabilities for the recent treatment dose, Tr, are however

dependent on the previous treatment dose, Tp, and the effect this treatment had on an

intermediate variable, on anemia of the patient, L. Of primary interest is the overall

outcome, Y , measured as HIV-viral load at the end of a follow-up period. Hidden, i.e.

unobserved, is the patient’s immune function, U , an indicator of the patient’s general

health status. Figure 12 shows an ordering corresponding to such a generating process

of the data and a directed acyclic graph which represents among other independencies

the hypothesis of no treatment effect, i.e. Y ⊥⊥ (Tr, Tp) | U .

3.1 Defining and implied independencies

From the definitions in Section 1.2 the defining independencies in the graph of Figure

12 are:

Y ⊥⊥ (Tr, Tp, L) | U, Tr ⊥⊥ U | (Tp, L), Tp ⊥⊥ U.

In this graph of Figure 12 the edges (Tp, U) and (Tr, L) are missing by design, i.e.

because treatment doses are assigned at random. Randomization assures independence

of treatments and potential confounders, be they observed or not. Edges (Y, Tr) and

(Y, Tp) are missing because the graph represents the null hypothesis of no treatment

effect given U . The edge (Y, L) is missing to simplify exposition.

Since the patient’s underlying immune function U is not observed the independen-

cies after marginalizing over U are those of interest. They can be determined for every

pair with a missing edge by using the separation criterion of Section 2.3. We note first
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Figure 12: Ordering of variables in a clinical trial with two sequentially administered treat-
ments; the corresponding directed acyclic graph reflecting randomized assignment of treat-
ments (edges (Tp, U) and (Tr, U) are missing) and no treatment effect (edges (Y, Tp) and
(Y, Tr) are missing) and an additional simplification (edge (Y, L) is missing).

that by marginalizing over the common source U , i.e. with U outside c, a path via U

does not break. Then we look at paths for pairs (Y, Tp) and (Y, Tr), in turn.

There are two paths between Y and Tp. The path (Y, U, L, Tp) breaks iff, i.e. if

and only if L and Tr are both marginalized over, since L is a collision node along this

path and Tr is its descendant. Path (Y, U, L, Tr, Tp) breaks iff either the collision node

Tr is marginalized over or the noncollision node L is in c. Thus, with U outside c,

both paths break iff L and Tr are both marginalized over. This means that Y ⊥⊥ Tp is

implied, while Y ⊥⊥ Tp | L, and Y ⊥⊥ Tp | Tr and Y ⊥⊥ Tp | (L, Tr) are not implied by the

generating process.

Similarly, there are two paths between Y and Tr. Path (Y, U, L, Tr) breaks iff the

transition node L is in c. Path (Y, U, L, Tr, Tp) breaks iff the source node Tp is in c or

the collision node L is marginalized over. Note that L is a transition node along the

first path but a collision node along the second path. Both paths break iff both, Tp and

L, are in c. Thus, Y ⊥⊥ Tr | (Tp, L) is implied by the graph of Figure 12 for the observed

variables, but no other independence statement involving pair (Y, Tr) is implied by the
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Figure 13: A directed acyclic graph for the observed variables corresponding to a system of
univariate recursive regressions.

generating process.

Therefore the hypothesis of no treatment effect incorporated in the above generating

process of all five variables Y ⊥⊥ (Tr, Tp) | U to together with Y ⊥⊥ L | U imply that

Y ⊥⊥ Tr | (Tp, L) and Y ⊥⊥ Tp

for the four observed variables but no other independencies hold in this system of

observed variables.

This means, in particular, that the independence statements Y ⊥⊥ (Tr, Tp) | L and

Y ⊥⊥ (Tr, Tp) are both incompatible with joint distributions of the observed variables.

To put it differently, tests of independence of the final outcome variable Y of both

treatments simultaneously will be rejected for large numbers of observations, no matter

whether we condition on L or not. This is what Robins and Wasserman observe. They

use G-computation for the correct analysis.

The standard regression model for Y discussed by Robins and Wasserman is derived

from the directed acyclic graph in Figure 13 for the observed variables. This graph

keeps the ordering of the variables in the generating graph of Figure 12 and there is

an arrow whenever the corresponding independence statement is not implied by the

graph in Figure 12. Thus, in Figure 13 the edge for overall outcome Y is missing to

Tr since its absence means Y ⊥⊥ Tr | (Tp, L) which is implied by the generating graph.

The arrow from Tp to Y is present, since its absence would mean Y ⊥⊥ Tp | L and this

independence is not implied by the generating graph.

Thus, the independence Y ⊥⊥ Tp implied by the generating process is not reflected

in the directed acyclic graph of Figure 13 and it cannot be captured by removing the

arrow pointing to Y from Tp. Instead, the proper independence graph for the observed

variables, i.e. their summary graph, is a graph in which the intermediate outcome, L,

17



Figure 14: Derivation of the summary graph for the observed variables. Top: starting
graph, directed acyclic, with node U to be marginalized over; middle: inserted edge due to
marginalizing; bottom: summary graph: a joint response graph

and the final outcome, Y , occur as joint responses. Effects of this are discussed in the

following Section.

3.2 The summary graph for the observed variables

To obtain the summary graph implied for the observed variables by the generating

process to Figure 12 we need to marginalize over node U . Node U is a common source

for nodes Y and L unconnected in Figure 12. Nodes Y and L become connected by

a dashed line in the summary graph (see Table 1 and Figure 14). No other edges

are induced. The corrresponding model is a joint response model (Cox and Wermuth,

1993; 1996) which reflects correctly Y ⊥⊥ Tr | (L, Tp) and Y ⊥⊥ Tp, the independencies

implied by the generating process for the observed variables.

The separation criterion of Section 2.3 may again be used to read these indepen-

dencies directly off the summary graph in Figure 14 as follows. There are two paths

between Y and Tr. Path (Y, L, Tr) breaks iff the noncollision node L along the path

is in c. Path (Y, L, Tp, Tr) breaks iff the collision node L on this path is marginalized

over or the source node Tp is in c. Hence, both paths break iff both L and Tp are in c,

so that Y ⊥⊥ Tr | (Tp, L) is implied.
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There are also two paths between Y and Tp. Path (Y, L, Tp) breaks iff the collision

node L and its descendant Tr are both marginalized over. Path (Y, L, Tr, Tp) breaks

iff L is in c or Tr is marginalized over. Hence both paths break iff both L and Tr are

marginalized over, so that Y ⊥⊥ Tp holds.

3.3 Alternative mixed parametrizations

So far, we did not need information on the type of variables involved. To obtain a joint

distribution satisfying the defining independencies of Figure 12 with the intermediate

response L being binary, one standard parametrization is in terms of Conditional Gaus-

sian regressions (Lauritzen and Wermuth, 1989), i.e. linear regressions for continuous

responses and logistic regresssions for binary responses.

This is a parametrizations discussed by Robins and Wasserman. However, if the

main hypotheses of interest involve marginalization over a discrete intermediate re-

sponse, here L, then the properties of mixed distribution have to be taken into account.

A CG-distribution is closed under conditioning but not necessarily under marginaliz-

ing (Frydenberg, 1989). A joint Gaussian distribution for which some variables are

dichotomized or, more generally, categorized, is closed under marginalizing but not

necessarily under conditioning (Cox and Wermuth, 1993; 1999).

In particular, if the joint distribution of (Y, L, Tp) for L binary is defined in terms

of CG-regressions for Figure 14, then a complicated marginal distribution for Y, Tp

results which involves the parameters of the logistic regression of L on Tp. If however

the joint distribution of (Y, L, Tp) is taken to be partially dichotomized Gaussian, then

the marginal joint distribution of Y, Tp is Gaussian and, consequently, the test of Y ⊥⊥ Tp

reduces to a standard procedure.

3.4 Summary and open questions

We have discussed the situation of a randomized clinical trial introduced by Robins

and Wasserman in which there is no treatment effect given information on the health

status of the patient. Treatments are administered sequentially and the health status of

the patient is not measured. It is an important example which shows that a univariate

conditional distribution may be inappropriate to analyze the possible influences of a
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final outcome no matter whether the intermediate outcome is included, i.e. conditioned

on, or excluded from i.e. marginalized over, in the regression analysis.

We have shown, in particular, how naive use of univariate regression models can be

avoided by deriving the proper independence structure for the observed variables and

by noting that this summary graph is not directed acyclic but a joint response graph.

These results apply to any type of joint distribution generated over the given graph

and they provide an alternative approach to a correct analysis than the one suggested

by Robins and Wasserman. We have also pointed at a standard parametrization for

the joint distribution of observed variables in the case in which marginalizing over a

disrete variable leads to a joint Gaussian distribution.

We have not discussed the problem of estimating the treatment effects or the situ-

ation in which the intermediate outcome, L, has a direct effect on the final outcome,

Y . In the latter case the summary graph at the bottom of Figure 14 would have an

arrow pointing from L to Y , in addition to the dashed line edge, indicating that there

is some confounding effect. If such a situation can be anticipated early on, a different

design of the study might be helpful.
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