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SUMMARY

In the theory of Markov graphical representations of conditional independencies a
special role is played by the chordless four-cycle, representing for four random vari-
ables the conditional independencies X ⊥⊥ V | (U,W ) and W ⊥⊥ U | (X,V ). It is
not immediately clear how such systems are to be generated. Here we sketch some
possible data-generating mechanisms.

Some key words. Concentration graph. Conditional independence. Covariance
graph. Markov graph. Stochastic differential equation.

1 Introduction

So-called full line concentration graphs represent a set of random variables by the

vertices of an undirected graph. That is, some, but in general not all, pairs of vertices

are joined by edges and a missing edge between, say, vertices i and j implies that the

corresponding random variables are conditionally independent given all remaining

variables. If the joint distribution is multivariate Gaussian a missing edge corre-

sponds to a zero in the concentration matrix, i.e. in the inverse covariance matrix,
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of the variables thus corresponding to the covariance selection models of Dempster

(1972). The relation beween a covariance matrix Σ of a random vector Y and the

interpretation of the concentration matrix Σ−1 in terms of partial correlations is

most directly seen (Cox and Wermuth, 1996, p.69) by showing that the random

vector Σ−1Y has covariance matrix Σ−1 and that its cross-covariance matrix with

Y is the identity matrix, leading to an interpretation of the off-diagonal elements of

Σ−1 as proportional to partial regression coefficients.

A general theory of fitting concentration graphs for Gaussian models is given by

Speed and Kiiveri (1986) and for log linear models for discrete variables by Darroch,

Lauritzen and Speed (1980) and described more generally by Lauritzen (1996). For

the connection between log linear models and covariance selection, see Wermuth

(1976).

In many cases it is possible to assign a direction to each edge leading to a directed

acyclic graph and, better still for interpretation, to a univariate recursive regression

graph, the new graphs representing the same set of conditional independencies as

the given undirected graph (Wermuth, 1980; Cox and Wermuth, 1996). A univariate

recursive regression representation sets out the variables sequentially with Yj con-

sidered conditionally on Yj+1, . . . , Yp, each missing edge in the graph corresponding

to just one conditional independency in such a system. If such a representation of

the undirected graph exists it is typically not unique. Such forms are valuable partly

because they indicate potential generating processes which may be confirmation of

or suggestive of valuable subject-matter interpretations.

The condition that such a representation is possible is that the concentration

graph has no chordless m cycle (m ≥ 4). Thus the simplest concentration graph

not consistent with a univariate recursive regression is the chordless four-cycle. An

example where such a graph is strongly indicated empirically as the simplest rep-

resentation of the data is given in Table 1, as noted by Cox and Wermuth (1993)

using data of Spielberger, Russell and Crane (1983). It gives the estimated corre-

lations and partial correlations, the latter being directly derived from the sample
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Table 1. Correlations among four psychological variables for 684 students. Marginal
correlations in lower triangle. Partial correlations given other two variables in upper
triangle

Variables X W U V
X, state anxiety 1 0.45 0.47 -0.04
W , state anger 0.61 1 0.03 0.32
U , trait anxiety 0.62 0.47 1 0.32
V , trait anger 0.39 0.50 0.49 1

concentration matrix.

Despite the simplicity of the structure, it is puzzling for interpretation in the

absence of a potential generating process. Here we outline several such. We make

no claim that they necessarily correspond to the illustrative data. They are intended

as general explanations of this kind of data.

Figure 1: a) Chordless four cycle. Independencies X ⊥⊥ V | (U,W ), W ⊥⊥ U | (X,V ); b)
Markov equivalent chain graph in which U, V are explanatory to X,W .

For some purposes it is reasonable to replace the chordless four-cycle of Fig.1a

by the Markov equivalent version of Fig.1b in which (U, V ) as trait variables are

regarded as explanatory to (X,W ) as state variables and in which two of the edges

are therefore regarded as directed.

We deal with Gaussian variables for simplicity and arrange that all random

variables have zero mean.
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2 Explanation via selection

We supplement the observed random variables by two latent variables ξ, η repre-

sented by the nodes of the special graph of Fig.2.

Figure 2: Model with two latent variables, one, ξ, marginalized over and the other, η,
conditioned on and producing chordless four cycle in observed variables U, V,W,X.

In terms of linear relations we have that

U = βUξξ + εU.ξ, V = βV ξξ + εV.ξ,

X = βXUU + εX.U , W = βWV V + εW.V ,

η = βηW.XW + βηX.WX + εη.WX ,

where the ε’s are independently normally distributed with zero mean and the β’s

are all nonzero. This is a simple univariate recursive system.

Suppose now that we marginalize over the distribution of ξ and condition on the

value of η. The first step induces a correlation between U and V and the second

a conditional correlation between W and X given U and V . No other edges are

introduced and, with the exception of very particular parameter values, no edges

are deleted, that is there is no parametric cancellation; for a further discussion

of parametric cancellation, see Wermuth and Cox (1998). Thus a chordless four-

cycle has been achieved. These results have been used previously by Wermuth

(1980) and Pearl (1988, p.118) and follow, for instance, from the general procedure

for marginalizing and conditioning in directed acyclic graphs (Wermuth, Cox and

Pearl, 1999) or in this special case can be derived by direct calculation with the 4×4

covariance matrix of (X,W,U, V ) and its inverse.
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In particular, with the standard notation for partial correlation coefficients

ρWX.η = (ρWX − ρWηρXη){(1− ρ2
Wη)(1− ρ2

Xη)}−1/2,

we have that ρWX = 0, ρWη 6= 0, ρXη 6= 0, implies that ρWX.η 6= 0. We apply this

last result conditioning all the correlations also on (U, V ). This shows that an edge

is indeed induced between W and X by conditioning on η. Similar arguments show

that in general no new edges for (X,V ) and (W,U) are introduced.

The representation of the dependence between U and V via an unobserved com-

mon explanatory variable is a common and plausible device. The notion of an un-

observed conditioned upon response η is less familiar. It can, however, be taken as

corresponding to a selection of the target population as corresponding only to those

members of a larger population that show a particular response. In an unpublished

Aalborg report S.L.Lauritzen has given some more general results on selection.

3 A stochastic process

3.1 General formulation

We now discuss several related but distinct interpretations based on a linear stochas-

tic formulation. We start with a p × 1 vector Y of response variables and a q × 1

vector of explanatory variables, Z. Suppose that Z is constant but that the com-

ponents of Y (t) change in accordance with a linear system forced by a stochastic

innovation process

dYr(t) = Σp
s=1arsYs(t)dt+ Σq

j=1brjZj(t)dt+ dζr(t), (1)

where A,B are constant matrices with elements ars, brj and dζ is a p × 1 vector of

stochastic innovations independent of the current value Y (t) and of Z.

We discuss two different possibilities in Section 3.2 and a further in Section 3.4.
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3.2 Two rather static versions

We first follow Fisher (1970) although he worked in discrete time; a few details are

formally simpler in continuous time. Suppose that A is a stability matrix (Bellman,

1997, p.251), i.e. that its eigenvalues are either negative or if complex have negative

real parts. If we cumulate over a long time period the left hand side of (1) will be

small compared with the right-hand side and there results

0 = AY +BZ + ε,

where now Y, Z, ε are time-aggregates (or averages) and the innovation term cumu-

lated over time, i.e. the error term ε, has zero mean, covariance matrix Σεε, say,

and is independent of Z.

Postmultiply by Z and take expectations. Then

0 = AΣY Z +BΣZZ ,

where ΣY Z ,ΣZZ are respectively the covariance matrix of Y with Z and of Z. Fur-

ther

Y = −A−1(BZ + ε)

so that the covariance matrix of Y is

A−1BΣZZB
T (A−1)T + A−1Σεε(A−1)T .

Now missing edges in the concentration graph of (Y, Z) correspond to zeros in

the concentration or inverse covariance matrix of (Y, Z). The standard formula for

the inverse of a partitioned matrix shows that the cross-concentration of (Y, Z) is

ATΣ−1
εεB. In particular, the condition for a missing edge between a Y and a Z

component is the vanishing of the corresponding matrix element.

For a second interpretation suppose that the system (1) is subject to a step

function shock of amount ε constant for a long duration. The response will initially

have a time-varying term and then will come to equilibrium at a value of Y satisfying

0 = AY +BZ + ε
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and the previous discussion applies. Each realization of the system, for example

each new subject in the psychological context, has an independent and constant

innovation ε. See the unpublished Carnegie-Mellon doctoral thesis of T. Richardson.

3.3 A chordless four-cycle

We now consider the special case of the chordless four cycle in which the component

matrices in all the above representations are 2 × 2. In the notation of Section 3.2,

we would have Y = (X,W ), Z = (U, V ). We shall assume that

Σεε = diag{var(ε1), var(ε2)}.

Then it follows from the form of the cross-covariance matrix of (Y, Z) that the

edge between Y1 and Z2 is missing if and only if

b12/b22 + {a21var(ε1)}/{a11var(ε2)} = 0.

It aids interpretation to strengthen the condition on the eigenvalues of A by imposing

the requirement that a11 = −a′11 < 0 and also to choose standardized units such

that the unit of time ensures that a′11 = α, a′22 = 1/α, the units of Y1, Y2 are such

that var(ε1) = var(ε2) = 1 and the units of Z such that b11 = b22 = 1. If α = 1 the

two components decay on their own at the same rate. In these standardized units

we write

a12 = α12, a21 = α21, b12 = β12, b21 = β21.

The system is thus specified by the covariance matrix of Z in the standardized units

and by the four parameters just defined and the correlation between the components

(U, V ) of Z.

Our condition is that αβ12 = 1. In words the condition can be stated as that

‘the rate of selfdissipation of state anger divided by the rate of transfer from state

anxiety to state anger is equal to the rate of transfer from trait anxiety to state

anxiety divided by the rate of transfer from trait anxiety to state anger.’
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3.4 A dynamic cross-section

For our third interpretation we suppose the innovation process to be a Brownian

motion and suppose that Y (t) corresponds to an observation of the process in its

stationary state.

It helps to write the defining equation (1) in the form

Y (t+ dt) = (I + Adt)Y (t) +BZdt+ dζ(t). (2)

On taking expectations of Y (t+dt)Y T (t+dt) we have in statistical equilibrium that

AΣY Y + ΣY YA
T +BΣZY + ΣY ZB

T + Σζζ = 0,

where now Σζζdt is the covariance matrix of the innovation.

Similarly on postmultiplying by ZT and taking expectations we have that

ΣY Z = −A−1BΣZZ ,

so that

AΣY Y + ΣY YA
T = BΣZZB

T (A−1)T + A−1BΣZZB
T − Σζζ .

For the present purpose we are interested especially in the concentration matrix

partitioned with sections denoted by superscripts. In particular

ΣY Y = Λ−1
Y Y ,

where

ΛY Y = ΣY Y.Z = ΣY Y − A−1BΣZZB
T (A−1)T

and

ΣZY = BT (A−1)TΣY Y .

Direct calculation shows that ΛY Y satisfies the equation

AΛY Y + ΛY YA
T = −Σζζ .
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We note, but will not here exploit, the solution (Bellman, 1997, p.239)

ΛY Y =
∫ ∞

0
eAtΣζζe

AT tdt.

We use the alternative form involving a Kronecker sum, namely

(A⊗ I + I ⊗ A)vecΛY Y = −Σζζ , (3)

essentially a set of simultaneous linear equations for the elements of ΛY Y then leading

to an expression for ΣY Z .

3.5 Another chordless four-cycle

We return to the special case of the chordless four-cycle. The condition for condi-

tional independence is from (2) and (3) that

b21/b11 + {var(ε2)a12 − var(ε1)a21}/{var(ε1)(a11 + a22)} = 0.

In standardized units we require respectively that

α12 − α21 = (α+ 1/α)β21, α21 − α12 = (α+ 1/α)β12.

In particular they are satisfied by

α12 = α21, β12 = β21 = 0.

This formulation in its simplified form requires only that in the terminology of

the example trait anger feeds just into state anger and that in standardized units

the flows from state anger to state anxiety and vice versa are at equal rates. This

in some ways is the simplest explanation directly in terms of the observed variables

of all those considered here.

3.6 A symmetrical special case

We now explore in a little more detail the symmetrical case in which (X,U) and

(W,V ) can be interchanged without altering the joint distribution. Thus in stan-

dardized units α = 1 and the adjustable parameters are

a12 = a21 = a, b12 = b21 = b, var(U) = var(V ) = σ2, corr(U, V ) = ρ.
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Then in the discussion of Section 3.3 we have a = b and there is thus for each given

ΣZZ a one-parameter family of covariance and concentration matrices having the

chordless four-cycle structure. Similarly in the process of Section 3.5 the condition

for a chordless four-cycle is b = 0, leading to a different one-parameter family,

emphasizing the distinction between the processes.

Finally, we make, as noted in Section 1, no claim that any of the above processes

are indeed the generating process for the particular example. It would be interesting

to know if there are other plausible types of explanation of the chordless four cycle

and other structures which cannot be transformed into an equivalent univariate

recursive regression form in the observed variables.

As a check on these results a number of simulations were run of discrete time ver-

sions of these models and the requisite independence properties verified by comput-

ing the estimated covariance and concentration matrices involved. The calculations

were programed in MATLAB.

4 Some more constrained structures

In the above discussion we have concentrated on systems that can generate a chord-

less four-cycle in the concentration matrix, i.e. having two special conditional in-

dependencies and no others. We now discuss briefly two further possibilities. For

simplicity we restrict ourselves to the symmetric case of Section 3.6 in which (X,U)

can be interchanged with (W,V ).

First there is the possibility that in addition to a chordless four-cycle in con-

centrations there is a chordless four-cycle in covariances, i.e. that, in addition to

W ⊥⊥ U | (X,V ) and X ⊥⊥ V | (W,U), there are the marginal independences W ⊥⊥ U

and X ⊥⊥ V . In general simultaneous simplification of both covariance and concen-

tration matrix arises only exceptionally. For an example and a formulation directly

in terms of marginal correlations, see Cox and Wermuth (1993, p.213).

We work with the dynamic model of Section 3.4 and use the standardized units

in which b = 0, to achieve the property in concentrations and then evaluate the
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cross-covariance matrix

ΣY Z = −A−1BΣZZ .

The required condition is that

a+ ρ = 0.

That is, the correlation, ρ, between U and V has to have the opposite sign and in

standardized units have the same magnitude as the parameter defining the rate of

flow betweenW andX. The numerical equality is an instance of so-called parametric

cancellation in the graph.

A second possibility, in some ways of more interest from an interpretational point

of view, is that in addition to the chordless four-cycle in the concentration graph

we have U ⊥⊥ V , i.e in the general formulation that ΣZZ is diagonal. This structure

cannot be achieved via the conditioning process of Section 2.

In the symmetric case, again with b = 0, it can be shown that

ΣY Y = 2(1− a2)J(−a), ΣY Z = −2(1− a2)I, ΣZZ = 1/σ2 − 2J(a),

where J(a) is the 2 × 2 matrix with diagonal elements one and offdiagonal elements

a.

Thus in particular the partial correlation between W and V given X and U ,

obtained via the standardized offdiagonal element of ΣY Z , is

(2 + 1/σ2)−1/2,

showing that positive partial correlations up to 1/
√

2 can be achieved under this

model.
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