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Latent Class Analysis with Panel Data:

Developments and Applications'

by Jost Reinecke

Zusammenfassung:

In der vorliegenden Arbeit wird das statistische Modell der Analyse latenter Klassen nach
der Parametrisierung von Lazardsfeld vorgestellt. Den Schwerpunkt bilden Entwicklungen
und Anwendungen der Analyse latenter Klassen auf Paneldaten. Das latente Markov Mo-
dell erlaubt sowohl Restriktionen iiber zeitbezogene Gleichsetzungen von konditionalen
Wahrscheinlichkeiten als auch Restriktionen der Ubergangswahrscheinlichkeiten zwischen
den latenten Variablen. Die allgemeinste Variante ist das latente mixed Markov Modell.
Dieses Modell verfiigt iiber zusdtzliche Spezifikationsmoglichkeiten der unbeobachteten
Heterogenitdt mit Markov Ketten. Empirische Beispiele, durchgefiihrt mit PANMARK,
verdeutlichen die jeweiligen Modellierungstechniken.

Abstract:

The present paper discusses the statistical model of the latent class analysis according to
the parametrization of Lazarsfeld. Developments and applications of latent class analysis
with panel data are the main topic of this paper. The latent Markov model allows time-
specific restrictions of the conditional probabilities as well as restrictions of the transition
probabilities between the latent variables. The most general model, the latent mixed
Markov model, has additional opportunities to specify unobserved heterogeneity via differ-
ent Markov chains. Empirical examples, calculated with PANMARK elucidate the relevant
modeling techniques.

1 The article is a revised version of a guest lecture given during the 28th Spring Seminar at the Zentralarchiv
(February 22 — March 12, 1999).

2 PD Dr. Jost Reinecke, Westfélische Wilhelms-Universitit Miinster, Institut fiir Soziologie, Scharnhorststr.
121, 48151 Miinster, E-Mail: reineck@uni-muenster.de



1 Definition of Latent Class Analysis and Relation to other Models

Many theoretical propositions or concepts in the social sciences cannot be observed
directly. For example, external control as a relevant concept of personality can be
measured by items such as I have little influence over the things that happen to me
and The world is to complicated for me to understand. If we expect a reasonable
covariation between those two items, we can argue that these observed variables are
measurements of an underlying latent variable (in this example external control). We
can also argue that the latent variable explains the covariation between both items
which results in correspondence hypotheses or a theory of measurement. Regarding
the example, a corresponding hypothesis can be formulated as follows: The higher the
level of external control, the higher the score of the item indicating little influence
over things that happen to me.

Lazarsfeld and Henry (1968) used the term latent structure analysis to describe
the application of statistical models for characterizing latent variables in the analysis
of observed variables. They included factor analysis as a latent structure method to
characterize continuous latent variables based on continuous observed variables.
Latent class analysis can be defined as a qualitative data analog to factor analysis
which enables researchers to empirically identify discrete latent variables from two or
more discrete observed variables (cf. Table 1). The categories of the latent variable
are called [atent classes.

Table 1: Models based on Lazarsfeld Latent Structure Analysis

Model Scaling of Variables
Latent Variable | Observed Variable
Factor continuous continuous
Analysis
Latent Trait continuous discrete
Analysis
Latent Profile discrete continuous
Analysis
Latent Class discrete discrete
Analysis

If the latent variable is continuous and the observed variable discrete, the latent
structure analysis will be called latent trait analysis. Latent profile analysis
characterizes the use of discrete latent variables and continuous observed variables.

Until the mid seventies, only a few applications of latent class analysis could be found
in the social sciences. Goodman’s and Haberman’s publications showed a capable



way in obtaining maximum liklihood estimates of the parameters of the latent class
model and made applications more feasible (Goodman 1974a, 1974b; Haberman
1978, 1979).

The next section will give a description of the formal latent class model with one
latent variable including estimation of parameters, goodness-of-fit statistics and an
example.

2 The latent Class Model with One latent Variable
2.1 Model and Assumptions

The latent class model may be represented in terms of Lazarsfeld’s original
parametrization or in terms of a log-linear model (cf. Haberman 1979). The
notation of Goodman (1974a, 1974b) will be used here.

Assuming the case of four manifest variables A, B,C' and D and one latent variable
X, the latent class model is (cf. Figure 1):

G

_ X, AX,BX_CX, DX

Mijp = N Z g Tig Tjg Tk Mg (1)
g=1

with

e m;ji as the expected frequency of the multivariate contingency table with size
ikl

) 71';( as the latent class probability for latent variable X and class g,

° ﬂng as the probability for the observed variable A under the condition of X and

class g,

° ﬂfgx as the probability for the observed variable B under the condition of X and
class g,

° ﬂgf as the probability for the observed variable C' under the condition of X and

class g,

° FEX as the probability for the observed variable D under the condition of X and

class g.



Figure 1: Path Diagram of a Latent Variable with four Observed Variables

The latent class probabilities (7,¥) describe the distribution of classes (levels) of the
latent variable within which the observed variables are independent of one another.
The two important aspects of the latent class probabilities are the number of classes
and the relative sizes of these classes. The number of classes G in the latent variable
X represents the number of latent types defined by the latent class model for the
observed contingency table. The minimum number of identifiable classes in a latent
variable is two, since a latent variable with only a single latent class (G = 1) is
equivalent with the independence among the observed variables. The size of each of
the G classes also provides information for the interpretation of the latent class
probabilities. The latent class probabilities over all G latent classes of the latent

Yomr=1 (2)

variable (X') sum to 1:

For each of the G classes of the latent variable there is a set of conditional
probabilities for each of the observed variables. In Equation 1 four observed variables

have been used to define the latent classes, each of the classes will have four sets of
{}gX , Wf;( , Wﬁf , ﬂng ). Since each of the observed variables

can be either dichotomous or polytomous, the number of distinct conditional

conditional probabilities (7

probabilities for each of the observed variables is equal to the number of levels
measured for that variable. With four observed variables, there are i + j + k + [
distinct conditional probabilities for each of the G latent classes of the latent variable
X. Within each of the latent classes the conditional probabilities for each of the
observed variables sum to 1:

Sy =
i

TBX =3 70N =S aPX =1.00 (3)
i k l

Latent class analysis assumes that G classes exist in the population related to the
given sample which are disjunctive and exhaustive. If the four observed variables A,
B, C and D are items measuring the latent variable external control, the low scorers
would represent a latent class called low external control. The high scorers would



represent a latent class called high external control. In each latent class exists
homogeneity of the conditional response probabilities. Between latent classes exist
heterogeneity of the conditional response probabilities. Associations between the
observed variables disappear within each latent class and are explained by the
existence of the latent variable (cf. Figure 1). This criterion is called “local
independence® (MeCutcheon 1987: 14). The relationships between latent and
observed variables are probabilistic.

2.2 Estimation of Parameters

The procedure to fit the model to the data was first outlined by Goodman (1974a,
1974b). He obtained latent class and conditional probabilities with maximum
likelihood estimates. The primary goal of the iterative procedure is to minimize the
difference between observed and expected frequencies.

Equation (1) can be modified in that way that the parameters of the model are
Maximum-Likelihood(ML) estimators:

~ABCDX

FABC AX ~BX~CX ~DX ~X (4)

ig Tjg Tkg Tig Ty

=T
If Equation 4 is summed over all G classes of the latent variable, we obtain the ML
conditional probability associated with each of the ijkl-levels of the observed

variables:
G

Tije = D Thiktg (5)
g=1
If Equation 4 is divided by Equation 5, we obtain the ML probability that an
observation at level ijkl of the observed variables will be at level g of the latent

variable:
_ #ABCDX
~ABCDX __ 'ijklg (6)
ijklg =~
Tijkl

The EM-Algorithm produces ML estimates of the unknown parameters (cf.

Dempster et al. 1977). In the so-called E-Step of the algorithm starting values 7

—AX =BX =CX
Tig > Tjg > Tk

probabilities of the model in Equation 4:

X
g

and WEX have to be provided to estimate conditional and latent class

—ABCDX _ —X—-AX_BX—_CX_DX
ijklg = Tg Tig Tjg Tkg Tig (7)
=ABCDX L =.. =ABCDX . ~ABCDX.
Tijkig ~ 1s used to obtain initial values 7 and 7557 for 7ijp and 70
G
—  _ N\~ =ABCDX
Tijkl = Z Tijkilg (8)
g=1
_ 7ABCDX
—ABCDX __ l]klg (9)
ijklg -

Tijkl



Using the observed frequencies p;;r; a new value ﬁf for 7%;( is obtained:

=3 pimipe Py (10)
ijkl

In the so-called M-step, the new value of ﬁf is used to calculate new conditional

probabilities:
BCDX
_AX Z]kl pljkﬂrz]klg
Ty = (11)
ig —X
T
g
—ABCDX
_BX _ > ikl DijkiTjkig 19
Jjg = =X ( )
T
g
—ABCDX
_ox Zijlpijklﬂ-z’jklg 13
kg — —X ( )
T
g
—ABCDX
_Dx _ Zijk DijkiTijkig 14
lg — ﬁX ( )

Y

The new values of conditional probabilities are for Equation 7 to get a new value of
—ABCDX

Tiiklg
The expected frequencies are calculated from the summed products of the conditional
and latent class probabilities:

J K L
T D DD I WL AL AL (15

2.3 Goodness-of-Fit

The question whether the model fits the data can be answered via the comparison
between observed and expected frequencies of the multivariate contingency table with
x2-statistics:

1 J K L (pABOD _ jABODY2
Pearson — x> =Y ZZ i AABCLZ)JM (16)
i=1j=1k=11=1 )
I J K L nABCD
Likelihood — Ratio — x* =2> YY" Y n;p " n—2t (17)
i=1j=1k=11=1 Mijkl

with

e 1, as the observed frequency of the multivariate contingency table with size
17kl

® mj;i as the expected frequency of the multivariate contingency table with size
17kl



The number of degrees of freedom is calculated via the difference between the number
of response patterns (ijk/) minus 1 minus the number of parameters (N,q) to be

estimated:
df = (ijkl — 1) — Ny, (18)

Small differences between observed and expected frequencies result in small y2-values
which can be compared to the theoretical x2-distribution given the model’s degrees of
freedom. Of these two, the Likelihood-Ratio-x? (abbreviated L?) is generally
preferred, since it permits statistical comparison of nested models. Sparse tables,
meaning a large number of empty cells in the multivariate contingency table lead to
interpretation problems with both y2-tests. Two indices, the Akaike Information
Criterion (AIC) and Schwarz’ Bayes Information Criterion (BIC) are alternatives
for goodness-of-fit (Bozdogan 1987; Schwarz 1978):

AIC = —2In(L) + 2N,a (19)

BIC = —2In(L) + In(Npers) Npar (20)

with L as the Likelihood of the data (i. e. the product of the pattern probability over
all persons), N, as the number of parameters to be estimated and N, as the
number of persons in the data. N, and N, are so-called penalty terms. While the
AIC selects more complex models, the BIC “corrects® the AIC in so far as it weights
the number of parameters with [n(Npers). The smaller the values of AIC and BIC, the
better fits the model with the data.

2.4 Example

Langeheine and Rost (1996) discuss an ordinary latent class example about four
dichotomous items from an “Arithmetic Reasoning Test* with data from 776 persons.
They test the hypothesis that a model with two latent class (so-called masters and
nonmasters) is sufficient to describe the data.

Table 2 gives an overview about differences between observed and expected
frequencies for every cell in the multivariate contingency table. 16 different response
patterns exist. Large differences between the observed frequencies and the sum of the
expected frequencies over the classes would result in large x?-values and a model
rejection. But with L? = 4.94 (see Equation 17) and df =16 — 1 — 9 = 6 (see
Equation 18) the model fit is acceptable and confirms the latent variable with two
classes. The number of parameters (N, ) to be estimated contains one latent class
probability and 2 x 4 conditional probabilities.



Table 2: Observed and Expected Frequencies of the 4 dichotomous Items under a

Model with 2 Latent Classes

Frequencies
[tems observed expected
A[B|C|D Class 1 | Class 2 | total
0[0[0]|O0 99 98.46 .03 | 98.49
0101011 26 28.11 .08 | 28.19
0101110 48 41.36 12| 41.48
010111 10 11.81 38 12.19
0O|1101]0 66 66.11 A7 | 66.28
0O|110]1 18 18.87 b4 | 19.41
O|1111]0 27 27.77 76 | 28.53
O|1 |11 11 7.93 2.50 | 10.43
110[0|0 74 78.38 1.27 | 79.65
170]0]1 34 22.37 4.17 | 26.54
110[1|0 35 32.92 5.88 | 38.80
170171 28 9.40 19.27 | 28.67
111]0|0 65 52.63 8.36 | 60.99
1711071 40 15.02 27.43 | 42.45
1(1]17]0 61 22.11 38.67 | 60.78
11111 134 6.31 | 126.81 | 133.12

According to Equation 1 the expected frequency of a certain response pattern (1111)

is calculated with the estimated parameters (see Table 3) as follows:

G o
X _ AX_BX_CX __DX
Mijr = N Y_ 75 m; 79 Tkg Tig

g Tig Tj
g=1
133.12 = 776 * (.695 % .443 % .402 x .296 * .222
+ 305 % .981 % .868 * .822  .766)

= 776 % (00813 + .16353)

(21)

Table 3: Estimated Latent Class and Conditional Probabilities of the Latent Class

Model with 2 Latent Classes

Conditional Probabilities

Class | Class Prob. | Category | A B C D
1 .695 0 557 | 598 | 704 | 778
1 443 | 402 | 296 | .222

2 305 0 019 | 132 | .178 | .234
1 981 | .868 | .822 | .766




Estimated parameters of the latent class model are given in Table 3. About 70% of
the sample are classified as nonmasters (Class 1), the other 30% are classified as
masters (Class 2). The conditional probabilities for category 1 in class 2 are higher on
the average than the conditional probabilities for category 0 in class 1. This means
that the observed variables reflect a somewhat better measurement for the masters
than for the nonmasters.

In difference to cross-sectional data a panel design contains repeated responses to one
or more items at two or more time points from the same respondent. Latent class
models with panel data can be formulated with different types of Markov models.
Here, the assumption of local independence, i. e., the joint probability of several
responses is the product of the marginal response probabilities given a latent class,
will be relaxed. The following section discusses and applies several types of Markov
models beginning with manifest Markov models. In the last part of the section we
continue to latent Markov models. Three time points are used for the following formal
descriptions and the examples. All type of models can be extended to subsequent
panel waves.

3 Markov Models
3.1 Manifest Mixed Markov Model

Markov models are used to analyze categorical panel data. They are able to specify a
Markov process in each latent class describing a pattern of repeated responses. In
order to introduce the typical notation for these models (see Langeheine and van
de Pol 1990), the case of one item z at three panel waves is considered. An ordinary
Markov chain describes the frequency of the response pattern my,

My, = N(S}T;‘;T,?‘? (22)
with
e 0 as the initial probabilities for ti,

1

i

7']-2| as the transition probabilities from ¢, to t5, given a particular category at

time

7',?@ as the transition probabilities from ¢, to t3, given a particular category at
time 5,

Subcripts of the 7’s refer to item categories, superscripts of the 7’s refer to panel
waves.

The relationsship to latent class models becomes obvious when the model is
generalized to a mized Markov model. This model assumes that G' markov chains



(classes) describe the data:

mir = N Z Wgézg ]\197—3‘39 (23)

with 7, as the latent class probabilities for chain g.

If the probability of being in some category at time ¢ 4 1 is independent of the
probability of being in some category at the most recent point at time ¢, the model in
Equation 23 reduces to Equation 24:

mijp = N Z ﬂgézg ]‘ng‘g (24)

The latent class model in Equation 24 can be considered as a special case of the
mixed Markov model in Equation 23 with all transition probabilities assumed to be
independent of the responses at the preceding time point. Or, the latent class model
in Equation 24 is extended with a Markov model to Equation 23.

Markov models can only be estimated with certain restrictions on the parameters.
For example, one needs dichotomous variables in four panel waves to estimate
Equation 23 with two chains. Plausible restrictions are explored with the
Mover-Stayer model and the Black and White model.

Mover-Stayer Model

The Mover-Stayer model assumes two classes of persons:

1. Class of persons mouving between panel waves, and

2. Class of persons staying between panel waves.

This special case of the mixed Markov model can be modelled for the two classes with
two Markov chains. Equation 25 models the class of movers:

_ 121 32
Myjk = N7Tl5i,17'j\i17'k\j1 (25)

with m; as the latent class probability to be a “mover“. Time-homogeneous transition
probabilities can be applied for the movers:

g2\zl 1= 7’1?61 (26)
Equation 27 models the class of stayers:

Myijk = N7T25z2 \z2Tk\J2 (27)



with 7y as the latent class probability to be a “stayer”. The “stayer remain with a
probability of 1.0 in the same category as in previous waves:

Tj|i,2 =1 fOI" 7 = ], Tj|i,2 = 0 fOI" 7 %]

28
Trj2 = 1 for j =k; 750 =0for j #k (28)

The Mover-Stayer model is a mixed Markov model with two chains. Transition
probabilities are restricted to time-homogeneity for the class of “movers“ and
restricted to the identity matrix for the class of “stayers“. For example, a population
of voters can be classified into “movers® and “stayers“ meaning that one part of the
population tends to move in their votes from one election to the other and the other
part of the population tends to vote the same party in every election.

Black and White Model

The Black and White model assumes two classes of persons:

1. Class of persons staying between panel waves, and

2. Class of persons randomly moving between panel waves.

Equation 27 applies for the Black and White model as follows:
Myjk = N7T?5i1,27—j2\i127—13\§2 (29)

Restrictions according to Equation 28 applies for the class of “stayers“. For the class
of “random movers“ the following restrictions can be stated:

d;o =0.5forall i

30
Tjli,2 = Tklj,2 = 0.5 for all i,j, k ( )

The Black and White model differs only in one part from the Mover-Stayer model. A
random process underlies the process of moving between the time points. Regarding
the example from the Mover-Stayer model this means a random change of votings
from one election to the other. The tendency to vote the same party in every election
describes the class of “stayers*.

3.2 Latent Markov Model

The main weakness of the manifest Markov model is that it takes no measurement
error into account. Because measurement errors are ubiquitous for social science data
in general, it seems advisable to adhere to latent Markov models allowing for this
notion.



The latent Markov model is a combination of the classical latent class model (cf.
Equation 1) and the manifest Markov model (cf. Equation 22). Again, three panel
waves are assumed. The expected frequencies m;;;, are calculated as follows:
A B C
Mijh =N D23 > 0aPilaToja 5 Telt Prie (31)

a=1b=1c=1
with
e 0! as the latent class probabilities of time t;,
. p}‘; as the conditional probabilities of item x; for class a at time ¢;,
. p?ﬁ) as the conditional probabilities of item z; for class b at time ¢y,
. pzf; as the conditional probabilities of item x;, for class c at time t3,
® 74, as the transition probabilities from t, to t,

. Tg’lf as the transition probabilities from t, to ts.

Figure 2 shows the graphical representation of the observed variable x measured at
three time points (indices ¢, j and k) mapped onto the latent one (indices a, b and c)
by conditional response probabilities (pji;, p73, pij.)- Conditional probabilities show
the reliability of the observed variables whereas the transition probabilities show the
amount of change between the classes over time considering random measurement
error.

Figure 2: Latent Markov Model with One Observed Variable and Three Panel Waves
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A latent Markov model with one indicator needs four panel waves to estimate the
unknown parameters. But substantive restrictions can reduce the amount of
parameter estimates. The conditional probabilities can be set equal over time

(Pila = P35 = PRt in Equation 31). This restriction assumes equal reliabilities of the
measurements over time. Furthermore, the transition probabilites can be set equal
over time if ¢t > 2 (Tb|a = c|b) This restriction assumes that the amount of stability
and change is equal from panel wave to the other. Both restrictions are applied in the
following example.

Empirical Example

Data and variables are from a longitudinal study of adolescents’ stress and risk
behavior with four panel waves (cf. Engel and Reinecke 1994). Three panel waves
are used in the following example. The number of respondents is N = 574. Two items
measuring negative or positive feelings are considered: “Sucessful experience®
(x1/x9/x3) and “Feeling to set up something“ (y1/y2/ys3). Categories are
dichotomous: “no, seldom* (1) and “sometimes, often“ (2). The latent Markov model
with the observed variables 1 /x5/x3 and y;/y>/y3 representing three panel waves is
specified with two latent classes in each panel wave:

2 2

_ 1,11 21 22 22 32 33
Mijkimn = N Z Z Z5apx1\apyllaTblaplebpyzlb clb p:vglcpyglc (32)
a=1b=1c=1

The program PANMARK (van de Pol et al. 1991) was used to estimate the
different model variants of the latent Markov model. Goodness-of-fit statistics is
summarized in Table 4.

Table 4: Model Variants and Goodness-of-Fit Statistics of the Latent Markov Model

Model variants L? df AIC BIC
LMO 65.43 | 46 | 2128.67 | 2199.38
(not restricted)

LM1 79.54 | 54 | 2126.78 | 2164.21

(same p's for
same variables)

LM2 80.91 | 56 | 2124.15 | 2153.26
(same 7's)
LM3 120.42 | 58 | 2159.66 | 2180.45

(same p's for
all variables)

Goodness-of-Fit statistics of the accepted model are in boldfaced type.



Model variant LMO does not contain any restrictions on the parameters. Model
variant LM1 estimates equal conditional probabilities over time for the same observed
variables. In addition, model variant LM2 assumes equal transition probabilities
between the panel waves. The last model variant LM3 estimates equal conditional
probabilities over time for every observed variable testing for equal reliabilities.

The difference between the L? of model variant LMO and LM1 does not lead to a
significant decrease in model fit. This confirms the assumption of equal reliabilities of
the same observed variables. The difference between the L? of model variant LM1 and
LM2 does also not lead to a significant decrease in model fit. In addition, this
confirms the assumption of equal transition probabilities. Only the assumption that
all observed variables have the same reliability lead to a significant difference between
model and data comparing model variants LM2 and LM3. Table 5 shows the
estimated parameters of the accepted model variant LM2.

Table 5: Estimated Parameters of the Latent Markov Model with Restrictions of Mo-
del Variant LM2

t1 to t3
0 Potla | Pula | Pods | Poss | Pave | Paaie
not successful || .807 | .567 | .807 | .567 | .807 | .567
155 (.063) | (.054) | (.063) | (.054) | (.063) | (.054)
(.029) 193 | 433 | .193 | 433 | .103 | 433
(.063) | (.054) | (.063) | (.054) | (.063) | (.054)
successful .074 .040 .074 .040 .074 .040
845 (.012) | (.009) | (.012) | (.009) | (.012) | (.009)
(.029) .926 .960 .926 .960 .926 .960
(.012) | (.009) | (.012) | (.009) | (.012) | (.009)
Tiia i
62 o2 63 o3

not successful o1 710 | 290 | .710 | .290

(.060) | (.060) | (.060) | (.060)

successful oa 051 | .949 | 051 | .949

(.012) | (.012) | (.012) | (.012)

Conditional response probabilities characterizing the latent classes are emphasized as well
as transition probabilities indicating stability between panel waves. Standard errors are
given in brackets.

The first latent class contains the “not successful“ adolescents (16%), the second
latent class contains the “successful” adolescents (84%). Characteristic conditional



probabilities of the first class (Category 1) are .807 for the first item (x) in each wave
and .567 for the second item (y). The probability to have no successful experience is
higher than the probability to have no feeling to set up something. Characteristic
conditional probabilities of the second class (Category 2) are .926 for the first item
(x) in each wave and .960 for the second item (y). The probability to have successful
experience is almost equal to the probability to have a feeling to set up something.

Transition probabilities (7's) show a high stability for the second (“successful®) class
(.949) and a somewhat lower stability for the first (“not successful“) class (.710). The
transition rate from the first class to the second is .290 and from the second to the
first class only .051. This means, that a change over the time period from the class of
“not successful“ adolescents to the class of “successful” adolescents is higher than vice
versa. It implicates that the latent class probability of the first class decreases and the
latent class probability of the second class increases over time. The distribution of the
latent class probabilities of the second wave is calculated as follows:

! ’

o)« T = 6@ (33)
710 .290
155 .84 — (153 .84
(155 85)*(051 949) (153 .847)

The distribution of the latent class probabilities of the third wave is calculated as
follows:

52« T = 6@ (34)
710 .290
153 .84 —( 152 .84
(153 87)*<.051 .949) (152 848 )

Because of the time-homogeneous transition rates (7;, = 7.17) the matrix 7 has the

same values for both multiplications. Only a slight change of latent class probabilities
can be observed. The Markov process tends to reach an equillibrium. This tendency is
also confirmed by the expected frequencies of the transitions (cf. Table 6).

Table 6: Contingency Table of Expected Frequencies of the Latent Classes between

t1 and t3
h 5
53 63 Total
o1 38.02 35.20 73.22
(0.519) | (0.481) | (1.000)
) 33.67 | 366.02 | 399.78

(0.084) | (0.916) | (1.000)
Total | 71.68 | 401.32 | 473.00
(0.152) | (0.848) | (1.000)

Row proportions are given in brackets



38 adolescents are expected to remain in the first class while 399 are expected to
remain in the second class over the time period. 35 persons are expected to change
from the first to the second class while around 34 persons are expected to change vice
versa. To prevent interpration problems, it should be noted that transition
probabilities reflect the relative extent of stability and change in the latent class
model while expected frequencies of the transitions reflect the absolute extent of
stability and change.

The disadvantage of the latent Markov model is the restriction to one Markov chain.
If one wants to model unobserved heterogeneity with different Markov chains (for
example movers and stayers) and wants to take random measurement error into
account, a latent Markov model has to be extended to a latent mixed Markov model.

3.3 Latent Mixed Markov Model

The latent mixed Markov model is a generalization of the latent Markov model (cf.
Equation 31) and the manifest mixed Markov model (cf. Equation 23; Langeheine
and van de Pol 1990). As with the latent Markov model three panel waves are
assumed. The expected frequencies m,j; are calculated as follows:
B
Mijie = N 32D D0 D TabalghiiagThiag g Telhg ke (35)

g=la=1b=1c=1
with
e 7, as the latent class probabilities for chain g
° 55‘9 as the latent class probabilities of time ¢; in chain g
° pg‘;g the conditional probabilities of item x; for class a at time ¢; in chain ¢
° p?ﬁg as the conditional probabilities of item x; for class b at time ¢, in chain g
. pif;g as the conditional probabilities of item x;, for class c at time ¢3 in chain g

. T()Z‘;g as the transition probabilities from t; to t, in chain g

2

bg a8 the transition probabilities from ¢, to ¢3 in chain g

° 7-5’|
The difference to Equation 31 is only the specification of the parameter m which
allows different markov chains in the latent Markov model. The difference to
Equation 23 is the level of the Markov chains. Markov chains in the latent mixed
Markov model are on the latent level instead of the manifest level.



Empirical Example

Data and variables are also from the longitudinal study of adolescents’ stress and risk
behavior. Two stress items from three panel waves with N = 574 respondents are
considered: “Nervous, restlessness“ (z;/zy/2z3) and “Difficulties to concentrate
(y1/y2/y3). Categories are dichotomous: “no* (1) and “yes“ (2).

A general latent mixed Markov model with two observed variables in each of the
three panel waves are specified. Specification of two chains are according to the
restrictions of the Mover-Stayer model (cf. Equations 25 and 26). Model specification
of the chain of “movers® is as follows:

2 2 2

1 11 11 _21 22 22 _32 33 33
Mijkimn = N Z Z Z ﬂ-l(sa,lpxl|a1py1|a17—b\a1p:1:2|b1py2\b17—c|b1p13\clpyg\cl (36)
a=1b=1c=1
with 7y as the latent class probabilities for chain 1 (mover). Equal conditional
probabilities for the same variables are specified across waves but transition
probabilities are unequal, meaning that 7\, # 777. Model specification of the chain
of “stayers® is as follows:

2 2 2
1 11 11 _21 22 22 32 33 33
Mijkimn = N Z Z Z 7T?6a,2p:vl|a2py1|a27—b\a2p:1:2|b2py2\b27—c|b2p13\chyg\CZ (37)
a=1b=1c=1
with 7wy as the latent class probabilities for chain 2 (stayer). Similar to Equation 28
the following restrictions are specified for the transition probabilities:

7',,2‘;,2 =1 for a="b; 7',,2‘;,2 =0 fora#b (38)

ijﬂz 1 forb=rg; 735,2:0 forb#c (39)

The latent Mover-Stayer model is equal to a latent two-chain mixed Markov model.
The model fit is acceptable with L? = 68.51 and df = 48. Specifications and
restrictions of Equations 36 to 39 are confirmed.

Table 7 gives the estimated parameters of the latent mixed Markov model. The first
column of the table shows the latent class probabilities of the Markov chains. 59% of
the respondents are classified as “movers® and 41% as “stayers“. The second column
contains the latent class probabilities of the latent variable in each chain. In the
mover chain 59% perceive no stress and 41% perceive stress in form of restlessness or
concentration problems. In the stayer chain 79% of the respondents indicate no stress
and 21% stress. The following columns contains the conditional probabilities for two
variables in each wave and each chain. The first item has less measurement errors in
the stayer chain, the second item shows a better reliability in the mover chain.

The lower half of Table 7 shows the transition probabilities estimated for the mover
chain and the fixed values for the stayer chain. Those fixed values indicate perfect
stability within the latent classes across the waves and no change. In the mover chain,



Table 7: Estimated Parameters of the Latent Mixed Markov Model with two chains
(Mover/Stayer)

i1 2 13

Ty (%g pz}sll\ag p@illlag pig\bg PZf\bg piflcg pzflcg
Mover no .687 1.000 .687 1.000 .687 1.000
589 | stress | (044) | (=) | (044) | (=) | (044) | (-)
(.048) | .590 313 .000 313 .000 313 .000
(.088) || (.044) (—) (.044) (—) (.044) (—)
stress .360 154 .360 154 .360 154
(.055) | (.139) | (.055) | (.139) | (.055) | (.139)
410 .640 .846 .640 .846 .640 .846
(.088) || (.055) | (.139) | (.055) | (.139) | (.055) | (.139)
Stayer no 1.000 .909 1.000 .909 1.000 .909
A1l | stress | (=) | (.025) | (=) | (.025) | (=) | (.025)
(.048) | .794 .000 .091 .000 .091 .000 .091
(088) | (=) | (025) | (=) | (025) | (=) |(.025)
stress .042 114 .042 114 .042 114
(.079) | (.071) | (079) | (071) | (079) | (071)
.206 .958 .886 958 .886 .958 .886
(.088) || (.079) | (.071) | (.079) | (.071) | (.079) | (.071)

Ty ag Te bg
0 0% 0h 051
Mover | no ) 750 250 773 227
stress (.047) | (.047) | (.050) | (.050)

stress || dy 439 561 313 | .687
(.150) | (.150) | (.140) | (.140)

0y | 05 | Oy | 0%
Stayer no iy 1.000 .000 1.000 .000
stress (fixed) | (fixed) | (fixed) | (fixed)

stress | oL, | .000 | 1.000 | .000 | 1.000
(fixed) | (fixed) | (fixed) | (fixed)

75% of the respondents classified as persons who perceive no stress remain in the
latent class from the first to the second wave and 77% remain from the second to the
third wave. 25% of those persons change to the latent class indicating stress whereas
about 44% change in the other direction. The difference of change in both directions
lowers to approximately 31% and 23% from the second to the third wave.

The change of the latent class probabilities are calculated according to Equation 33.
For the chain of stayers no calculation is necessary. The distribution of latent class



probabilities is the same in all panel waves because the matrix of transition
probabilities 71" is equal to an identity matrix I:

!

5« T = 6@ 5T = §® (40)

with 7" = I. For the chain of movers the distribution of the latent class probabilities
of the second wave is calculated as follows:

50 5T = 5 (41)

( 590 .410 ) % ( zgg ig(l) ) - ( 622 378 )

The distribution of the latent class probabilities of the third wave is calculated as
follows:

! ’

62 s« T =66 (42)

(622 .378 )= ( Zg (252; ) = (599 .01 )

Transition rates are not time-homogeneous (77, # 7.;;) which means that the matrix
T has different values for both multiplications.

Comparing the latent class distributions in each panel wave, only a slight change can
be observed. The expected frequencies of the transitions confirm this tendency. In
Table 8 those expected frequencies between the first and last panel wave are shown
seperately for the mover and the stayer chain.

Table 8: Contingency Table of Expected Frequencies of the Latent Classes between
t; and t3 (seperate for mover and stayer)

“mover® “stayer*
t ts ts

63 63 Total 63 &3 Total
51 112.27 | 58.24 | 170.51 | 160.43 | 0.00 | 160.43
(0.658) | (0.342) | (1.000) | (1.000) | (0.000) | (1.000)

68 | 61.07 | 57.40 | 11847 | 0.00 | 41.59 | 41.59
(0.516) | (0.485) | (1.000) | (0.000) | (1.000) | (1.000)

Total | 173.34 | 115.64 | 288.98 | 160.43 | 41.59 | 202.02
(0.600) | (0.400) | (1.000) | (0.794) | (0.206) | (1.000)

Row proportions are given in brackets
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In the stayer chain 160 adolescents are expected to remain in the first class while 42 are
expected to remain in the second class over the time period. According to the restrictions
no one is expected to move between the classes.

In the mover chain 112 adolescents are expected to remain in the first class while 57 are
expected to remain in the second class over the time period. Around 58 persons are expec-
ted to change from the first to the second class while 61 persons are expected to change
vice versa.

4 Conclusions

Latent class analysis is a flexible statistical tool either to explore the latent structure of a set
of observed variables, or to confirm substantive hypotheses. Latent class analysis makes it
possible to identify the categories of a latent variable characterizing the latent types of an
item battery, i. e., indicators measuring stress. Depending on the hypotheses, restrictions on
the parameters may apply.

For panel analysis, the latent variables reflecting the panel waves could be combined to
one discrete latent variable. With latent Markov models, the latent variables are not com-
bined to a joint latent variable, rather they are linked by transition rates. This extension
allows simultaneous analysis of latent class probabilities, conditional probabilities and
transition probabilities in panel models. Several kinds of restrictions (i. e. equal conditional
probabilities across panel waves) reduces the number of parameters and makes models
more parsimonious.

The latent mixed Markov model is a generalization of the latent Markov model and the
manifest mixed Markov model which allows specification of unobserved heterogeneity via
different Markov chains. Instead of one observed variable for every panel wave also multi-
ple indicators as a set of observed variables for one or more latent variables may be ana-
lyzed. These latent variables should be related by a Markov chain or a mixture of Markov
chains. This kind of modeling can be extended to several populations resulting in simulta-
neous multiple group comparisons (for an example see Engel and Reinecke 1994: 240). If
multiple indicators are used in the described Markov models, no substantive differences
exist in comparison to the well-known structural equation models (see Joreskog and
Sorbom 1993).

A common assumption in latent class analysis is that respondents do not differ within la-
tent classes. All respondents of a given class are identical with respect to their response
probabilities. Rast (1990) developed the mixed Rasch model which allows quantitative
differences among subjects within a class by means of the ability parameter of the Rasch
model. Further descriptions are also given in Rost (1996). An extension of mixed models
to the discussed Markov models is beyond the scope of the present article.
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A last remark should be given to the available software products. The classical program is
MLLSA (Maximum Likelihood Latent Structure Analysis) from Clogg (1977). Extensions
to log-linear parameterizations are possible with LCAG (Latent Class Analysis Models and
other Log-linear Models with latent Variables) from Hagenaars and Luijkx (1990). This
program was further developed and extended by Vermunt (1993) to YEM (Log-linear and
Event History Analysis with Missing Data using the EM Algorithm). PANMARK devel-
oped by van de Pol, Langeheine and de Jong (1991) is a program especially developed for
Markov Models as discussed and applied in the present article. The new program Mplus
(The Comprehensive Modeling Program for Applied Researchers) from Muthen and
Muthen (1998) should be considered for further model developments and applications. It
allows combinations of categorical and continuous latent variables. Latent class models
with covariates can be estimated within a framework of mixture models.
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