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Abstract. We set up a two-stage game with sequential moves by one altruist and n

sel�sh agents. The Samaritan�s dilemma (rotten kid theorem) states that the altruist can

only reach her �rst best when the sel�sh agents move after (before) the altruist. We �nd

that in general, the altruist can reach her �rst best when she moves �rst if and only if a

sel�sh agent�s action marginally a¤ects only his own payo¤. The altruist can reach her

�rst best when she moves last if and only if a sel�sh agent cannot manipulate the price

of his own payo¤.
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Samaritan vs Rotten Kid: Another Look

1 Introduction

However much we care about other people, we do not wish to invite them to take ad-

vantage of our charity. The economic theory of altruism1 o¤ers two con�icting pieces of

strategic advice: the rotten kid theorem (Becker 1974, 1976) and the Samaritan�s dilemma

(Buchanan 1975). In a single-round model with sequential moves by an altruistic agent

(the Samaritan or the parent) and a sel�sh agent (the parasite or the kid), the contradic-

tion between the two can be stated as follows.

The rotten kid theorem states that the parent can only reach her �rst best when she

moves after the kid. The intuition is that the kid will only act unsel�shly if the parent

can reward him afterward. The Samaritan�s dilemma, on the other hand, states that

the Samaritan can only reach his �rst best when he moves before the parasite. Here,

the intuition is that the parasite cannot manipulate the Samaritan�s actions when the

Samaritan moves �rst.

In this paper we identify the restrictions on the agents�payo¤ functions for either

result to hold. For the altruist to reach her �rst best when she moves �rst, a sel�sh agent�s

actions should on balance a¤ect only his own payo¤; then there are no externalities to

his actions. For the altruist to reach her �rst best when she moves last, the sel�sh agents

should not be able to manipulate the price of their payo¤s to the altruist (i.e. the altruist�s

trade-o¤ between her own and the sel�sh agents�payo¤s). Then the sel�sh agents will

maximize total payo¤. They will bene�t from this themselves, because their payo¤s are

normal goods to the altruist.

Our result for the Samaritan�s dilemma is new. For the rotten kid theorem, Bergstrom

(1989) has performed a similar analysis. His model is a special version of our general setup.

Whereas we do not restrict the nature of the altruist�s actions, Bergstrom assumes she

distributes a certain amount of money among the sel�sh agents. Removing this restriction

results in a more general condition for the rotten kid theorem. Bergstrom also claims

1For the evolutionary roots of altruism, see Henrich (2004) and the comments on this paper in the
Journal of Economic Behavior and Organization 53 (1) Special Issue on evolution and altruism.

2
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that the payo¤ condition is necessary only when money is important enough. We shall

demonstrate that this additional condition is not needed.

Cornes and Silva (1999) have found another condition for the rotten kid theorem

to hold in Bergstrom�s framework. We shall see that this condition applies only in

Bergstrom�s framework and that there are no additional solutions.

However peripheral to economics the study of altruism may seem, there is in fact an

application that takes us to the very heart of the discipline (Munger 2000). Regarding

the welfare-maximizing government as an altruist and the private agents as sel�sh agents,

we have a framework for a policy game. This framework allows us to study how the

government can shape incentives such that private actions maximize social welfare. Chari

et al. (1989) and Cubitt (1992) have addressed this issue using a similar framework. The

present paper o¤ers new insights into this question.

The focus of this paper is on the attainment of the altruist�s �rst best. Another

interesting question is whether a particular sequence of moves leads to a Pareto-e¢ cient

outcome. Obviously, the altruist�s �rst best is a Pareto-e¢ cient outcome. Moreover, it

can be shown that when the sel�sh agents move �rst, the outcome is Pareto e¢ cient if

and only if it is the altruist�s �rst best.2

The rest of this paper is organized as follows. In Section 2, we introduce the Samar-

itan�s dilemma and the rotten kid theorem in simple two-agent setups where they are

known to hold. In Section 3, we set up a single-round game with n sel�sh agents, deriving

the conditions for the Samaritan�s dilemma and the rotten kid theorem to hold. In Sec-

tion 4, we discuss Bergstrom�s game as well as Bergstrom�s own and Cornes and Silva�s

conditions for the rotten kid theorem. We conclude with Section 5.

2 Introductory examples

2.1 Samaritan�s dilemma

The Samaritan�s dilemma is due to Buchanan (1975) who discusses a game between an

altruistic Samaritan and a sel�sh parasite.3 He shows that the Samaritan can reach his
2Details are available from the author upon request.
3Buchanan distinguishes between the active and the passive Samaritan�s dilemma. We only discuss

the passive Samaritan�s dilemma here. The passive Samaritan�s preferences are reconcilable with a payo¤

3
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�rst best when he moves before the parasite, but not when he moves after the parasite.

In this subsection, we shall present a continuous version of the game.4

The Samaritan maximizes his objective function W (U0; U1), which is increasing in

his own payo¤ U0 and the parasite�s payo¤ U1: Wk � @W=@Uk > 0; k = 0; 1. The

parasite maximizes his own payo¤ U1. The Samaritan�s own payo¤ U0 depends only on

his donation y to the parasite, so that we can simply set U0 = �y. The parasite�s payo¤

depends on his work e¤ort x and on the Samaritan�s donation y. The parasite�s payo¤

function U1(y; x) has the following properties:

� @U1=dy > 0; @2U1=@y2 � 0. The parasite�s marginal payo¤ of money is positive and

decreasing.

� @U1=@x > [<]0 for x < [>]x�(y). Given the Samaritan�s donation y, there is an

optimal work e¤ort x�(y) for the parasite, where the marginal payo¤ of extra money

earned equals the marginal payo¤ of leisure.

� @2U1=@y@x < 0. An increase in the parasite�s e¤ort decreases his marginal payo¤

of money. This is because the parasite earns money for his work, and his marginal

payo¤ of money is decreasing.

The �rst order conditions for the Samaritan�s �rst best are, with respect to y and x,

respectively

W0 = W1
@U1
@y

(1)

@U1
@x

= 0: (2)

We shall now see that the Samaritan can always reach his �rst best when he moves

�rst, but he can never reach his �rst best when he moves last. When the Samaritan moves

function that only depends on his donation. The active Samaritan�s payo¤, on the other hand, must also
depend on the parasite�s action. This is because when the Samaritan donates, he prefers the parasite to go
to work although the parasite prefers to stay in bed. Schmidtchen (1999) analyzes the active Samaritan�s
dilemma.

4Jürges (2000) analyzes this game for speci�c functional forms of W: Bergstrom (p.1140-1) analyzes
a similar game, where a parent distributes money after his �lazy rotten kids�have set their work e¤orts.
Neither Bergstrom nor Jürges identify the game with the Samaritan�s dilemma.

4

Page 4 of 28 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

�rst, the parasite sets x in stage two to maximize his own payo¤:

@U1
@x

= 0:

This condition is identical to the �rst order condition (2) for the Samaritan�s �rst best

with respect to x. Thus, in stage one, the Samaritan can set y according to his �rst best

condition (1): The Samaritan can always reach his �rst best when he moves �rst.

The intuition is that the parasite sets the work e¤ort that maximizes his own payo¤,

taking the Samaritan�s donation as given. Since the parasite�s work e¤ort a¤ects only

his own payo¤, the parasite takes the full e¤ect of his decision into account. There is no

externality, and the Samaritan�s �rst best is implemented.

When the parasite moves �rst, the Samaritan sets y according to (1) in stage two. In

stage one, the parasite sets the x that maximizes his own payo¤, taking into account that

his choice of x a¤ects the Samaritan�s choice of y in stage two:

dU1
dx

� @U1
@x

+
@U1
@y

dy

dx
= 0:

This corresponds only to the Samaritan�s �rst order condition (2) for x when dy=dx = 0

(i.e. the donation reaches its maximum) in the optimum. In order to �nd the expression

for dy=dx in the optimum, we totally di¤erentiate the Samaritan�s �rst order condition

for y (1) with respect to x and substitute (2):

dy

dx
=

W1

�
@2U1
@y@x

�
�W00 + (W10 +W01)

@U1
@y
�W11

�
@U1
@y

�2
�W1

@2U1
@y2

< 0: (3)

The numerator in (3) is negative because W1 > 0 and @2U1=@y@x < 0. The denomi-

nator is positive because this is the second order condition @2W=@y2 < 0.

Thus, the parasite gets more money from the Samaritan, the less he works. As a

result, the parasite will work less than the Samaritan would like him to. The Samaritan

cannot reach his �rst best when he moves after the parasite. Intuitively, the less money

the parasite earns, the needier he is and the more money he will get from the Samaritan.

When the parasite moves �rst, he can extort money from the Samaritan by working less.

5
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2.2 Rotten kid theorem

In order to introduce the rotten kid theorem, we analyze the simple game discussed by

Becker (1974, 1976) and commented upon by Hirshleifer (1977). The game is between an

altruistic parent and a sel�sh kid. The kid undertakes an action that a¤ects his own as

well as the parent�s income. The parent can give money to the kid. We shall see that in

general, the parent cannot reach her �rst best when she moves �rst, but she can always

reach her �rst best when she moves after the kid.5

Denote the kid�s action by x and the parent�s transfer by y. Since the only commodity

involved is income, we can equate the parent�s and kid�s payo¤s, U0 and U1 respectively,

with income and write them in the additively separable form:

U0 = �y + b0(x) U1 = y + b1(x): (4)

Here, bk(x); k = 0; 1; is the e¤ect of the kid�s action on the income of the parent and

the kid, respectively.

The sel�sh kid maximizes his own payo¤ U1. The parent maximizes her objective

function W (U0; U1) with Wk � @W=@Uk > 0; k = 0; 1. The �rst order conditions for the

parent�s �rst best are, with respect to y and x;

W0 = W1 (5)

W0b
0
0 +W1b

0
1 = 0: (6)

Substituting (5) into (6),

b00 + b
0
1 = 0: (7)

This implies that in the parent�s �rst best, family income U0+U1 = b0+b1 is maximized.

When the parent moves �rst, the kid will set b01 = 0. In general, this does not

correspond to the parent�s �rst order condition (7). When the kid moves last, he will

maximize his own income instead of family income.

Now we let the kid move �rst. In stage two, the parent will set the transfer y that

maximizes W , according to (5). In stage one, the kid sets the x that maximizes his

5In fact, Becker (1974, 1976) himself does not discuss the order of moves. Citing Shakespeare�s King
Lear, Hirshleifer was the �rst to point out that the parent�s �rst best is implemented only when the kid
moves �rst.

6
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income, taking into account that his action a¤ects the parent�s transfer:

dU1
dx

� dy

dx
+ b01 = 0: (8)

The value of dy=dx follows from the total di¤erentiation of the parent�s �rst order

condition (5) with respect to x:

(W00 �W10)

�
�dy
dx
+ b00

�
= (W11 �W01)

�
dy

dx
+ b01

�
: (9)

By the kid�s �rst order condition (8), the second term between brackets on the RHS

of (9) is zero. Thus, the second term between brackets on the LHS of (9) must be zero:

dy

dx
= b00:

Substituting this into the kid�s �rst order condition (8), we see that it is equivalent to

the parent�s �rst best condition (7): the kid e¤ectively maximizes family income.

Thus, the parent always reaches her �rst best when she moves after the kid. Bernheim

et al. (1985) were the �rst to note that this result follows from the assumption that there is

only one commodity, namely income. The intuition, due to Bergstrom, is that when there

is only one commodity, say income, we can identify payo¤ with income. The kid cannot

manipulate the price of his income in terms of the parent�s income, because it is always

unity. Then the parent and the kid agree that it is a good thing to maximize aggregate

income. It is clear that the parent will want to maximize family income. However, as

Becker (1974) already notes, the kid will only want to maximize family income if he

bene�ts from that himself, that is if his payo¤ is a normal good to the parent.

3 A general analysis

3.1 The model

In this section, we analyze a model with one altruistic agent and n sel�sh agents. We shall

see under which conditions the Samaritan�s dilemma and the rotten kid theorem hold.

There are n + 1 agents, indexed by k = 0; � � � ; n. Agent 0 is the altruist, and agents

i; i = 1; � � � ; n; are the sel�sh agents. Agent i controls the variable xi. Agent 0 can make

7
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a contribution yi to each agent i�s payo¤ Ui. Thus @Ui=@yi > 0 and @Ui=@yj = 0 for all

i; j = 1; � � � ; n; i 6= j; by de�nition.

The vector y = (y1; � � � ; yn) must be feasible. The lower bound is y = 0: agent 0 can

only give to the other agents; she cannot take away from them. There is also an upper

bound to y, which follows from the restriction that agent 0 has only a limited amount of

time, money, or whatever the nature of y, to give to the others. The exact formulation

of the upper bound depends on the nature of y. We assume that neither the upper nor

the lower bound are binding constraints on the equilibria.

When agent 0 ultimately gives money (for instance) to the sel�sh agents, this does not

mean that yi has to be stated as a certain amount of money. Instead, yi could take the

form of a subsidy on behavior from which other agents bene�t (e.g. chores).6 Obviously,

the distinction between unconditional and incentive payment is only relevant when the

altruist moves �rst.

Agent 0�s payo¤ has the form U0(y;x), which is continuous and twice di¤erentiable,

with x = (x1; � � � ; xn). Agent i�s payo¤ has the form Ui(yi;x), which is continuous and

twice di¤erentiable with @2Ui=@x2i � 0. Each agent i; i = 1; � � � ; n; maximizes his own

payo¤. Agent 0 maximizes her objective function W (U); which is continuous and twice

di¤erentiable with U = (U0; � � � ; Un), Wk � @W=@Uk > 0; k = 0; � � � ; n.

Let us now determine the �rst-best outcome for agent 0. We assume that the �rst

best is characterized by a unique interior solution. Di¤erentiating W (U) with respect to

yi; and xi respectively, i = 1; � � � ; n, we �nd

W0
@U0
@yi

+Wi
@Ui
@yi

= 0 (10)

nX
k=0

Wk
@Uk
@xi

= 0: (11)

Whatever agent 0�s precise preferences, her �rst best will always be on the payo¤

possibility frontier PPF:

6The altruist can also use incentive payments to deal with asymmetric information (Cremer and
Pestieau 1996).

8
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De�nition 1 Let (x�;y�) be a set of feasible actions such that there is no other set (x0;y0)

of feasible actions with Uk(x0;y0) � Uk(x
�;y�) for all k and Uk(x0;y0) > Uk(x

�;y�) for

some k; k = 0; � � � ; n:

Each (x�;y�) set implements a payo¤ vectorU� � (U0(y�;x�); U1(y�1;x�); � � � ; Un(y�n;x�)):

The Payo¤ Possibility Frontier PPF is the set of all U�:

In the following, we shall study the e¤ect of sequential moves. The agents i, i =

1; � � � ; n; always move simultaneously. In subsection 3.2, we see what happens when

agent 0 moves before agents i. In subsection 3.3, we analyze the case where the agents

i move before agent 0. We assume these games have unique interior solutions. We will

derive the conditions for these sequences of moves to result in agent 0�s �rst best for all

W (U). The conditions will thus be on the payo¤ functions U: We are looking for the

necessary and su¢ cient local restrictions on U under which the �rst order conditions of

the subgame perfect equilibrium are identical to the �rst order conditions (10) and (11)

of agent 0�s �rst best. The local nature of the restrictions means that they must hold on

the Payo¤Possibility Frontier, since any altruistic agent�s �rst best must be on the PPF .

We assume that the second order conditions are satis�ed.

In the comprehensive interpretation of the Samaritan�s dilemma and the rotten kid

theorem, they have not only a positive side to them (agent 0 can reach her �rst best

under one sequence of moves), but also a negative side: Agent 0 cannot reach her �rst

best under the other sequence. The relation between the two versions is straightforward:

The comprehensive Samaritan�s dilemma (rotten kid theorem) holds if and only if the

positive Samaritan�s dilemma (rotten kid theorem) holds and the positive rotten kid

theorem (Samaritan�s dilemma) does not hold.

3.2 Agent 0 moves �rst

In this subsection, we derive the equilibrium for the game where agent 0 moves before

agents i, and we see when this equilibrium corresponds to the �rst best for agent 0. Thus,

we shall derive the condition for the positive Samaritan�s dilemma to hold.

De�nition 2 The positive Samaritan�s dilemma states that agent 0 can reach her �rst

best when she moves in stage one and agents i, i = 1; � � � ; n; move in stage two.

9
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The game is solved by backwards induction. In stage two, each agent i, i = 1; � � � ; n;

sets the xi that maximizes his own payo¤, taking yi and all other xl, l = 1; � � � ; i� 1; i+

1; � � � ; n; as given:
@Ui
@xi

= 0: (12)

In stage one, agent 0 sets the yi that maximize her objective function W (U), taking

into account that agent i�s choice of xi depend upon her choice of yi:

W0
@U0
@yi

+Wi
@Ui
@yi

+

nX
k=0

Wk
@Uk
@xi

dxi
dyi

= 0:

Substituting (12) and di¤erentiating it totally with respect to yi, this becomes

W0
@U0
@yi

+Wi
@Ui
@yi

� @
2Ui=@yi@xi
@2Ui=@x2i

nX
l=0
l 6=i

Wl
@Ul
@xi

= 0: (13)

In general, the outcome will not be agent 0�s �rst best. We shall now see under which

condition agent 0 can reach her �rst best when she moves �rst.7

Condition 1 For all x� as de�ned in De�nition 1 and all i = 1; � � � ; n,
@U0
@xi

�
nX
j=0
j 6=i

@U0=@yj
@Uj=@yj

@Uj
@xi

= 0:

Proposition 1 Given that all agents�second order conditions are satis�ed, the positive

Samaritan�s dilemma holds for all W (U) if and only if Condition 1 holds.

The intuition behind the result is straightforward. When sel�sh agent i moves last,

he does not take into account the e¤ect of his action on any of the other agents�payo¤s.

This can only result in the �rst best for agent 0 if the net e¤ect of agent i on other

agents (weighted according to agent 0�s objective function) is zero. Then agent i takes

the full e¤ect of his actions into account. There is no externality, and agent 0�s �rst best

is implemented.

In our introductory example of the Samaritan�s dilemma (subsection 2.1), Condition 1

holds: the parasite�s work e¤ort does not a¤ect the Samaritan�s payo¤. The Samaritan�s

own payo¤ only depends on his donation. In the introductory example of the rotten kid

theorem (subsection 2.2), however, Condition 1 does not hold: the kid�s action a¤ects

both his own and the parent�s payo¤.
7All proofs are available on the JEBO website.

10
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3.3 Agents i move �rst

In this subsection, we derive the equilibrium for the game where agents i move before

agent 0, and we see when this equilibrium corresponds to the �rst best for agent 0. Thus,

we shall derive the conditions for the positive rotten kid theorem to hold.

De�nition 3 The positive rotten kid theorem states that agent 0 can reach her �rst best

when agents i; i = 1; � � � ; n; move in stage one and agent 0 moves in stage two.

We solve the game by backwards induction. In stage two, agent 0 sets the yj that

maximize her objective function W (U), taking all xi, i = 1; � � � ; n; as given:8

W0
@U0
@yj

+Wj
@Uj
@yj

= 0: (14)

In stage one, each agent i, i = 1; � � � ; n; sets the xi that maximizes his own payo¤,

taking the xl, l = 1; � � � ; i� 1; i + 1; � � � ; n; from the other n � 1 agents moving in stage

one as given, but realizing that his choice of xi a¤ects agent 0�s choice of yi in stage two:

dUi
dxi

� @Ui
@xi

+
@Ui
@yi

dyi
dxi

= 0; (15)

where the values for dyj=dxi, j = 1; � � � ; n; follow from the total di¤erentiation of (14)

with respect to xi.

In general, the equilibrium condition (15) for xi; i = 1; � � � ; n; is not identical to the

corresponding �rst order condition (11) for agent 0�s �rst best. We shall now see when it

is.
8Obviously, these conditions are identical to the FOCs (10) for agent 0�s �rst best with respect to y.
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Condition 2 Take a vector x� as de�ned in De�nition 1. For this x�, write Ui as

Ui(yi;x) = Gi(x) + zi(yi;x) (16)

with @zi=@yi > 0; i = 1; � � � ; n: Then U0 should satisfy

U0(y;x) = G0(x)� F (z) (17)

with z � (z1; � � � ; zn); @F=@zi > 0; and
nX
l=1

@2F

@zj@zl

@Gl
@xi

= 0 (18)

for all i; j = 1; � � � ; n:

The sets of payo¤ functions that satisfy Condition 2 come in two categories:

1. @2F=@zj@zl = 0 for all i; l = 1; � � � ; n in (17). Then (16) and (17) become

U0(y;x) = G0(x)�
nX
i=1

zi(yi;x) Ui(yi;x) = Gi(x) + zi(yi;x):

2. Not all @2F=@zj@zl = 0: Examples in this category are

U0(y;x) = G0(x)� f1(z1)� z2(y2;x) f 01; f
00

1 > 0

Ui(yi;x) = Gi(x) + zi(yi;x)
@G1
@xi

= 0 i = 1; 2

and

U0(y;x) = G0(x)� e�1z1+�2z2

Ui(yi;x) = iG(x) + zi(yi;x)
X
i

�ii = 0 i = 1; 2:

Proposition 2 Given that all agents�second order conditions are satis�ed, the positive

rotten kid theorem holds for all W (U) if and only if Condition 2 holds.

In order to interpret this result, let us state:

12
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Lemma 1 If and only if Condition 2 holds,

1. There is a single vector x� that implements the whole PPF.

2. The price of agent j�s payo¤ to agent 0 at x = x�,

P �j � �
@U0(y;x

�)=@yj
@Uj(yj;x�)=@yj

; (19)

is beyond manipulation by agent i:

dP �j
dxi

= 0: (20)

Let us de�ne a Utility Possibility Curve UPC as the set of vectors U that can be

obtained with a given x. Lemma 1.1 says that the whole Payo¤Possibility Frontier PPF

must consist of a single UPC. Figure 1, inspired by Bergstrom�s Figure 2, illustrates

what goes wrong when a sel�sh agent can in�uence the price of his payo¤ or equivalently,

when the PPF consists of multiple UPCs.

In Figure 1, point A on agent 0�s indi¤erence curve IA is agent 0�s �rst best. It is

reached when the single sel�sh agent 1 selects the action xA that implements UPCA.

When agent 1 cannot manipulate the price of his own payo¤, all other UPCs will be

parallel and to the left of UPCA. The whole PPF thus consists only of UPCA. In that

case, when U1 is a normal good to the altruist, agent 1 will select xA. However, suppose

now that agent 1 can decrease the price of his own payo¤, either by increasing or decreasing

his x. For instance, when agent 1 chooses xB; the resulting UPCB is �atter than UPCA;

lies everywhere below IA and intersects UPCA so that the PPF does not consist of UPCA

alone. In point B; where agent 0�s indi¤erence curve IB is tangent to UPCB, U1 is higher

than in point A: Thus, agent 1 prefers implementing UPCB to UPCA.

When the sel�sh agents cannot in�uence the prices of their payo¤s, we can aggregate

all payo¤s along the PPF for x = x� using these prices and refer to aggregate payo¤

as income I(x): As Bergstrom (p. 1148) calls it, there is conditional transferable utility

(conditional on x). The agents i maximize income and agent 0 redistributes it. In the

terminology of Monderer and Shapley (1996), Condition 2 turns the game into a potential

game where all agents i = 1; � � � ; n maximize the ordinal potential function I(x). Stated

formally,

13
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Figure 1: Intersecting Utility Possibility Curves

Lemma 2 If and only if Condition 2 holds, we can de�ne an income function

I � U0(y;x) +
nX
i=1

P �i Ui(yi;x) (21)

(with P �i de�ned by (19)) that is a function of x only. The payo¤ functions (16) and (17)

can be written such that I(x) is given by

I(x) =
nX
k=0

Gk(x): (22)

The income function I(x) is maximized for x = x�:

In our introductory example of the rotten kid theorem (subsection 2.2), Condition

2 holds because there is only one commodity, namely monetary income.9 Then we can

identify payo¤s with income and de�ne aggregate or family income. All UPCs are parallel

and have slope �1 because they denote the feasible income distributions given aggregate
9Formally, the payo¤ functions (4) satisfy z = y and F (z) = z; so that @2F=@z2 = 0:
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income from the kid�s action. The kid cannot manipulate the price of his income to the

parent because an extra dollar for the kid is always going to cost the parent one dollar.

In our example of the Samaritan�s dilemma (subsection 2.1), however, there are two

goods involved: money and the parasite�s leisure. The parasite can manipulate the price

of his payo¤ to the Samaritan by his choice of leisure. By working less, the parasite has

less money of his own and a higher marginal payo¤ of money. In this way he lowers the

price of his payo¤ to the Samaritan, so that the Samaritan will buy more of it.

4 Bergstrom�s rotten kid game

The present paper is not the �rst to have derived conditions for the rotten kid theorem to

hold. Bergstrom (1989) and Cornes and Silva (1999) have previously derived a condition

from a model more speci�c than ours. In their model, the altruist distributes a certain

sum of money among the sel�sh agents. The total amount of money available may depend

on the sel�sh agents�actions.

In subsection 4.1, we introduce Bergstrom�s game and his own su¢ cient condition for

the positive rotten kid theorem. We shall see that as his maximization problem for the

altruist is a special case of our more general problem, his payo¤ condition is accordingly

a special version of our payo¤ condition. We shall also �nd that Bergstrom was wrong in

claiming that the payo¤ condition is necessary only when �money is important enough�.

In subsection 4.2, we discuss Cornes and Silva�s condition for the positive rotten kid

theorem to hold in Bergstrom�s model. We shall see that this condition does not carry

over to our own more general model and that there are no further solutions to our or

Bergstrom�s model.

4.1 Bergstrom�s solution

In Bergstrom�s model, the role of the altruist is limited to the distribution of a cer-

tain amount of money. There are three steps involved in moving from our model to

Bergstrom�s. First, agent 0�s actions y are restricted to giving money to the sel�sh

agents. The relevant property of money in this context is the following:
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De�nition 4 When y is money, agent 0�s payo¤ depends on how much she does on

aggregate for all other agents, but not on the distribution of this total amount among the

agents. Then the altruist�s payo¤ is given by U0(y0;x) with y0 �
Pn

i=1 yi.

When y is money, @U0=@yi = @U0=@y0 for all i = 1; � � � ; n: Applying this to Condition

2, we see that the payo¤ functions should satisfy

U0(y;x) = G0(x)�H [A(x)y0] (23)

Ui(x; yi) = Gi(x) + A(x)yi (24)

for i = 1; � � � ; n; with H 0 > 0 and

H 00 [A(x)y0]
nX
j=1

@Gj(x)

@xi
= 0: (25)

The second step from our framework to Bergstrom�s is that the budget constraintPn
i=1 yi � y(x) is binding. Then the functional form of U0(y;x) is irrelevant, so that (23)

and (25) are no longer needed. Condition (24) must still hold because the equivalent of

condition (20) is now

d

�
@Ul(yl;x)=@yl
@Uj(yj;x)=@yj

�
=dxi = 0

for all i; j; l = 1; � � � ; n: The third and �nal step from our framework to Bergstrom�s is to

exclude U0 from agent 0�s objective function. This �nal step does not lead to additional

constraints on the payo¤ functions.

Proposition 3 Given that the second order conditions are satis�ed, the positive rotten

kid holds for all W (U) and all y(x) in agent 0�s maximization problem

max W (U1(y1;x); � � � ; Un(yn;x)) s:t:

nX
i=1

yi = y(x) (26)

if and only if all Ui; i = 1; � � � ; n; have the form (24).

Condition (24) is identical to Bergstrom�s payo¤ condition. Our Condition 2 is more

general than Bergstrom�s as illustrated by the fact that none of our exemplary payo¤

functions given in subsection 3.3 satisfy condition (24). The reason why Bergstrom�s

condition is more restrictive than ours is that he restricts the altruist�s actions to the
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Page 16 of 28 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

distribution of a certain amount of money. We shall now explore the intuition behind this

result.

As we know from Corollary 1.1, the positive rotten kid theorem holds when there is

only one vector x�, or equivalently, one Utility Possibility Curve, that implements the

whole Payo¤Possibility Frontier. When y is money, an agent�s payo¤ on a UPC depends

only on how much money he gets. That means we can identify an agent�s payo¤with the

amount of money he gets. This implies a one-to-one tradeo¤ between all agents�payo¤s

on the whole UPC and thereby on the whole PPF . Thus, when y is money, the prices

of payo¤s are constant along the PPF . However, this is not a necessary condition for the

positive rotten kid theorem. Prices can vary along the PPF with the altruist�s actions

y, as long as they cannot be manipulated by the sel�sh agents� actions x. To put it

di¤erently, payo¤ prices can vary as long as there is a single vector of x that maximizes

total payo¤, at whatever prices payo¤s are aggregated.

Our Proposition 3 states that condition (24) is necessary and su¢ cient for the positive

rotten kid theorem to hold. Bergstrom, however, claims that the condition is su¢ cient,

but only necessary when combined with two further conditions. These are that all Ui

are normal goods and that money is important enough. We have already mentioned the

normal good assumption in subsections 2.2 and 3.3. It can be shown that this assumption

is necessary and su¢ cient for the second order conditions to hold. In our analysis, we have

simply assumed that the second order conditions hold. However, we have not encountered

anything resembling the condition that money is important enough. We shall now see

that indeed this condition is redundant.

In the terminology of our paper, Bergstrom�s condition that money is important

enough can be stated as follows:

Condition 3 @Ui(yi;x)=@yi > 0 for all yi > 0; i = 1; � � � ; n; and for all feasible x. There

is some vector of actions x0 such that for every agent i, all yi, and all feasible x, there

exists y0i such that Ui(y
0
i;x

0) = Ui(yi;x).
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Figure 2: When money is not important enough

Bergstrom uses this condition to show that there is always a Utility Possibility Curve

with slope �1. That is there is a vector x0 such that:

@Ui(yi;x
0)=@yi

@Uj(yj;x0)=@yj
= �1;

for all yi; yj and for all i; j = 1; � � � ; n. However, all that is needed to prove this is the

�rst part of Condition 3 which we also used in our analysis, that @Ui=@yi > 0. As we

have argued above, given any vector x0 that implements a point on the PPF , a kid i�s

payo¤ depends only on the amount of money he gets from the parent. This means we can

identify agent i�s payo¤ given this vector x0 with the amount of money he gets.

Another way of looking at the issue is illustrated with Figure 2 with two sel�sh agents,

1 and 2. Point A is on the Payo¤Possibility Frontier PPF and on Utility Possibility Curve

UPCA; implemented by (xA1 ; x
A
2 ): The maximum utility for agent 2 on UPCA is A2: If

money were not important enough, there would be another vector x with which U2 could
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exceed A2 and a point like B on UPCB (UPCB is not shown in Figure 2) would be feasible.

However, since point A is on the PPF; UPCB would have to be steeper than UPCA and

would have to cross it at some point. As we have seen with Figure 1, the rotten kid

theorem does not hold when the PPF consists of multiple UPCs with di¤erent slopes,

crossing each other. Thus, when the rotten kid theorem holds, point B is not feasible

with any x: We conclude:

Lemma 3 When the rotten kid theorem holds for all W (U) and all y(x) in agent 0�s

maximization problem (26); money is important enough.

4.2 Cornes and Silva�s solution

Cornes and Silva recently found another condition for the positive rotten kid theorem to

hold in Bergstrom�s framework. Under this condition, all kids contribute to a pure public

good. In this subsection we shall �rst discuss Cornes and Silva�s result in the light of our

own analysis, demonstrating why it does not carry over to our more general framework.

We shall also argue that there are no additional conditions under which the rotten kid

theorem holds for all W (U), neither in Bergstrom�s framework, nor in our more general

setup. Finally, we shall discuss the problems associated with Cornes and Silva�s solution

and conclude that they do not carry over to our general framework, if interpreted strictly.

In the notation of this paper, Cornes and Silva�s model can be described as follows.

Agent i; i = 1; � � � ; n; initially has an exogenous endowment mi: From this endowment he

can make a contribution xi to the public good X �
Pn

i=1 xi. The rest of his endowment

plus the transfer ti from agent 0 is available for consumption yi of the private good. Agent

0 has no budget of her own:
Pn

i=1 ti = 0. Agent 0�s budget constraint can also be written

as
Pn

i=1 yi =M �X, with M �
Pn

i=1mi.

How did Cornes and Silva manage to �nd this additional solution? To �nd that out,

let us �rst brie�y present the derivation of Bergstrom�s own solution with our method for

deriving Proposition 2. Adapting equation (30) from the proof of Proposition 2, we �nd

that dUj=dxi = 0 must hold for all i; j = 1; � � � ; n for the rotten kid theorem to apply for

all W (U) and all y(x). The agents i set dUi=dxi = 0 themselves. We need conditions on

U to make sure that agent 0 will set dUl=dxi = 0 for all other l; i = 1; � � � ; n; l 6= i. These
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conditions are (24).

Instead of having agent 0 set all dUl=dxi = 0 herself, we could impose some restrictions

R on the payo¤ functions so that dUi=dxi = 0 automatically implies dUl=dxi = 0 for some

(but not all) l; i = 1; � � � ; n; l 6= i. However, it can be shown that as long as agent 0

still has to set some dUl=dxi = 0 herself, the payo¤ condition will simply be (24) with

restrictions R.

The only option left is then to impose that when agent i sets dUi=dxi = 0; this should

automatically imply dUi=dxl = 0 for all l; i = 1; � � � ; n; l 6= i. This will be the case if and

only if we can de�neX �
Pn

i=1 xi. Then the payo¤functions become Ui(yi;x) = Ui(yi; X);

and the resource constraint turns into y(x) = y(X). The n2 conditions dUi=dxj = 0 for

implementation of agent 0�s �rst best reduce to n conditions dUi=dX = 0. Agents i�s

�rst order conditions are also dUi=dX = 0. Without loss of generality, we can specify

y(X) = M � X. Then we have reproduced Cornes and Silva�s pure public good case.

Note that Bergstrom�s result, as stated here in Proposition 3, still stands because Cornes

and Silva introduce a restriction y(x) = y(X) on the resource constraint. If we allow for

restrictions on y(x); then the only additional payo¤ condition for the rotten kid theorem

is Cornes and Silva�s.

We can now see why Cornes and Silva�s condition does not carry over to our more

general framework. When X �
Pn

i=1 xi, the agents i, i = 1; � � � ; n; will set dUi=dX = 0:

However, we still have to make sure that agent 0 will set dU0=dX = 0. She will do this

if and only if the payo¤ functions satisfy Condition 2 with x replaced by X. Thus, it is

impossible to �nd any solution other than Condition 2 in the general framework.

Two problems have been noted with regard to this solution. Cornes and Silva ac-

knowledge that there are multiple equilibria because only the equilibrium (and optimum)

amount of the public good X is determined, but individual contributions xi are not. All

interior equilibria implement the optimum. However, Chiappori and Werning (2002) note

that in general, there is no interior solution to the game. Both problems have the same

root cause: There is only one optimum condition for X; whereas there are n equilibrium

conditions for x in the game. Either the conditions for an interior equilibrium are com-

patible with each other, in which case there are multiple equilibria (Cornes and Silva), or
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they are not, in which case there is no interior solution (Chiappori and Werning).

Strictly speaking, the Cornes and Silva solution is not admissible in our framework

because we have assumed in subsection 3.1 that the altruist�s �rst best is unique in (y;x):

Since the problems of multiple equilibria and nonexistence of interior solutions discussed

here derive from the non-uniqueness of the altruist�s �rst best, we can be assured that

these problems, in this form, will not occur in our framework.

5 Conclusion

For thirty years, Buchanan�s (1975) Samaritan�s dilemma and Becker�s (1974) rotten kid

theorem, with their mutually exclusive claims, have coexisted in the economic theory of

altruism. This paper has been the �rst to analyze the conditions on the payo¤ functions

under which either result holds for any altruistic objective function. We have seen that

the altruist can reach her �rst best when she moves �rst if and only if a sel�sh agent�s

action does not on balance a¤ect any other agent�s payo¤ in the optimum. Then there are

no externalities to the sel�sh agents�actions. The altruist can reach her �rst best when

she moves last if and only if the sel�sh agents cannot manipulate the altruist�s trade-o¤

between her own and the sel�sh agents�payo¤s. Then the sel�sh agents will maximize

aggregate payo¤ and the altruist will redistribute income.

The focus of this paper has been on the simple one-shot game with complete infor-

mation with which the theory started in the mid-1970s. Since then, more complex games

between altruists and sel�sh agents have been studied.10 It would be worthwhile to expand

the general analysis to encompass multi-period models and incomplete or asymmetric in-

formation. The former is especially relevant as we would expect to �nd altruism mainly

in ongoing relations.

The theory of altruism can also be applied to government policy. The link between

these two �elds of research is that the government can be regarded as an altruist when it

maximizes social welfare or any other objective function that depends positively on the

payo¤ of other players. Thus, the theory of altruism can contribute to our understanding

10Among others, Lindbeck and Weibull (1988), Bruce and Waldman (1990, 1991) and Futagami et al.
(2004) have analyzed two-period lifetime models. Wirl (1999) and Lagerlöf (2004) assume asymmetric
information. Coate (1995) and Lord and Raganzas (1995) include uncertainty.

21

Page 21 of 28 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

of when collective and individual interests coincide (Shapiro and Petchey 1998, Munger

2000). Under the conditions of the Samaritan�s dilemma, the government can reach the

optimum if and only if it can commit to a certain policy. If the Samaritan�s dilemma does

not apply, commitment does not result in the �rst best. The government may then be

better o¤ with a time-consistent policy. Under the conditions of the rotten kid theorem,

time-consistent policy even results in the �rst best. Starting with Kydland and Prescott

(1977), most analyses of time consistency have used a more complicated setup than ours.

We o¤er a general framework, akin to Chari et al. (1989) and Cubitt (1992), along with

results to be applied to games between the government and private agents.

6 Appendix

Proof of Proposition 1. The necessary and su¢ cient condition for (12) to turn into (11)

and for (13) to turn into (10) is
nX
l=0
l 6=i

Wl
@Ul
@xi

= 0 (27)

for all i = 1; � � � ; n: Substituting (27) and (12) into (13) yields Condition 1.

Proof of Proposition 2. Since agent 0 moves last, the �rst order conditions (10) for

agent 0�s �rst best with respect to y are satis�ed. Substituting (10) and (15), we can

rewrite the �rst best conditions (11) for x as

nX
l=0
l 6=i

Wl
dUl
dxi

= W0

0BB@dU0dxi
�

nX
j=1
j 6=i

@U0=@yj
@Uj=@yj

dUj
dxi

1CCA = 0 (28)

for all i = 1; � � � ; n; where dUk=dxi; k = 0; � � � ; n; is de�ned by

dU0
dxi

� @U0
@xi

+

nX
j=1

@U0
@yj

dyj
dxi

dUj
dxi

� @Uj
@xi

+
@Uj
@yj

dyj
dxi
:

To �nd the expressions for dUk=dxi; write the total di¤erential of agent 0�s �rst order
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condition (14) with respect to xi, using (10), as�
d(@U0=@yj)

dxi
� @U0=@yj
@Uj=@yj

d(@Uj=@yj)

dxi

�
+W0

264 nX
l=0
l 6=i

�
Wjl

@Uj
@yj

+W0l
@U0
@yj

�
dUl
dxi

375 = 0: (29)
We want to obtain solutions for dUk=dxi that don�t contain second derivatives of W;

because we don�t want to put any restrictions on these. The only way to do this is

by setting both terms between large square brackets on the LHS of (29) equal to zero.

With the second term equal to zero, there can only be de�nite solutions to dUl=dxi; i =

1; � � � ; n; l = 0; � � � ; n; l 6= i; if
dUk
dxi

= 0 for all k = 0; � � � ; n ; i = 1; � � � ; n (30)

where dUi=dxi = 0 by (15). When (30) holds, (28) is satis�ed and all conditions for the

implementation of agent 0�s �rst best are met.

We can rewrite the condition that the �rst term in large square brackets on the LHS

of (29) equals zero as

d

�
@U0=@yj
@Uj=@yj

�
=dxi = 0: (31)

We can always write the agents�payo¤s as

U0(y;x) = g0(x)�H(v;x) (32)

Ui(yi;x) = gi(x) + vi(yi;x) (33)

with v � (v1; � � � ; vn); @H=@vi > 0; @vi=@yi > 0; i = 1; � � � ; n: Replacing yj by vj and

substituting (32) and (33), condition (31) becomes

d (@H=@vj)

dxi
=

@2H

@vj@xi
+

nX
l=1

@2H

@vj@vl

dvl
dxi

=
@2H

@vj@xi
�

nX
l=1

@2H

@vj@vl

@gl
@xi

= 0: (34)

The second equality follows from (30). The following lemma completes the proof:

Lemma 4 Equations (32), (33) and (34) can always be written as (17), (16) and (18).

Proof. The result is obvious if @2H=@vj@xi = 0 for all i; j = 1; � � � ; n: Now suppose

there is a @2H=@vj@xi 6= 0: Then, for the v terms to drop out of (34), the function H(v;x)

in (32) must have the form

H(v;x) = e
Pn
i=1 �ivih(x) +

nX
i=1

�ivi
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with �i; �i � 0: Then

@2H(v;x)

@vj@xi
= �je

P
i �ivi

@h(x)

@xi

@2H(v;x)

@vj@vl
= �j�le

P
i �ivih(x)

so that by (34),
nX
l=1

�l
@gl(x)

@xi
=
@h=@xi
h(x)

:

Then for all l with �l > 0; gl(x) must have the form

gl(x) = l lnh(x) +Gl(x)

with
P

l �ll = 1 and
P

l �l@Gl=@xi = 0:

Then we can de�ne zi as

zi(yi;x) � vi(yi;x) + i lnh(x)

so that U0 and Ui have the form (17) and (16) respectively, with

F (z) = e
P
i �izi +

nX
i=1

�izi

G0(x) = g0(x) +
nX
i=1

�ii lnh(x) Gi(x) = gi(x) + i lnh(x):

Finally, with @2F=@zj@xi = 0; (34) turns into (18).

Proof of Lemma 1.1. Equation (31) implies that Utility Possibility Curves (UPCs)

cannot cross each other. Then either the whole Payo¤ Possibility Frontier consists of a

single UPC; or there are layers of UPCs with the PPF tracing their outlines, as in Figure

3. A0A1 and B0B1 are two members of a family of parallel UPCs shrinking to a single

point at C: The PPF is given by V0V1: In agent 0�s �rst best (except if it is at point

C); her indi¤erence curve is not tangent to the UPC: In Figure 3, for instance, agent 0�s

optimum is at B1 on indi¤erence curve IB: B1 is a corner solution: Agent 0 would like to

give more to agent 1, but she has already given him all she has got. First order condition

(10) does not hold. Since we have assumed agent 0�s �rst best is an interior solution, we

cannot allow for a PPF tracing the outlines of parallel UPCs. Thus, the whole PPF

must consist of a singe UPC:

2. Equation (20) is equation (31) from the proof of Proposition 2.
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Figure 3: A Payo¤ Possibility Frontier tracing the outlines of parallel Utility Possibility
Curves

Proof of Lemma 2. Applying agent 0�s �rst best conditions for yi (10) and xj (11) to

the payo¤ functions of Condition 2 yields, respectively,

W0
@F

@zi
= Wi (35)

W0

�
@G0
@xj

� @F
@zi

@zi
@xj

�
+

nX
i=1

Wi

�
@Gi
@xj

+
@zi
@xj

�
= 0: (36)

Substituting (35) into (36),

@G0
@xj

+
nX
i=1

@F

@zi

@Gi
@xj

= 0: (37)

This implies that x� maximizes income I(x); as given in (22), if and only if all @F=@zi

can be replaced by ones. We shall now see how this can be accomplished.

1. When @F=@zi is a constant, we can normalize it to one.

2. When @F=@zi is not a constant, then @2F=@zi@zl 6= 0 for some l; l = 1; � � � ; n: If
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there is an i with only one @2F=@zi@zl 6= 0; then (18) implies that @Gl=@xj = 0.

Then we can set @F=@zl equal to any expression, including @F=@zl = 1.

3. For those i with more than one @2F=@zi@zl 6= 0; we substitute @Gl=@xj = 0 for

those l identi�ed in step 2 into (18). If this leaves only one term,

@2F

@zj@zl

@Gl
@xj

= 0;

with @2F=@zi@zl 6= 0, then obviously @Gl=@xj = 0 for this l; and we can set @F=@zl =

1. Substitute @Gl=@xj = 0 into the expressions (18) for the remaining i; and so on.

4. If there are still i left with more than one term in their expression (18), then we can

write this expression as

�i(z)
nX
l=1

�il
@Gl
@xj

= 0: (38)

This is because F is a function of z only and G is a function of x only.

(a) If there is only one i left, then rescaling all Gl functions in (38) such that all

�l are normalized to one yields

nX
l=1

@Gl
@xj

= 0;

and we can set @F=@zl = 1 for all l involved.

(b) If there is more than one i left, then the unique solution to the system of (18)

equations for these i is @Gl=@xj = 0 for all l involved. Again, we can set

@F=@zl = 1 for all l involved.
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