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Stochastic Demographic Dynamics and Economic 
Growth: An Application and Insights from the World 

Data 

Tapas Mishra ∗ 

Abstract: »Stochastische Bevölkerungsdynamik und Wirtschaftswachstum: 
Anwendungen und Einsichten auf der Basis von Weltdaten«. This research has 
two broad objectives: First, to model population growth in a stochastic frame-
work such that the effects of possible non-mean convergent shocks could be 
studied theoretically on long-run economic growth and planning. Second, an 
empirical strategy for modelling stochastic population growth over time is pro-
vided. Forecasting exercise has been rigorously carried for population growth 
and income by embedding the stochastic growth feature of population. For 
modelling purpose, a long-memory mechanism for population growth is sug-
gested so that the classical economic growth assumption of constant and/or 
non-stochastic population growth in economic growth models appear as a lim-
iting case. The analytical results show that embedding the stochastic features of 
population growth helps in explaining the economic growth volatility. In par-
ticular, it is found to be a formidable cause of the presence of long-memory in 
output. The empirical analysis shows that unless the stochastic feature of popu-
lation growth is taken into empirical growth models, we will not be able map 
out the significant effects of demographic variables consistently over time. It is 
also shown that how corroborating the information of stochastic shocks of 
population alters our forecast vision by impacting significantly on the precision 
of the estimates.  
Keywords: Stochastic population growth, long-memory, convergence patterns 
approach, population and income forecasting. 

1. Introduction: Cross Country Growth Variations – Tracing 
Causes, Sources and Consequences 

The study of demographic-economic growth relation is quite old dating back to 
the days as early as Malthus (1798). Scores of theoretical papers since then 
have attempted to unravel the dynamics of population growth and economic 
development, most of them pointing to the fact that ‘excess population’ would 
retard economic growth via excess resource consumption. Serious empirical 
dissections also flourished in the past decades, however, a major part of the 
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findings were mired by confusion about whether population has any perceptible 
effect on economic development. If so, in which direction? Concrete conclu-
sions about the effect started to occur in the 1990s, thanks to the advent of new 
growth theory that initiated research in this direction. Banking upon the latter’s 
influence, cross-country empirical analysis showed that ‘concrete and meaning-
ful’ result would occur when we disentangle the aggregate population into its 
components, viz., age-specific population (Kelley and Schmidt, 1995, 2001). 
However, despite the steady progress of theoretical and empirical research in 
this line, the consequences of stochastic nature of population, particularly the 
possibility of a persistent shock, has remained largely unaddressed by main-
stream economic theory. This dissertation aims at studying the effect of such 
possible stochastic demographic shock on economic growth and development. 

A common assumption in growth models is that population growth is ex-
ogenous. Ramsey and the typical Solow-Swan models are the two standard 
examples. Population has also been considered endogenous in some studies 
where the level of economic development determines the growth of population 
and vice versa. In this vein, some recent research (viz., Boucekkine et al., 
2002) has stressed the effect of vintage age structure on economic growth. 
Whether ‘population’ is exogenously or endogenously treated, as economic 
applied growth theorists, we advertently assume that population is ‘stationary’ 
in nature, moves slowly without continuous drift, and in effect remains more or 
less ‘stable’ over time. 

The curse of time is that nothing in the universe escapes the effect of shocks, 
big or small, physical or non-physical. Shocks do not remain constant and 
travel in emptiness. They accumulate as time advances and moves across 
space. Shocks, with even a smaller magnitude at some point in time, might 
destabilize the system after long time of accumulation. Therefore, the progress 
of the shock over the historical trajectory of a variable is of utmost relevance 
while monitoring the evolution of the system. In the demographic and eco-
nomic growth context, extant empirical and theoretical research outrightly 
assume ‘stationarity’ of aggregate and age-structured population growth, and 
therefore they relegate any possibility of the influence of stochastic demo-
graphic shocks in economic growth. It seems to us that the ‘stationary’ assump-
tion is far too simplistic in the analysis of complex economic system. Indeed, 
the lack of substantive application of stochastic behavior of population from 
temporal dimension may be attributed partly due to the ease of economic mod-
eling and partly due to the unavailability of sophisticated econometric tool. 
Modeling population in this setting is alarmingly sparse but for some modest 
contributions of Diebolt and Guirard (2000) and Gil-Alana (2003). 

Taking lead from these, in this book we aim to provide a comprehensive 
analysis of stochastic behavior of demographic shocks studied from temporal 
perspective and discuss how these shocks interact with the economic system of 
developed and developing countries. In particular, utilizing the stochastic 
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demographic properties in the temporal domain, the book aims to offer expla-
nations of cross-country growth variations, trace the source and extent of fluc-
tuations, and study their consequences for long-term economic planning. Al-
though appreciable attempts have been made in the past to explain cross-
country growth variations, the extant literature have primarily focused on non-
persistent demographic system with stationary shocks, and have attributed the 
growth variations to the variations in technological innovations, human capital 
progress and proliferation of knowledge. While the contributions of these fac-
tors cannot be denied, the underlying mechanism to explain economic process 
over time has not been justified. Consequently, there is no single explanation to 
cross-country growth variations. In light of this, the book integrates the com-
plex contribution of innovation, knowledge creation and human capital devel-
opment in economic growth by building a unified framework, viz., demo-
graphic-economic growth system in the temporal domain. We posit that 
demographic pressure leads to higher innovation due to excess demand push, 
knowledge creation occurs with higher trained population which at the same 
time increases the volume of human capital. 

Therefore, characterization of demographic and economic growth system 
together can explain much of the underlying dynamics of growth variations. 
More accurate explanations will emerge when their time properties are ex-
ploited. This is precisely the main objective of this book. To this end, we study 
the stochastic nature of demography-economic growth system. The specific 
thematic threads on which this research has been carried are outlined below. 

1.1 Cliometric investigation on demographic components and 
economic growth 

As a prelude to examining the stochastic demographic characteristics, which 
forms the core of Chapter 3, in Chapter 2 we investigate how the effects of 
demographic components viz., age specific population have changed over the 
decades. Following the standard practice of assuming ‘stationary’ features of 
population growth, we first evaluate and extend the popular empirical eco-
nomic growth models. Specifically, we extend Kelley and Schmidt (1995, 
2001) by adding additional growth regressors and increasing the sample span. 
In this exercise, we note certain inconsistencies and irregularities of growth 
variations. Further we find that decadal changes have brought forth variations 
in economic growth of developed and developing economies. Therefore, we 
tend to argue that accounting for temporal features of the demographic and 
economic growth system would provide clear insights into persistent growth 
fluctuations. 

Although the dynamic response of output to the variations in age-specific 
population is studied in a panel setting, the assumption of stationarity limits us 
to further explore the artefact of stochastic shocks within large cross-section of 
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countries and with large time dimension. We hail this problem as one possible 
source of explanation to why in the 1980s some empirical results showed posi-
tive effect of population growth on economic development and some found 
even no measurable effect. The dynamical changes that occur over time, spe-
cifically the recognition of stochastic shocks in population, is important in its 
own right and therefore must be incorporated in the study of demographic-
economic growth models. 

1.2 Long-memory demography and economic growth 
Reflecting on the limitations of Chapter 2, in Chapter 3 we develop a new 
mechanism to characterize stochastic nature of demographic shocks in which 
population series with large temporal dimension is assumed to be governed by 
certain amount of stochastic shocks. This allows us to characterize aggregate 
and age-structured population growth by a long-memory (or fractional mem-
ory) data generating process. By doing so, the conventional ‘stationary’ as-
sumption underlying the current theoretical and empirical exploration is re-
laxed and more dynamic information about the persistence of shocks is 
accommodated in the economic growth models. In the framework of endoge-
nous economic growth with endogenous population change, this chapter sets 
out to build a long-memory model for population and its components (viz., age 
structure) to delineate the effects of demographic changes on developed and 
developing country economies. The chapter mainly focuses on the validity and 
plausibility of stationary assumption of population growth, studies their effects 
on standard growth model and empirically illustrate the effects of such shocks 
on the development objectives. To this end, we first provide a theoretical 
framework to show that long-memory shocks in demographic age structure or 
population might induce long-memory in economic growth. An empirical illus-
tration of both developed and developing countries is carried out to demon-
strate that population age structure in these countries are characterized by long-
memory. In general, we find non-mean-convergent demographic shocks for 
some countries, while for others, stationary long-memory guides their growth 
processes. 

1.3 Population forecasting and stochastic long-memory 
Following the theoretical development and empirical illustration in Chapter 3, 
in Chapter 4 we propose to employ fractionally integrated ARMA (in short, 
ARFIMA) model for forecasting total population and demographic age-
structure. The conventional methods of population forecasting is discussed in 
this chapter evaluating the advantages and potential weaknesses of these meth-
ods. Our approach to population forecasting while accounting for stochastic 
shocks is a major shift from the conventional ‘low, medium, and high’ variant 
of the population projection. Moreover, our approach is a departure from the 
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stochastic population forecast based on Leslie matrix. We also examine in this 
chapter why forecasting techniques in demography have not been so advanced 
though the methods have not remained too traditional either. 

The ARFIMA methodology suggested in Chapter 4 is an extension of the 
ARMA methodology used by Pflaummer (1992) and Lee and Tuljapurkar 
(1994). By employing the ARFIMA methodology we allow both short-run and 
long-run dynamics of the demographic system. We also evaluate how endoge-
nous demographic shifts contributes to the dynamics of the demographic proc-
esses in terms of non-linearity and how the use of such features impact upon 
the forecasts. Accordingly, long-memory population forecasting in the presence 
of endogenous phase switching is performed. Pflaumer (1992) used Box-
Jenkins ARMA methodology to forecast US total population. ARMA method 
suffers from the typical drawback that it relies heavily on the unit root assump-
tion. We relax this integer restriction and employ a fractionally integrated 
ARMA method to forecast total population for a sample of developed and 
developing countries. Another important distinction of our model is that we 
incorporate stochastic regime switching features in the ARFIMA estimation 
assuming that demographic variables are prone to endogenous phase switch-
ings. Forecasting properties in the presence of regime switching are discussed. 
Using the data of a set of developed and developing countries total and age-
structured population, we forecast them by utilizing their properties of stochas-
tic shocks characterized by ARFIMA processes. We also show in what way the 
forecasts are different from the earlier research. Specifically we compare the 
results with UN forecast and depict that while our demographic forecasts are 
different from the earlier approaches, our method can also act as a complemen-
tary tool to gain accurate information on the future projections. 

1.4 Income-forecasting with long-memory demographic dynamics 
Chapter 5 is a cogent extension of Chapter 4. In this chapter we incorporate the 
memory properties of demographic age-distribution to forecast Gross Domestic 
Product (or National income) of some developed and developing economies. 
Based on a panel data framework, Malmberg and Lindh (2005) proposed a 
demography-based global income forecasting. An apparent assumption in their 
model is that total as well as age-structured population growths are stationary 
and therefore stochastic demographic shocks would contribute little to demo-
graphic variations. We relax this assumption in the forecasting model by noting 
that the growth of total age-structured population need not be stationary and 
that any degree of stochastic shocks in these series can affect forecast perform-
ance. Given that a long-memory panel method is yet to be comprehensively 
built for forecasting, we perform forecast of demography-based income in the 
univariate context assuming a stochastic long-memory process for age-
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structured population growth. Finally, Chapter 6 summarises the main findings 
of this research and outlines possible directions for further research. 

2. Cliometrics of The Abiding Nexus Between 
Demographic Components and Economic Development 

2.1 Introduction 
The mystery of economic growth has not been cracked in economics. The 
movement of the production potential of the industrialised nations over long 
periods of time is still in the centre of the very latest economic (Aghion and 
Howitt, 1998; Temple, 1999) and cliometric (Abramovitz, 1986; Crafts, 1987; 
Darné and Diebolt, 2004; Goldin, 1995; McCloskey, 1987; North, 1994; 
Wright, 1971) debates. This preoccupation is far from new. The classical 
economists were already concerned about how to increase welfare by increas-
ing growth (Smith, 1776). The subject remained controversial after World War 
II, with the theoretical debate on the long-term stability of market economies. 
However, through Solow’s (1956) economic growth model neoclassical think-
ing gradually exerted its power. Its reasoning is clear and it also explains nu-
merous aspects related to economic growth which are summarised perfectly in 
Kaldor’s (1963) six ‘stylised facts’. At the same time-perhaps paradoxically-
scientific interest in work on growth and economic cycles disappeared. There 
were two main reasons for this. Firstly, the shortsightedness of economists 
whose attention was centered almost exclusively on the study of short move-
ments and secondly, the comparative weakness of theoretical models incapable 
of solving the aspects that remain unexplained by the different theories of 
growth. This partially explains why the post-war neo-classical models are 
unsatisfactory. 

Indeed, in the long run, they only account for economic growth by involving 
exogenous factors (except for Ramsey’s (1928) model that was rediscovered 
very recently) and in this case the technical progress achieved without cost 
outside the economic system. In addition, Solow’s reference model does not 
provide any way of explaining the divergence in growth rates at the interna-
tional level, as with the idea of long-run equilibrium, all countries should pro-
gress at identical, exogenous rates of technical progress. Similarly, it should be 
noted that the hypothesis of the systematic existence of a negative correlation 
between income level and economic growth rate is not based on any satisfac-
tory empirical verification. Finally, nothing really corroborates the convergence 
hypothesis, that is to say the transfer of capital from the richest to the poorest 
countries (Barro and Sala-I-Martin, 1992, 1995). However, the work of Lucas 
(1988) and Romer (1986, 1990) attracted attention, and the 1980s marked a 
renaissance of the neo-classical theory of growth. The prime objective was to 
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go beyond the weakness of the old theoretical models. The aim was also to 
answer new questions: what are the determinants of sustainable economic 
growth? Can technical progress alone increase social welfare or can capital 
accumulation also lead to a permanent increase in per capita income? What are 
the factors of production that engender sustainable economic growth: physical 
capital, environmental capital, human capital, social capital or technological 
knowledge? What are the mechanisms that guarantee growth over a long period 
for a market economy? Finally, what is/are the market structure/s within which 
economic growth can be achieved? Strengthened through these questions, the 
debate on the determinants of the economic growth process has attracted con-
siderable attention, both in the importance of its implications in terms of eco-
nomic policy and in the number of theoretical and empirical analyses that it 
engendered. Curiously, population dynamics is often absent from the theoreti-
cal developments and empirical verifications (Fogel, 1994; Jones, 1998) or 
appears implicitly under the heading ‘human capital’. As a possible response to 
this, our focus in this chapter is to identify, in econometric history terms, the 
role of the components of demographic change in economic development, here 
with an in-depth analysis of the demography-economic growth nexus in the last 
four decades (1960-2000). 

Lately, demographic variables have been found to play central role in eco-
nomic growth fluctuations1 have been found to play central role in economic 
growth fluctuations in many developed and developing countries. However, not 
very long ago the contributory role of demography to the process of economic 
growth was considered redundant and was mostly mired by confusions about 
the sign and magnitude of population growth in the economy. It is only very 
recently that certain convergence of views have started to occur indicating that 
population age structure, and not the aggregate population matters for per cap-
ita income growth. The conservationist ideas used to dominate economic think-
ing in 1970s, for instance, the mercantalists viewed that a large population 
would stimulate economic growth, while Malthusian arguments (due to Mal-
thus, 1798) unequivocally persuaded most economists to the point that due to 
decreasing returns, population growth would lead to lower per capita income. 
A neutralist view also emerged during the 1970s and 1980s concluding that 
population growth rates are not influential behind variations in per capita in-
come. In effect, demographers and socio-economic policy makers found them-
selves in delirium as to ‘which theory to believe’ until Kelley and Schmidt’s 
(1995) (hereafter, KS) seminal work threw a definite answer to the persistent 
mess of confusions. Building on the nuances of new growth theory, KS (1995) 
and latter Crenshaw et al. (1997) demonstrated that segregating population size 
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into different components2 could offer the much needed solution to understand 
the exact consequences of population change in developed and developing 
economies. 

Based on the sample spanning over three decades (from 1960-1990), KS 
(1995) found that components of population, viz., births and deaths had notable 
but offsetting impacts in the earlier periods (in the 1960s and 1970s). In con-
trast, as KS note, while the short-run costs of births increased significantly in 
the 1980s, especially in the developing countries, the short-run benefits of 
mortality reduction decreased during the same time. Moreover, KS also found 
the significant growth-enhancing effect of population density over 1960-1990. 
In what ensued the growing empirical developments in the last decade, 
Boucekkine et al. (2002) offered theoretical justifications to the short-run and 
long-run effects of the vintage nature of population on economic growth. In a 
more recent contribution, Boucekkine et al. (2005) illustrated that ‘population 
pressure’ (due to higher population density) could play significant role in pro-
ductivity inducement, thereby contributing to the sustainable economic growth. 

Though the theoretical developments in demographic-economic growth rela-
tion provide, inter alia, the basis for sound empirical modeling the attempt for 
the latter has so far been slowly-paced and less well-documented. Interestingly, 
due to the spurt of demographic fluctuations occurring in each decade, one 
cannot be sure if the conclusions of KS (1995) would still remain significant 
for the current decade. KS (1995) model is based on purely demographic fac-
tors, viz., birth and death rates, and the effect of labor force (captured by lagged 
birth rate by 15 years). However, the impacts of these variables on the econ-
omy may vary over time and even to the extent of inclusion of non-
demographic variables such as inflation, number of schools per capita, etc. 
Thus, in view of the built-in complex demographic-economic relationship and 
the recent findings that population age structure exerts significant impact on a 
wide array of macroeconomic activities (Lindh and Malmberg, 1999) (hereafter 
ML), this chapter extends KS (1995) in two directions. 

First, to assess the pattern of demographic change in the current decade we 
extend KS sample by 10 years (from 1990-2000). Two, in order to study the 
robustness of KS (1995) results we also add other demographic and non-
demographic variables, viz., life-expectancy at birth and inflation to the KS 
demographic model. In fact, life-expectancy at birth is held as one of the most 
important factors in income variation in developed and developing countries 
and has been employed in the demography-based income forecasting by ML 
(2005). Moreover, in the standard macroeconomic models, inflation pressure is 
depicted by many authors to covary with the age distribution unless accommo-
dated by monetary policy. For instance, Lindh and Malmberg (2000) estimate 
                                                             
2  These are crude birth and death rates and lagged birth rate to account for labor force influ-

ence on economic growth. 
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the relation between inflation and age structure on annual OECD data 1960-
1994 for 20 countries and found that an age pattern of inflation effects is con-
sistent with the hypothesis that increases in the population of net savers 
dampen inflation, whereas especially the younger retirees fan inflation as they 
start consuming out of accumulated pension claims. The inclusion of these two 
variables in the demographic regression is purported to provide an idea of how 
the demographic-economic growth relationship can be sensitive to the inclu-
sion of other relevant variables in the model. 

Though KS (2001) use life expectancy and inflation and compares different 
demographic models propounded in the literature including their own, their 
sample is limited to the period 1960-1995. Interestingly, KS (1995) stress that 
adding non-demographic variables, such as inflation to their model, did not 
change the overall conclusion of the results, therefore they were induced to 
keep the pure demographic model with only birth, death rates and lagged birth 
rate (which takes account of labour force). The sample span for KS (1995) was 
from 1960-1990. In KS (2001), the authors add five years more to their sample 
and also add other non-demographic and demographic variables to the model. 
Though the variables appear to be significant and have expected signs, it is not 
clear whether addition of 5 years changed their results, which were not signifi-
cant in their earlier study. 

There is yet another important consideration in KS modeling. KS (2001) ap-
proximate the effect of the last decade by a five year average (1990-95). KS 
(2001) also use life expectancy at birth and inflation in their demographic 
model and find that the results are robust to the inclusion of other variables in 
the regression. However, KS data is beset with one notable problem; the au-
thors they do not treat ‘influential observations’ in the sample. For instance, 
population density for Hong Kong and Singapore is exceptionally higher than 
other countries in the sample and this might influence the implications of the 
results. Moreover, KS (2001) could have used a five-year average throughout 
(from 1960-95) to lend consistency to the data segmentation. While the use of 
five year average (as claimed by KS, 2001) to approximate the ‘changes occur-
ring in the last decade’ is not expected to bring alterations in the implications of 
results, it is important to know that this strategy provides at best an approxi-
mate and not the real descriptions of demographic effect on economic growth. 
Undeniably, given rather fast demographic changes in the last decade, inclusion 
of decadal variations in the regression as we have done in this chapter could 
provide a more realistic picture of demographic effects on economic growth, 
more so, the sensitivity of the last decade’s impact in the regression. 

Broadly speaking, the purpose of this chapter is to contribute o the interface 
literature of demography and economic growth by depicting the changing 
weight of demographic components effects on economic development. Specifi-
cally, we show that the consequences of rise (fall) in CBR and CDR has 
changed over the last four decades. Using an up-to-date sample period (till 
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2000) and GDP per capita income compatible with purchasing power parity (in 
1995 international prices), we illustrate how the weights of these effect have 
changed over time. In contrast to KS (1995), we find that there is little gain to 
expect from further reductions in mortality in developing countries. Interesting 
implications follow as the effect of CBR is observed to become positive for 
developed countries. In the wake of the current demographic transition and the 
recently propounded ‘zero population growth’ as optimum for higher economic 
prosperity in the developed countries3, the finding of positive effect CBR in 
these countries calls for a rethinking on the population policy. Moreover, we 
also find that the growth-enhancing effect of population density is only limited 
to 1960s instead of a perceived significant positive effect for all the decades. 
This chapter also argues that influential observations in the sample, like the 
presence of Hong Kong and Singapore in the population density due to their 
very high density figures in comparison to others in the sample, need to be 
treated so that demographic regression as in KS (1995) can provide meaningful 
intuition to demo-economic fluctuations. Given that the standard econometric 
literature explains how the presence of ‘influential observations’ in the sample 
can cause biased inference, our extended model (to be discussed shortly) finds 
the significant growth-enhancing effect of population density in for all the 
decades after dropping Hong Kong and Singapore from the sample. 

The plan of this chapter is as follows. A synoptic view on the current state 
of the population debate is provided in Section 2.2. The idea of this section is 
to track down the exact direction of the trend, that is, till recently what has been 
held and concurrently proved about the effect of demographic components on 
economic growth. The evaluation will be based on three popular approaches, 
viz., correlation approach, production function approach, and convergence 
patterns model. A critical review of these models is provided in this section. In 
section 2.3, we discuss the importance of the components of demographic 
change on economic development with a specific attention on their short-run 
and long-term consequences. Section 2.4 outlines the model to be estimated 
and discusses the econometric methodology to be used. Features of the data 
and design of the variables are also noted in this section. Empirical results are 
presented in section 2.5. Section 2.6 concludes with the major findings of the 
chapter and discusses their implications in the current development context. 

2.2 Stylised facts 
In this section we provide a synoptic review of the empirical economic growth 
literature emphasizing on the discussion of different channels through which 
demographic dynamics can potentially affect economic growth. The theoretical 
armor and empirical comprehensiveness of recent demographic-economic 
                                                             
3  See Boucekkine et al. 2002 for an analysis in this respect. 
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growth model was in its infancy in the 1970s and early 1980s. The role of the 
demographic process was underemphasized and consequently the effect of past 
and future demographic trends on growth used to remain largely unexplored 
(Boucekkine et al., 2002). Instead, technological change4 tended to be used as 
the guiding force in models of economic growth. The recent theoretical ad-
vances (e.g., Boucekkine et al., 2002) thanks to the advent of new growth the-
ory (viz., Lucas, 1988; Romer, 1986, 1990) and commendable progress in 
empirical macroeconomic literature, noted an exception to this trend by initiat-
ing a comprehensive research in demographic-economic growth relation. How-
ever this development was not easy, rather it took a baffling thirty years to 
establish a clear delineation between demography and economic growth. To 
address this we explicate first the development of theoretical and empirical 
construction of demography-economic growth relationship and then critically 
examine the empirical findings based on them. 

2.2.1 The Construct 

In the literature, three basic theoretical formulations, viz., correlation approach, 
production function approach, and convergence-pattern approach are found 
which describe the economy-demography nexus. Traditionally, correlation 
approach used to be extensively applied in early empirical growth models to 
explore demographic-economic interactions: 

 

 
 
( )grΝΥ  is per capita output growth, DΧ  indicates demographic vari-

able(s) which may include ngr , the contemporaneous growth of population 
( )Ν , age structure of the population, crude birth rates (CBR) and/ or crude 
death rates (CDR), Ν  and/ or population density, life expectancy, and migra-
tion. Performing investigation for various countries5 over periods of time, sev-
eral models during and before 1980s drew on unconditional correlations be-
tween per capita output, ( )ΝΥ , and population growth, ngr . Empirical 
results widely vary: some providing evidence of ‘no measured impact’ of ngr  
on ( )ΝΥ , many studies showing negative impact, and even some providing 
evidence of positive association between the two. 

The results from this approach are not easy to explain as it delivers at best 
the first hand information on the effects of demography.6 Moreover, ngr  being 
an aggregate phenomenon does not provide any indication about the specific 

                                                             
4  Some other variables were also used for explaining aggregate output growth, viz., human 

capital, free market institutions, and budgetary disciplines. 
5  Mostly developing countries considering the spur of rapid population growth. 
6  KS (2001) describe this as ‘first pass assessments.’ 
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‘channels’ population affects output growth. Given that an individual acts upon 
the economy’s resource differently over his life cycle, it is instructive to segre-
gate ngr ,7 into various components viz., young generation, working age, and 
retired cohorts. Correlation approach does not lend to segregation of demo-
graphic variables into various components. This feature is aptly carried by 
convergence-patterns approach which we will discuss shortly. 

Production function framework provides an alternative mechanism to ex-
plore economic-demographic relationship. This approach as described in 
Eq.2.2, 

 

 
 

involves lot of growth variables like physical capital ( )Κ , human capital ( )Η , 
technology ( )Α , and natural resources ( )R  to explain variations in output ( )Υ . 
Data on these variables are not easily available and therefore, the variables are 
often transformed into growth terms for empirical execution. Eventually, 
demographic processes are linked to the growth of the factor inputs in the pro-
duction function. Due to its limited empirical rendering an alternative formula-
tion is suggested which is free from the drawbacks of these two approaches and 
enables itself to exhaustive econometric analysis. Convergence-patterns 
model provides an answer to this problem. 

This model builds on the production function framework of Solow-Swan 
type. Following this construct the economic growth of a country is allowed to 
vary with the levels of economic development. Nonetheless, initial en-
dowments of the economy play important role along with the demographic 
factors. The underlying idea of this model is to study the pace at which coun-
tries move from their current level of labour productivity to their long-run, or 
steady-state level. The rate of labour productivity is assumed to be proportional 
to the gap between the logs of the long-run steady state and current level of 
labour productivity.8 Formally, 

 

 
 
Here ( )∗ΝΥ  is the steady state ( )ΝΥ . The greater this gap, the greater are 

gaps of physical capital, human capital, and technical efficiency from their 

                                                             
7  ngr  equals fertility rate minus the death rate. The net migration rate may be added, but 

this has been suppressed in the empirical model of this chapter. 
8  We are using here the per capita output and per-laborer output interchangeably. For the 

latter, it would have been written as ( )LΥ , where L  denotes labour. Ν= αL , where 
α  is usually unity. 
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long-run levels. Depending on country specific characteristics, the long-run 
( )grΝΥ  differs across countries. 

Dasgupta (1995) observed that due to the poor resources base and lower 
level of initial development, developing countries with persistent poverty con-
front the problem of catching up with developed nations. Convergence-pattern 
model underlines this idea. Generally, the relationship between per capita in-
come growth, ( ) nttgr +ΝΥ ,  and the initial level of per capita income following 
this model, is negative (See Solow, 1956). In line with the construct of the 
convergence-patterns approach, KS (1995) provided the following econometric 
model which has tended to be a bench mark for future research. Allowing that 
the demographic processes vary by stages of economic development, KS 
(1995) describe the convergence-patterns model9 as: 

 

 
 

( ).3Γ  is assumed to be a linear function of the variables. ( ) nttgr +ΝΥ , , 
represents per capita output growth, ( )tΝΥ  is the initial level of per capita 
income, Ι  variables supplies information on the ‘initial’ state of the economy, 
for example, population density and educational attainment. Following eq.2.1, 
the demographic variables ( )DΧ  include the contemporaneous nttCBR +, , 

nttCDR +, , CBR  lagged by 15 years ( )15−CBR , and life expectancy at birth, 
etc. tS  variables represent factors influencing economic development as well 
as changes in the stocks, viz., savings, investment returns, state of democracy, 
inflation, etc. 

Recall that the inverse relation between ( ) nttgr +ΝΥ ,  and ( )tΝΥ  forms the 
basis of convergence-pattern model. The interaction term, ( ) ( )tnttD ΝΥ∗Χ +,  
implies that the effect of population growth and its components are allowed to 
vary by levels of economic development ( )ΝΥ . The competing hypotheses 
associated with this are consistent with a declining (increasing) negative (posi-
tive) effect of population growth as the country develops. Before providing a 
detailed analysis (in the ensuing section) of the direction and implications of 
( )DΧ  and I  variables influences on per capita income growth, a summary 
view of their effects are in order. A rise in CBR  is harmful for an economy as 
higher births prompt higher dependence on resources, but a rise CDR  en-
hances economic growth as resource dependence is reduced. This observation 
is subject to subtle evaluation as higher deaths of workers impede economic 
growth while higher death of dependents stimulate it. Moreover, population 
density induces growth through ‘demographic-pressure’. So far we described 
                                                             
9  Note that, while in theory all variables are measured in exact instant t , in implementation, 

the measurement (of say, ( ) ntt +ΝΥ , ) is over the period ( )ntt +, . Studies employ five-, 

ten-, 25-year, or even longer periods (KS, 2001). 
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the theoretical underpinning of the recent empirical model exploring demo-
graphic-economic growth association. In the next section, we summarise the 
findings (specifically the sign and direction of impacts) based on these empiri-
cal models (viz., correlation and convergence patterns). 

2.2.2 Revisiting Empirical Literature 

Analysis from correlation approach 

Based on the correlation approach, Simon Kuznet found that there is in general 
a lack of correlation between population and economic growth in the early 
1970s. However, such an astounding finding drew heavy criticisms as people 
were persuaded to believe that rapid population growth deters the pace of eco-
nomic progress. This is because, increasing population has been customarily 
regarded as mere consumers of resources and that its faster growth is associated 
with diminishing returns to capital. Based on this strong prior belief, using 
international cross-country data for the 1980s some research (e.g., United Na-
tions, 1973), as reviewed by KS (1994), found a negative association between 
population and economic growth. KS (1994) posit that a high rate of growth 
can not be supported by a corresponding increase in investment, thus lowering 
growth of per capita output. 

Simon (1981) was probably the first to challenge this pessimistic view in his 
The Ultimate Resource depicting that population growth was likely to exert a 
positive net impact on economic development in many Third World countries 
‘in the intermediate-run’. In fact, this ‘revisionist’ approach of Simon (1981) 
changed much of the dogmatic thinking of population growth’s consequence on 
economic development in subsequent years. He illustrated that the outcome of 
the population growth on the economy are likely to depend both on the time 
dimension of the assessments, and whether feedbacks are included in the analy-
sis. Feedback effects arise, in the model, due to the population pressure that 
would ultimately cause natural resource exhaustion. Going by his illustration it 
means, over longer periods most natural resource prices actually declined. This 
happened despite the existence of rising demand from increasing population.10 
Hence the ‘time dimension’ is important for these ‘adjustments’ or ‘feedbacks’ 
to be assessed, which arises due to population pressure. 

Based on both the time series and cross-sectional data, the investigators of 
National Research Council (NRC, 1986)11 put a rather balanced and ‘non-
alarmist’ assessment: ‘on balance, we reach the qualitative conclusion that 
                                                             
10  This is due to price-induced substitutions in production and consumption of natural re-

sources, and an increase of supply due to technical advancement and innovation. 
11  The investigation purported for the economic consequences of population growth in poor 

countries, recognized that instead of regarding population growth as exogenously given, it 
should be treated as a causal factor. 
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slower population growth would be beneficial to economic development of 
most developing countries... (but) there is no cause of alarm over the high rates 
being experienced there’.The NRC’s findings suggest that population growth 
has both positive and negative effects, and “given the current evidence, though 
the actual size of the impact can not be determined, the direction of the im-
pact...can be detected”. Since the sample considered by the council involved 
developing countries, a cautionary note was always due as ‘persistent’ high 
births12 in those countries negate the positive feedback from the labor force. 
But since ‘persistency’ of higher births is likely to be attenuated in the longer 
run, youth’s dependency on resources would go down giving rise to substantial 
contribution from the labor force. 

Some other studies in the late 1980’s (Srinivasan, 1988; Kelley, 1988) found 
that while slower population growth would indeed advance the economic well-
being of most developing countries, the size of the net impact would not likely 
be especially remarkable by comparison with many other determinants of eco-
nomic growth. Precisely, Kelley (1988) states that “economic growth ...would 
have been more rapid in an environment of slower population growth, although 
in a number of countries the impact was probably negligible and in some it 
may have been positive.” 

Kapuria-Foreman (1995) in the more recent literature, found a non-
significant correlation in cross country studies (in general) and a slightly posi-
tive causality from population to growth while considering time series analysis. 
In a sense, though it can be said that, research started in the 1980s ‘revisioned’ 
a comprehensive development in analyzing the impact of population growth 
mainly due to the consideration of ‘time’ dimension (i.e., modifying shorter-
run direct effects of demography with feedbacks occurring in the longer run) 
and impact of separate components of demographic change (births, deaths, age, 
size, and density), however, until the 1990s, uncertainties remained concerning 
quantitative assessments of the impact. 

Analysis from convergence-patterns approach 

Extending Brander and Dowrick (1994) and Barlow (1994) framework,13 KS 
(1995) used the convergence-patterns approach (eq.2.4) to explore the relation 
between economic growth and demographic factors. KS (1995) explored if 
direction of the impact of population growth has changed over three decades 
(1960-1990). Building on Barro’s (1991) core variables,14 KS (1995) modeled 
                                                             
12  We explain this feature and its consequence more clearly in the next section. 
13  These models showed that past births contribute to current labor force and hence promote 

economic growth, whereas current births impede economic growth due to adverse effects 
on resource base and thus on investment. 

14  The variables are age structure, life-expectancy, level of per capita income, level of educa-
tion, crude birth and death rates, etc. 
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aggregate population growth taking into account its different demographic 
components and provided intuition about the direction of impact by untangling 
the short- and long-run effects of the components of demographic change. They 
distinguished between several alternative demographic influences on the econ-
omy’s potential output in the long-run (e.g., the impact of population size and 
density), and timing of demographic impacts (e.g., the timing of birth rate and 
death rate reductions) which affect both the short and long-run. 

The central results in KS (1995) summarized in Section 2.1 may be recalled: 
(i) ‘A decrease in the crude death rate induces economic growth in developing 
countries’, (ii) Although death rate reductions contributed positively in each 
decade, this contribution declined monotonically over time, (iii) Concerning 
the impact of birth rates, the short-term costs of high birth rates increased in the 
developing countries in the 1980s. For developed countries a different picture 
emerge: negative effects of birth rate are found, the magnitude of which is large 
in the 1960s and 1970s, but fairly small in 1980s. Nonetheless, the effect of 
past births is depicted to be small. Interestingly, the population pressure de-
picted by ‘density’ variable is found to significantly affect output growth for all 
the decades (1960-1990). The growth-enhancing effect of density in all these 
periods means that increasing population prompt higher innovation and hence 
higher economic growth. The result is found to be consistent for all the coun-
tries over three decades (1960-1990). 

KS (2001) extends their earlier model by enhancing the sample size till 1995 
and introducing some other variables like total population size, life expectancy 
at birth, and inflation to their original demographic model (as in eq.2.4). In KS 
(2001), the authors compare their extended model with different demographic-
economic models propounded by other researchers, e.g., Bloom and William-
son (1997) and find in general that given the demographic trends (mainly de-
clining mortality and fertility) over the period 1960-95, economic growth is 
favorably impacted by demography. Following KS (2001) estimates, for in-
stance, fertility and mortality changes have each contributed around 22 percent 
to changes in output growth. One important result of KS (2001) is that emerg-
ing economies which are now experiencing early stages of demographic transi-
tion can expect an increase in working-age population growth for some time in 
future. 

As different (non-)demographic components change exert varying effects on 
growth of income, we outline in the next section their short-run and long-turn 
consequences on economic growth. 

2.3 Direction and implications of demographic effects 
Taking the recent flavor of demographic explanation of cross-country variation 
in income, socio-economic policy makers and demographers are now flocking 
to the point to understand the short- and long-run consequences of changes in 
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demographic variables on a country’s income and welfare. Specifically, how 
these ‘time profile’ of effects lead to the choice of various long-term develop-
ment objectives for the respective economies. Both theoretical and empirical 
economic growth literature is abound with numerous findings in this regard. 
For instance, Boucekkine et al. (2002) argue that the effect of population 
growth on per capita output growth should be interpreted in light of the vintage 
structure of the aggregate human capital. Based on demographic shifts, the 
authors provide explanation to the transition from a stagnant to a modern-
growth economy by noting that an exogenous increase in longevity leads to 
higher schooling time and can induce an economy from a no-growth path to a 
balanced growth path. Essentially this means that the short-run and long-run 
consequences of population growth depends on the growth of its vintage com-
ponents. Thus, contrary to the orthodox perception of ‘people being only the 
consumers of resources’ (Crenshaw et al., 1997), the rise of the population 
number should not, per se, be thought of retarding economic growth. The num-
ber may in fact spur economic growth depending on which ‘segment’ of the 
population is on the rise. 

The dynamic impact of population growth on the growth of per capita out-
put depends on the vintage structure of population viz., the young generation, 
the labor force, and the retired cohorts. The magnitude of short-run and long-
run effects depends on the magnitude and pace of growth of these generations. 
To start with, the growth in the number of children may impede economic 
growth as scarce economic resources are invested in goods and services that 
yield ‘few immediate economic multipliers’ (Crenshaw et al., 1997). But 
growth in the economically active population, i.e., labor force, is rather benefi-
cial as it can propel economic growth due to their resource creating abilities. 
Thus population policy aiming at birth rate and mortality reductions will gener-
ate short-run and long-run consequences in the economy. 

• Effects of CBR and lagged CBR 

For a clear elucidation, consider first the direction and sign of impacts of CBR 
on income growth. Higher birth rates generally add to the population mass of a 
country and that the short-run effect of a birth is likely to be negative15, which 
may incline a national government to adopt birth rate reductions policies. Evi-
dently, this bears an immediate positive short-run impact on growth due to its 
emphasis on the economization of child-rearing expenses. The role gets re-
versed though in about say fifteen years, as ‘there will be fewer persons enter-
ing their productive work force years’ (KS, 2001). However, the dynamics due 
to birth rate reductions can be explained in terms of the ‘autocorrelated’ nature 
of past and current births. 
                                                             
15  Because the children or young generation are net ‘resource users’. 
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A strong economic logic and empirical evidence follows this fact. Take for 
instance, the case of developing countries. Current high population growth of 
these countries is autocorrelated, implying that they experienced hight past 
population growth rates. This observation has two-way effects: On the one 
hand, the stock of accumulated ‘resource users’ shoots up over time exhibiting 
negative impact on the economy, while on the other hand, as the new births in 
the past turn out to be ‘resource creators’ in the life cycle, accumulation of 
them in the economy infuses positive externalities. In terms of time impact, 
population growth can have short-run negative effect on economic growth due 
to youth dependency, and long-term positive impact resulting from labor force 
growth and a subsequent boost in aggregate demand (Bloom and Freeman, 
1998; Barlow, 1994). 

Following neoclassical economic thinking, where a labor force growth is as-
sumed to be key for economic growth, the positive correlation of labor force 
growth and economic growth can be explained by taking into account the scale 
and demand effects. Following Crenshaw et al. (1997) a growing labor force 
encourages scale effects in terms of larger domestic markets, more complex 
division of labor, greater volume of diffused technology, and lower per capita 
costs of public infrastructure (e.g., roads and transports). Similarly, the demand 
effects can be explained using ‘Kuznets cycles’ of U.S. economic history; 
increasing population has been associated with increasing production – the 
possible reason being increased demand for consumer goods in the wake of 
family formation (Easterlin, 1968). 

• Effects of CDR 

Mortality reductions, especially infant/child mortality, can have similar time 
impacts as birth rate reduction. If mortality decline is concentrated among 
infants and young children, this may create a baby boom in the initial years. 
Subsequently, due to increased use of contraception, the consequent declining 
fertility generates a large cohort of young people. When this cohort enters the 
labor force, it produces a period of 40 to 50 years in which the existence of 
relatively high worker-dependent ratio creates a potential boost to per capita 
income (Bloom and Canning, 2001). Eventually, as the cohort ages, the effect 
disappears, though it can still have notable significance while it lasts. 

Population growth has also been explained in some recent studies (e.g., 
Nielsen and Alderson, 1995) as generating income inequality in the long run. 
According to them, rapid labor force growth deteriorates wage rates and gener-
ates inequalities. As Crenshaw et al. (1997) argued, to justify the logic of posi-
tive association between labor force growth and economic development, it is 
necessary to have individual and family adversity, sharp levels of income ine-
quality, and declining wages due to stiff labor competition. Following Lewis’ 
(1954, 1958) two-sector model, the authors explain that during early and inter-
mediate stages of development, rapid labor force growth boosts the profit mar-
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gins of the capitalists in the modern sector by reducing the average wage levels. 
This profit, in turn, gets invested in the modern sector, and productivity, and 
hence the job opportunities improve in the long run. 

• Effect of Density 

Excessive population growth with respect to higher population density and size 
also have a long term impact on economic growth. In economic geography 
literature, explanations have been put forward how density of population posi-
tively affects production and consequently, growth. In the extant literature on 
empirical growth, models which explored density and size in addition to popu-
lation growth posited that, population density and all components of demo-
graphic change exerted significant effect on output growth. They found that 
population density had a significant positive effect in 1960s and 1970s and the 
net effect of all three components of demographic change is negative, for all 
countries on the average. 

Boucekkine et al. (2005) in a more recent contribution theoretically show 
how the transition from economic stagnation to sustained growth is often mod-
elled due to “population-induced” productivity improvements. They derive the 
effect of population on productivity from from optimal behavior. As per their 
finding, both the number and location of education facilities are important as 
individuals determine their education investment depending on the distance to 
the nearest school, and also on technical progress and longevity. In this setting, 
higher population density enables the set-up costs of additional schools to be 
covered, opening the possibility to reach higher educational levels. Using coun-
terfactual experiments the authors find that ‘one third of the rise in literacy can 
be directly attributed to the effect of density, while one sixth is linked to higher 
longevity and one half to technical progress’ (Boucekkine et al., 2005). To sum 
up, population density will have positive relation with income growth. How-
ever, the sign may appear negative or may be positive and insignificant if den-
sity variable is not properly defined, for instance the locational effects due to 
education and proximity to productive resources. 

• Effect of Inflation and Life Expectancy 

Moreover, in the standard macroeconomic models, inflation pressure is de-
picted by many authors to covary with the age distribution unless accom-
modated by monetary policy. For instance, Lindh and Malmberg (2000) esti-
mate the relation between inflation and age structure on annual OECD data 
1960-1994 for 20 countries and found that an age pattern of inflation effects is 
consistent with the hypothesis that increases in the population of net savers 
dampen inflation, whereas especially the younger retirees fan inflation as they 
start consuming out of accumulated pension claims. On the whole, inflation 
and per capita income growth are expected to be negatively correlated. In the 
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similar vain, higher life expectancy at birth can induce higher income growth in 
a country via increased productivity due to enhanced working years and higher 
savings rate at every stage of life-cycle, even when retirement is endogenous. 
Therefore, life-expectancy and per capita income growth are expected to have 
positive sign in the regression. 

Nonetheless, a complete explanation of statistically robust correlations be-
tween population growth and per capita output growth, summarised above, 
needed a complex and extensive statistical modeling.16 From theoretical per-
spective, the formulation of population in terms of vintage structure and study-
ing its impact on the economy in an endogenous growth framework (Boucek-
kine et al. 2002) is a major leap. The remarkable contribution followed from 
KS (1995) in the empirical front in line with Brander and Dowrick’s (1994) 
tradition, where they decomposed the aggregate population into components of 
change. This laid the foundation for untangling the long-run and short-run 
effects of population growth on economic development using an exhaustive 
econometric methodology. In this chapter, we study how the weight of each 
demographic effect has changed over time. The following section describes 
data and methodological framework used in this chapter. 

2.4 Empirical Framework 

2.4.1 Methodology 

The methodological framework described in this chapter heavily draws on KS 
(1995). The empirical specifications as well as the econometric methodologies 
used in KS (1995) have been retained in our investigation so that appropriate 
comparisons17 can be made. KS (1995) specified the following equation: 
 

 
 
where ( )2,0~ σε ΙΝit . 

 
Three empirical specifications (of equation 2.4 and so equation 2.5), are 

used, each one succeeding the other inductively following the addition of dif-
ferent demographic variables in the model (see equations 2.6-2.8). In equations 
                                                             
16  Because of the anomaly in the 1980s due to world recessions, war, and droughts and be-

cause of a possible association of negative consequences of population growth with dimin-
ishing returns to capital and the environment (KS, 1995). 

17  The methodologies used in this chapter can be substantially changed incorporating more 
time series features in the framework and studying the memory property of the demo-
graphic components. However, this exercise is reserved for future investigation. Nonethe-
less, the intuition here also provides motivation for Chapter 3. 
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2.7 and 2.8 we have added life-expectancy at birth and inflation so to give a 
more general specification of the demographic model. First, we estimate KS 
(1995) specification with modified data set and next we also estimate the gen-
eral model. Note that KS (1995) models exclude life-expectancy and inflation 
from equations 2.7 and 2.8, though these variables are included in KS (2001). 

We start with the simple model where per capita output growth18 is ex-
plained by the log of initial level of per capita income, the aggregate population 
growth, population density, and the interaction term, i.e., ( )grgr ΝΥ∗Ν . It 
may be noted that the variable, ‘density’, has been entered in each (of the three) 
equation as it represents the information about the initial state of the economy 
and most importantly it captures the concept of technological change which is 
induced by faster population growth. In the next model, a decomposition of 

grΝ , viz., CBR , and CDR , and their interaction terms are considered. The 
third model is the most general one, where another demographic component, 

15−CBR  is added to model 2 to take account of the net effect of past births on 
the growth of per capita output. The empirical models derived from eq.2.5 have 
the following specifications: 

 

 

 

 
 
An important question arises about the functional form of ΝΥ . Basically 

three types functional forms, viz., linear, log, and cubic forms have been used 
by different authors in various studies. Among them the log form of ΝΥ  is 
chosen following KS (1995), as adjusted 2R for log form was among the high-
est with no notable differences in demographic effects. Moreover, one may be 
inclined to think about the status of equations 2.4 and 2.5 as a data generating 
process (DGP). Note that the per capita income growth is allowed to depend on 
the initial income per capita, say at the level 1960 for each country. Equations 
2.4 and 2.5 suggest that ΝΥ  has a long-run equilibrium level which depends 
on productivity (viz., technology, capital stock, etc.). These effects are in fact 
captured by itS  variable in eq. 5 ( tS  in eq.2.4). The growth also depends on a 

                                                             
18  Note that we do not refer here to the instantaneous growth, rather growth over period. 
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host of other demographic factors. So this serves as a DGP. The purpose of 
introducing ΝΥ  initial is to test for convergence pattern model. One can of 
course go without this variable. The methodological framework of the chapter 
depends on the convergence-type model, hence is the inclusion of ΝΥ  initial. 
S  variables are assumed to hold constant in the model. Technological changes 
are assumed to be induced by demographic pressure. Time trend is irrelevant in 
the model, as we are interested in decennial growth changes. Time-effects are 
captured in tη . 

The method of estimation19 of the convergence-patterns model (equations 
2.6-2.8) is in line with KS (1995). In these equation, iα  and tη  denote country 
specific and time specific intercepts. Depending on the assumptions made 
about iα  and tη  different kinds of models could be generated viz., Pooled 
estimation, Fixed Effect Model (FEM) and Random Effect Model (REM). In 
the empirical growth theory, there are numerous applications and discussions 
about the relative significance of these models. Specific discussions in this 
regard centers on whether iα  is properly viewed as a random variable (known 
as random effect model) or as parameter to be estimated (known as fixed effect 
model). Nevertheless, the application of these methods (viz., FEM and REM) is 
sometimes limited by the choice of the economic model and intuition guiding 
the theory of specific interest to the researchers. 

REM assumes iα  and tη  as random which are separate components of the 
error terms. Though theoretically REM edges over FEM on efficiency ground, 
its estimates may be biased if iα  and tη  are correlated with independent vari-
ables, i.e., DΧ  type of variables, and ( )ΝΥln  in our case. For instance, if 
natural resources are a part of the individual intercept iα , and are correlated 
with ( )ΝΥln , then use of REM will result in biased coefficient estimates. 
Moreover, FEM is appropriate if individuals in the sample, i  can not be 
viewed as random draw of some underlying distribution. In our case i  denotes 
countries, and therefore it is not a random draw Hence we use FEM. KS (1995) 
note that FEM ‘edges out REM in situations in which the sample represents a 
sizable proportion of the population’, which is a feature of our specific case. 
Using Hausman specification test, the authors showed that FEM consistently 
dominates REM and Pooled estimation methods employed in his study. 

Recall that the most important assumption on which panel estimation meth-
ods (FEM or REM) are based is the cross-section independence of observa-
tions. There is a growing literature in this field recently which considers ‘de-

                                                             
19  We will discuss shortly that to avoid persistency problem in Panel data, data can be aggre-

gated to decennial periods. Then the standard fixed effects and / random effects methods 
are applied for estimation of the parameters. However, the time series characteristics have 
not been incorporated in the panel data which can be done using for instance, panel unit 
root, or even more flexible formulation using panel long memory. The latter has not been 
studied yet though effort is being made in this direction. 
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pendence’ structure and not the standard ‘structure of independence’ of obser-
vations in the model. Empirical applications of this new consideration are 
rather sparse because it involves a lot of methodological complexities. None-
theless, the ‘independence’ assumption is very standard in panel data litera-
ture20 and for the purpose of this chapter we have followed the same. 

Using FEM means inclusion of country intercepts and the determined time 
periods intercepts in the estimation. The country dummies control for the influ-
ences of per capita income growth, viz., cultural attitude or natural resource 
base, which vary across countries but reasonably remain constant over time 
within countries (KS, 1995). The time dummies control for period-specific and/ 
or global influences.21 Under the assumption of single intercept, we perform a 
‘pooled regression’. At the same time, to capture the separate effect of each 
decade, cross section regressions for four decennial periods have been carried 
out in this chapter. 

2.4.2 Data 

We have extended KS (1995) sample till 2000. The empirical estimation is 
based on the regression of 86 countries (63: developing and 23: developed 
countries). Two separate regressions were performed. First with Hong Kong 
and Singapore (86 countries) and second, without them (84 countries). These 
two countries have very high density in comparison to other countries in the 
sample and therefore appear to be influential observations in the sample. The 
consequences of the latter’s presence in the sample is well studied in the 
econometric literature, one of them being the biased parameter estimates. As 
we will notice shortly, dropping the two countries from our sample sub-
stantially improves the parameter estimates of the density variable in the panel 
regression. A note on KS(1995) data is in order. By carefully studying KS data 
we find that for some countries including Hong Kong, the values are incor-
rectly reported, the most common of them is anomaly in terms of interchanged 
data for some countries. For instance, the values for density in case of Hong 
Kong is incorrectly specified as 37, 48, and 63, which are averages for each 
decade 1960-70, 1970-80, and 1980-90 respectively. For Honduras the speci-
fied values are 3080, 3880, and 5040 respectively for each decade. Similar mis-
specifications are also found for other countries. In the current data set, which 
are from the World Bank Development Indicators, we have corrected these 
mis-specifications. In effect, some changes in the results for the effect of den-
sity variable in the panel regression are expected, and might not match with 
that of KS (1995). 

                                                             
20  Recently Pesaran (2003) and Bai and Ng (2002) model dependence structure in the panel 

data. 
21  For instance, the oil price shock in the 1970s and recessionary periods in the 1980s. 
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The dependent variable is per capita growth rate of GDP22 (at constant pur-
chasing power parity (PPP) at 1995 base). The source of the data is from Penn 
World Table 5.1. This GDP adjusts for the actual buying power of national 
currencies, and excludes the factor income from abroad (See, Summers and 
Heston,1994, and Penn World Table 5.1). Data on population growth, the crude 
birth rate (CBR) and the crude death rate (CDR) have been collected from the 
US Census Bureau, while density, and other relevant data have been collected 
from the World Bank Development Indicators. CBR, and CDR are measured 
per 100 population, and density is measured per 1000 population. The available 
length of data is for 40 years (from 1960 till 2000). Data on these variables 
have been aggregated over decennial periods keeping in mind the possibility of 
persistence and simultaneity between the dependent and explanatory variables. 
Aggregating over longer growth periods (say 10 year aggregation in our case), 
the differential grΝΥ  growth rates can alter ΝΥ  enough to influence sub-
stantially the pace of demographic change. KS (1995) reiterate that decennial 
periods embody more ‘real’ demographic information because lower-degree 
aggregation, say 5 years, rely on the assumptions inherent in extrapolations 
between decennial censuses. Thus in the estimation we have four decennial 
periods: 1960-70, 1970-80, 1980-90, and 1990-2000. 

The per capita output growth (the dependent variable of our model) is not an 
‘instantaneous’ growth rate. In the empirical literature, growth models often 
use ‘growth over periods’ and not ‘instantaneous growth’. Hence confusion 
might arise about the calculation of the per capita output growth rate in our 
model, which in our case is: ( ) ( ) 1−ΝΥΝΥ + tn

nt grgr . n , in our case, is 10 
years. To take into account the dynamic effects of the birth rate, we have 
lagged crude birth rate by 15 years, as netting out the effect of lagged birth rate, 
denoted as ( )15−CBR  establishes the significance of labor force in the estima-
tion. Consequently, it can reduce the magnitude of ‘negative effect’ of CBR in 
the estimation. Since demographic data were unavailable before 1950, lagged 
values for 15−CBR  for 1960s apply to 195055, for 1970s, it applies to 1955-
1965. Again for 1980s and 1990s we have used the periods 1965-1975 and 
1975-1985, respectively. 

2.5 Results 
The results discussed in this section are based on the methodological frame-
work outlined in the preceding section. The results are analyzed from two 
perspectives. First, based on fixed effect model, we summarize the effect of 
each demographic component over four decades. A pooled regression under 
common country intercepts for all countries (both developed and developing) 
has been carried out for model 3 (eq.2.8). Second, to perceive the separate 
                                                             
22  Real GDP per capita is assumed to the best indicator of a nation’s affluence. 
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effect of these components in each decade cross-section regressions of per 
capita income growth on demographic components have been performed using 
model 3. Based on the estimates from these regressions, partial derivatives of 
the per capita income with respect to each demographic components have been 
calculated so that their exact effect on per capita income growth can be as-
sessed. A confidence band ( )σ2±  has been constructed for the partial effect of 
demographic components so that significance of each effect can be judged 
statistically. 

The general characteristics of the data may be noted from Tables 2.1 and 
2.2, which present the standard deviation and median values of the demo-
graphic variables under investigation. Notable differences in the variation in 
CBR and CDR can be observed between developed and developing countries 
during 1990-2000. While CBRσ  for developed countries stands at 0.357, an 
expectedly high variation is observed for developing countries. Similarly, death 
rate variations is also very high for developing ( )590.0=CDRσ  in comparison 
to the developed counterpart ( )143.0=CDRσ . Indeed, the nature of variability 
of these two demographic components indicate about the relative stability of 
their demographic system. Developing countries have typically experienced 
high birth rates and death rates. However, the rate of births and deaths have 
varied from country to country, the foremost cause being the inability of vari-
ous developing countries to implement the population control policy and gen-
erate resources to contain them. 

On the other hand, developed countries have maintained more or less a con-
sistent and low variability due to their degree of development. From Table 2.2, 
observe the growing difference of initial level of per capita income, ( )ΝΥ  for 
the two sets of countries since 1960s till 2000. Even though the median ( )ΝΥ  
has doubled for both, the wide difference remain between them; in 1960s de-
veloped countries median ( )ΝΥ  was about 5 times higher than developing 
countries which in forty years have proliferated to approximately 7 times dif-
ferences. The median CBR and CDR in developing countries have mitigated 
from 1960s while the median labor force (i.e., 15−CBR ) has increased over the 
years. This is an expected outcome due to the heavy investment in education 
and human capital in those countries and implementation of birth control and 
death reduction policies. 

Before elaborating on the empirical results, some notes on the general fea-
tures of the tables would help in understanding the intuition of reported results 
and regressions which are different from KS. Basically, our results can be 
divided into two separate theme: First, with KS (1995) basic variables and 
second, an extended model with some other demographic and non-
demographic indicators. The purpose of the latter is to examine the robustness 
of KS conclusion under extended model specification. Moreover, as we noted 
earlier, influential observations in the sample may bias results, we have run 
separate panel and cross-section regressions with and without influential obser-



 34

vations (viz., Hong kong and Singapore) from the sample. The effect of the 
latter is clearly visible in terms of improved significance level of density vari-
able in the regression. We elucidate the point shortly. 

Tables 2.3 and 2.4 present our estimation of KS three-period regression 
(from 1960-1990) with original KS (1995) variables but with new data col-
lected from the World Bank and Penn World Table. In Table 2.3 we report how 
population growth would impact per capita income growth when the basic state 
variable, here density, is not considered. Table 2.5 represents our regression 
results of the extended sample (but not with addition of other variables) with 
Hong-Kong and Singapore in the sample. Table 2.6 reports the cross-section 
regression results which is derived from Model 3 and has the same features as 
Table 2.5. Table 2.7 is based on cross-section regression results and calculates 
partial effect of the variables for each decade using the median values 2.2. In 
Tables 2.9, 2.10, and 2.11, we present panel and cross-section regression and 
the corresponding partial effects based on 84 countries after dropping Hong-
Kong and Singapore from the sample. Finally, Tables 2.12 and 2.13 present 
results of extended model which include other demographic and non-
demographic variables. Note that we have estimated models with and without 
dropping the influential data in the sample. The results are reported in Tables 
2.5, 2.9, 2.12, and 2.13. Tables 2.5-2.7 report regression results based on 86 
countries which include Hong Kong and Singapore. In Tables 2.8-2.13, estima-
tion based on 84 countries (after deleting Hong Kong and Singapore) are re-
ported. 

(i) Effects of ( )ΝΥln  and Density 

To begin with, we first examine the convergence-patterns hypothesis from our 
estimation. The empirical relation between grΝΥ  and ΝΥ  was described 
in section 2.2. It was noted that grΝΥ  varies inversely with ΝΥ , the initial 
level of per capita income. The negative sign of the coefficient of ΝΥ  ex-
plains the the logic of the convergence patterns model. Three models (see Ta-
ble 2.5), viz., from the most restrictive to the most general (Model 3) outline 
the coveted demographic-economic growth relation. In the restrictive (Model 
1) the demographic components have been excluded in order to perceive the 
effect of only aggregate population growth and the state variable, the density of 
population in the model. In Model 2 and Model 3, demographic variables have 
been inductively included (See Table 2.5). Observe that adding more demo-
graphic variables (in Model 2 first and then Model 3 for the most general one) 
increased the explanatory power of the model. As expected, 2R  is the highest 
with the most general model (Model 3 in Table 2.5). The estimates of the panel 
estimation using FEM (Table 2.5), exhibit the expected sign for the conver-
gence pattern model, i.e., significant negative estimates of ( )ΝΥln  are ob-
served in all the three models. Precisely, this vindicates the invariance of ‘con-
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vergence’ hypothesis to the decomposition of aggregate population into various 
components, viz., CBR, CDR, 15−CBR . 

We now investigate how population density impacts economic growth in 
our estimation. In the literature, it has been argued that population density 
would propel economic growth via technological progress. High population 
density would in fact exert pressure on the economy to vie for more innovation 
so that innovation-led technological progress promotes economic growth. 
Therefore, empirically we would expect a statistically positive coefficient of 
density in the growth regression. Table 2.5, which reproduces KS (1995) re-
gression with our new and modified data set shows that though the coefficient 
of population density is found to be positive across model specifications, they 
are not significant. This is not surprising given our discovery that KS data 
contained some error. Another feature of the KS data is that they do not elimi-
nate or treat influential observations (e.g., high population density for Hong 
Kong and Singapore) from the sample. Once these observations are dropped 
from the sample, the density variables appear to be highly significant. 

Specifically, KS (1995, 2001) found that population density has had growth-
enhancing effect on economic growth. Both panel and cross-sectional regres-
sions supported their findings. However, in view of our discovery of some 
anomaly in the KS data, for instance, the interchanged values of density and 
per capita income for many countries, it is hard to rely on the significance of 
their results. We have estimated KS basic model with three decennial periods 
as in KS (from 1960-1990) after correcting for these anomalies. The results are 
reported in Table 2.4. Note that density is not found to be significant across 
model variations even though they are still found to be positive. This is evi-
dently in contrast with KS (1995, 2001). Moreover, as we extend the sample till 
2000, we find similar pattern (see Table 2.5). With the exception of Model 2, 
the density variable is insignificant in other models as well as in all the cross-
section regressions except for 1960-70 (see Table 2.6). 

An additional problem might occur if there are influential observations in 
the sample, which are likely to bias the estimation of the regression. Therefore, 
it is necessary to either drop them or treat them in the regression. To keep 
analysis simple, we have dropped these two countries from the regression23. 
After correcting for the anomaly in the data and dropping these two countries 
we find the density variable to be positive and significant both in the panel and 
cross-sectional regressions as depicted by Tables 2.9 and 2.10. 

                                                             
23  Note also that KS did a similar trick by dropping China from the sample by arguing that 

inclusion of this country would bias regression (because of very high population figure, 
etc.) and therefore a separate analysis may be required for this country. 
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(ii) Effects of Demographic Components 

We now investigate how different components of population impact on eco-
nomic growth. For the purpose, we begin by studying the significance of ag-
gregate population on economic growth during the estimation period. Next we 
segregate population into different components, viz., CBR, CDR and lagged 
CBR ( )15CBR  and map out their separate impacts on economic growth. To 
incorporate the effect of the interaction terms, notice that ΝΥ  has been multi-
plied with each demographic component (see Model 2 and Model 3) so that the 
magnitude of the partial effect of each demographic term on per capita output 
growth, grΝΥ  can be assessed. Our three decennial regression (in Table 2.4) 
depicts that population growth is not significant, even their interaction term is 
found to be insignificant. Moreover, population growth and its interaction term 
are depicted to be jointly insignificant which is in contrast to original KS 
(1995) results. To assess the robustness of their findings, in Table 2.3 we have 
estimated models without density variable in the regression. The results are 
reported for original KS data and our data. It is evident from Table 2.3 that 
population growth and interaction terms are neither individually nor jointly 
significant. Then one may question about the influence of population density 
for the joint significance of population growth on economic growth as depicted 
in KS (1995). From KS regression, we find the high influence of density vari-
able in all the models and cross-sectional periods. It is not clear if demographic 
variables will still be significant in the absence of population density in the 
regression. 

However, in the extended sample, we find joint negative significance of 
growth rate of population on per capita output growth over 40 years (1960-
2000) (see Table 2.5). Conclusion about negative effect of population on 

grΝΥ , following Model 1, at best provides preliminary gross assessments, as 
nothing is revealed about its exact profile of impact on grΝΥ . For the pur-
pose, ngr  has been segregated into different components according to their 
resource using and creating abilities. In Models 2 and 3 (Table 2.5), the results 
from this regression are reported. 

First, consider the effect of CBR on grΝΥ . The coefficients of CBR and 
its interaction term, ΝΥ∗CBR , in Model 2 (Table 2.5), are insignificant. In 
KS (1995, Pp 551), the coefficient of CBR has always been significant which is 
a contrast to our results. However, we find CBR and its interaction term are 
jointly significant and negative which is the same as KS (1995). Intuitively, this 
means higher births retard economic growth possibly though higher depend-
ence of younger population on economic resources which ultimately reduces 
savings and hence economic growth via negative multiplier effect. To under-
stand how demographic components have changed over time, a cross-sectional 
regression for different time periods have been performed, viz., separately for 
each decade from 1960-70 to 1990-2000 (in Table 2.6). Significance of these 
variables are evaluated based on t-statistics. Joint significance levels are re-
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ported for each component with their interaction terms. Though joint signifi-
cance is not found for each set of variables, additional testing reveals statisti-
cally significant coefficient changes over time for each of the combined pairs 
of CBR, CDR, and 15−CBR . Based on this table along with the calculated 
variable medians (Table 2.2), we have also estimated the partial effect of CBR, 
CDR, and 15−CBR  on per capita income growth for both developed and devel-
oping countries. Table 2.7 summarises the results. 

The partial effects of CBR, CDR, and 15−CBR  are evaluated at ( )ΝΥ  me-
dians of developed and developing countries (see Table 2.2), which are plotted 
in Figures 2.1 and 2.2. These figures can be compared with KS (1995) which 
are plotted for the periods 1960-1990 (see Figures 2.3 and 2.4). Evidently, the 
comparison is made till 1990 since KS (1995) sample ends in 1990. In Figures 
2.3 and 2.4, CBR-own indicates our estimation and CBR-KS indicates KS 
(1995) result. Looking at Figure 2.3, it is observed that the partial effect of 
CBR in developing countries, in contrast to KS (1995) is not monotonically 
declining over time. Our estimates depict a step-like pattern. Monotonic decline 
of the partial effect of CBR for developing countries in KS (1995) means that 
higher births in succeeding decades in these countries consistently and continu-
ously impinge more harm on economic growth. Steplike pattern of the partial 
effect, as found in our case instead implies this is not the case. There could be 
the effect of some population policy which can cause the effect of CBR to be 
felt severely in some decades, but not consistently for all the decades together. 

In our case, the negative effect of birth rise reached the lowest in the 1980s. 
An upward trend (though negative) of the effect in 1990-2000 implies that in 
future the effect of CBR can have positive effect on per capita income growth 
for developing countries. At least a forecast based on our estimates would 
imply so. The reason for the step-like pattern could be laid as follows. Due to 
high investment in education and human capital in the developing countries the 
recent years, the negative effects of CBR may recede over time. Moreover, the 
adoption of population control policy in developing countries that began as 
early as 1960 and 1970s, did not register immediate impact on economic 
growth. The possibility of revival in the 1990s contemplates the fact that popu-
lation control policy adopted earlier would bear some positive impact on eco-
nomic growth which might take another decade or so to completely settle in. 

This empirical fact is much closer to the logic that depending on the nature 
of the structural parameters of the economy (e.g., in our case it could be the 
social environment and educational attainment of the population), a shock (in 
terms of policy adoption for population control) intended to put the economy in 
a different path – might take a long time for the effect to be felt. Indeed, this is 
the case with population control policy: the economy might have to wait a long 
time for the full effect to be internalised (see Dasgupta, 1995 for a discussion 
on these issues). 
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Within developed countries (see figure 2.4), effect of CBR gives rise to 
some interesting features. Beginning from high negative partial effect of higher 
births in the 1970s, the current decade (1990-2000) shows positive impact of 
CBR on developed countries income growth. In view of KS (1995) finding, the 
negative impacts of higher births seemed to recede over time, being ‘fairly 
small’ in 1980-90, though it still remained negative during the same decade. 
From our cross-section estimation, we find that the effect of birth rates have 
become positive for the developed countries during the last decade (1990-
2000). In view of the recent demographic changes in the developed world, this 
contributory effect of CBR  is very important. 

A possible reason for this trend is as follows. Developed countries ex-
perienced a huge drop in mortality and consequently followed a continuous and 
steady decline in fertility. In most part of the European continent, as Boucek-
kine et al. (2002) note, “fertility has now reached or even fallen below the 
replacement level”. Therefore, though “the future scenario of zero population 
growth is considered seriously”, the finding of positive effect of higher births 
for developed countries in our study, calls for a re-examination of the hypothe-
sis. It is nevertheless true that, due to drastic fall in fertility level in the devel-
oped countries, along with an increase in the schooling time, the ‘replacement 
level’ of population must be substituted for higher births. There is large litera-
ture that confounds this logic. At the simplest level, it can be said that higher 
CBR in the countries which experience higher fertility is as dangerous as lower 
births in low fertility countries. The consequence being the same, only the time 
profile of effects differs. 

Compensating for the negative overall effect of higher births, a decrease in 
CDR is expected to accelerate economic growth. Coefficient of CDR in Model 
2 (Table 2.5) is not significant though the interaction term, ( )ΝΥ∗CDR , as 
well as their joint significance, summarises the partial negative effect of CDR 
on economic growth. The conclusion is strengthened when we consider the 
general model (model 3, where the effect of lagged birth rate ( )15−CBR  is 
incorporated). As can be seen, both CDR  and ( )ΝΥ∗CDR  exert significant 
impact on grΝΥ . The finding of negative effect of CDR implies that reduc-
tion in CDR will enhance economic growth. But which country block (i.e., 
developing or developed) stand to gain more from a further reduction of CDR? 
A close look at Table 2.5 and Figures 2.1 and 2.2 provide some insights. Col-
umn 3 of Table 2.7 presents the partial effect of CDR on per capita income 
growth for both developed and developing countries. Figures 2.1 and 2.2 (part 
b) plot the effects of CDR in both sets of countries. Additionally, to provide a 
comparison with KS (1995), Figures 2.3 and 2.4 represent the comparison for 
developing and developed countries respectively. 

To perceive the implications of these findings, first begin with the case of 
developing countries. A drop in the median value of CDR from 0.985 (in 1980-
90) to 0.765 (in 1990-2000) (see Table 2.2) in these countries was expected to 
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increase output growth per capita during the decades. As mentioned, this can be 
known from the partial effect of CDR  reduction on per capita output. Consid-
ering the estimates from Tables 2.5 and 2.7, the partial effect of reducing CDR  
for developing countries during 1980-2000, in fact improved per capita output. 
Even if we compare our estimates for the period 1980-90 with that of KS 
(1995), a clear distinction emerges: the size of the effect of CDR on output 
growth in case of KS (1995) is smaller than our estimates (Table 2.5 and Figure 
2.1, part b for developing countries). It is true that death reductions in develop-
ing countries is mostly concentrated in younger and working age people who 
by and large contribute to the output growth process. 

Going by KS (1995) estimates, a still positive partial effect can be expected 
from death reductions in developing countries. Considering our estimates, this 
optimism somehow fades in. As can be seen from Figures 2.3, part b, CDR  
reduction diminish over time following KS (1995), even becoming negative 
during 1980-1990. The effect of CDR reduction for 1990-2000 can be observed 
from our estimation (Table 2.7, col.3). We find even large negative effect of 
CDR during this decade. This result gives another intuition to our earlier ex-
planation why CBR  has contributed positively to the growth in the developed 
countries. 

So far we discussed the effect of CBR and CDR reductions on the growth of 
output taking the case of both developed and developing nations. Another 
demographic factor which is also important is the lagged effect of CBR, 
namely 15−CBR  in our model. Generally, 15−CBR  is likely to scale down the 
negative partial effect of CBR in the model (see Model 3) so that the net effect 
of CBR can be correctly specified. Going by our results, we find significant 
negative effect of 15−CBR  on output growth per capita (Model 3, Table 2.5). In 
fact, our pooled estimation also confirms this finding (Table 2.5). In KS (1995), 
initially starting from a negative effect in the 1960s, it latter became large and 
positive for the developing countries in the ensuing decades. Surprisingly, large 
negative effect of 15−CBR  is found in our study for developing countries for all 
the decades, whereas for developed countries, the lagged birth rate contributed 
to per capita output growth in the 1980s, finally setting down to large negative 
value in 1990 (see Figures 2.3 and 2.4, part c). It can be said that the expected 
(positive) effect of 15−CBR  as per our estimation does not show much promise 
as a catalyst for growth since its growth-enhancing effect could have very 
much been confused by the ‘persistent high births’ in most of the developing 
countries. The caveat here is that as the number of births keep on rising every 
year, this ‘persistent effect’ becomes so large that it outweighs the effect of 
lagged birth rate ( )15−CBR  for those countries. Therefore, the growth-
enhancing effect of 15−CBR  may not be so prominent in developing countries 
in comparison to the developed counterpart. 
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(iii) Effects of demographic variables after dropping Hong Kong and 
Singapore from the sample 

In the previous section we discussed how the components of population and 
density have had varying influences on economic growth of developing and 
developed countries. Following our earlier discussion that influential ob-
servations need to be dropped from the sample, in this section we elaborate on 
the results of such regression which are depicted in Tables 2.8, 2.9, 2.10, and 
2.11. In general we find that density variable has now become highly signifi-
cant, as opposed to the earlier regression with 86 countries which included 
Hong Kong and Singapore. Moreover, cross-section results (in Table 2.10) also 
support that population density has growth-enhancing effect in all decades. 
Concerning the separate effects of CBR, CDR and 15−CBR , from Table 2.11, 
we note that CBR has become positive for both developing and developed 
countries. In case of the former, it implies, further reductions in birth rate in the 
developing countries will not enhance economic growth. For developed coun-
tries, higher birth will also do good as number of births in these countries have 
drastically fell over the years. Consequently, in the coming decades bulk of the 
population in developed countries will comprise of retired cohorts. Therefore, 
governments in these countries need to adopt policies to encourage higher 
births. These results are similar to our earlier cross-section regression with 
Hong Kong and Singapore (Table 2.6). 

Among developing countries, three trends are apparent. First, the effect of 
CBR has become positive for 1990-2000. We may speculate that due to the 
restrictive population policies adopted by some developing countries, for in-
stance India, despite growth of population in these countries, higher births are 
not expected to witheld economic progress. This might be attributed to the 
increasing number of work force to the total population and high level of in-
vestment to improve the quality of human capital in those countries. In effect, 
positive births are expected to add to the growing labor force which is good for 
economic growth. Second, death rate reductions appeared to contribute posi-
tively in the decades 1960-70 and 1970-80. However, the positive effects of 
CDR reduction in fact becomes negative in 1980-90 and 1990-2000. Third, in 
contrast to KS (1995), the impact of lagged births (presumably the labor force) 
appears to be positive initially, and then becomes negative in the last two dec-
ades (1980-90 and 1990-2000). A somewhat different picture emerge for de-
veloped countries. Negative effects of birth are found only in 1970-80. In the 
ensuing decades, the effects become positive and large. The positive effects of 
CDR reduction appeared to recede over 1960-1990, however, for the recent 
decade the benefits of CDR reduction appears to pick up (see Table 2.11). 
Finally, the effect of past birth are found to be fairly large (as opposed to KS 
(1995) over the decades. These results support the strategy of assessing demo-
graphic impacts by stage of development. For instance, as KS note, reductions 
in CDR may be concentrated in the older cohorts in the developed countries, 
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and in younger cohorts in the developing countries. Figures 2.5 and 2.6 plot 
these partial effects for 84 countries (after excluding Hong Kong and Singa-
pore). 

(iv) Effects of additional variables 

To assess the robustness of KS results extended to the current decade, we have 
incorporated two other variables, viz., life-expectancy at births and a non-
demographic variable, viz., inflation. Their precise impacts on economic 
growth are explained in the previous section. To compare if the implications of 
demographic impacts change due to the addition of extra regressors in the 
model can be studied from Tables 2.12 and 2.13. Note that these results corre-
spond to the truncated sample, i.e., N =84 (after dropping Hong Kong and 
Singapore from the regression). In Table 2.12 we notice that the implications of 
demographic impacts remain more or less the same, additionally life expec-
tancy and inflation also appear to be significant with expected sign in Model 2. 
In Table 2.13 we have included only inflation and not the life expectancy at 
birth based on the logic that if the inclusion of non-demographic factor change 
the results. Evidently, we find inflation to be negative and significant in Models 
2 and 3, thus vindicating the fact that addition of non-demographic factors in 
the regression will enlarge the analysis. 

2.6 Discussion and Conclusion 
The question of the sources of growth has been the subject of renewed interest 
since the early 1980s. The so-called endogenous growth theories have been 
used to extend and go beyond the traditional growth model. The main factors of 
endogenous growth, that may or may not generate externalities, are the accu-
mulation of knowledge (Romer), public infrastructure (Barro), human capital 
(Lucas) and expenditure on research. Population is often absent from theoreti-
cal and empirical observations, but the fundamental character of the demo-
graphic variable for economic growth is far from new. In the sixteenth century, 
Jean Bodin marked the interest shown in the notion of population and more 
generally in subjects related to demography, as he affirmed that ‘There is no 
wealth but in people’. The relations between demographic growth, technologi-
cal changes and the standard of living have therefore been the subject of nu-
merous analyses. The most famous-that of Malthus-holds that the population 
will regulate itself and above all stagnate. Although this is pertinent for a large 
part of our history, the changes observed since 1750 call the idea into question. 
Many currents have emerged in the analysis of population and there are two 
opposing views of the subject. 

The Malthusian line of thinking considers that populations grow geomet-
rically while resources grow arithmetically. So either the population voluntarily 
agrees to limit its growth (with ‘moral restraint’ or abstaining from marriage) 
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or it will be destroyed by war, famine and plague. The creative pressure ap-
proach developed by Boserup (1981) puts forward the hypotheses that demo-
graphic pressure causes the reorganisation of agricultural production. The size 
of the population and hence the level of resources needed leads to changes in 
farming methods. Boserup thus answers the Malthusian trap (insufficient food 
production) with the low population density trap (poor technical progress). 
Encouraged by Kelley and Schmidt (1995, 2001) and Crenshaw et al. (1997) 
empirical assertions that demographic components play pivotal role in explain-
ing economic growth of developed and developing countries, in this chapter we 
studied how the weight of each component effect has changed over time. 

Extending Kelley and Schmidt (1995) data till 2000, (more precisely, in-
cluding another decennial period in the model), we showed that the weight of 
the effect of demographic components have varied over the last four decades. 
For the purpose of exposition and drawing comparisons we have used the con-
vergence-pattern model as in KS (1995). Our results can be viewed from two 
perspectives. First, results from the complete sample as in KS (1995) without 
dropping Hong Kong and Singapore. And second, results of the regression after 
dropping them. Significant changes in the results occur, important of them is 
the significance of population density in the regression. Moreover, some dis-
tinctions can be observed for the effect of CBR, CDR and lagged CBR for two 
sets of regressions. Conclusions are drawn based on the common findings of 
the two regressions and obvious distinctions emerging from the two. For meth-
odological reasons (concerning the influential observations as discussed in the 
previous section) we base our analysis on the truncated regression (i.e., without 
Hong Kong and Singapore in the regression). 

Most important conclusions emerging from our analysis are: (i) very little 
gain can be expected from further reductions in mortality in the developing 
countries. Mortality reductions in these countries are heavily concentrated 
among children, which is costly in terms of economies output. With higher and 
persistent birth rates the effort to materialise the positive effect of mortality 
reductions in the developing countries can do no more good. In effect, the 
national governments in these countries should control for the momentum of 
persistent high birth rate effects. 

(ii) Despite the fact that higher birth rates retard economic progress in de-
veloping countries, interestingly the same may not be true for developed na-
tions. We found that the effect of CBR has become positive in the developed 
countries in the recent decade. This finding can be put into perspective given 
that the future of zero population growth as optimum for higher economic 
growth is considered recently by some researchers (For instance, Boucekkine et 
al. 2002). Given the recent trend of demographic transitions and declining 
fertility level in these countries, economic growth may in fact get slowly paced. 
A positive effect of CBR as found in our chapter provides an interesting and 
intuitively a healthy sign for economic growth. (iii) The effect of CDR in the 
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developed countries is very large in all the decades – larger during the current 
decade (1990-2000). As we know, death rate reductions contribute positively to 
economic growth in each decade. During the last decade, the effect seems to be 
quite large. Important to note that unlike developing countries, death rate re-
ductions in the developed countries are concentrated not only among younger 
generations but most importantly among the working age people. Hence, as the 
greater the number of working age people, the faster is the economic progress. 

(iv) Growth-enhancing effect of population density is observed for all dec-
ades which is similar to KS findings. Population pressure due to high density 
would lead to higher innovation and consequently higher economic progress. 
Looking at the magnitudes of density for all decades from Table 2.10, it is 
evident that population density has contributed relatively highly among all 
decades, to the economic growth of developed and developing countries. 

(v) Additional non-demographic variables would enlarge the analysis and 
implications of demographic variables on economic growth. KS (1995) con-
clusion that only demographic variables are robust in explaining economic 
growth may no longer be robust to the varying demographic and economic 
growth relation. 

The finding of large negative partial effect of CBR in developing country for 
the past decade can be put both in historical and theoretical perspectives: given 
poor resource base, higher birth rate (accumulated over time from successive 
higher birth rates in the past) will put the developing countries economic pros-
perity into dismay. The effect of population policies aimed at controlling birth 
rate reductions in developing nations, will take time to make the positive ef-
fects being felt. Since these countries historically suffer from past high popula-
tion growth, the rate of accumulation of lagged birth rate (CBR-15) might have 
been slower in the 1970s and 1980s and the net effect of CBR could have less 
than an offsetting amount. The period 1990s experienced a slackening effect of 
lagged birth rate both in case of developing and developed countries especially 
in the last decade. 

This is in contrast to KS (1995) finding: in case of developing countries, the 
favorable effect of past births starting from 1970s continued to be positive till 
1990s, while the effect turned out to be negative during 1970-90s for developed 
nations. Overall it seems that the impact of lagged birth rate in the last decade 
is highly increased both in developed and developing country economies. Our 
estimates show that the favorable effect of lagged birth rate is felt only in 1980s 
in case of developed countries, while the effect tended to be negative for devel-
oping nations over time. The short-term costs of high birth rates has been in-
creasingly felt by developing countries over past four decades. Mortality reduc-
tions in those countries (concentrated mainly on infants) showed a sign of 
improvement though still remained negative till date. 

Finally a note on the model and assumption is in order. Recall that through-
out the chapter we have assumed stationarity of the demographic variables. 
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Consequently, a stationary panel method was used for estimation. However, 
recent research (Gil-Alana, 2003) shows that population growth can possess a 
kind of memory property or long-range dependence. With stationary assump-
tion all inherent dynamics of the process is assumed out. However, allowing for 
memory structure to prevail in population variable shows high degree of mem-
ory which of course affects other variables like per capita output growth. Hence 
the time series effect of demographic variables needs to be taken into account 
in Panel data which is disregarded in stationary panels. In this light, we think 
that even if one includes many non-demographic and demographic variables in 
the regression, it would certainly improve the robustness of the model but will 
reveal little about the stochastic behavior of demographic components and their 
consequences on economic growth. One therefore needs to go beyond the con-
ventional stationary assumption of population and study the properties of evo-
lution of the series. This concern forms the core of the next chapter (Chapter 3). 

2.7 Appendix 

2.7.1 Calculation of Partial Derivatives 

The partial derivatives reported in Table 4 are calculated in the following way. 
Recall Model 3 of Section 2.4: 

 

 
 
The cross-section estimates of this regression (for four decennial periods) 

are used to calculate partial effect of each demographic variable. Given those 
parameter estimates, our purpose is to find the partial derivates of ( )tgrΝΥ  
with respect to the variable vector ( )CBRLCDRCBRx ,,= . For instance, in 
case of CBR, the partial derivative is simply calculated as: 

 

 
 
In the same way, the partial derivatives for CDR and CBRL can be calcu-

lated from the cross section regression.sing the format above. Since we are 
interested in comparing the partial derivatives of developing and developed 
countries, we have used the median of ΝΥ  separately for those two sets of 
countries. 
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2.7.2 Confidence band for estimates of partial derivatives 

Denote the estimate of the partial derivative of say, CBR (at period t and for the 
set of countries belonging to developing nations) as stP , where s = (1, 2) and 
t= (1960-70, 1970-80, 1980-90, 1990-2000). Confidence band of stP  at 95 
percent significance level (given its mean,  and standard deviation, Pσ ) is 

 

 
 

N = 23 for developed and 63 for developing countries.  is assumed to be 
the same as the estimated  as 

 

 
 
Similarly, 
 

 
 

Table 2.1: Descriptive Statistics: Standard Deviation; N = 86, sample: 1960-2000 

Developing countries Y/Ngr Y/N Dns Ngr GBR GDR CBR_15 

1960-70 1.931 1.448 0.585 0.587 0.681 0.625 0.449 
1970-80 2.495 1.993 0.700 0.606 0.885 0.607 0.434 
1980-90 2.264 2.668 0.870 0.651 0.973 0.557 0.601 
1990-2000 2.572 3.643 1.036 0.617 1.016 0.590 0.938 
Developed countries 
1960-70 1.605 3.045 0.104 0.766 0.515 0.2 IS 0.573 
1970-80 0.949 3.368 0.112 0.665 0.586 0.190 0.501 
1980-90 0.739 3.603 0.118 0.604 0.523 0.164 0.472 
1990-2000 1.097 4.494 0.125 0.670 0.357 0.143 0.571 
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Table 2.2: Variable Medians (N = 86 countries; sample: 1960-2000) 

Years Y/Ngr Y/N Density Ngr CBR CDR CBR_15 

Developing Countries 
1960-70 2.056 1.628 0.023 2.654 4.559 1.880 3.852 
1970-80 1.491 2.018 0.031 2.635 4.345 1.479 3.869 
1980-90 -0.167 2.634 0.049 2.571 4.032 0.985 3.746 
1990-2000 0.872 2.851 0.050 2.301 3.285 0.765 4.090 

Developed Countries 
1960-70 3.455 7.801 0.088 0.811 1.829 0.960 1.881 
1970-80 2.532 12.085 0.091 0.847 1.523 0.976 1.774 
1980-90 1.864 15.782 0.092 0.444 1.268 0.948 1.659 
1990-2000 1.524 19.813 0.096 0.430 1.269 0.932 1.415 
 

Table 2.3: Effect of Density in Basic Model: Dependent Variable, ( )grΝΥ  

Variables KS-Original Data Model 
1: No density 

Modified KS data Model 
1: No density 

ln (Y/N) -3.722(-3.95) -3.512(-4.37) 
Ngr -0.744(-1.61) -0.635(-1.42) 

Ngr*(Y/N) -0.020(-0.21) -0.002(-0.05) 
Constant 11.241(6.10) 9.311(5.67) 

R2 0.716 0.683 
sigma 2.271 1.567 

No. Obs. 267 257 
chi-square(2): 4.50(p=0.11)) 3.388(p=0.18) 

Note: Bracketed values are t-statistics. 
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Table 2.7: Partial Derivatives Evaluated at ( )ΝΥ  Medians (N = 86 countries; 
sample: 1960-2000) 

Years CBR CDR CBR_15 
Developing Countries 

1960-70 -0.295 -1.352 -0.533 
1970-80 0.338 -2.78 -0.458 
1980-90 -1.614 -1.09 -0.408 

1990-2000 -1.253 -0.265 -0.928 
Developed Countries 

1960-70 -0.104 -2.439 -0.780 
1970-80 -2.470 -2.344 -0.126 
1980-90 -1.944 -0.233 0.276 

1990-2000 1.155 -3.658 -1.454 
 

Table 2.8: Variable Medians for 84 Countries: Sample 1960-2000 

Developing countries 
 Y/ngr Y/N Dns Ngr CBR CDR CBR_15 
1960-70 2.056 1.628 0.023 2.654 4.500 1.800 3.852 
1970-80 1.491 2.018 0.031 2.635 4.400 1.400 3.869 
1980-90 -0.167 2.634 0.039 2.571 3.800 1.100 3.746 
1990-00 0.872 2.851 0.050 2.301 3.300 0.900 4.090 

Developed countries 
1960-70 3.455 7.80 0.08766 0.811 1.80 1.00 1.881 
1970-80 2.532 12.09 0.09101 0.847 1.50 1.00 1.774 
1980-90 1.864 15.78 0.09152 0.444 1.30 0.90 1.659 
1990-00 1.524 19.81 0.0955 0.43 1.30 0.90 1.415 
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Table 2.10: Cross-section regression for KS Extended Model Without Sin-
gapore and Hong Kong (N=84; sample: 1960-2000): Dependent Variable, 

( )grΝΥ  

 1960 1970 1980 1990 
Ln(Y/N) 0.414 1.724 -0.905 -0.489 

CBR -1.345* 0.581 -0.650 0.210 
CBR*(Y/N) 0.195 -0.134 0.120 0.066 

CBR_15 0.287 -0.023 -1.099* -1.952* 
CBR_15 * (Y/N) -0.140 -0.088 -0.043 0.026 

CDR 0.557 -1.933* 0.452 0.764 
CDR* (Y/N) -0.373 0.044 -0.095 -0.270** 

Density 2.040** 1.951** 3.994** 3.041* 
Constant 6.335** 2.805 6.115** 7.184** 

R2 31 26 26 26 
Std. Error (σ) 1.63 1.84 1.60 2.05 

No. of Observations 83 84 84 84 
Note: *: significance at 10 percent. **: significance at 5 percent level; 
(ii) Square brackets over two variables indicate joint significance at 0.05 level; 
(ii) For 1960, data on Uganda is missing. Therefore, N — 83 instead of 84. 
 

Table 2.11: Partial Effects: KS Extended Model (N = 84; sample 1960-2000) 
(Without Singapore and Hong Kong) 

Developing 
Years CBR CDR CBR_15 

1960 -1.027 -0.05 0.06 
1970 0.310 -1.84 0.00 
1980 -0.335 0.20 -0.08 
1990 0.397 0.00 -0.11 

Developed 
Years CBR CDR CBR_15 

1960 0.177 -2.35 -0.81 
1970 -1.043 -1.40 -1.41 
1980 1.237 -1.06 -1.93 
1990 1.513 -4.58 -2.49 
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Figure 2.1: Partial Effects of CBR, CDR, and CBR-15 for Developing 
Countries (Total Countries = 86) 

 
 

 
 

 
 
The solid lines represent the empirical estimates of the partial effects. Lines above and 
below the ‘solid line’ (which is in the middle) represent upper and lower confidence 
band. 
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Figure 2.2: Partial Effects of CBR, CDR, and CBR-15 for Developed Countries 
(Total Countries = 86) 

 
 

 
 

 
 
The solid lines represent the empirical estimates of the partial effects. Lines above and 
below the ‘solid line’ (which is in the middle) represent upper and lower confidence 
band. 
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Figure 2.3: Comparison of Partial Effects of CBR, CDR, and CBR-15 with KS 
(1995): Developing Countries (N=86) 

 
 

 
 

 
 
Note: Numbers 1,2,3,4 in the X-axis in the above figures represent the decades 1960-70, 
1970-80, 1980-90, 1990-2000 respectively. 
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Figure 2.4: Comparison of Partial Effects of CBR, CDR, and CBR-15 with KS 
(1995): Developed Countries (N=86) 

 
 

 
 

 
 
Note: Numbers 1,2,3,4 in the X-axis in the above figures represent the decades 1960-70, 
1970-80, 1980-90, 1990-2000 respectively. 
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Figure 2.5: Partial Effects of CBR, CDR, and CBR-15 for Developing 
Countries (Total Countries = 84) 

 
 

 
 

 
 
The solid lines represent the empirical estimates of the partial effects. Lines above and 
below the ‘solid line’ (which is in the middle) represent upper and lower confidence 
band. 
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Figure 2.6: Partial Effects of CBR, CDR, and CBR-15 for Developed Countries 
(Total Countries = 84)  

 
 

 
 

 
 
The solid lines represent the empirical estimates of the partial effects. Lines above and 
below the ‘solid line’ (which is in the middle) represent upper and lower confidence 
band. 
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3. Stochastic Demographic Dynamics, Economic Growth 
and Long-memory 

3.1 Introduction: Tracing the source of fluctuations and the need for 
a new approach 

After a long hiatus of sustained population debates,24 a surge of recent the-
oretical and empirical research demonstrates how (age-specific) population 
growth acts upon economic growth of developed and developing countries. By 
segregating total population into different components (viz., age structure, 
crude birth and death rates, etc.), Kelley and Schmidt (KS: 1995, 2001), for 
instance empirically showed that growth of these components explain growth 
variations in these countries. In particular, KS outlined the long-term and short-
term effects of age-distribution on the future growth trajectory. Using cross-
country data, Malmberg and Lindh (2005) in an intriguing research showed that 
‘around half of the variation in growth since the last war – especially trend 
variation – is explained by age distribution’. Incorporating age-structure infor-
mation in their forecasting model, the authors were also able to perform a sta-
ble and better forecast of global income than the commonly used technology 
based forecasting approach. It is also held that the age variations of greater 
magnitude, as observed in most of the industrialized nations, would have a 
dramatic impact on macroeconomic consequences in addition to the fact that 
the pace of growth of these components would also determine the speed and 
pattern of convergence of developing economies economic growth. Thus, re-
cent empirical investigation has clearly established the critical role of popula-
tion, especially the role of age structure distribution in economic growth fluc-
tuations. 

From theoretical perspective, though the delineation between population and 
economic growth is quite old, the literature exploring the dynamic relationship 
between age-structure and economic growth is rather sparse. Employing an 
overlapping generations model (OLG) in endogenous economic growth frame-
work, Boucekkine et al. (2002) studied the economic growth consequences of 
age-structured population growth variations. The authors found that growth of 
working age population and investment in them, have various short-term, in-
termediate-term, and long-term consequences on economic growth. Moreover, 
the ‘transition from a stagnant economy to a modern-growth economy,’ as 
evinced in their research, could be made solely on the basis of ‘demographic 
shifts’. Therefore, demographic factors, especially the age-structure distribution 

                                                             
24  See Kelley and Schmidt (2001) and Birdsal et al. (2001) for a survey of the debate that 

concerns about the exact effect of population growth and its components in economic 
growth and development. 
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would play critical role in the current and future economic policy decision 
making. 

The core assumption underlying the extant theoretical and empirical growth 
models is that the growth of aggregate and age-structured population is station-
ary. They are assumed to remain stable over time so that possible stochastic 
dynamics affecting in each generation of population is ruled out. Following this 
assumption, population and age-structure variables would have only short-run 
growth consequences, as the shocks are likely to completely disappear in the 
long-run. Indeed, the OLG model as employed by Boucekkine et al. (2002) 
would remain difficult to use unless a stable age structure is assumed. Nonethe-
less, the generational accounting models are also highly sensitive to the stylised 
assumption of stability. 

Under the conventional assumption of stationarity, stability, and exo-
geneity, standard dynamic economic growth analyses are easily carried out 
because it helps avoid methodological and technical complexities. And most 
possibly, with such assumption plausible empirical growth models could be 
built which to some satisfactory extent could reproduce real life demographic 
and economic growth variations. In fact, exogeneity assumption of population 
acts as a ready proxy for ‘stationary’ population growth because if the latter is 
assumed to affect the economy from outside the system, idiosyncratic popula-
tion shocks would have no measurable impact on the economy. However, real 
life economic situations prove otherwise. Population growth is more likely to 
be characterized as endogenous due to the interaction with the economy and 
due to its own course of evolution. Therefore, instead of the assumed linear 
effect on the economy, it would have a non-linear and persistent effect. A 
shock to the population growth, broadly to the demographic system thus, is 
most likely to have a long-run impact on the economic system. 

Indeed, in the wake of recent demographic changes (e.g., shifts in age struc-
ture distributions, and the demographic age structure’s own inherent dynam-
ics), the stationary assumption appears to us to be too restrictive because it 
inadvertently downplays the role of demographic shocks and their magnitude 
of persistence in economic growth fluctuations. It has been demonstrated by 
some authors (e.g., Prskawetz and Feichtinger, 1995) that due to its endoge-
nous25 nature, population growth may imply chaos.26 Endogenous phase switch 
in the form of demographic variations like high or low fertility, higher work 
force growth etc., observed over a long period of time can induce non-linearity 
in the series, which can result in chaotic population dynamics. Day (1993) 
explains the high non-linear and chaotic nature of population due to multiple 

                                                             
25  In the sense that past population growth affects the economy so that it is endogenously 

determined as part of an interacting system. 
26  This refers to the extreme sensitivity of the future growth path of these variables to their 

initial distributions. 
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phase switch in the series. Thus, in view of these theoretical and empirical 
development, it appears to us that the conventional ‘stationary’ assumption of 
population and its components is far too narrow and the assumption needs to be 
relaxed to accommodate broader dynamics of demographic changes, which in 
turn could have more than mere short-run effects on the economy. 

Empirical research which studies the effects of stochastic demographic 
shocks on economic growth is rather sparse except the modest contributions of 
Diebolt and Guiraud (2000) and Gil-Alana (2003). By depicting the fractional 
nature of population in OECD countries, Gil-Alana showed that the order of 
integration of the population series substantially varies across countries and 
depends on how we specify the I(0) disturbances. Among OECD countries, 
while some countries (like Germany and Portugal) present the smallest degrees 
of integration, population in Japan appears as the most non-stationary series. 
Examining the case of France, Diebolt and Guiraud (2000) also showed that the 
fractional nature of population series will exert significant impact on future 
consumption and more so on the socio-economic relation. The research carried 
out by these authors provide preliminary first hand information about the na-
ture of persistence of population series, though very little intuition concerning 
the degree of persistence on economic growth and development could be drawn 
from their research. The underlying theoretical mechanism delineating the long 
memory population and economic growth relationship is apparently missing in 
these papers. 

Moreover, long-memory characterization in total population provides only 
an unclear picture of the true nature of demographic dynamics, their degree of 
persistence and the effect of persistence on economic growth. This chapter 
makes a modest attempt to fill the void in the literature. It is apparent that mod-
eling age-structure distribution in the long-memory setting provides answer to 
our worries. Nevertheless, in view of the myriad implications of age-structure 
distribution on (macro)-economic growth of developed and developing econo-
mies, a long memory characterization will be very helpful in mapping the de-
gree of persistence of demographic shocks leading to a clear understanding of 
their impact on future economic growth and policy. We suggest a long-memory 
model for population growth and age-structure distribution in an endogenous 
economic growth setting to study the persistence of shocks of population and 
age structure on economic growth. 

The contribution of this chapter to the literature is two-way. Assuming that 
population growth is endogenous, first, we provide a theoretical construct to 
show that long-memory characteristics of population and age structure might 
induce long-memory in output growth. Second, we empirically illustrate the 
long-memory effects of population and age-structure growth on economic 
development of both developed and developing countries. By allowing long-
memory data generating process (DGP) to population growth and age-structure, 
we naturally allow the possibilities of both stationary and non-stationary dy-
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namics in the demographic system. Moreover, we assume that the ‘strength and 
length of memory’ of demographic variables governs their future growth path 
and shapes the pattern of interaction with the economic system. This observa-
tion forms the core motivation of the chapter. 

Clearly, this chapter builds on the assumption laid out above – that the DGP 
for demographic components and economic growth are long-memory. Long 
memory DGP of demographic and output variables provides us the much 
needed platform to check for the magnitude of persistence so that a distinct 
conclusion about the long-term and short-term effect of shocks can be laid. 
Moreover, as we know higher is the persistence, lesser is the possibility of 
shocks converging to the steady state values. Therefore, counter-cyclical poli-
cies are often recommended in the literature. From our ‘memory estimates’ we 
would know the exact magnitude of persistence and its property of conver-
gence to the mean value in the long run so that appropriate policies can be 
recommended keeping in mind the development objectives of developed and 
developing countries. To this end, our empirical examination comprises of 152 
countries (31 developed and 121 developing countries), thus provides an ex-
haustive exploration of long-memory demographic dynamics of a large set of 
countries. 

Drawing on the intuition of the theoretical construct we show that (non)-
stationary long memory in population growth and age distribution may induce 
long-memory in economic growth. Michelacci and Zaffaroni (2000) tried to 
estimate the long-memory behavior of output growth of developed countries. 
The authors did not provide any indication of the source of long memory in 
output growth. In this chapter, we show that long memory in output growth 
might have resulted from long-memory in demographic variables, like popula-
tion and age structure. Therefore, besides, uncertain technological changes, 
fluctuations in demographic age distribution is considered in our chapter as the 
main contributor to long-memory output dynamics. Our empirical estimation 
shows that significant long-memory can be found in most of the developed and 
developing countries. Some of them experiencing non-stationary long-memory 
but assured of long-run convergence. While for others the memory estimates 
exhibit destabilising forces inducing non-convergence of the series to the 
steady state level. Keeping in mind the development objectives of those coun-
tries, these memory estimates provide essential information about their long-
term relationship with income growth as well as the feature of long-run con-
vergence. 

The next section (Section 3.2) summarizes the concept of long memory and 
implications for shock persistence. We also outline a theoretical link between 
the long memory features of demographic variables and economic growth in 
this section. Section 3.3 summarizes the estimation techniques of the memory 
parameter. Data and empirical results of the chapter are presented in Section 
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3.4. Section 3.5 concludes with the major findings by critically examining them 
in the light of development objectives of developing and developed countries. 

3.2 Theoretical construct 

3.2.1 The Concept of long memory and analysis of shocks in demographic 
components 

For a time series tP , long-memory (and short-memory) depicts the strength of 
‘dependence’ between its current and remote past values: between tP  and 

ktP − , where k  is the lag length. The nature of ‘correlatedness’ between them 
gives more intuition about the dynamics of the system where tP  evolves and at 
the same time affects other associated variables in the system (see for instance 
Baillie and Bollerslev, 1994 for review). Stronger (weaker) correlation between 

tP  and ktP −  indicates higher (lower) persistence of shocks. The more persis-
tent a shock is, the more vulnerable is the system. In the time domain, the proc-
ess tP  can exhibit long-memory property if its autocorrelations ( )kp  exhibit 
slow decay and persistence. In the frequency domain, long memory is defined 
when we evaluate spectral density at frequencies close to zero. The memory 
parameter, which defines the nature of shock persistence, is assumed to be 
‘fractional’ rather than an integer in the typical autoregressive integrated mov-
ing average (ARIMA) model so that we can define a long memory DGP for tP . 
The fractional ARMA (in short, ARFIMA) model is described as 
 

 
 
or ( ) ( ) ( ) tt

d uLLPL ΘΦ=− −11 , where, L  is the lag operator, ( )LΦ  and ( )LΘ  
are AR and MA polynomials of order p  and q  respectively. d is the integra-
tion or memory parameter which can be defined on the real line for ARFIMA 
model. Restricting d  to the integer values of 0 and 1 gives rise to standard 
ARMA model. ( )0≥tut  is assumed to be iid  with zero mean and continuous 
spectrum ( )λuf  (see for instance, Granger and Joyeux, 1980 and Baillie and 
Bollerslev, 1994 for details). 

The assumption of real d  values, combined with the filter ( )L−1 , displays 
various memory characteristics of tP . Usually, this can be known by looking at 
the following binomial expansion of ( )dL−1 : 
 

 
 

10 ≡h , jL  is backward operator j  times, and ( )!1 jh j ≡  ( )1−+ jd  
( )2−+ jd  ( )...3−+ jd ( )1+d  ( )d . It may be noted from the above that the 
coefficient of lagged tP  provides the rate of declining weights. However, based 
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on the noninteger values and sign of d , the following memory properties are 
observed. 

With 0=d  in Eq.3.1, the process exhibits ‘short memory’ as the auto-
correlations in this case is summable and decay fairly rapidly so that a shock 
has only a temporary effect completely disappearing in the long run. Long 
memory and persistence is observed for 0>d . In this case, the shock affects 
the historical trajectory of the series. However, greater is the magnitude of d , 
stronger is the memory and shock persistence. For ( )5.0,0∈d , the series is 
covariance stationary and the autocorrelations take much longer time to die out. 
When [ )1,5.0∈d , the series is a mean reverting long-memory and non-
stationary process. This implies even though remote shocks affect the present 
value of the series, this will tend to the value of its mean in the long run. For 

021 <<− d  the process is known to be fractionally over-differenced. In this 
case, there is still short memory with summable autocovariances, but the auto-
covariance sequence sums to 0 over ( )+∞−∞, .  

For 21−<d  the series is covariance stationary but not invertible. And fi-
nally, when 1≥d  the series is nonstationary and exhibits ‘perfect memory’ or 
‘infinite memory’. There is no unconditional mean defined for the series in this 
case. The process defined by this value of d  is non-stationary and non-mean 
reverting. In this case, the mean of the series has no measured impact on the 
future values of the process. Important to note that for 15.0 <≤ d , there is no 
variance, so the existence of the mean would need to be established in each 
case. There is a median, however. So this case may be described by ‘median 
reversion’. The results are summarised in Table 3.1. 

Table 3.1: Fractional components and their interpretation 

d Interpretation 
0 : Short-memory population growth, log population is I(1) 
1 : Non-stationary population growth, log population is I(2) 

< 0, 0.5 > : Long-memory population growth, log population is I(d+1) 
 

3.2.2 The long memory demography and economic growth linkage 

In this section we outline a theoretical mechanism exploring the long-memory 
demography and economic growth linkage. Our objective is to show that long-
memory in demographic variables can give rise to long-memory in output 
growth. We approach the problem in two ways. First, the econometric formula-
tion is given which explains how the presence of long-memory in demographic 
components may give rise to long-memory in output growth. Second, a sto-
chastic Solow-Swan type of economic growth model is constructed where the 
source of stochasticity comes from the long-memory structure of population 
growth rate, which while embedded in the growth-theoretic set-up can cause 
substantial variations in output, consumption, and saving behaviour of the 
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economy. Our idea is to allow population growth in Solow-Swan model as a 
long-memory data generation process (DGP) and study the effect of stochastic 
memory on output. For the purpose, we define below the data generating proc-
ess of population and economic growth. 

Recall that population growth is defined as fertility rate minus death rate 
plus net migrations. Denoting tF  as the fertility rate, tD  as death rate, and 

tNm  as the net migration rate, population growth at time t  is given as 
 

 
 
Assume for simplicity that tNm  is zero in the model, so that population growth 
can be accounted strictly by demographic characteristics, viz., tF  and tD . 
Following Dasgupta (1995) who illustrates that high births at the current period 
might have resulted from the high births in the past, we assume in this chapter 
that current high tn  at t  is a result of high tn  in the previous periods, say at 

1−t . This allows tn  to be modelled as an autoregressive (AR) process. This 
assumption carries significance for the development objectives of developing 
countries. For instance, high persistence in tn  in developing countries, among 
many reasons, might indicate the ineffectiveness of population control policy. 
We elaborate on this point later in this chapter.  

Statistically, the long-memory DGP for tn  can be defined as follows 
 

 
 

where ( )2,0~ ut iidu σ , ( )LΦ  and ( )Lθ  are autoregressive and moving aver-
age polynomials, and ( )dL−1  is a filter giving a picture of rate of decline of 
memory, d , as lag length, L  increases. Setting ( ) ( ) ( ) 1=Ψ≡ΘΦ LLL  for 
simplicity, the above equation is written as 
 

 
 

That is tn  is governed by the strength of the memory parameter, d . Intui-
tively this means the shock in the population growth at the current period is 
regulated by shocks in the past periods with certain memory structure. Higher 
memory estimates implies higher persistence of shocks and the converse. 

Recently Michelacci and Zaffaroni (2000) investigated the long memory 
characteristics of output (Gross Domestic Products, GDP) of developed coun-
tries and found substantial evidence of long memory. The long memory in the 
growth of output can be written in the similar way as long memory in popula-
tion growth. Denoting ty  as the growth of output, then 
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represents long-memory in ty  with the usual restrict ions of d  on the real line. 
An obvious question that may arise in this context is the source of long mem-
ory in output. Economic growth models in the last two decades have suggested 
many different models explaining fluctuations in growth or persistence of 
shocks, the most important variable being the technological progress. However, 
as we explained before, demographic variables have recently occupied central 
place in the explanations of economic growth fluctuations, therefore, any shock 
persisting in the growth of output could be interpreted originating from the 
growth of demographic variables along with technological progress. A natural 
way to present whether, say yt is a short-memory or a long memory process, is 
to know the shape of the spectral density of ty . 

If ty  is described by tt uyy += , i.e., the process is independently distrib-
uted around the mean, then the spectral density of ty  is 

( )
π

σλ
2

2
u

yf = . 

If shocks persist in ty  and is characterized in long memory setting, then ty  
follows ( ) tt

d uyL =−1  with the spectral density  

( ) ( ) ( )λλλλ λ
u

d
u

di
y ffef 22

2
sin21 −− ⎟

⎠
⎞

⎜
⎝
⎛=−= , 

where ( )λuf  is the spectral density of the error term. Now assuming the demo-
graphic-economic relation as above, the long memory in output growth, ty  can 
be represented by the long memory in the growth of demographic components, 

itV . itV  denotes population of different age structure, viz., 
( ) ( ) ( )( )tttit AgeAgeAgeV +−−= 65,6415,140 , where i  refers to each age 

group that varies over time t . Malmberg and Lindh (2005) provide the follow-
ing explicit formulation of demography-economic relationship in their forecast-
ing model, which is our typical interest to show how the memory characteris-
tics in different age-structure population directly contribute to the long-memory 
in output. The model is 
 

 
 
A compact expression of the above equation is 
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where [ ]3,2,1=i  refers to population of age group +−− 65,6415,140  respec-
tively ( )0~ Itε . 

To demonstrate how demographic shocks represented by long-memory 
population growth and age structure gives rise to long-memory in output 
growth, it is necessary to refer to the shock expansion mechanism (Eq. 3.2). If 
demographic shocks exist and have persistence, then the memory structure is 
given by 
 

 
 
with 0=iV  and 0≥d . Note that shocks driving a fractional process must 
have mean zero, otherwise itV  will exhibit a time trend of ( )dtO . In Eq. 3.2, 
we showed that ( )dL−1  could be expressed by jh  where the expression for 

jh  indicates declining weights, we can denote this as impulse-response coeffi-
cient of jL . Hamilton (1994) showed that for large ( ) 11~, −+ d

j jhj  with 
1<d . Given the demographic-economic relation, the growth of output, ty  is 

represented as a function of the impulse-response coefficient jh . The magni-
tude of shocks originating from the demographic variables growth over time 
will affect long-run behavior of ty . The higher the estimate of d , the more 
intensively ty  will respond to the shock, and hence there would be fluctua-
tions. 

Important considerations emerge concerning the ‘order of long-memory in 
economic growth as a result of the linear combination of different orders of 
memory in demographic components’. Putting differently, what would be the 
order of integration of aggregate population if its components display various 
order of integration? Statistically, the question is: what likely impacts the linear 
combination of different orders of ( )dI  processes of age shares will have on 
the order of ty ? In this case, one would be interested in analyzing the long-run 
equilibrium relationship between ty  and itV  given different orders of d . A 
study of this consideration is beyond the scope of this chapter and therefore is 
reserved for future research. 

A Stochastic Solow Model 

In this section we build a theoretical model for interlinking the long-memory 
characteristics of demography and economic growth. Stochastic version of 
Solow-Swan model is used where population growth in the model, instead of 
being constant, is assumed to have stochastic shocks so that dynamics of popu-
lation growth can determine the dynamics of output in the economy. Drawing 
on the intuition and construct of long-memory population growth described in 
the preceding section, we allow population in Solow-Swan model to follow a 
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long-memory DGP. The economy is assumed to be closed. The production 
function of the representative agent is given a Cobb-Douglas type: 
 

 
 
where 10 << α , tY  is output at time t , tK  is capital input at t . Labor input, 

tN  governed by the growth of population, tn  so that 
 

 
 
where population growth, tn , in our system is assumed to follow a long-
memory data generating process which evolves as 
 

 
 
L  is the lag operator as defined before and 
 

 
 

 and  are AR 
and MA polynomials respectively. Moreover, the investment, tI  and capital 
stock equations are described as 

 

 
 

In the above equation, capital stock is assumed to decline at a constant rate of 
( )10 << δδ  per period. Given that s  is the faction of Y  to be invested, then 

 

 
 

Consumption is defined according to 
 

 
 

The immediate effect of long-memory population growth on economy’s 
long-term output, consumption and investment growth can be observed by 
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plugging the long-memory DGP of tn  in the production, capital, and consump-
tion equations. Assuming27 that  

  
in Eq. 3.12 and substituting it in Eq. 3.11 and then in Eq. 3.10, we obtain 

 

 
 

The output per capita, ( )ttt NYy =  in this case is a function of sequence of 
shocks, thus regulating the ‘efficiency unit of output’ by the stability of shocks. 
Moreover, since ( )dL−1 can be represented by impulse-response mechanism, 
viz., 

( )∑∞

=
−+

0
11

j
dj  

, inducting this in Eq. 3.17 then depicts  
 

          
 

Assuming the effect of technology, A , to be constant on tY , or by assuming 
that growth in A  is caused by population pressure, a unit shock in tn  in Eq. 
3.18 can exhibit how tY  responds to it. Nevertheless, it is clear that depending 
on the magnitude of d , the behaviour of tN  can determine the nature of out-
put growth in the economy. Now, since consumption and investment are a 
function of output, the persistence of shocks in output, consumption and in-
vestment growth in the economy. Denoting, aggregate output, aggregate con-
sumption, and aggregate capital stock at T , as TQ , TC , and TK , it can be 
perceived that  

( )( )∑ =
=

T

t t dnKfY
1

, , ( )( )∑ =
=

T

t t dYsgC
1

, , and ( )( )∑ =
=

T

t t dIvK
1

,δ ,  

where ( )dn  denotes long-memory population growth, ( )dY  as long-memory 
output, and ( )dI , long-memory investment. The steady-state growth of output 
and investment can be derived from the above characterizations of stochastic 
output, consumption and investment equations. The effect of long-memory 
population shock on output is demonstrated in Figure 3.1. It may be observed 
from Figure 3.1 that as we increase the value of d  from 0.1 till 0.8, i.e., from 
stationarity to high non-stationarity, the response of output to such variation 

                                                             
27  This assumption is not binding but assumed for simplicity. 
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also increases over time, viz., from a slow response to a very steep response as 
the economy progresses. This depiction does not fully capture the exhaustive 
dynamics that can arise in stochastic Solow-Swan model due to its response to 
long-memory population shocks. However, it provides a preliminary idea of the 
consequences of stochastic demographic system in the economic growth proc-
esses. 

3.3 Estimation of d  

An important parameter in the equations described above is the memory pa-
rameter, d , which needs to be estimated to give a clear picture of the magni-
tude of shock persistence. This section deals with the estimation method of d  
used in the chapter. Elaboration of other methods can be found in Robinson 
(1995), and Kim and Phillips (1999, 2000). Among several approaches of esti-
mating d , notable among them are the parametric approach by Sowell (1992) 
(exact maximum likelihood estimator) and the approximate Whittle estimator 
due to Whittle (1951), and Fox and Taqqu (1986). In semiparametric class, 
Geweke and Porter-Hudak estimator (GPH, 1983), and Gaussian semi-
parametric estimator due to Robinson (1995) are extensively used in the litera-
ture. For the empirical investigation of the chapter, we use the modified log 
periodogram regression (LPR) method developed by Phillips (1999a, 1999b). 
Agiaklglou et al. (1993), Cheung (1993) and Hurvich et al. (1998) argue that 
GPH has severe small-sample bias and very inefficient if the results are likely 
to be contaminated by possible short-memory parameters (i.e., AR and MA 
parameters). They also argue that the estimator is not invariant to first differ-
encing so that there might be an over-differencing issue. 

Moreover, distinguishing unit-root behavior from fractional integration may 
be problematic, because the GPH estimator is inconsistent against 1>d  alter-
natives. This weakness of the GPH estimator has been addressed by Kim and 
Phillips’ (2000) Modified Log Periodogram Regression method (MLPR), in 
which the dependent variable is modified to reflect the distribution of d  under 
the null hypothesis that 1=d . This is in fact the modified version of GPH 
(1983). The estimator gives rise to a test statistic for 1=d , which is a standard 
normal variate under the null. 
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Figure 3.1: Long-memory effect on Output 

 
 
GPH is a standard estimation technique for d, however, the modifications 

suggested to GPH method needs to be explained. Specifically, we briefly ex-
plain the difference between the two by first defining the discrete Fourier trans-
form (DFT) of the time series, and pointing out how the dependent variable, 
viz., the periodogram, is modified in case of MLPR. To elucidate the problem, 
recall Eq.l, and simplify the DGP of the process tP  as ( ) tt

d uPL =−1  for 
convenience. Note that the stationary component of tu  (in Eq. 3.1) is a linear 
process of the form: 

( ) ( ) 01,,
00

≠∞<== ∑∑ ∞

=

∞

= − CcjcLCu
j jj jtjtt εε  

for all t  and with ( )2,0 σε iidt =  with finite fourth moments. Under this as-
sumption, the spectrum of tu  is  

. 

Then, the spectrum of Pt can be defined as 
 

 
 
where tP  is stationary, i.e., 21<d . This is also the analogue of the spectrum 
in the nonstationary case when 21≥d . Taking logs of Eq. 3.19 produces: 
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GPH (1983) propose that d  can be estimated from the above by a linear log 
periodogram regression, where ( )λPf  is replaced by the periodogram ordi-
nates, ( )λPI  evaluated at the fundamental frequencies  

1,...,1,0,2
−== nn

n
πζλζ .  

Here ( ) ( ) ( )∗= ζζζ λλλ PPP FFI , ( )ζλPF  is the dft  
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12
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of tP  and ∗F  is the complex conjugate of F . Substituting these informations 
in Eq. 3.20 now becomes 
 

 
 
where . Note that uf  is continuous, and therefore 

( )ζλuf  is effectively constant for frequencies in a shrinking band around the 
origin (Phillips, 1999a), thus enabling a linear least square regression of 

 over frequencies υζ ,...,1= . The regression gives 
rise to the GPH estimation of d , where asymptotically . This 
method has been extensively used in practice due to ease of handling. How-
ever, Phillips (1999a) note that Eq. 3.20 is a moment condition and not a data 
generating mechanism, and the analysis of this regression estimator is compli-
cated while characterising the asymptotic behavior of the dft ( )ζλPF  which is 
central to determining the properties of the regression residual jη  in Eq. 3.21. 

Phillips (1999a) suggested modification in the GPH method by properly 
demonstrating the asymptotic properties of dft. Moreover, the modified GPH, 
knowns as MLPR provides a wider range for both the stationary and nonsta-
tionary areas such as 0≥d  and for AR and MA errors and test for nonstationar-
ity. The author argues that since we usually have no prior information about the 
order of integration, d , hence it is instructive to cover a wide range plausible 
parameter values of d . The biggest concern in GPH technique is that little is 
known about the short memory component of tu  in our DGP and that its spec-
trum ( )λuf  is treated nonparametrically. In log periodogram regression, viz., 
in GPH, this is accomplished by working with the dft ( )ζλPF  of the data tP  
over a set of υ  frequencies 

υζπζλζ ,...,1:2
==

n
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that shrink slowly to origin as the sample size ∞→n  by virtue of a condition 
on υ  of the type 

0→
n
υ

. 

As 1→d , the dft ( )ζλPF  behaves differently due to the effects of leakage in 
semiparametric estimation of d . Therefore it needs modification. For 

( )1,21∈d , Phillips (1999a) derives t he dft of ( )ζλPF  as 
 

 
 
where  

0→+
ζ

ζ αn
n

 

as ∞→n , for some ( )1,21∈α . The asymptotic behavior of ( )ζλPF  is domi-
nated by the first two terms in Eq. 3.22, however as 1→d  the importance of 
the second term in Eq. 3.22 is reflected. Apparently, it is necessary to correct 
the dft ( )ζλPF  by adding the correction term represented by the known form of 
expression in Eq. 3.22. For log periodogram regression this amounts to using 
the quantity 

 

          
 

in place of ( )ζλPF  in the regression. Thus in stead of the usual least square 
regression (over υζ ,...,1= ) 

 

 
 

which is motivated by the form of the moment equation in the frequency do-
main, the argument above suggests the linear least square regression 

 

 
 

in which the periodogram ordinates,  

( )( )ζλPIln   
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are replaced by ( )( ) ( ) ( )∗= ζζζ λλλ PPV VVIln . This is known as modified log 
periodogram regression a la Phillips. Thus in place of the ‘regression model’ 

 

 
 

with ( )( )0ln uf=α  and  

 
as in Eq.3.21, we now have from Eq. 3.22 

 

 
 

The new regression (Eq. 3.25) seems likely to be most useful in cases where 
nonstationarity is suspected, especially when 1>d . As in the case of GPH, the 
distribution of  

. 

Among several advantages in the modified LPR method, Phillips notes that it 
modifies the periodogram ordinates to find the correct form of the data generat-
ing process for the discrete fourier transforms (DFT) which is simple and in-
volves no unknown parameters. Moreover, consistency can be obtained under 
weaker conditions without assuming distributional forms – which is a big ad-
vantage in comparison to GPH. 

A practical problem is the choice of υ , the number of periodogram ordi-
nates to be used in the regression. GPH (1983) suggests that the optimal 

αυ T=  where 21=α  and T  is the sample size. The choice involves a trade-
off that may be described as follows. The smaller the bandwidth, the less likely 
the estimate of d  is contaminated by higher frequency dynamics, i.e., the 
short-memory. However, at the same time smaller bandwidth leads to smaller 
sample size and less reliable estimates. As in the case of GPH method, the 
smaller value of α : (as in αυ T= ) implies the smaller number of harmonic 
ordinates (i.e., the smaller bandwidth) will be used for the estimation of d . 
Generally, in empirical analysis, preference is given to increasing the value of 
α  to check for the consistency of the estimate of d  although simulation ex-
periments can confirm the validity of the selection. For our purpose, we have 
used 60.0=α  through 80.0=α  to estimate d . We choose28 7.0=α  based 

                                                             
28  The estimates of d for other bandwidth are available with the authors though we have not 

reported in the main text due to space limitation. 
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on a Monte Carlo simulation experiment (see table below) where we have 
minimum bias for that bandwidth. Davidson’s (2005) TSM software is used to 
carry out the simulation experiment which is built for the GPH model (assum-
ing that the simulation results will not drastically change if we had used 
MLPR). 

Table 3.2: Monte Carlo Simulation for Choice of Bandwidth 

Bandwidth Estimated bias Significance RMSE bias 
α=0.60 0.018 3.03 0.0189 
α=0.65 0.021 2.86 0.023 
α=0.70 0.014 2.20 0.015 
α=0.75 0.015 2.47 0.016 
α=0.8 0.017 2.83 0.018 

 

3.4 Data and Empirical Evidence 

3.4.1 Data and estimation issues 

Data 

We estimate d  for four demographic variables, viz., aggregate population, nd 
population of different age shares, i.e., 0-14, 15-64, and 65 and above. A total 
of 152 countries have been considered of which 31 are developed and the 121 
are developing countries. The definition of ‘development’ follows the guide-
lines of World Bank which is based on the per capita income level of various 
countries. In the World Bank Development Indicators distinction of low in-
come and high income countries are made. For the high income countries there 
are high-income OECD and high-income non-OECD countries. However, to 
avoid complexity, we have categorised all the high-income (both OECD and 
non-OECD) countries as developed and the rest as developing countries. 

Aggregate population data has been collected from both World Bank and 
Maddison. Maddison does not report the data on other demographic com-
ponents, hence the World Bank data source has been used for the purpose. The 
sample span of the aggregate population is from 1950-2003 (which is from 
Maddison) and for different age shares the sample span is from 1960-2003. 
Though Maddison data comprise sample long time back in the past, e.g., from 
1800, data for all the countries are not available at the same time. Therefore, 
1950 has been selected as the starting date for aggregate population. It may be 
noted that 50 years of demographic data is not a very small sample for long-
memory estimation given the slow paced demographic variation. Since our 
purpose is to capture the demographic dynamics over time, 50 years data works 
well for our purpose. To know the effect of long memory parameter on per 
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capita output growth, we have regressed the estimated memory parameter on 
per capita output growth of both developed and developing countries over five 
decades. 

Estimation Issues 

An important problem in the long-memory literature is whether to detrend he 
series before estimating the memory parameter. Since the presence of a trend 
can dominate the dynamics of the series, it is suggested by many researchers 
(e.g., Michelacci and Zaffaroni (MZ, 2000)) to extract the trend in order that 
the true dynamics of the series can be known. Elucidating on beta convergence 
of output growth, MZ (2000) suggested that a linear trend be extracted from the 
per capita income series and then a truncated filter ( ) 211 L−  would be applied 
to the residuals. Long memory parameter then, can be estimated for the trans-
formed series using Robinson’s semi-parametric estimation procedure. Com-
menting on MZ’s methodology, Silverberg and Verspagen (2001) found that 
Robinson’s methodology suffers from serious small-sample bias and that the 
use of filter ( ) 211 L−  after linear trend extraction is seriously flawed. Instead 
they suggested the use of first-difference filter, ( )L−1 , to remove the trend. In 
the more recent literature Dolado et al. (2003) investigate this issue using their 
fractional Dickey-Fuller (FDF) method and conclude that the presence of trend 
may indeed affect the behavior of the series and generally supported MZ 
(2000) methodology of extracting linear trend from the data. Moreover, there 
are some literature (for instance, Silverberg and Verspagen, 2001) which shows 
that ‘fractionally differencing the series by 21  entails an approximation and 
loss of data and the series must be intialized’ with the loss of some observa-
tions. So it is better to simply first difference the series (in logs) to remove the 
trend. 

Although controversies still remain as to whether detrend the series before 
estimation of d , in this chapter we follow the logic that the logarithmic differ-
ence of population and its components, i.e., their growth rates, would give rise 
to the same kind of effect as trend extraction from the raw series. Since we are 
interested in investigating the memory structure of the growth of demographic 
variables, the logarithmic first differences have been used in this chapter. We 
have applied Kim and Phillips (1999) modified log periodogram regression to 
estimate d  for the first difference of the log of the population and other demo-
graphic variables, viz., population of different ages. Thus we use growth of the 
variables not the level (which is a stock concept) to look into the long memory 
dynamics. Presence of long memory in the growth variables have interesting 
economic implications, which is generally related to the endogenous growth 
model. Though the relation between long memory and endogenous growth has 
not been studied, implications of unit root in the endogenous growth set up has 
been recently investigated (see Lau, 1997, 1999). In this chapter we do not 
provide an exhaustive theoretical link between long memory in demographic 
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variables and economic growth, we have provided a preliminary background 
on this relation in Section 3.2. 

Another important consideration in the long-memory estimation of the ag-
gregate series is to consider ‘aggregation’ problem for exhibiting long memory 
in the series and a possible structural break. This consideration needs mention-
ing as one of our demographic variables, the population growth, is an aggregate 
variable. A typical question asked by Granger (1980) was that whether aggre-
gation of individual components of an aggregate series gives rise to long mem-
ory in the latter. Indeed, Granger (1980) proved this possibility by showing that 
long-memory can arise due to aggregation of cross-section (individual compo-
nents) units of economic time series. Using a beta distribution for individual 
components, Granger showed the aggregate series can exhibit long-memory. 
Lippi and Zaffaroni (1999), for example, generalize Granger’s result by replac-
ing the assumed beta distribution with weaker semiparametric assumptions, and 
Chambers (1998) considers temporal aggregation in addition to cross-sectional 
aggregation, in both discrete and continuous time. Diebold and Inoue (2001) 
show that a mixture model with a particular form of mixture weight linked to 
sample size gives rise to an ( )dI  behavior of a time series. Parke (1999) pro-
poses a duration model for the explanation of long memory in employment 
series. 

An interesting question arises concerning whether individual components 
display he same characteristics as the aggregate series? Sonnenschein (1972) 
and Debreu (1974) proved that ‘aggregate outcomes may not reflect individual 
behaviors’ because the structure and the time profile of interactions between 
agents, vary over time and across cross-section units. This is indeed the case, as 
the time profile of interaction between the population of ages 0-14 and 15-64, 
for instance, vary across different countries. Therefore, finding of long-memory 
say in the aggregate population in the developed or developing countries may 
not be reflected in the individual countries. Though aggregation problem needs 
to be considered seriously for future research, for the purpose of the chapter, 
we will not delve too much into the theme. Our purpose in this chapter is not to 
study the source of long-memory in the aggregate population series. Rather, we 
investigate if at all aggregate population and its different components can be 
characterized by long-memory behavior. 

Some authors (see for instance, Diebold and Inoue, 2001) also argue that 
long memory can often be confused with structural break. Structural break 
arises most often due to policy changes in the economy and sometime due to 
the introduction of exogenous shocks (say oil price shock for instance). A 
considerable amount of work exist for unit root and structural break though 
some recent research has started to recognize the effect of structural break on 
the memory characteristics in a time series. Diebold and Inoue (2001) provides 
Monte Carlo evidence to support the claim that long memory and structural 
change are easily confused, all in the context of simple and intuitive economet-
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ric models. Majority of the financial and economic time series exhibit a kind of 
structural break (some have endogenous and some exogenous). However, ag-
gregate population and its components do not often show such kind of break 
although it is quite possible to have one. For demographic variables, there are 
very little or rare evidence where a major break changed the demographic 
pattern consequently affecting growth of the economy. Nevertheless, it is true 
that demographic changes are occurring frequently due to economic policy 
changes in different countries and these changes work in such a way that it 
affects long-term demographic-economic relation. In the strict sense of the 
term, therefore, we do not consider the possibility of structural break in our 
model. 

3.4.2 Empirical results 

(a) First-pass assessment 

For a first pass assessment of the existence of long-memory in the demographic 
components, we have estimated Lo’s (1991) R/S long-range dependent statis-
tics (Table 3.3). The statistics provides us with a summary view of the strength 
of dependence between remote past and current values of the demographic 
variables. The (modified) R/S statistic is the range of partial tP  from its mean, 
rescaled by its standard deviation which is given by: 
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given the sample variance nσ  of tP  and the sample mean, nP . The first erm 
of the bracket is the maximum of the partial sums of the first k ; deviations of 

jP  from the sample mean, nP  which is non-negative. The second term corre-
sponds to the minimum of the partial sums, which is non-positive. Therefore 
the difference of these two quantiles, called ‘range’ is always non-negative, so 
that the rescaled range, 0≥nQ . Equation 3.28 computes the range of partial 
sums of deviation from the time series tP  from its mean nX  rescaled by 

( )lnσ . 
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The null hypothesis we tested here is that there is no long-range dependence 
n  the population series. This test is performed by calculating the confidence 
intervals with respect to some significance level, and then checking whether the 
rescaled range statistic, nQ , lies in or outside the desired level. We have esti-
mated this statistic for aggregate countries as per the classifications of the 
World Bank. For instance, we have high-income, low-income, least developed, 
and others. For each aggregate group we calculated Lo’s statistic for aggregate 
as well as other demographic variables, i.e., the population of different ages 
(See Table 3.3). Observe that null hypothesis of long-range dependence is 
rejected in most of the cases at 10 percent significance level. 

(b) Estimates of d: Modified Log Periodogram Regression 

The support for long-range dependence can be made by evaluating the Modi-
fied PR (MLPR) estimates of d , reported in Tables 3.4, 3.5 and 3.6. Table 3.4 
presents the MLPR estimates of d  for the aggregate countries. Table 3.5 pro-
vides d  estimates of total population growth for a sample of developed coun-
tries which corresponds to a longer data (since 1870-2003) collected from 
Maddison’s World Table. Tables 3.4 and Table 3.6 present the memory esti-
mates for the exhaustive list of developed and developing countries including 
the aggregate countries, viz., high income and low income, European Union, 
and Sub-Saharan Africa. The data span here is from 1960-2003 assembled from 
the World Bank. Due to the unavailability of data on age-specific population 
before 1960s, d  has been estimated for the available sample span. The effect 
of large sample on long-memory estimates is compared using Tables 3.5 and 
3.6. 

From Tables 3.4 and 3.6, it is evident that aggregate population and popula-
tion of different ages depict significant memory characteristics. The World 
aggregate population have lower d  estimates than World population of differ-
ent ages. The higher the estimates of d , the higher is the persistence of shocks. 
According to our estimates, for population of 65+ age group, i.e., the retired 
cohort, we have very high persistence than other categories for World. Specifi-
cally, while the world’s aggregate population, younger generation (age 0-14) 
and the working people age (15-64) growth possesses a memory which is in the 
range 121 << d  implying long-run mean convergence of the the aggregate 
population shock, however the same is not true for the retired cohort. This 
series is highly nonstationary implying that a certain non-invertible intrinsic 
shock is affecting the working age population, one of them being the problem 
of faster aging. Very high persistence is observed for younger cohorts and 
working age population in high-income OECD countries, negative memory is 
found for high-income non-OECD countries. Not surprisingly the degree of 
persistence for low income countries is far more than high income countries for 
all demographic components. This provides credence to the fact that low in-
come countries are yet to contain on the pace of population growth and more 
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importantly to restrain the shock in the productive population sector, viz., the 
working age cohorts. 

In Table 3.6, MLPR estimates for all individual countries are reported. For 
ease of understanding, we have provided (Kernel) density plots of these esti-
mates for all countries (see Figure 3.2) as well as for developed (Figure 3.3) 
and developing country (Figure 3.4) blocks. Note that MLPRTotpop  denotes 
estimates of MLPR for total population, similar denotation holds for different 
age groups. Long memory is observed for both developed and developing 
country blocks (with anti-persistence property for a handful few).29 The density 
plots depict precisely this result. Non-stationary long-memory is evident for 
both the country blocks, since the mean of the density is concentrated around 1. 
However, a distinction can be made between the degree of persistent shocks 
between developed and developing countries. Comparing Figures 3.4, it is clear 
that higher persistence is observed in case of developing country aggregate 
population growth. For younger age population, the mean of the estimates of 
d  is higher for developed countries than that of the developing countries. The 
observation may be put into perspective due to the lower growth of younger 
age population, specifically the lower new births in developed countries. The 
working age population (Population of age 14-65) have lower persistence of 
shocks in developing countries (Figure 3.4 than developed counterparts since 
the average memory estimates for these countries are much above 1. 

Taking the effect of all the countries together (World), aggregate population 
in this category is characterised by a non-stationary and non-mean-reverting 
process. It can also be noticed that the working age population (14-65) of high 
income countries are less affected by the stochastic shock than the low income 
countries. Considering the modified LPR estimates, a long-memory character-
istic for aggregate population as well as 0-14 age groups can be concluded. The 
long memory regression on the per capita output growth depict long memory 
parameter does not have significant effect on per capita growth for both devel-
oped and developing countries. However, the shocks do exert significant posi-
tive effect (though very negligible) on the working age population and the 
retired cohorts for developing countries, while it affects the young age popula-
tion in the developed countries. 

The extant research holds that the ‘length’ of the time series affects the mag-
nitude of memory estimates, viz., shorter time series might show higher fluc-
tuations than longer time series because fluctuations somehow smooth out in 
case of the latter. Moreover, as the magnitude of the memory parameter may 
vary, it might force substantial variation in the conclusion about the nature of 
shock persistence, except some special cases. To take into account this possi-
bility, we have estimated MLPR for aggregate population for 20 developed 

                                                             
29  Only for Kuwait and Angola. 
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countries from Maddison data with the sample span 1870-2003 and compare 
the results with our earlier estimates (with the sample span 1950-2003). The 
results are reported in Table 3.5. Comparing Table 3.5 and Table 3.6, we ob-
serve that the magnitude of d  for aggregate population growth with the ex-
tended sample span (i.e., from 1870-2003) is less than the estimates using the 
period 1950-2003. However, there is no substantial change in the conclusion 
about long-memory characteristics for half of the 20 countries, the exception 
being Australia, Denmark, Germany, Greece, UK, Switzerland, Spain, Norway, 
Ireland, and New Zealand. In fact, we find anti-persistence in case of Ireland 
using the extended sample which is contrary to the high persistence as per the 
old sample (1950-2003). It is obvious that longer time series contain smoothed 
out shocks where the shocks are prominently visible in the shorter sample span. 
In any case, except for Ireland, Greece, Germany, Spain, and UK, non-
stationary long-memory is observed for the rest of the 20 developed countries 
in the extended sample.30 

(c) Cross-section growth regression with long-memory population: Tracing 
cross-country growth persistence and variations 

From the discussion above, it is apparent that stochastic demographic shocks 
have significant effect on economic growth in a standard Solow-Swan model 
where the aggregate output, capital and investment will be guided by some 
function of stochastic population shocks. Drawing on this analytical results, we 
intend to empirically demonstrate how the stochastic shocks exert impact on 
growth variations (and the converse) of developed and developing countries. 
The basic framework of the model is as follows: 

 

 
 

or 
 

 
 

where ( )Tt ,...,1= , ( )Ttid ,,  is the estimate of long-memory population growth 
during the period ( )Tt,...,  for thi  country, ( )TtiZ ,,  represent a vector of other 
demographic variables, such as average schooling rate, life expectancy at birth 
and population density, etc. itε  and ( )2,0~ συit/ . GDP growth is calculated by 
taking the log differences between period t  and T . The two equations de-

                                                             
30  Maddison data does not contain information on different population age shares. For this 

reason, we have used World Bank data for which the sample span is shorter than Maddison, 
i.e., from 1960 onwards. 
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scribe a system where first long-memory shock appears as dependent variable 
and in the second model it is endogenized in the economic growth regression. 

Tables 3.7 and 3.8 present results from cross-section regression of memory 
parameter of population on economic growth and the converse for a set of both 
developed and developing countries. Consider first the developed country 
regression results (Table 3.7). The first part of this table present results when 
dependent variable of the regression is growth of GDP per capita over 40 years. 
The explanatory variables we have chosen are growth of stochastic memory 
estimates of total population, life expectancy at birth, population density, and 
average years of schooling over the four decades. We expect that if stochastic 
population shock has had any significant effect on long-run output growth, then 
the coefficient of this variable (d-totpop) should be statistically significant 
(positive or negative indicating the direction of impact of stochastic shocks). 
Similarly, life expectancy at birth, increase in the average years of schooling 
and population density are expected to exert positive influence on growth. For 
instance, enhanced life expectancy encourages people to stay more productive 
over years thus contributing to growth, while density propel economic growth 
via population-induced technological change. Additionally, average schooling 
years is a proxy for human capital, which is significant to the extent that edu-
cated people are more productive to the economy than the uneducated the 
‘buffer’ of human capital via educated mass pushes the economy forward. 

As expected, we find that per capita GDP growth in the last four decades has 
been significantly affected by stochastic population shocks during this period. 
Though population is traditionally believed to negatively affect output growth, 
our result supports the recent finding that growth of total population could have 
positive effect on economic growth depending on which segment of the popu-
lation is growing faster. Fast growth of younger age population will impede 
growth via excessive resource dependence, while rapid growth of working age 
population propels economic growth via resource creation. It all depends on the 
net effect accounting for which segment of the population is growing faster 
than the rest. In light of this view, our finding suggests that total population 
growth shocks had growth-enhancing effect on output over the last four dec-
ades indicating the significance of the interplay of stochastic population shocks 
with long term memory and economic growth. We also find that life-
expectancy at birth ( )0ln e , Density, and average years of schooling,  
AvgSchooling have significant and expected effect on output growth. The sig-
nificant F  value shows overall significance of all the explanatory variables. 

On the other hand, when stochastic memory estimate of population is used 
as the dependent variable in the regression, some interesting results emerge. 
For instance, even though the coefficient of per capita GDP growth is found to 
be positive, it is not found to be significant in the regression suggesting that the 
stochasticity in the population or long-memory in the growth of total popula-
tion in the developed countries are not found to be significantly influenced by 
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the growth of per capita output over four decades. Rather, we find that life 
expectancy at birth and population density have significant negative effect on 
long-memory estimates of population growth. The reasons may be explained as 
follows. The theoretical explanation of long-memory parameter suggests that 
higher memory can inflict harm on economic growth as the economy will not 
return or will take very long time to return to its steady state situation. Alterna-
tively, higher memory estimate would indicate the tendency of the economy 
towards a chaotic situation. From Table 3.8, we found a significant negative 
effect of population density, which indicates as density of population increases, 
it will ‘negate’ the effect of higher memory on economic growth via ‘popula-
tion induced technical change’. Similar effect can be seen for life expectancy. 
As people live longer, their increasing contribution to the economy in fact 
reduces the magnitude of stochastic population shock over time. 

Now, when we analyse the pattern for developing countries, the following 
results emerge from our regression. We find that stochastic population shock 
and per capita GDP growth in the past forty years are negatively correlated. 
Using GDP growth as dependent variable, it is evident from Table 3.8 that 
stochastic population shock negatively affects GDP growth at about 10 percent 
significance level. Similarly, with population shock as dependent variable we 
find per capita GDP growth being negatively and significantly influenced dur-
ing the last four decades. Density is found to have negative effect on output 
growth for developing countries. The result seems to be akin to the recent find-
ing that density should not just mean the scatterness of population over all 
arable and non-arable land, but it should mean the scatterness of people over 
productive land. In that sense, the finding of negative effect of density for 
developing countries imply the lack of growth-motivating effect of population 
pressure via technical change. 

3.5 Conclusion 
This chapter provided a theoretical basis and empirical formulation for un-
derstanding the effects of stochastic population shocks for economic growth 
fluctuations. We stressed on modeling population in a long-memory framework 
so that demographic variables dynamic relations with economic growth can be 
better understood. Conventionally demographic fluctuations were considered to 
have little impact on long-run economic growth due to the assumption of ‘con-
stancy’ of population in the model and often a stationary behavior. Drawing on 
realistic situations and some empirical evidence, we argued that such assump-
tions are too stringent which evidently downplays the role of demographic 
shocks in economic growth. We analytically showed that long memory in 
demographic components may possibly give rise to long memory in economic 
growth. Using the framework of stochastic Solow-Swan model we depicted 
that the length of memory in population growth would affect aggregate output 
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and hence consumption, and investment behavior of the economy. Population 
growth with ‘short-memory’ would induce less fluctuations in the economy’s 
output which could have important implications for investment decisions for 
the economy to generate further growth. 

An exhaustive empirical illustration has been carried out by estimating the 
memory parameter for both developed and developing countries. We have also 
estimated the persistent effect of shocks for various country aggregates, viz., 
high-income, low-income, etc., to make appropriate comparisons. However, 
caution should be made while interpreting these results. We know that aggrega-
tion always smooths out individual irregularities in the data and gives rise to a 
nice pattern. The differences in the country blocks are due to World Bank clas-
sification which is based on per capita income level of these countries. It is 
therefore, advisable to take note of the memory estimates and study the nature 
of shock persistence for individual countries. 

The estimates of persistence evince that very high degree of shock per-
sistence is observed in both developed and developing countries. A comparison 
can be made between say low income and high income countries following 
World Bank classification. We observe that low income countries possess 
higher degree of memory than high income countries implying persistence of 
population growth shocks is higher in low income countries than the high in-
come countries. High degree of persistence in the aggregate population growth 
calls for policy check keeping in mind the development objectives of high 
income and low income countries. Stationary memory and non-stationary 
memory of different growth implications; while stationary memory feature 
possessed by a series would settle for long run convergence to the steady state 
values, non-stationary memory have generally non-convergent characteristics. 
Generally, non-convergent shock characteristics are possessed by ‘supply or 
productivity side factors in the economy as argued by several authors (like 
Durlauf, 1989) while convergent memory characteristics of a series exhibit 
‘short-run’ randomness which is a characteristics of ‘demand side factors. 

Our results hint at the existence of nonstationary memory for younger gen-
eration in the developed countries. This might suggest that developed countries 
population growth policy should be put into perspectives taking into considera-
tion of ‘positive or zero population growth’. Growth shocks in younger genera-
tion can not be sustained rather needs to be retarded keeping in mind the fact 
that younger generation will contribute to the work force of the economy in 
succeeding years. We observe convergent memory features for some develop-
ing countries and non-convergent for others. This outcome is very natural given 
that the population control policy has not born equal success or even have not 
been implemented with equal pace in all the countries, hence depending on the 
structure of the economy, different magnitude of growth shocks have been 
observed within developing countries. For these countries there is a need to 
sustain economic development by further investment in education. Our esti-
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mates also show that non-mean reversion with non-stationarity is a feature of 
for these countries other age-structure variables. Moreover, from our regression 
of memory parameter on the growth of per capita income for both country 
blocks show that the effect of long-memory is significant for per capita income 
growth of developing countries for aggregate population as well as the growth 
of different components of population. High investment in education and other 
necessary measures for accumulating human capital will reduce the effect of 
this memory on growth of income. For developed countries, we find significant 
effect of long memory in retired cohorts on per capita income growth. Though 
these regression results are preliminary, it gives at least the first hand informa-
tion of the effect of memory of demographic components on per capita income 
growth. 

Finally, the memory estimates are merely indicative of the stochastic de-
mographic structure which needs careful attention while designing macroeco-
nomic or public policy for future, for instance the distribution and intergen-
erational transfer and management of resources. High degree of persistence in 
population does no good for economic growth. One needs to check the implica-
tions of demography-economic growth theorisations in light of our findings. 
Moreover, an important point in our results concerns the possibility of stacking 
countries with ‘common memory’ features so that for each block with different 
persistence profile, the dynamics of demography and economic growth relation 
can be studied. 

Table 3.3: Lo’s long-range dependence test: Sample 1960-2003 

 Tot Pop Age 0-14 Age 15-64 Age 65+ 
 Lo’s RS test Lo’s RS test Lo’s RS test Lo’s RS test 
World 1.593 (< 0.2) 1.772(< 0.05) 1.714(< 0.1) 1.187(< 0.6) 
High Income:     
OECD 1.833(< 0.05) 1.590(< 0.2) 1.993(< 0.025) 1.408(< 0.3) 
Non-OECD 1.780(< 0.05) 1.057(< 0.8) 1.032(< 0.8) 1.036(< 0.8) 
Low Income 1.632(< 0.1) 1.677(< 0.1) 1.334(< 0.4) 1.363(< 0.4) 
Sub-Saharan Africa 1.381(< 0.3) 1.735(< 0.1) 1.516(< 0.2) 1.735(< 0.1) 
Least Developed Coun-
tries 

1.289(< 0.5) 1.782(< 0.05) 1.551(< 0.2) 1.447(< 0.3) 

European Monetary 
Union 

1.635(< 0.1) 1.581(< 0.2) 1.589(< 0.2) 1.263(< 0.5) 

Note: Probability values in brackets. 
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Table 3.4: Modified LPR estimates of d  for aggregate countries (Sample 
1960-2003): Variables are in first difference in logs 

Country Tot Pop  Age 0-14  Age 15-64  Age 65+  
 d (0.7) SE d (0.7) SE d (0.7) SE d (0.7) SE 
Europe&Central Asia 0.556 0.112 0.678 0.141 1.096 0.233 1.042 0.266 
European Monetary 
Union 

0.912 0.145 1.181 0.234 1.037 0.214 1.044 0.189 

High Income 1.034 0.178 0.239 0.087 0.014 0.101 0.417 0.111 
High Income: Non-
OECD 

0.81 0.187 -0.064 0.127 -0.1 0.109 -0.058 0.124 

High Income: OECD 1.068 0.266 1.209 0.254 1.175 0.198 0.764 0.145 
Least Devel. Countries 0.995 0.213 1.257 0.249 0.819 0.167 0.894 0.165 
Low&Middle Income 1.189 0.277 0.936 0.137 0.968 0.199 0.612 0.113 
Low Income 1.116 0.264 1.164 0.244 0.915 0.178 0.849 0.146 
Sub-Saharan Africa 0.994 0.187 1.294 0.234 0.936 0.188 0.572 0.121 
World 0.596 0.112 0.845 0.163 0.999 0.213 1.052 0.256 
Note: SE denotes standard errors. 
 

Table 3.5: Long-memory estimates of Aggregate Population Growth: Devel-
oped Countries (Maddison data): Sample: 1870-2003 

MLPR estimates of d 
Countries d(0.7)31 Standard Error 

Australia 0.581 0.14 
Austria 0.453 0.101 
Belgium 0.721 0.156 
Canada 0.791 0.153 
Denmark 1.036 0.11 
Finland 0.632 0.118 
France 0.605 0.152 
Germany 0.299 0.124 
Greece 0.099 0.113 
Ireland -0.03 0.051 
Italy 0.508 0.087 
Netherlands 0.585 0.139 
NewZealand 0.735 0.175 
Norway 0.85 0.134 
Portugal 0.539 0.081 
Spain 0.246 0.112 
Sweden 0.621 0.158 
Switzerland 0.646 0.175 
UK 0.262 0.123 
USA 1.046 0.116 

 

                                                             
31  d(0:7) is the bandwidth of d. 
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Table 3.6: Estimates of memory parameter: Modified LPR method. For 
Aggregate Population: Sample is from 1950-2003. For Age-structured 

population the sample is from 1960-2003 

Country Code Total 
Pop 

Total 
Pop 

Age  
0-14 

Age 
0-14 

Age 
15-64 

Age 
15-64 

Age 
65+ 

Age 65 
+ 

  d(0.7)32 SE d(0.7) SE d(0.7) SE d(0.7) SE 
Australia D 1.142 0.243 1.089 0.322 1.021 0.497 1.157 0.170 
Austria D 0.741 0.197 1.210 0.337 1.047 0.163 1.096 0.186 
Bahrain D 0.801 0.084 0.557 0.27 1.049 0.226 -0.312 0.157 
Belgium D 0.999 0.172 1.164 0.324 1.422 0.341 1.066 0.238 
Canada D 1.303 0.198 1.041 0.249 1.318 0.314 1.270 0.156 
Denmark D 1.121 0.177 1.018 0.204 0.842 0.124 1.191 0.193 
Finland D 0.852 0.126 1.097 0.403 0.888 0.193 1.469 0.295 
France D 0.757 0.236 1.014 0.173 1.176 0.199 0.938 0.226 
Germany D 0.962 0.133 1.277 0.418 1.034 0.17 1.043 0.125 
Greece D 0.875 0.208 1.059 0.187 0.981 0.153 1.093 0.251 
Hong Kong, 
China 

D 0.334 0.098 0.746 0.176 0.933 0.213 0.932 0.149 

Ireland D 0.919 0.143 1.266 0.319 0.924 0.252 0.873 0.199 
Israel D 0.279 0.111 1.147 0.25 1.383 0.425 1.085 0.150 
Italy D 0.705 0.240 1.090 0.143 0.885 0.164 0.852 0.271 
Japan D 0.953 0.101 1.345 0.266 0.822 0.084 0.988 0.098 
Korea, Rep. D 1.605 0.235 1.025 0.133 1.199 0.217 0.617 0.205 
Kuwait D -0.130 0.127 1.216 0.183 1.020 0.361 0.000 0.263 
Netherlands D 0.988 0.252 1.043 0.317 1.141 0.131 1.385 0.203 
New Zealand D 1.119 0.227 1.179 0.414 1.168 0.303 1.301 0.262 
Norway D 1.126 0.154 1.384 0.377 1.120 0.107 1.243 0.214 
Portugal D 0.479 0.156 1.300 0.381 1.115 0.204 1.059 0.425 
Puerto Rico D 0.401 0.313 1.083 0.212 1.140 0.297 1.103 0.233 
Qatar D 1.007 0.193 0.927 0.184 1.189 0.267 -0.345 0.210 
Singapore D 0.942 0.278 1.015 0.271 1.096 0.14 0.946 0.194 
Slovenia D 0.372 0.273 0.949 0.244 1.284 0.209 0.987 0.232 
Spain D 1.209 0.128 1.164 0.274 1.035 0.178 0.766 0.217 
Sweden D 0.974 0.246 1.062 0.218 1.103 0.196 1.107 0.202 
Switzerland D 1.062 0.335 1.260 0.307 1.179 0.316 1.159 0.258 
United Arab 
Emirates 

D 1.465 0.221 1.084 0.237 1.186 0.156 0.497 0.401 

United 
Kingdom 

D 0.895 0.315 1.080 0.434 0.992 0.229 1.034 0.337 

United States D 1.192 0.116 1.275 0.237 1.413 0.354 0.760 0.194 
Afghanistan LDC 0.614 0.188 0.864 0.146 0.927 0.255 0.876 0.151 
Albania LDC 0.937 0.232 0.724 0.129 1.305 0.206 0.842 0.268 
Algeria LCD 0.702 0.202 1.001 0.118 0.714 0.185 0.983 0.249 
Angola LCD -0.043 0.171 0.692 0.127 0.350 0.232 0.598 0.164 
Argentina LCD 1.152 0.103 0.934 0.224 1.075 0.113 1.173 0.120 
Armenia LCD 0.524 0.148 0.277 0.154 1.188 0.21 0.760 0.228 
Azerbaijan LCD 0.889 0.136 0.749 0.171 1.163 0.209 0.885 0.180 
Continued.... 

                                                             
32  d(0:7) is the bandwidth of d. 
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Country Code Total 
Pop 

SE Age  
0-14 

SE Age 
15-64 

SE Age 
65+ 

SE 
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Bangladesh LCD 0.854 0.148 0.849 0.07 0.710 0.213 1.066 0.175 
Belarus LCD 0.759 0.154 0.602 0.132 1.196 0.328 0.883 0.242 
Benin LCD 0.717 0.042 0.993 0.188 0.667 0.204 1.057 0.261 
Bolivia LCD 0.877 0.199 1.229 0.227 0.856 0.064 0.590 0.173 
Bosnia and 
Herzegovina 

LCD 0.882 0.177 0.766 0.392 1.133 0.434 0.834 0.244 

Botswana LCD 1.513 0.150 0.886 0.117 1.156 0.163 0.583 0.178 
Brazil LCD 1.226 0.060 1.019 0.111 1.201 0.101 1.269 0.195 
Bulgaria LCD 1.105 0.138 0.638 0.162 0.947 0.205 1.035 0.198 
Burkina Faso LCD 0.502 0.100 1.099 0.11 0.469 0.223 1.060 0.156 
Burundi LCD 0.556 0.209 1.173 0.185 0.776 0.181 0.833 0.295 
Cambodia LCD 1.067 0.197 0.943 0.151 1.005 0.194 0.892 0.258 
Cameroon LCD 0.888 0.146 1.183 0.165 0.727 0.15 0.990 0.122 
Cape Verde LCD 1.246 0.139 0.838 0.229 0.721 0.18 0.325 0.215 
Central Afri-
can Republic 

LCD 0.856 0.262 1.304 0.209 0.786 0.183 0.759 0.144 

Chad LCD 0.091 0.160 0.532 0.219 0.507 0.109 0.648 0.172 
Chile LCD 1.084 0.084 0.886 0.156 1.163 0.124 1.110 0.139 
China LCD 0.256 0.349 0.905 0.355 1.007 0.161 0.971 0.279 
Colombia LCD 1.242 0.063 1.026 0.129 1.169 0.092 1.181 0.138 
Congo, Dem. 
Rep. 

LCD 1.299 0.378 0.877 0.234 0.930 0.202 1.060 0.144 

Costa Rica LCD 1.080 0.144 0.500 0.233 1.188 0.117 0.601 0.190 
Cote d’Ivoire LCD 1.106 0.190 1.186 0.117 1.075 0.073 1.026 0.166 
Croatia LCD 0.453 0.201 1.051 0.192 1.181 0.322 1.129 0.338 
Cuba LCD 1.050 0.188 1.109 0.359 1.252 0.169 1.029 0.194 
Czech Republic LCD 1.028 0.273 0.977 0.149 0.937 0.376 1.067 0.244 
Djibouti LCD 0.622 0.192 1.362 0.383 1.191 0.48 -0.089 0.226 
Dominican 
Republic 

LCD 1.287 0.043 0.964 0.076 1.230 0.199 0.702 0.187 

Ecuador LCD 1.159 0.057 1.076 0.062 1.021 0.123 0.856 0.293 
Egypt, Arab 
Rep. 

LCD 0.952 0.149 0.925 0.111 0.826 0.166 1.177 0.145 

El Salvador LCD 0.879 0.187 1.364 0.234 1.079 0.185 0.677 0.190 
Equatorial 
Guinea 

LCD 0.708 0.265 1.027 0.287 0.915 0.291 0.380 0.182 

Eritrea LCD 0.623 0.259 0.991 0.307 0.984 0.06 0.233 0.258 
Estonia LCD 0.962 0.255 0.632 0.22 1.139 0.184 1.159 0.221 
Gabon LCD 0.707 0.192 0.938 0.196 0.886 0.144 0.497 0.167 
Gambia, The LCD 0.912 0.058 1.323 0.168 0.808 0.172 0.203 0.219 
Georgia LCD 1.030 0.244 0.281 0.122 0.905 0.188 0.450 0.273 
Ghana LCD 0.493 0.252 0.461 0.162 0.840 0.139 0.780 0.198 
Guatemala LCD 0.988 0.086 1.248 0.146 0.891 0.071 0.575 0.229 
Guinea LCD 0.430 0.206 0.682 0.286 0.526 0.286 0.494 0.275 
Guinea-Bissau LCD 0.361 0.172 0.674 0.254 0.894 0.265 0.490 0.257 
Haiti LCD 1.089 0.188 1.120 0.202 0.645 0.107 0.692 0.238 
Honduras LCD 1.192 0.190 1.247 0.133 0.957 0.095 0.572 0.171 
Hungary LCD 0.599 0.171 0.963 0.175 1.087 0.323 1.121 0.198 
India LCD 1.048 0.116 1.076 0.099 1.065 0.075 1.215 0.253 
Indonesia LCD 1.106 0.119 1.154 0.094 1.062 0.116 0.631 0.296 
Continued… 
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Iran, Islamic 
Rep. 

LCD 1.075 0.218 0.901 0.227 0.927 0.18 0.871 0.228 

Iraq LCD 0.338 0.173 1.099 0.171 0.939 0.104 0.878 0.222 
Jamaica LCD 0.938 0.181 1.020 0.374 0.855 0.361 1.059 0.252 
Jordan LCD 0.547 0.170 1.318 0.227 0.818 0.276 0.699 0.211 
Kazakhstan LCD 0.709 0.216 0.411 0.173 1.263 0.237 0.915 0.202 
Kenya LCD 1.276 0.127 1.223 0.136 0.959 0.065 1.042 0.235 
Korea, Dem. 
Rep. 

LCD 1.305 0.220 1.255 0.246 1.112 0.186 0.426 0.215 

Kyrgyz 
Republic 

LCD 1.376 0.199 0.513 0.144 0.856 0.29 0.930 0.275 

Lao PDR LCD 0.828 0.091 0.920 0.249 0.742 0.26 1.205 0.513 
Latvia LCD 1.138 0.183 0.599 0.144 1.175 0.202 1.067 0.181 
Lebanon LCD 1.173 0.163 0.902 0.133 1.003 0.185 0.432 0.276 
Lesotho LCD 1.370 0.064 0.747 0.201 1.136 0.157 0.418 0.269 
Liberia LCD 0.196 0.165 1.154 0.204 1.087 0.206 0.900 0.334 
Libya LCD 0.838 0.197 1.308 0.263 1.127 0.117 0.449 0.186 
Lithuania LCD 0.766 0.175 0.366 0.126 1.162 0.228 1.161 0.234 
Madagascar LCD 0.603 0.050 1.143 0.294 0.709 0.138 0.751 0.129 
Malawi LCD 0.840 0.207 1.098 0.218 0.944 0.205 0.843 0.170 
Malaysia LCD 1.158 0.058 0.871 0.235 0.984 0.158 0.807 0.175 
Mali LCD 0.701 0.168 0.925 0.075 0.707 0.169 1.015 0.236 
Mauritania LCD 0.267 0.238 0.960 0.193 0.715 0.09 -0.316 0.283 
Mauritius LCD 1.131 0.118 1.148 0.173 1.410 0.202 0.378 0.275 
Mexico LCD 1.201 0.052 0.854 0.115 1.047 0.182 1.137 0.319 
Moldova LCD 0.770 0.213 0.521 0.126 1.202 0.375 0.307 0.239 
Mongolia LCD 1.157 0.242 1.090 0.204 0.878 0.192 0.820 0.270 
Morocco LCD 1.067 0.088 0.997 0.15 0.824 0.208 1.247 0.349 
Mozambique LCD 0.624 0.180 0.923 0.263 0.736 0.331 0.772 0.183 
Myanmar LCD 1.082 0.154 0.924 0.111 1.078 0.044 0.942 0.084 
Namibia LCD 0.536 0.143 1.054 0.157 0.822 0.198 -0.121 0.307 
Nepal LCD 0.583 0.078 1.201 0.179 0.681 0.062 0.552 0.144 
Nicaragua LCD 0.989 0.280 1.119 0.162 0.872 0.089 0.424 0.208 
Niger LCD 0.893 0.063 1.053 0.104 0.786 0.081 0.604 0.383 
Nigeria LCD 0.877 0.150 1.229 0.161 1.024 0.154 0.869 0.131 
Oman LCD 0.943 0.136 0.873 0.205 0.712 0.251 0.031 0.289 
Pakistan LCD 0.956 0.185 1.209 0.205 0.839 0.167 0.672 0.169 
Panama LCD 1.128 0.126 0.996 0.099 1.123 0.086 0.745 0.202 
Paraguay LCD 1.004 0.050 1.237 0.236 0.826 0.304 1.335 0.387 
Peru LCD 1.189 0.048 0.989 0.031 1.107 0.073 1.255 0.304 
Philippines LCD 1.166 0.060 1.006 0.08 1.039 0.031 1.041 0.260 
Poland LCD 1.1 IS 0.095 0.891 0.153 1.254 0.231 1.397 0.282 
Romania LCD 0.942 0.146 0.674 0.381 1.106 0.209 1.205 0.238 
Russian 
Federation - 

LCD 0.961 0.106 0.729 0.133 0.818 0.147 1.133 0.295 

Rwanda LCD -0.132 0.089 0.762 0.251 0.952 0.187 0.514 0.262 
Senegal LCD 0.939 0.140 1.170 0.165 0.869 0.117 0.866 0.316 
Serbia and 
Montenegro 

LCD 0.378 0.444 0.955 0.137 1.169 0.326 0.964 0.233 

Sierra Leone LCD 0.137 0.181 0.813 0.224 0.551 0.195 0.759 0.124 
Continued… 
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Slovak 
Republic 

LCD 0.443 0.171 0.796 0.176 1.183 0.205 1.059 0.309 

Somalia LCD 0.550 0.111 1.010 0.241 0.966 0.227 1.017 0.217 
South Africa LCD 1.102 0.073 1.066 0.061 0.981 0.261 0.832 0.138 
Sri Lanka LCD 1.223 0.114 1.107 0.163 1.428 0.228 0.768 0.301 
Sudan LCD 0.771 0.171 1.091 0.192 0.908 0.114 0.586 0.201 
Swaziland LCD 0.916 0.238 0.671 0.13 1.174 0.227 0.436 0.181 
Syrian Arab 
Republic 

LCD 0.997 0.088 0.948 0.109 0.718 0.388 1.002 0.258 

Tajikistan LCD 0.986 0.174 0.446 0.149 0.783 0.282 1.023 0.288 
Tanzania LCD 0.970 0.206 1.298 0.189 1.001 0.103 0.872 0.183 
Thailand LCD 1.257 0.046 1.123 0.21 1.349 0.206 0.848 0.256 
Togo LCD 0.228 0.159 0.896 0.21 0.749 0.193 0.898 0.227 
Trinidad and 
Tobago 

LCD 0.867 0.245 0.654 0.226 1.117 0.197 0.581 0.160 

Tunisia LCD 0.687 0.202 0.778 0.117 0.844 0.193 1.061 0.322 
Turkey LCD 1.242 0.088 1.413 0.347 1.028 0.137 1.238 0.259 
Turkmenistan LCD 1.344 0.222 0.590 0.154 0.932 0.276 0.667 0.263 
Uganda LCD 1.039 0.182 1.127 0.111 1.124 0.133 1.142 0.250 
Ukraine LCD 0.865 0.149 0.586 0.152 0.728 0.103 1.185 0.298 
Uruguay LCD 1.153 0.176 0.910 0.15 0.900 0.224 0.951 0.195 
Uzbekistan LCD 1.092 0.184 0.452 0.139 0.806 0.139 1.039 0.174 
Venezuela, RB LCD 1.267 0.083 1.018 0.093 1.184 0.139 1.096 0.110 
Vietnam LCD 1.366 0.221 0.579 0.115 0.760 0.231 0.832 0.169 
Yemen, Rep. LCD 0.577 0.113 1.152 0.246 0.890 0.354 1.114 0.397 
Zambia LCD 1.155 0.159 1.214 0.153 1.067 0.124 0.922 0.083 
Zimbabwe LCD 1.006 0.201 0.708 0.087 1.273 0.167 0.738 0.153 
 
Note: SE denotes standard errors. 
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Table 3.7: Cross-section regression of long-memory demography effect on 
economic growth (Sample 1960-2003): Developed Countries 

Depdent Var: grgdp40  
Variables Coef. t-stat 
d-totpop 3.425 2.190 
ln(eO) 0.568 4.850 
Density 6.226 1.650 
AvgSchooling 1.847 1.690 
Constant -0.435 -0.140 
N = 23 F(3, 19) = 16.11** R2 = 0.50 
Dependent Var: d-totpop  
Variables Coef. t-stat 
grgdp40 0.048 1.530 
ln(eO) -0.045 -2.200 
Density -1.453 -2.770 
AvgSchooling 0.053 0.290 
Constant 1.080 4.660 
N = 23 F(4, 18) = 2.71** R2 = 0.30 

Note: (i) Regression with robust standard errors, (ii) **: Significance at 5 percent level. 
 

Table 3.8: Cross-section regression of long-memory demography effect on 
economic growth (Sample 1960-2003): Developing Countries 

Depdent Var: grgdp40  
Variables Coef. t-stat 
d-totpop -1.007 -1.65 
ln(eO) 0.003 0.18 
AvgSchooling -0.035 -1.05 
Density -1.211 -1.86 
Constant 4.425 2.82 
N = 44 F(4, 39) = 1.59 R2 = 0.18 
Dependent Var: d-totpop  
Variables Coef. t-stat 
grgdp40 -0.078 -2.08 
ln(eO) 0.004 0.48 
AvgSchooling -0.006 -0.28 
Density -0.076 -0.47 
Constant 0.950 2.99 
N = 44 F(4, 39) = 1.19 R2 = 0.09 

Note: (i) Regression with robust standard errors, (ii) **: Significance at 5 percent level. 
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Figure 3.2: Kernel density plots of long-memory estimates of aggregate 
population and age shares (All countries) 

 

 
 

Figure 3.3: Kernel density plots of long-memory estimates of aggregate 
population and age shares (Developed countries) 
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Figure 3.4: Kernel density plots of long-memory estimates of aggregate 
population and age shares (Developing countries) 

 

 

4. Population Forecasting with Stochastic Long Memory 
Framework 

4.1 Introduction: Problems in demographic forecasting 
For about two centuries, population forecasting has been a national agenda of 
many countries who follow this historical practice to account for present and 
future economic contingencies. The preoccupation has recently got momentum 
as both the methodological tools and the perceived relation between demogra-
phy and economic growth have undergone paradigmatic changes. On the meth-
odological side of demographic forecasting, notable progress has been made 
which are mostly ‘probabilistic’ (e.g., using expert opinions and using random 
scenarios) in nature. Temporal approaches were infrequently suggested al-
though demographic variables, like total population can be apparently de-
scribed by a data generation process which owns temporal features. The lack of 
rigorous enforcement of time series methods in population forecasting is under-
standable as the development of these methods even in the mainstream eco-
nomics experienced major changes only after 1980s33. 
                                                             
33  Particularly after Nelson and Plosser’ (1982) finding that most of the macroeconomic 

variables contain a stochastic trend, implying the interplay of stochastic exogenous shocks 
in the system which must be treated before any meaningful economic conclusions can be 
drawn. 
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Two possible causes could explain the long-sought seriousness in demo-
graphic forecasting. First, there is a recent surge of interest in the study of 
economic-demographic relation in endogenous economic growth setting.34 The 
rise or fall in the ‘number’ of population can have direct impact on economic 
growth as the change in the population number either accentuates growth via 
resource creation or retards it via resource destruction. For designing long-term 
socio-economic policies related to distribution and allocation of resources it is 
vital to know the ‘number of people (young, working age population, or old) in 
future’ so that precautionary measures can be undertaken to preserve sufficient 
resources for future younger cohorts and provide necessary social security 
benefits to the older ones. After all, at least a ‘best guess’ of the future total 
population or particularly forecasts of population of different age-structures are 
mandatory to plan for future economic growth and at the same time to keep up 
with the momentum of current economic growth with proper intergenerational 
transfer of resources. Though this explanation appears illustrative of the cov-
eted demographic-economic growth relation, it casts light on a neglected di-
mension, viz., the stationary assumption of population growth. Recent literature 
– which are quite diversified in nature – have attempted (as will be explained 
shortly) to model uncertainties or stochasticities in the growth of population 
and various age-specific population growth rates. 

Second, population forecasting methods have undergone rapid changes in 
the past few years, mainly due to the initiatives of some experts who chal-
lenged the traditional approach (for instance, high, low, and medium variant of 
forecast, or even probabilistic projections). It is no wonder that for many years, 
population forecasters have worked largely in isolation from other forecasters. 
Ahlburg and Land (1992) argue that this separation is due in part, to the 
uniqueness of the demographic subject matter, and, in part, due to the typical 
approach of the population forecasters (e.g., ‘cohort component approach’). 
The latter is ideally suited for dealing with the unique properties but not for 
most other forecasting tasks. Consequently, for the last six decades, population 
forecasters have attempted to put their efforts in a different domain than that of 
other forecasters. Yet, a significant change has been brought in the population 
forecasting methodologies in the last decade mainly due to the adoption and 
fast adaptation of new methodological techniques, viz., stochastic process 
models, structural equation models, and due to the recent most-widely used 
time series techniques. We call the first source of motivation as growth-
induced-motivation, and the latter as methodology-induced-motivation for 
population forecasting. 

Recently, Pflaumer (1992) and Lee and Tuljapurkar (1994) employed time 
series based method, viz., autoregressive moving average (in short, ARMA) 

                                                             
34  See for instance, Boucekkine et al. 2002 for an excellent theorization of the relation. 
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technique to forecast population series and mortality for United States. The 
early attempts by these authors for applying time series methods to demo-
graphic forecasting certainly draws appreciation. However, mostly convulsed 
with the apprehension that time series models might not be useful for demo-
graphic forecasting and believing that demographic processes are different 
from say, macroeconomic processes, the application and wide spread use of 
these methods for demographic variables so far have not been astounding. The 
possible reason could be that although temporal methods have been extensively 
used in the context of macroeconomic and financial econometric domain, their 
properties and implications for demographic processes have not been fully 
investigated so far, except some inquisitive researchers like Pflaumer (1992) 
and Lee and Tuljapurkar (1994). The authors utilize Box-Jenkins’ autoregres-
sive integrated moving average method (ARMA) to show how the exploitation 
of time series properties of the demographic processes can eke out the intrinsic 
characteristics of stochasticitic shock of the demographic system. The ARMA 
approach, while proved to be a good alternative to probabilistic forecasting 
method in demography, its inherent weakness against distinguishing between 
unit root nonstationarity and ‘gradual’ nonstationarity (i.e., which is between 
stationarity and unit root) is widely studied and criticized in the literature. A 
more flexible formulation is therefore suggested where the degree of integra-
tion, unlike ARMA process, can assume the whole range of values on the real 
line that evidently includes zero and one, the typical stationary and non-
stationary ARMA processes. The flexible formulation is called fractionally 
integrated ARMA, or ARFIMA process. 

We employ this method for forecasting total and age-structured population 
and extend the earlier research in two directions. From methodological per-
spective the study of stochastic shocks in a historical time series is better un-
derstood in an ARFIMA framework because in this case we are able to charac-
terize the evolution of shocks better with different magnitudes of persistence in 
contradistinction to the knife-edge assumption of low or high persistence as in 
ARMA. In practice, it is more possible that demographic shocks can be persis-
tent but over time it would recede to come back to the equilibrium path than to 
assume strictly that it is either stationary with no persistence or non-stationary 
with persistence where the series will drift forever and would not be back to 
equilibrium. Many ‘gradual nonstationary’ features might characterize the 
demographic process as well. However, the use of Box-Jenkins ARMA method 
would little reflect on the detailed dynamics in the sense stated above. 

Indeed, even a smaller amount of stochastic shock can make the long-term 
demographic projections volatile, enforcing the process to be contingent upon 
some degrees of stochasticities of the system itself along with the fact that the 
evolution of other components of the system also counts. For instance, the 
forecast of total population will certainly depend upon the growth of its com-
ponents, and intrinsic behavior of birth and death processes at a point of time. 
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Using ARFIMA method, we model total population which can be governed by 
the growth of its components and the stochastic shocks which can be generated 
as an outcome of the interaction mechanism with the economy (endogenous) or 
as a result of the influence of external environment (exogenous). Using thus 
ARFIMA framework we forecast total population for a set of developed and 
developing countries (Pflaumer, 1992 and Lee and Tuljapurkar, 1994 experi-
mented with United States only using ARMA method). 

These motivations clearly explain the seriousness of the population fore-
casters to aptly combine mainstream forecasting techniques with the typical 
idiosyncrasies of the population series.35 Conventional population projections 
are based on a set of assumptions that are only occasionally stated explicitly. 
Projections assume there will be (i) no deep structural changes like catastrophic 
events, (ii) no feedback effect in the sense that vital rates vary independently of 
the distribution of the population across the categories to which they apply, and 
(iii) neutrality of public policy response and environmental pressure.36 How-
ever, these assumptions appear to be too stringent because for instance in prac-
tice structural shifts might occur to the population series and that feedback 
effect is a natural consequence of the interaction mechanism of population and 
economy. In light of these considerations, this chapter attempts to go beyond 
the conventional methodologies by suggesting a time series based forecasting 
method, viz., ARFIMA, which encompasses a broad range of memory structure 
with interesting short-run and long-run dynamics. Feedback mechanism works 
in our model as it is in-built and given by the data generating process. In sec-
tion 4.2 we summarise the main contribution and flaws of conventional popula-
tion forecasting methods and discuss advantages of ARFIMA model. Section 
4.3 discusses the ARF1MA model with and without regime switching. Section 
4.4 summarizes the data characteristics and thoroughly discusses the empirical 
findings. Conclusion and implications of the results are presented in Section 
4.5. 

4.2 Revisiting literature 
Two main approaches have been put forth in the population forecasting lit-
erature. (1) The conventional high, low, medium variant and probabilistic pro-
jections approach, (2) and the very recent time series based methods. The spe-

                                                             
35  The data generating mechanism of population series differs widely from many economic 

variables due to the fact that the dynamics involved in the movement in this series is more 
complex than many economic variables, e.g., inflation, industrial production, output, etc. 

36  Though some studies state that environment will bite back due to unsustainable high world 
population or due to continuous growth of fertility, there will be a public policy-response in 
the form of powerful pronatalist policies, econometric and demographic studies suggest, 
however, that the ability of governments to affect fertility in industrial nations is quite 
weak. 
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cial issues of International Statistical Review, 2004 discusses the usefulness 
and drawbacks of probabilistic projection methods and the use of expert-
opinions in population forecasting at length. The basic idea of these approaches 
is to model uncertain future where the degree of uncertainty critically depends 
on the functioning of the demo-economic systems. The population forecasting 
techniques should therefore correctly deal with minimizing the amount of un-
certainty. The conventional way to deal with uncertainty in demographic fore-
casts is to employ high, medium and low scenarios. This approach suffers from 
the flaw that it is based on very strong and implausible assumptions about the 
correlation of forecast errors over time, and between fertility and mortality (Lee 
and Tuljapurkar (LT), 1994). The random scenario method is an improvement, 
but it retains some of the same flaws. 

The probability-based forecasting method, considered by many as an im-
provement over population scenarios, do not take uncertainty into account. 
Probabilistic population forecasts differ from deterministic forecasts in that 
they quantify the uncertainty of the course of future rates and therefore must 
specify future total fertility rates, life expectancies, and net migration rates as 
distributions and not as points. Probability analysis itself is uncertain to some 
extent. Some critics are of the opinion that no mathematical model can accu-
rately measure the socioeconomic factors that affect population growth. Fertil-
ity decline, for example, which is the major factor in a slowdown of population 
growth, can happen in a variety of settings for unpredictable reasons. For in-
stance, Eastern Europe always had a higher fertility rate than Western Europe, 
but when the former Soviet Union broke up, fertility rates in those former So-
viet countries plummeted unexpectedly. The actual outcome of world popula-
tion growth will depend on how people’s social behavior changes. This is 
really very difficult to predict using any kind of mathematical method. Drawing 
on the recent importance of the effect of age structure on economic growth, 
Prskawetz et al. (2005), for instance derive the uncertainty of predicted eco-
nomic growth rates using probabilistic demographic forecasts. 

A complementary method recently proposed in population forecasting is to 
employ time series based technique, viz., autoregressive integrated moving 
average (ARIMA). The idea of the time series based approach is to incorporate 
the dynamic information of demographic variables accumulated over time and 
forecast growth and/or level of population based on stability or stationarity of 
the demographic system. It may be noted that time series based forecasting 
methods take into account the endogeneity of the demographic and economic 
system, incorporate the dynamics that arise due to the interaction of the popula-
tion and the aggregate economy. Following this framework, importance is laid 
on the magnitude and pace of any endogenous and /or exogenous shocks in the 
system. Lee (1992) provides particular emphasis on developing time series 
models for the vital rates which are suited for long-run forecasting, with hori-
zons of 75 years or so. LT (1994) further developed methods based on stochas-
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tic Leslie matrix in which the vital rates are modelled as stochastic time series, 
viz., ARMA. The use of ARMA method by LT shows high degree of consis-
tency with the latest Census Bureau forecasts and bounds. 

Cohen (1986) and Pflaumer (1992) use ARMA method to forecast total 
population. In particular, employing Box-Jenkins ARMA method Pflaumer 
(1992) forecast United States total population till 2080 and showed that Box-
Jenkins approach is equivalent to a simple trend model when making long-
range predictions for the United States. Further investigation of the forecasting 
accuracy by the author reveals that the Box-Jenkins method produces popula-
tion forecasts that are at least as reliable as those done with more traditional 
demographic methods. Moreover, while ARMA approach has been found as 
efficient as other complex demographic models, the former is simple to use and 
can incorporate short-run and long-run demographic dynamics. 

The underlying idea in the ARMA approach is that the data generating proc-
ess (DGP) of population growth is characterized by both endogenous nature 
(i.e., past population growth affecting the current population – the autoregres-
sive or AR structure) and some unforeseen shocks (i.e., the moving average or 
MA structure). If population growth is non-stationary, the series is first differ-
enced following conventional wisdom. In this case the order of integration is 1. 
A zero integration order would indicate that the population series is stationary. 
Alternatively speaking, it is said to possess short-memory shocks. The nonsta-
tionary case is also referred to as long-memory, where a unit shock in the series 
leaves a permanent effect on the historical growth path. However, the in-
between case, the fractional integration method exists, which relaxes the inte-
ger order of restriction to non-integer or fractional values so that the data gen-
erating process of the level population or its growth can be characterized by a 
fractional ARMA process. By doing so, we are able to investigate different 
short-run and long-run effects of shocks in the population series. In Chapter 3, 
we have elaborated on the concept and implications of long-memory popula-
tion growth. 

To provide a quick note, we explicated in Chapter 3 that the fractional struc-
ture of population growth gives rise to an important class of model, viz., long-
memory. This implies that a shock to the population series continues to remain 
and that it is characterized by very high persistence where the series may not 
return to the mean level in the long-run. This is called non-stationary long-
memory. Another possibility is that the shock will continue to affect the series 
for some time in future, will have slower decay but ultimately converges to the 
mean level in the long-run. This property of the population series can be char-
acterized by stationary long-memory. Depending on the length and magnitude 
of memory, policy measures are adopted to stabilize the series. Notably, this 
dynamic characteristic of a time series provides rich stock of information about 
the future evolution of the series, help in identifying clear dynamics and pro-
vide a better forecast accuracy. 
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As will be explained in the following section, the conventional ARIMA 
model is a special case of the more general fractional ARMA class. Forecasting 
models which possesses the ability to incorporate rich dynamic information on 
the growth of the variables, for instance, short-memory and longmemory be-
havior, better approximate real demographic situations and are therefore able to 
deliver better forecast. In this chapter, we have employed fractional ARMA 
model for forecasting with and without consideration of stochastic regime 
switch. In the presence of stochastic regime switch, our objective is to study the 
possible impact of endogenous demographic shifts on forecasting performance. 

4.3 The Model 
The fact that population forecasting is different from other kinds of forecasting, 
that it should warrant its own special methods, and its own special discussion, 
is true, in particular, when we try to do long term demographic forecasts many 
decades into the future, which is typically the case of this chapter. The unique-
ness of the population forecasting method lies in the usefulness of the stock of 
information that demographic system readily have. For instance, (1) The initial 
age distribution of the population provides early information about future popu-
lation size, age distribution, and growth rates, e.g., since their birth, we have 
known exactly when the baby boom generations would swell the numbers of 
elderly. (2) The relative slowness, smoothness and regularity of change in 
fertility and mortality facilitate long term forecasts. Compared to real produc-
tivity growth or to real interest rates, for example, the vital rates are less vola-
tile. (3) Fertility, mortality and nuptiality have highly distinctive age patterns 
which have persisted over the several centuries for which they have been ob-
served. These regular and distinctive age patterns reinforce the preceding two 
points, by making the consequences of initial age distributional irregularities 
more predictable. Demographers have developed methods and models for 
exploiting these features of population evolution in their projections. This does 
not mean, of course, that demographers have built a sterling record of success 
in long term forecasting. Their record, nonetheless, has been a mixture of suc-
cess and failure (Lee and Tuljapurkar, 1998). 

This section presents a model that ideally takes into account the turning 
points, regular changes in the series and more so endogenous shifts which 
might make the population series unstable or chaotic. The chaotic nature of 
population has been thoroughly investigated in the literature, see for instance 
Prskawetz and Feichtinger (1995) and Day (1993). Following these authors, 
contrary to the standard assumption of stationarity of population growth, the 
series can in fact display chaotic pattern because of the presence of either high 
non-linearity between population and the economy and/or due to the presence 
of multiple endogenous shifts in the demographic system which is often over-
looked in the empirical demographic literature. Therefore population series 
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needs to be modelled in an econometric framework which accommodates these 
intuitions and based on them projections need be made. 

As said before, we would employ ARFIMA framework for long-term popu-
lation projections as this method can accommodate many complex features of 
stochastic shock behavior, viz., endogenous nature (by AR process), exogenous 
shocks (by MA process) and stochastic memory (the integration parameter) – 
all of them can form a non-linear structure as well. A description of the long-
memory process and the properties of shock persistence have been discussed in 
Chapter 3. For motivating our analysis here we would briefly touch upon the 
concept and explain the forecasting properties of the ARFIMA process. 

Consider the following model for ty : 
 

 
 

( )LΦ  and ( )LΘ  are autoregressive (AR) and moving average (MA) polynomi-
als of order p  and q  respectively. ( ) ( )zzz pοο /−−/−=Φ ...1 1  and 
( ) ( )zzz qθθ +++=Θ ...1 1  are viewed as functions of a complex number z  and 

have no zero in the unit circle, 1≤z . This is a stationary ARMA model. If ty  
is non-stationary and ( )1I , following ARM A framework, it needs to be (first) 
differenced to make it stationary so that invertibility of the model is assured. In 
this case, 

 

 
 

where ( )L−=Δ 1 , L  is the lag operator such that ( ) 11 −−=− ttt yyyL . Note 
that in the typical ARIMA model Δ  has the power 1=d , which is the standard 
unit root assumption and for ARMA, 0=d . This is the typical Box-Jenkins 
ARMA(p, q) model, which has been adopted by Lee and Tuljapurkar (1994) and 
Pflaumer (1992) for forecasting vital rates and total population for United 
States. Theoretical and empirical literature have extensively discussed about 
the limited dynamics of the integer order of restriction of d . Instead, a more 
powerful and flexible method in the form of fractional ARMA method has been 
proposed in the literature (e.g., Granger and Joyeux, 1980; Hosking, 1981). 
Beran (1994) discusses the main asymptotic results for regression models with 
long memory errors and Baillie and Bollerslev (1994) provide details on the 
models. Relaxing the integer order of integration for d  (i.e., 0=d  or 1=d ), 
if we allow it to lie on the real line, i.e., assume fractional values, then ARIMA 
model can be described as ARFIMA(p,d,q). 

ty  can be described as ARFIMA process if 
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where 01μ  and 02μ  are type 1 and type 2 intercepts. Note that if type 1 inter-
cept is considered, then we are actually treating the series, ty  after eliminating 
the effect of an autonomous or constant factor from the model. The type 2 
intercept enters as an explanatory variable in the model. At most one of the 
intercepts can be non-zero. Assuming that 01 =tμ , i.e., there is no trend in the 
model37, then with type-1 intercept ty  can be expressed as 

 

 
 

and with type 2 intercept 
 

 
Considering the expressions in 4.4 and 4.5, we observe that the main distinc-

tion between the two intercepts is that type 2 intercept will induce a trend of 
( )dtO  because it is discounted by the memory parameter d  as well as by the 

autoregressive polynomial ( ) ( )LLLL pοοο /−−/−/−=Φ ...1 21 , whereas the type 
1 intercept is simply a location shift of the fractionally integrated process. 

Additionally, ( )0≥tut  is assumed to be stationary with zero mean and con-
tinuous spectrum ( )λuf . When ty  is first differenced 01μ  disappears and the 
model is governed by trend term and type 2 intercept, 02μ . The latter is some-
times incorporated in the empirical analysis if ty  is believed to be influenced 
by some stochastic exogenous factors which exert constant effects on the his-
torical trajectory of ty . Demographic system possesses this peculiarity in that 
the dynamics of the demographic system is often led by both its endogenous 
nature and some external constraints. If the model is suspected to be governed 
by a trend term, then the trend must be extracted from ty  before estimation. 
However, if ty  is believed to be a non-stationary process, then it should be 
differenced till stationarity is achieved. A leading special case of the ARFIMA 
model above is without any intercept or trend term, so that eq.4.3 can be writ-
ten as 

 

 
 

Imposition of unit root in this model, that is the first difference of ty  would 
mean 

                                                             
37  If the trend term is considered to be non-zero in the model, then this would of course super-

impose a drift of ( )tO . If there is a unit root, in effect the trend term replaces the type 1 in-
tercept to locate the differenced sequence, whereas the type 2 intercept is asymptotically 
unidentified. In other words, ( ) 01 02

1 =− − μdL  when ( ) 01 >− d . In finite samples it would 
represent an initial negative trend diminishing to 0. 
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where ( )L−=Δ 1 , so that the estimated differencing parameter now becomes 
1−d . An attraction of fractional processes is that they allow more flexibility in 

the dynamic responses of economic variables to shocks than is permitted under 
the unit root model. Correspondingly, the slow decay of the effect of shocks 
allows for slow adjustments to equilibrium in models of cointegration and is a 
potential advantage of long memory error processes in the econometric model-
ling of long-run economic equilibrium. These favorable properties of flexibility 
and slow convergence to equilibrium levels make fractional integration an 
attractive model of time series behavior, that accommodates both unit root type 
persistence as well as long range dependence and mean reversion. In short, 
these processes give us a more general mechanism for studying the phenomena 
of co-movement among economic time series. 

The prediction from ARFIMA processes is usually carried out by using an 
infinite A II representation. Writing ( )01μ−= tt yz  in 4.3 where 01 =tμ  is 
assumed to be zero, then AR ( )∞  representation of tz  is defined as 

 

 
 

In obvious notation:  

 and . 
Note that there is an AR unit root for 0>d . When pre-sample values, i.e., jz  
for 0<j , are set to zero in forecasting, the corresponding predictions are 
called ‘naïve’ forecasts. These predictions are optimal if the observations are 
known into the infinite past. And the corresponding one-step-ahead forecast 
errors are labelled naive residuals, denoted by te~ . Similarly the MA representa-
tion of tz  is: 

 

 
 

has an MA-unit root when 5.01 −≤<− d . Note that 0→/ jυ , when ∞→j  
for 1<d . The process is therefore mean-reverting in this case, and innovations 

tu  only have a transitory effect on the time- series process. Given these for-
malizations, the likelihood of the model is derived, which can be of three types, 
viz., exact maximum likelihood (EML), modified profile likelihood (MPL), 
and approximate likelihood based on nonlinear least squares (NLS). Doornik 
and Ooms (2004) provides a detailed discussion of the properties of these like-
lihood functions. EML is calculated from 4.3 based on the normality assump-
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tion and with a procedure to compute the autocovariances in the TT ×  covari-
ance matrix 

∑= I2σ  of a 1×T  vector of observations y . 

The aim of the MPL is to develop more accurate inference on parameters of 
interest in the presence of a large number of nuisance parameters. Both EML 
and MPL require ∑ and its inverse to exist and therefore require stationary 
ARFIMA-errors. For NLS, the approximate ML estimator is based on mini-
mizing ARFIMA-processes with non-stationary ARFIMA errors. In general, 
the criterion function of the above model when tu  is standard Gaussian is the 
standard ML function.38 

The best linear prediction of HTz +  given the information in z  and knowing 
the parameters of the ARFIMA process, is given by 

 

 
 

where γ  is the autocovariance function and H  is the step of forecast. Eq. 4.10 
can be viewed as a regression of HTZ +  on z . Now denoting  

ZTH
F   

as the optimal forecast for  

, 

. 
It is often of interest to forecast partial sums of tz , e.g., when the log-
population predictions are constructed as partial sums of population growth 
forecasts. A recursive prediction  

 
using AR-representation up to order ( ),...1, +TT  can be calculated. In that case, 
pre-sample values are set to zero and the predictions are optimal since the 
observations are known into the infinite past. The corresponding variances of 

HTz +
~  are computed using the MA coefficients of Eq. 4.9: 

 

 
 

                                                             
38  This is given by:  

. 
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The results of empirical and Monte Carlo investigation carried by some au-
thors (e.g., Bharadwaj and Swanson, 2006) establish the usefulness of ARFIMA 
models in practical prediction39 based applications. Bharadwaj and Swanson 
(2006) present ex ante forecasting evidence based on an updated version of the 
absolute returns series as in Ding et al.(1993) who suggested ARFIMA models 
to be estimated using a variety of standard estimation procedures. The latter are 
shown to yield ‘approximations’ to the true unknown underlying DGPs that 
sometimes provide significantly better out-of-sample predictions than the wide 
class of non-ARFIMA models including AR, ARMA, ARIMA, random walk, 
Generalized Autoregressive Conditional Heteroscedasticity (GARCH), simple 
regime switching, and related models. They showed that very few models were 
better than ARFIMA models, based on the analysis of point mean square fore-
cast errors (MSFEs) and the predictive accuracy tests of Diebold and Mariano 
(1995) and Clark and McCracken (2001). Bharadwaj and Swanson (2006) find 
strongest evidence in favor of ARFIMA models and show that these models 
frequently outperform linear alternatives around one third of the time. More-
over, the authors depict via discussion of a series of Monte Carlo experiments 
that ARFIMA models perform better for greater forecast horizons, while this is 
clearly not the case for non-ARFIMA models. 

4.3.1 Markov Switching ARFIMA (MS-ARFIMA) model 

Recently econometricians (e.g., Granger and Terasvirta, 1999; Diebold and 
Inoue, 2001; Gourieroux and Jasiak, 2001) have begun to consider the rela-
tionship between structural changes in time series and long-memory showing 
analytically and via Monte Carlo that models with regime changes may exhibit 
long-memory properties. One may question then the implications of these 
results for forecasting, for example posing: despite spurious long-memory 
effects due to regime shifts, will an ARFIMA specification still be an effective 
tool of forecasting? In this regard, Diebold and Inoue (2001) suggest that ‘even 
if the truth is structural change, long-memory may be a very convenient short-
hand description, which may remain very useful for tasks such as prediction.’ 

Gabriel and Martins (2004) investigate whether a long-memory approach 
will be robust to structural breaks in a time series, in terms of providing good 
forecasts for financial and macroeconomic data. The authors posit that con-
sidering the way predictions are constructed for long-memory models (i.e., 
taking into account the information of distant lags), one may anticipate that 
                                                             
39  As is often the case, when the ultimate goal of an empirical investigation is the specification 

of predictive models, then a natural tool for testing for the presence of long memory-is the 
predictive accuracy test. In this case, if an ARFIMA model can be shown to yield predic-
tions that are superior to those from a variety of alternative linear (and nonlinear) models, 
then one has direct evidence of long memory, at least in the sense that the long memory 
model is the best available ‘approximation’ to the true underlying DGP. 
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ARFIMA models would experience difficulties in forecasting future immediate 
regime changes, unless of course the switching is transitory. Moreover, they 
found that although long-memory models may capture some in-sample features 
of the data, when shifts occur in the series, their forecast performance is rela-
tively poor when compared to MS models. However, this result is contingent 
upon some specific data considered and may change depending upon varying 
forecast settings, e.g., as in multivariate forecasting. 

In our case, the population series of a number of countries are believed to be 
heavily affected by demographic shifts which are likely to possess both en-
dogenous and exogenous features. Natural calamities, like the recent Tsunami 
can cause heavy demographic instability in the form of demographic shifts. 
This is exogenous in nature. And also sometimes, due to mounting population 
pressure, public policies respond in stringent way to get the population equilib-
rium down to stable growth. This is endogenous in nature. To address this 
possibility in our forecasting exercise, we estimate an MS-ARFIMA model 
which is typically represented by 

 

 
where ( )ts01μ  is the switching unconditional mean. ts  is a binary random 
variable on 2,1=S , indicating the unobserved regime or state driving the 
process at date t . As it will be explained shortly ts  is a stationary first-order 
Markov chain in S . If the switch is expected to occur for the ‘intercept’ then it 
would mean that some unobserved structural changes are guiding the process 

tP . If the switch occurs for d , then we would expect that some stochastic 
(persistent or non-persistent) shocks are accountable for the behavior of tP . 
For instance, it might be possible that government intervention in population 
policy may induce changes in the growth pattern of population. One can iden-
tify this with a structural shift of the parameter in question. Structural shift can 
also occur if some natural calamities tell upon the growth of population. All 
these can be reflected in the persistent property of shocks, i.e., shifts in the 
value of d . To ensure stability in the system, one would assume that the 
switch from one state to the other is transitory in order to get a good forecast 
(See, Gabriel and Martins, 2004). 

Generally the switching unconditional mean is first estimated and then ty  is 
demeaned and is made available for estimation. Switching may as well occur in 
the memory parameter, d , so that 

 

 
 

The regime switch in fact can occur in both intercept and memory parameter, 
so that 
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We elucidate below the basic idea of Markov Switching model. Generally 
the strategy is to decompose a series in a finite sequence of distinct stochastic 
processes, or regimes. The current process in each regime is linear, but the 
combination of processes produces a nonlinear regime. Specifically, Markov-
switching models allow for two (or more) processes to exist with a series of 
shifts between the states occurring in a probabilistic fashion, so that shifts 
occur endogenously rather than being imposed by the researcher. The model-
ling strategy thus imposes a simpler-than-conventional structure on the demo-
graphic process within any given regime, but gains power to fit the historical 
data by allowing regimes to change. The idea is to describe the stochastic proc-
ess that determines the switch from one regime to another by means of a 
Markov Chain. Markov Chain is used to model the behavior of a state variable 
(or of a combination of variables) that determines which regime is current, as 
this variable cannot be directly observed. 

A Markov chain can be represented as follows. Suppose that the ( )dI  series 
ty  is subject to regime shift, ts  being the state of the variable ty  being in 

regime M,...,1  such that },...,1{ Mst ∈ . The regime ts  can be modelled ac-
cording to a discrete-state homogeneous Markov-chain generating mechanism: 

 

 
 

where ρ  is the vector of parameters of the regime generating process. Suppose 
that the probability of ty  with state ts  assuming some particular value j  and 
depending only on the previous value 1−ts , is given by the following equation 

 

 
 

This process is described as a Markov chain with m -states, whose probabil-
ity ijP  indicates the probability of state i  being followed by state j  with the 
property that 

 

 
 

Given eq.4.17 we can build the transition matrix, where line i , column j , give 
the probability of state i  being followed by state j . 
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The main characteristic of this Markov transition matrix of first order is that the 
probability of transition to the next regime relies only on the current regime, 
which simplifies the modeling and, especially, the estimation methods. The 
switching parameters in the ARFIMA forecasting in the presence of Markov 
switching can occur due to significant shifts in the memory parameter, d  in 
two regimes, or significant shifts in ARMA parameters and intercept of the 
model as well as the variance in different regimes. 

The switching is under the control of a Markov-chain updating mechanism 
with fixed transition probabilities. A compact description is given in Davidson 
(2005). Let ( )1, −Ω= ttt jsyf  denote the probability density of the dependent 
variable, ty  at time t  when regime j  is operating. 1−Ωt  represents the his-
tory of the process to date 1−t , and let the probability of falling in regime j  
at time t  evolve according to 

 

 

where . 
The transition probabilities, jip  are fixed parameters that need to be estimated. 
The likelihood function to be estimated is described as 

 

 
 

The series ( )1−Ω= tt jsp , for 1,...,1 −= Mj , the ‘filter probabilities’, are a 
by-product of the estimation (Davidson, 2005). The MS-ARFIMA forecast 
formulae are described in Davidson (2005). The formula takes account of the 
uncertainty about which regime an observation represents, but ignores parame-
ter uncertainty (Davidson, 2004; 2005). The empirical results are discussed in 
the following section. 
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4.4 Empirical Analysis  

4.4.1 Data and Estimation Issues 

Before we elaborate the empirical results and their implications, some notes on 
the data characteristics and estimation issues are in order. We use annual data 
series on aggregate population series (from 1870-2002) for a sample of devel-
oped and developing countries.40 The data have been gathered from Maddison 
(2002, 2004). In accordance with a recommendation by Kashyap and Rao 
(1976) and later by Pflaumer (1992), we estimate ARFIMA for the logarithm of 
the total population series in the first differences. To shed light on the memory 
structure we have estimated d  using both log-periodogram regression and 
parametric regression with Sowell (1992) maximum likelihood method. For the 
former, Phillips (1999a,b) modified log-periodogram regression (MLPR) has 
been employed. For a detailed discussion of the method see Phillips (1999a,b) 
and Kim and Phillips (1999). This method estimates only the long memory 
parameter, d  and does not depend on the effect of short-memory structure, 
like AR and MA parameters. In fact, The MLPR computes a modified form of 
the Geweke/Porter-Hudak (GPH, 1983) estimate of the long memory parame-
ter, d , of ty  when distinguishing unit-root behavior from fractional integra-
tion becomes problematic, given that the GPH estimator is inconsistent against 

1>d . This weakness of the GPH estimator is solved by ML PR. in which the 
dependent variable is modified to reflect the distribution of d  under the null 
hypothesis that 1=d . The estimator gives rise to a test statistic for 1=d , 
which is a standard normal variate under the null. 

We have estimated ARFIMA (p, d, q) model for the first difference of the 
logarithm of total population series, which is the growth rate of population. All 
estimations have been carried out using Time Series Modelling package 
(Davidson, 2005), except the modified log periodogram estimation of d  for 
which we have used STATA. Trend term is not included in the model as it is 
expected that first difference of the population series will automatically elimi-
nate the trend effect. The ARFIMA estimation has been performed with and 
without type 2 intercept to study whether the presence/absence of this intercept 
present substantial variations in the forecast. Note that the first difference of the 
model naturally eliminates type-1 intercept. In Doornik and Ooms (2004), their 
model does not consider the presence of type-2 intercept term. Their model 
roughly looks like a version of Eq. 4.3 with trend term and type-2 intercept 
being set to zero in the model. Here we follow the generalization as in David-

                                                             
40  The developed countries are: Austria, Australia, Belgium, Germany, France, Spain, Swe-

den, United States, and United Kingdom. For developing countries we have considered: 
Brazil, China, India. 
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son (2005) and consider type-2 intercept in the model to allow for the presence 
of a possible unforeseen stochastic shocks in the model. 

Going by theoretical wisdom, we expect higher forecast estimates in case of 
intercept model since a part of the variation in the series is attributed to the 
variation in a trend-like term, independent of the variable’s endogenous 
changes. It may be mentioned that the ARFIMA estimation will be carried for 

tPΔln , therefore type-1 intercept automatically vanishes after differentiation of 
tP . What remains now is whether to use type-2 intercept in the estimation. 

There is of course no a priori reason to choose one over another although it is 
often guided by the economic/demographic assumption and reasoning. For 
instance, in our case, we would favor without type-2 intercept model because 
while first differencing tP  we have eliminated the effect of a trend term to 
some extent and therefore accounting for a further inclusion of intercept in the 
model might bias the result (see for instance, Silverberg and Verspagen, 2001). 

However, a comparison of the forecast errors from the two models and 
comparison with UN and other forecasts along with the in-sample forecasts 
would lend a clue to our choice. Figures 4.4 through 4.14 present forecast plots 
of the estimated models with and without type-2 intercept. For each country, 
the Kernel density plot is also provided (lower panel of each forecast) for 2050. 
We estimate a parametric ARFIMA model for the first difference of the loga-
rithmic of the total population and then perform dynamic forecasts till 2050. 
Estimation in first difference is guided by the rule-of-thumb that Robinson’s 
semiparametric d  value is more than 0.4, which gives evidence of long-
memory process (See Davidson, 2005 for the selection procedure). Moreover, 
modified log-periodogram estimates presented in Table 4.1 (first column) also 
provide similar conclusion. Based on these information, we have first-
differenced the population series before estimation. 

Different orders of ARFIMA, viz., ARFIMA(3,d,3) model were tried with 
maximum AR order p = 3 and maximum MA order q = 3. In contrast to the 
standard log-periodogram or semiparametric estimation procedure for d , for 
instance, the Whittle ML method, where d  is estimated without imposing any 
a priori restriction on the AR and MA parameters, in the present context we 
estimate d  directly from the model. Clearly, the magnitude of d  depends on 
the magnitudes of AR and MA parameters when estimated without Markov 
switching model and at other time in the presence of different regimes while 
imposing regime switching in the ARFIMA estimation. Selection of the best 
ARFIMA model for forecasting has been based on Schwarz Information Crite-
ria and comparing the highest likelihood estimates of various ARFIMA mod-
els. 

Finally, a note on the confidence band of the forecast values. We have used 
Bootstrap standard errors to build confidence band for the estimated forecast 
values. Ex-ante multi-step forecast using Monte Carlo method has been per-
formed. In contrast to the analytic method, in the monte carlo method the dy-
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namic model is stochastically simulated F-steps forward using three shock 
generating mechanisms, viz., Gaussian, Likelihood matching, and bootstrap. In 
this case, the median of the simulations provides the point forecast, and 2.5% 
and 97.5% quantiles are also reported in order to provide a 95% confidence 
band around the forecast. Moreover, Kernel density plots for forecast point 
have also been provided against the normal density to have additional informa-
tion on forecast values (see the lower panel of each forecast plot in Figures 4.4 
through 4.14). 

4.4.2 Empirical Results: Forecast comparisons and accuracy measures 

Analysis of Population Size 

This section demonstrates the application of the ARFIMA technique using the 
logarithm of total population figures from 1870-2002 for some selected coun-
tries. Eight developed countries and three developing countries have been 
chosen for empirical demonstration though the number can be increased to 
accommodate wide range of countries. The selected developed countries, viz., 
Austria, Belgium, France, Germany, Sweden, United Kingdom, Australia and 
United States appear to capture a common variability in the demographic struc-
ture. While among developing countries China and India have much in com-
mon as they possess the highest population share in the world. Moreover, Bra-
zil’s economic and demographic system also resembles to that of India. Note 
that the choice of the countries is rather arbitrary and to some extent is gov-
erned by common demo-economic structural affinities as mentioned about. To 
have insight into the forecasting results, it is useful to study their time series 
plots. 

First, we provide a graphical presentation of the logarithm of total pop-
ulation and their first differences for the selected developed and developing 
countries. Second, we analyze the memory structure of total population growth 
(i.e., logarithmic first difference of the total population) with respect to semi-
parametric log periodogram regression and parametric maximum likelihood 
method where we estimate a full ARFIMA model. 

In case of the log-periodogram method, long memory ( )dL−1  is estimated 
without taking account of short-memory structure. For the latter short-memory 
structure is directly investigated by allowing AR and MA parameters in the 
model. In the sequel, long memory parameter, d  is also estimated in the pres-
ence of AR and MA parameters to check if long-memory parameter is contami-
nated by short-memory behavior. The logarithm of the plots of population 
series and their first differences (to be interpreted as growth rates) are described 
in Figures 4.1 through 4.3. In Figures 4.1-4.2, developed countries logarithmic 
population plots and the first differences (in logarithmic scale) are presented. 
Figure 4.3 depicts the same for developing countries. 



 113

It can be observed that except for United States, Australia, and Sweden, 
other developed countries like Austria, Belgium, Germany, France, and United 
Kingdom show fluctuations. Similarity of structure is observed in most of the 
European countries, like Austria, Belgium and Germany. Among developing 
countries (shown in Figure 4.3), Brazil and China exhibit a similar trend with 
steady rise in the growth.41 For India, a structural break can be observed which 
occurred in 1947 during the partition of the undivided India into Pakistan. 
Overall, all developing countries experience rapid total population growth. The 
first difference of tPlog  (i.e., tPlogΔ ) for developed and developing countries 
are described in Figure 4.2 and Figure 4.3 (lower panel only) respectively. 
From the plots we observe that the first difference of the population series are 
stationary as the values fluctuate around zero. However, slightly positive values 
for some countries, like US for the first difference plots may indicate that the 
series needs to be differenced further. Pflaumer (1992) showed that US popula-
tion is second difference stationary from 1900-1988. However, first or second 
differencing is a rather extreme transformation of the series while following 
fractional integration setup, a fractional transformation is often recommended 
because this is expected to give an accurate measure of integration parameter 
d . 

Table 4.1 reports the estimates of d  from semiparametric MLPR and para-
metric ARFIMA models. In the parametric case, results are reported for AR-
FIMA with and without Type 2 intercept (second and third column of Table 
4.1). The modified log-periodogram (MLPR) estimate clearly indicates exis-
tence of stationary long-memory in population growth rates as in all cases 

10 << d  except for United States for which 1≥d . This is the case with non-
stationary long memory. The level population in this case is 
( ) ( )046.21 IdI =+ . The evidence of long-memory in growth rates is indicative 

of the nature of persistent shocks, which must be taken into account for lon-
grange forecasting. The reason is that estimates of d  indicates the convergence 
pattern of shocks in the long-run – a feature which will be of enormous use for 
a stable and accurate long-range forecast of level population. The ARFIMA 
estimation of d  evince less persistence compared with MLPR estimates as the 
former accommodates short-memory structure in the form of estimated AR and 
MA parameters. This is not surprising as the MLPR method provides estimates 
of d  using a semiparametric approach. The data generation process is de-
signed in MLPR such that AR and MA terms effects are not directly accounted 

                                                             
41  A structural break seems to have occurred for China around 1959 and for Brazil in 1949. 

However, a slight change in the slope of the curve may not always be considered as struc-
tural changes, because such changes do often occur in the economy. By structural changes 
here we mean a clear and measurable shift in the slope of the curve which is expected to 
occur due to some drastic or massive changes in economic or socio-economic or demo-
graphic regime. 
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for rather the maximum likelihood designed for this method in the frequency 
domain is expected to account for some of their effects. However, since the 
short-run and long-run effects are not directly taken into account as in paramet-
ric method the estimates would differ (see for instance, Tolvi, 2003). The supe-
riority of one method over other cannot be gauged as they just provide two 
different mechanisms to approximate short-memory and long-memory features 
of a given model. The MLPR estimates like other semiparametric methods 
(such as Robinson, 1995) test for the presence of a short and/or long-memory, 
while in parametric case, the long-memory parameter is directly estimated in 
the presence of some other parameters. 

Clearly, the estimates of d from ARFIMA models seems to have been con-
taminated by short-memory behavior.42 Table 4.3 precisely illustrates this pos-
sibility, where ARFIMA models have been estimated43 and selected according 
to SIC criterion. As expected AR parameters are found to significantly influ-
ence the DGP of population growth rates. For UK, MA parameters are very 
significant and negatively affect the growth path of population. Mixed results 
are found for India. The interpretation of ARFIMA components with estimated 
d  is reported in Table 4.2. To summarise, the estimated parameters of the full 
ARFIMA model indicate about the significance of AR and/or MA shocks in the 
population series; while significant AR parameters hint at the relevance of past 
shocks from historical point of view (this is also endogenous to the system), the 
significant MA parameters tell us about the influence of stochastic external 
shocks to the demographic system. The interpretation of the memory features 
may hold true even with log periodogram estimates of d  (see Chapter 3). The 
chosen ARFIMA models are reported in Table 4.3. From the estimates of d  of 
the differenced population series, it is apparent that the actual population series 
is ( )d+1  (estimated by the model), which depict non-stationary behaviour. 

                                                             
42  Note that d is estimated from MLPR method as a result of log-periodogram regression 

without accounting for AR or MA parameters. While in ARFIMA model, d is estimated 
along with other parameters, like AR and MA orders. This is a fully parametric estimation 
of ARFIMA. The difference between MLPR and ARFIMA estimates of d would remain as 
long as the data generation mechanism in the two cases are different. Both the models have 
their respective weaknesses though and it is difficult to choose one over the other. We may 
note that we estimated d in Chapter 3 using MLPR method to know about the influence of 
stochastic memory on economy growth. That is, independent of any other endogenous or 
exogenous effects how stochastic memory could affect growth. In forecasting we would 
like to use the fully parametric ARFIMA model, first to lend comparison with ARMA 
method used by Pflaumer for US and second, one would know how future population pro-
jection will be substantially led by AR, MA and d altogether. 

43  We have not reported the estimated results of ARFIMA model without type-2 intercept due 
to our a priori choice of with type-2 intercept model for forecasting. 
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Analysis of Forecasts 

In this section we discuss the forecasting results of ARFIMA and Markov 
Switching ARFIMA (MS-ARFIMA) estimation and compare them with United 
Nations projections till 2050. The forecasting performance of the total popula-
tion is evaluated based on the computation of dynamic forecasts. The models 
have been estimated recursively and dynamic forecasts generated starting from 
2003 till 2050 except for United States for which the forecasting horizon ex-
tends upto 2080 in order to compare with Pflaumer’s (1992) and Census Bu-
reau’s estimates. For United States the sequence leads up to 78-step ahead 
dynamic forecasts though we have calculated forecasts till 2050 for comparison 
with United Nations projections. Finally we try to provide some preliminary 
estimation of the forecasts when the DGP of the total population follows long 
memory with stochastic regime switching, i.e., the Markov switching model in 
our case. The idea here would be to hint at the changes in forecast values when 
a possible regime switch is suspected in the ARFIMA model. Our purpose here 
is not to compare the forecast accuracy of the regime switch and simple AR-
FIMA process as this has been carried in some studies, e.g., Gabriel and Mar-
tins (2004), etc. While finding rather a trivial answer to the performance pattern 
of regime switch and ARFIMA processes, the authors reiterate that in case of 
longer sample, markov switching fares better than simple ARFIMA. However, 
the validity of their results might also be contingent upon the specific data that 
they used. It may also depend on the chosen length of a sample. However, 
keeping in mind the possible drawbacks of each method, we present here the 
forecast values of each method and compare them to give a preliminary idea on 
the performance of these methods in our data. Table 4.4 presents a comparison 
of our ARFIMA forecasts with UN projections and Table 4.6 reports the 95 
percent lower and upper limit confidence interval for the forecast points. Fig-
ures 4.4 through 4.14 depict forecast till 2050. 

To provide credence to our forecast, we have performed in-sample forecast 
for the selected countries and have generated forecasts for the years 2000-2005. 
In Table 4.7, we present forecast figures for 2005 which are compared with 
actual population figures for 2005 (obtained from the World Fact Book44) and 
UN projection values for this year. The 95% confidence band for our actual 
forecast (based on ARFIMA projection) is also reported (the last two columns 
of the Table 4.7). It may be observed that out of 11 countries considered here, 
for about 8 countries our forecasts are closer to actual figures (from the World 
Fact Book) for 2005.45 Except for Austria, Australia and Sweden, for other 

                                                             
44  http://www.cia.gov/cia/publications/factbook/rankorder/2119rank.html. Figures for 2000-

2004 are not reported in the Table to save space. 
45  It may be noted though the ‘closeness’ of our estimates to that real figures is merely an 

indication of the performance of the method we have used for forecasting. However, to de-
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countries the forecast values are more or less the same as the actual figures in 
2005. The UN estimates are also closer to the actual figures but in some cases, 
for example India and China, the projections are higher than the actuals. On the 
whole, ARFIMA and UN projections show comparable estimates though in 
most cases ARFIMA projections seem to approximate actual figures more 
closely than UN projections.46 

Our estimation is based on time series methods while UN and others pro-
jections are based on high, low, medium variant and probabilistic methods. 
Unless we compare the existing methods with some criteria, we cannot say 
here whether the probabilistic or time series methods are better. Pflaumer 
(1992) admits that time-series based method, such as ARMA can be a com-
plementary tool along side probabilistic or other methods to give credence to 
the forecasts. The competitive features of time series and other methods are not 
yet known and investigation of this sort is also beyond the scope of the present 
chapter. For our purpose we can conjecture that time series methods as a 
demographic forecasting tool can be as useful as other methods. However, in 
the temporal domain, ARFIMA models are said to be better than ARIMA due 
to the inherent characteristic of the former to account for stochastic shocks 
accurately. It is also true that if one relaxes the probabilistic assumption on 
demographic variables in favor of a more accurate characterization of stochas-
tic shocks which have evolved over time, then the revelation of the in-sample 
characteristics in terms of memory properties of shocks can sometimes better 
indicate how demographic structure has evolved over the years. 

The superiority of this method is yet to be proven systematically although in 
terms of the ‘assumptions’ about demographic processes and some features of 
the model behavior the usefulness of time series methods can be gauged. For 
instance, Tuljapurkar et al. (2004) compare the forecast of vital rates (e.g., 
fertility rates) from random scenario and time series methods and find several 
key differences between these methods. The authors found that serial correla-
tions in the forecast were much smaller in time-series methods and trajectories 
in these methods were much more irregular than in random scenario. Based on 
these theoretical investigation therefore advantages of time-series based meth-
ods can be held over other competing methods.47 

                                                                                                                                
liver a rigorous analysis on the ‘closeness’ some additional tests and information maybe 
required, viz., the width of the confidence band. 

46  It needs to be stressed that it is not possible at this point to prove the superiority of our 
forecast method over UN or others. All these models have different assumption about the 
underlying demographic process and they model uncertainty differently. Hence, a more rig-
orous comparative analysis is required, which is beyond the scope of the present research. 

47  Tuljapurkar et al. (2004) investigate the validity of their findings for US data on mortality 
and fertility for which a robust amount of literature on different forecasting methods and 
their applications exist. In this chapter we have extended the analysis to many countries and 
to different age-specific population. We do not have available information to compare our 
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• Analysis of Forecasts for USA 

As invoked earlier, although population forecasting employing time series 
methods is getting increasing attention recently, so far the application of these 
techniques, such as ARM A model has been employed for United States popu-
lation, life-expectancy and/or other demographic variables as could be found in 
Pflaumer (1992) and Lee and Tuljapurkar (1994). Therefore to render appro-
priate comparison of our ARLIMA forecast with ARMA and other stochastic 
forecasting methods, we elaborate in this section the forecast of total popula-
tion for United States. 

From Table 4.3, it is evident that US logarithmic total population is an AR-
FIMA ( )0,1,1 d+  process, where the estimated d  is zero, implying no signifi-
cant memory structure. (Note that considering MLPR estimates, we found 
evidence of non-stationary long-memory characteristics of this series). Follow-
ing ARFIMA representation, the estimated model is 

 

 
 

Since ( ) ( ) ( )1lnlnln −−=Δ ttt yyy , Eq. 4.21 can be written as 
( ) ( ) ( ) 000.0984.0ln984.1ln 21 =+−Δ −− ttt yyy  The characteristic equation is 

 
 

Upon finding the solution of the equation (where 11 =λ  and 984.02 =λ ), the 
general solution of the difference equation is written as 

 

 
 

Taking the initial conditions 0y  we can obtain a definite solution of the dif-
ference equation from which long-term forecast of population can be calculated 
with constant annual population growth rate.48 Similarly, the characteristic 
equations for other countries with different orders of ARFIMA can be written 

                                                                                                                                
forecast with other methods with criterion like checking the strength of serial correlation 
and comparing the variance of these models. Nevertheless we do not also presume that this 
is an ideal way to compare as the data generation mechanism for random scenario and time-
series methods are different. 

48  Note that our forecasts are basically point forecasts sequentially performed over long period 
of time. Although these forecasts do not reveal much about parameter uncertainty in com-
parison to interval forecasts, a study of the estimated confidence interval for the point fore-
cast provides some idea about the range of values the forecast would fall. Moreover, all the 
forecast plots accompany density forecast figures to help explain the amount of uncertainty. 
Standard practice in time series based forecasts is to consider point forecasts, at the least 
while estimating an ARFIMA type of model. 
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which are then solved to achieve a definite solution of the corresponding dif-
ference equation. Finally, this is used for long-term forecast. 

Two different projections can be observed, viz., with and without type-2 in-
tercept. The motivation of the presentation of forecasts with these two models 
is to understand how the inclusion of an additional intercept (concerning the 
exogenous autonomous factor) change forecast values. Since our estimated 
model is the first difference of tP , the trend and type-1 intercept have auto-
matically vanished, therefore, the imposition of another intercept which corre-
sponds to MA term in the model would provide higher forecast than without 
type-2 intercept. Doornik and Ooms (2004) prefer without type-2 intercept 
model as most of the economic time series, after first differencing do not nec-
essarily need to have another independent term to govern the overall dynamics 
of the ARFIMA model.49 Unless of course there is a strong reason to believe 
that this intercept should be incorporated in the demographic model, it is better 
to follow the standard practice, i.e., to compare our forecast from without type-
2 intercept model with other competing methods of population forecasting. 

To elucidate the point, note that our forecast for US total population (in Ta-
ble 4.4) shows that in 2050 the total population will reach around 392.3 million 
without type-2 intercept and 525.9 millions with type-2 intercept, which is 
lower than Pflaumer (1992) projections based on the sample period 1900-1988. 
Evidently forecast with type-2 intercept is higher than without it simply be-
cause we have assumed that unforeseen stochastic shocks might play a role in 
the succeeding years and would act upon forecast values. Note that the longer 
sample span (as in our case from 1870-2002) incorporates more dynamic in-
formation about the prevalent shock’s evolution for which the effect of shocks 
is reflected on the forecasts. 

Based on our sample, the ARFIMA forecast for US population for 2080 is 
783.0 million in contrast with Pflaumer (1992) which is 830.7 million. The 
lower limit of the 95 percent confidence interval for our ARFIMA projections 
are at 563.5 million and upper limit at 1125.7 million (See Table 4.5). The 
ARFIMA forecast without Type 2 intercept presents rather lower forecast value 
for US, which is about 392.3 million. The United Nations provides estimates of 
459.8 million for high variant, 337.5 for low and 394.4 for medium variant for 
the year 2050. Ahlburg and Vaupel’s (AV, 1990) alternative projections of US 
population with high variant is about 553 million (See AV, 1990 for detailed 
analysis on the projection). This figure takes into account 2% mortality pro-
gress large fertility cycles and 1-2 million immigrants. The middle variant 
estimate of AV is 402 million population in 2050 which takes into account 1% 
mortality progress and 1-2 million immigrants. 

                                                             
49  See for example the ARFIMA 1.21 estimation package of Doornik and Ooms. 
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Notice that the high variant projection of AV corresponds closely with our 
ARFIMA ( )0,1,1 d+  forecast with Type-2 intercept for US. The estimated 
population in our case is 525.9 million, whereas for AV it is 553 million. Simi-
larly, for 2080, AV’s hight variant projections stand at 811 million, Pflaumer’s 
(1992) ARIMA (1,1,0) projections at 830.7 million. The ARFIMA ( )0,1,1 d+  
forecast for US shows lower estimates (783.0 million) which is less than both 
AV and Pflaumer’s projections. It may be mentioned at this point that AV 
(1990) criticize US Census Bureau (the estimates are not presented here) for 
imposing too conservative assumptions in the middle and high projections. 
They conclude that the Census Bureau high projection might be treated as a 
reasonable middle forecast. The same argument seems to hold true for UN 
projections too. We have shown here that for US, the estimates are closer to 
AV (1990) high variant projections. Figure 4.11 demonstrates the projection 
from ARFIMA ( )0,1,1 d+  model with 95% confidence band. 

• Analysis for other countries 

A similar analysis can be carried for other countries as well. Take for instance 
the case of Austria as in Table 4.4. The total population size for this country in 
2050 is expected to be 8.49 million (without type-2 intercept) and 9.42 million 
when type-2 intercept is introduced in the forecasting model. The UN high 
variant projection for 2050 is 9.27 million and medium variant is 8.07 million. 
For Sweden, the revised UN high projection is estimated at 11.58 million total 
population and 10.05 million for medium variant projection, whereas our AR-
FIMA ( )0,1,1 d+  forecast estimates (without the intercept) is 8.75 million and 
11.48 million with intercept. In 2050, France will have a total population of 
72.9 million with ARFIMA ( )0,1,1 d+  in the presence of type 2 intercept and 
60.35 million without intercept model. Thus it is evident that the presence of 
type-2 intercept consistently gives higher forecast than without it. This is natu-
ral given the explanation as above that the presence of an additional regressor, 
specifically a constant term will include some amount of additional variation of 
the forecast. 

Notable differences between UN and ARFIMA projections occur for de-
veloping countries. Consider for instance, China for which the medium variant 
UN forecast is 1392 million (approximately 1.4 billion) in 2050. Our ARFIMA 
( )0,1,1 d+  model with Type 2 intercept leads to significantly higher forecast, 
which is 2063 million (approximately 2 billion) in 2050. However, ARFIMA 
( )0,1,1 d+  model without Type-2 intercept provides lower forecast, which is 
approximately 1.5 billion in 2050. For India, the ARFIMA forecast signifi-
cantly differ from UN projections. For instance, the high variant UN forecast 
for India is 1889 million (which is 1.88 billion), where the ARFIMA ( )2,1,1 d+  
forecast in the presence of Type-2 intercept leads to significantly high forecast 
of 2380 million (that is 2.38 billion) in 2050. The ARFIMA model without 
intercept estimates the forecast at 2182 million or 2.18 billion during the same 
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time. Comparing the forecasts of population size for China and India, it is 
observed that India is expected to surpass China as the most populous country 
in the world. The same observation also follows from UN forecasts. To have an 
idea about how our ARFIMA forecasts is proximus to the actual figures in 
2005, we have compared India’s current population figure50 with our forecast 
for 2005. We find that our projections are quite close to the actual figure in 
2005, providing credence to the accuracy of the forecasts.51 However, the fore-
cast values of India and China should be explained with caution as the confi-
dence band for these countries are very wide.52 

• MS-ARFIMA forecast analysis 

So far we have discussed results based on simple ARFIMA models. However, 
in the preceding section we have also noted that demographic system can ex-
perience possible structural shifts. Endogenous changes might also occur in the 
system. To capture their effects, MS-ARFIMA model is employed. In the esti-
mation we have allowed switching to occur in d  as well as in the intercept. 
The explanation of switching parameter has been stated in the preceding sec-
tion. Recall that we have assumed two regimes in the model. So the estimated 
transition probabilities in this case would indicate how the population series 
has experienced a stochastic shift from one regime to the other. In terms of 
regime shift in d , the first regime could be no stochastic shocks and regime 2 
could be with stochastic shocks. Since we have assumed a stationary Markov 
process, the transition probabilities should indicate stationarity so that based on 
this a stable forecast can be drawn. 

Note that we have not considered all countries for investigation in MS-
ARFIMA model. We have selected a few where we felt, the switch is more 
distinct than others. Among the countries we have performed forecast, India, 
Belgium, UK, and Austria have been selected. For instance, in case of India 
demographic shifts occurred in 1947 during the independence. A similar pat-
tern can be observed for UK, where a break in the series is visible around 
1920s. Important to remember that while a one-off shock like the partition of 
India in 1947 or the 1920-21 shock in the UK cannot be described in a Markov-
switching framework, there can be many small but significant demographic 

                                                             
50  Source for World Factbook: http://www.cia.gov/cia/publications/factbook. 
51  Instead of the confidence band, the relevant standard errors could be reported. However, 

our preference for the confidence band is based on the standard reporting in the forecasting 
literature. Added motivation is that the confidence band gives us an idea about the tightness 
or wideness of the actual forecast. 

52  Despite trying with many alternatives and re-running the estimation we did not find sub-
stantial changes in the results. This might indicate the population series of these countries 
need additional treatment to counter high-uncertainty as represented by the wide confidence 
interval. 
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shifts in the series, which might give rise to a long-memory pattern as the 
‘shifts can cause non-linearity’ in the model. Switching can occur in the model 
which may be known to us a-priori. Often some switchings can occur endoge-
nously and may not be super-imposed while performing estimation. Therefore, 
the model is allowed to be estimated assuming that the switching has occurred 
in intercept and/or in the memory parameter (in the current estimation, for 
example). Following Davidson (2005) TSM package where it allows the 
switching to be selected in ARMA parameters, d  and/or intercept, we have 
estimated the Markov Model where switching has been assumed to occur both 
in intercept and in long-memory parameter. However, to take account of these 
shifts MS-ARFIMA model is employed and total population forecast till 2050 
is performed. Two regime-shifts have been permitted in the model. The MS-
ARFIMA forecasting results and transition probabilities for the regime switch 
are reported in Tables 4.8 and 4.9. 

To start with, the MS-ARFIMA ( )0,1,1 d+  forecast for France puts a lower 
estimate. In the presence of Markov Switching the ARFIMA estimates put the 
total population for France at 59.1 million in 2050, which is 4.8 million higher 
than UN low variant projection (54.3 million). The Markov transition prob-
abilities are, 80.011 =p , 19.012 =p , 84.021 =p , and 15.022 =p . There is 84 
percent probability that changes in the long-memory parameter and intercept 
from Regime 1 to Regime 2 is significant which governs the ARFIMA proc-
ess.53 Similarly, comparing the ARFIMA and MS-ARFIMA forecasts for India, 
we observe that ARFIMA forecasts (both with and without intercepts) have 
higher estimates than MS-ARFIMA. Notably, when endogenous shifts are 
considered in the model, the Markov Switching process leads to lower esti-
mates. The MS-ARFIMA forecast for India stands at 1684 million which is 
lower than ARFIMA forecasts (2182 million without intercept). For Austria, 
similarly the MS forecast leads to 7987 million which is lower than simple 
ARFIMA forecasts. The transition probabilities for Austria are 98.011 =p , 

02.012 =p , 69.021 =p , and 31.022 =p . This implies there is 98% probability 
that regimes changes in memory parameter and intercept significantly affect the 
DGP of total population series.54 Note that since the estimated transition prob-
abilities are quite large, this indicates that the regimes are persistent. Therefore, 
it is not surprising to find long-memory in the series.55 

                                                             
53  Following Davidson (2005) regime 1 denotes no structural parameter and non-stochastic 

shocks persisted and regime 2 would mean structural changes in the economy and persis-
tence of stochastic shocks played crucial role in the series. 

54  We have assumed that the regime change occurs both in the intercept and parameter, i.e., 
the memory parameter here. 

55  Given the nature of stochasticity of population series and the evident persistence of re-
gimes, the forecast from this method may not be reliable. Therefore, we do not extend a 
rigorous analysis of this method in this chapter which is preserved for future research. A 
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The intriguing question is: which forecast is to be taken into confidence? 
Going by Pflaumer’s (1992) logic it can be said that time series based models 
do not perform worse than more complex demographic models in projecting 
future population size. Many demographic methods involve complex compu-
tational mechanism, for instance computation of stochastic Leslie matrix, or 
modelling stochasticity in life-expectancy and incorporating for population 
projection. These involve great risk of lending to complex modelling, and de-
pends on the pattern of future population growth. In terms of methodological 
simplicity and better embedding of dynamic information in the demographic 
system, time series methods seem to be simpler and more informative. The 
suggested ARFIMA model for total population forecast is a significant step in 
this direction which can aptly combine the dynamic demographic intuitions in 
the econometric model by permitting the ‘memory’ of shocks to assume frac-
tional value. This makes the model more general and flexible giving the fore-
caster an opportunity to take account of a shock, of whatever magnitude it is, 
which can influence the future trajectory of population growth. A shock of 
small magnitude today can accumulate over time and may cause instability in 
the series based on which no definitive conclusion about its interaction with the 
rest of the economy can be made. 

Theoretically, ARFIMA models have been shown to perform better than 
ARIMA method to identify and model stochastic shock behavior in a series. The 
ARIMA method as employed by Pflaumer (1992) can be suitably extended to 
ARFIMA paradigm which is more flexible domain and where the characteristics 
of shocks can be better understood than in the ARIMA framework. Moreover, 
using conventional practice of forecasting as in Doornik and Ooms (2004), 
where type-2 intercept is omitted from the model, and since there is little a 
priori ground to induct such term in the model to capture unseen future stochas-
ticities (which is already captured by the behavior of error term), we stick to 
the forecast values of ARFIMA model without type-2 intercept. Additionally, 
the choice of the without type 2 model for forecast is also motivated by com-
paring the likelihood and Schwartz criterion of the two models.56 

                                                                                                                                
possible direction would be to treat the persistent properties of the transition matrix and use 
them for forecasting population series. 

56  A possible method to lend a choice over the presence of such intercept is to perform a 
simulation experiment for each country. But we do not deem it fit for our case due to the 
reasons explained before that we do not have a priori justification of incorporating such a 
term in the model. Of course, whence the estimation is performed on the raw series instead 
of the differenced series, a choice of one of these intercepts would have led us to fix a crite-
ria for selection. Since in our case we have differenced the series for estimation, one of the 
intercepts has already been accounted for in the model. 
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4.5 Conclusion 
Two leading concerns underlined the analysis of this chapter. First, most of the 
notable research in population forecasting were concentrated for US data and 
rarely for some other countries. Specifically, the application of time-series 
methods for demographic forecasting has not found much importance beyond 
US demography analysis. Our primary purpose was to use this method for 
other countries, viz., for a set of developed and developing countries whose 
demographic patterns have been the cause of concerns over the years. While 
developed countries are experiencing a fall in population, developing countries 
are experiencing an upward trend. Using time-series method as one of the 
stochastic methods of forecasting, we attempted in this chapter to shed some 
light on the future pattern of population in these countries. Another aim of this 
chapter was to introduce ARFIMA framework as a more flexible method to 
forecasting population. With regard to this, we intended to extend Pflaumer 
(1992) ARIMA method to a general ARFIMA framework. By extending the 
model, we intended to take into consideration the varied nature and effect of 
demographic shocks in the model which was absent in the ARIMA case. The 
consideration of ARFIMA method for forecasting has been motivated by the 
results of Chapter 3 where we found significant evidence of long-memory of 
total population and age-structured population using historical time series. 

Indeed, the advantages of ARFIMA method is established in the literature, 
however, our consideration of a fractional class instead of integer order of 
integration of the memory parameter has allowed us to incorporate different 
short-run and long-run features of the population series for long-range forecast-
ing. Some important points emerge from the forecasting exercise. First, the 
comparison of in-sample forecast values show that our ARFIMA projections are 
indeed closer to the actual figures and are comparable to UN projections. As 
invoked earlier, the models are not comparable due to different assumptions 
about the data generation process of the population and most importantly due to 
the difference in method of treatment of uncertainty in these methods. While 
pure demography based methods, like stochastic Leslie projection matrix, etc, 
involve complex assumptions about the evolution of the demographic process, 
the time series characterization of demographic variables actually simplify this 
complexity to a great extent by directly incorporating endogenous and exoge-
nous shocks in the demographic variables which originate due to evolution of 
the demographic system. As Alho and Spencer (2005) note, time series based 
methods are not strict alternative for demographic forecasting, but the former 
can complement the latter, and even at times, if combined efficiently with 
complex demographic processes, can prove to be very powerful forecasting 
tool. Like Pflaumer (1992), we may conjecture that ARFIMA forecasts can 
complement though not compete with forecasts from other methods. 

Nevertheless, within time series methods the ARFIMA method have more 
advantages than standard ARIMA and most other demographic forecasting 
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methods like high, low, and medium variant projection techniques used by US 
Census Bureau and United Nations, for instance. For any forecasting exercise, 
it is always handy to incorporate as much dynamic information in the model as 
possible to have a reliable and economically meaningful forecasts. Population, 
by nature acts endogenously and interacts with the economic system in such a 
way that the feedback of shocks that influence the series can be handled by 
stochastic modelling, more accurately by time series methods. 

Based on the standard empirical convention and relying on the comparison 
with actual in-sample forecast and tight confidence band we choose without 
intercept model for our forecast. Our forecast shows that European countries 
total population will steadily grow while a faster growth is deemed for develop-
ing countries like India and China. Importantly, by 2050 India is expected to 
replace China as the most populous nation on the earth. The two largest coun-
tries follow quite different population policies. China’s policies are in fact 
binding and follows ‘controlling’ population as opposed to the liberal attitude 
in India which has a normative approach of ‘stabilizing population’. However, 
it is expected that the relatively faster growth of population in India will also 
add to the stock of human capital and in fact the high cost of births can be 
attenuated by higher contribution from the accumulated human capital. 
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Table 4.1: Estimation of d for tPlnΔ  

Countries d-Modified 
(log-periodogram) 

d-ARFIMA 
(with intercept) 

d-ARFIMA 
(no intercept) 

Austria 0.453 (0.101) 0.005 (0.002) 0.011 (0.001) 
Australia 0.581 (0.140) 0.007 (0.004) 0.091 (0.031) 
Belgium 0.721 (0.156) 0.000 (0.100) 0.024 (0.012) 
France 0.632 (0.152) -0.003 (0.132) -0.002 (0.101) 
Germany 0.3 (0.124) 0.007 (0.003) 0.012 (0.001) 
Sweden 0.621 (0.158) -0.001 (0.104) -0.001 (0.108) 
UK 0.262 (0.123) 0.012 (0.001) 0.813 (0.152) 
USA 1.046 (0.116)) 0.000 (0.002) 0.000 (0.002) 
Brazil 0.776 (0.231) 0.000 (0.001) 0.000 (0.003) 
China 0.502 (0.121) 0.000 (0.121) 0.000 (0.003) 
India 0.113 (0.034) 0.241 (0.114) 1.083 (0.342) 

Note: Bracketed values are standard errors. The ARFIMA is estimated for the first dif-
ference, so d for actual population will be 1+estimated d. 
 

Table 4.2: ARFIMA (p,d,q) components and their interpretation 

d Φ  Θ  Interpretation: Population growth 
0 < 0,1 > < -1,0 > : Short-memory, log population is I(1) 
1 < 0,1 > < -1,0 > : Non-stationary, log population is I(2) 

< 0, 0.5 > 0 0 : Long-memory, log population is I(d+1) 
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Table 4.3: ARFIMA (p,d,q) model estimation for tPlnΔ  (No intercept) 

Country ARFIMA (p,d,q) 
Model 

d AR(1) AR(2) MA(1) MA (2) MA(3) 

Austria ARFIMA(l,l+d,0) 0.011 0.427 
(0.121)

    

Australia ARFIMA(2,l+d,0) 0.091 1.007 
(0.269)

-0.181    

Belgium ARFIMA(2,l+d,0) 0.024 0.948 
(0.421)

-0.150 
(0.040)

   

France ARFIMA(l,l+d,0) -0.002 0.778 
(0.274)

    

Ger-
many 

ARFIMA(l,l+d,0) 0.012 0.457 
(0.173)

    

Sweden ARFIMA(l,l+d,0) -0.001 0.918 
(0.413)

    

UK ARFIMA(0,l+d,3) 0.813   0.757 
(0.328)

-0.612 -0.169 
(0.086) 

USA ARFIMA(l,l+d,0) 0.000 0.984 
(0.423)

    

Brazil ARFIMA(2,l+d,0) 0.000 0.534 
(0.215)

0.458 
(0.252)

   

China ARFIMA(l,l+d,0) 0.000 0.953 
(0.487)

    

India ARFIMA(2,l+d,0) 1.083 -0.587 
(0.329)

-0.308 
(0.195)

   

Note: Bracketed values are standard errors. 
 

Table 4.4: Comparison of Total Population Forecasts with UN Projections (in 
thousands) 

 UN Projections 
till 2050 

 Our Forecasts till 2050 

Countries 
 

High Medium Low ARFIMA forecasts ARFIMA forecasts 

    With 2 intercept Without 2 intercept 
Austria 9277 8073 7022 9423.86 8493.021 
Australia 32050 27940 24300 41856.4 26212.718 
Belgium 11347 10302 9331 12911.84 10989.549 
France 72785 63116 54342 72911.38 60355.056 
Germany 90909 78765 68086 101518.87 86855.405 
Sweden 11587 10054 8710 11486.18 8757.800 
UK 77910 67143 57711 69494.3 81226.758 
USA 459862 394976 337519 525970.286 392385.479 
Brazil 301352 253105 210188 491884.9 266465.484 
China 1647189 1392307 1171259 2063677 1480662.232 
India 1889631 1592704 1332527 2380926 2182540.231 
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Table 4.5: Comparison of our forecasts for USA with Pflaumer’s (1992) and 
AV (1990) (Figures in millions). For 2005 forecast for India, figures are in 

thousands 

 Own (for 2080) Pflaumer (for 2080) AV (2050) AV (2080) 
 783 830.7 553 811 
95% upper CI 1125.7 1045.5   
95% lower CI 563.5 660   
 Our estimate World Factbook   
India’s Population 
in 2005 

1074106-8 1080264.3   

Note: Our forecast for 2005 is compared with actual population figure from the World 
fact Book. 
 

Table 4.6: 95% Confidence Interval for ARFIMA forecast for 2050 (in 
thousands) 

Countries With Intercept Model Without Intercept Model 
 95% lower limit 95% upper limit 95% lower limit 95% upper limit 
Austria 7849.46 10766.56 7217.04 9823.18 
Australia 33523.43 52470.16 17490.27 39379.47 
Belgium 10588.25 16004.10 9091.54 13160.83 
France 57296.80 90309.69 45615.37 80660.16 
Germany 76191.10 122149.38 64472.88 105767.65 
Sweden 10371.32 12924.76 6491.83 12814.08 
UK 67575.45 71610.72 35560.83 170757.55 
USA 419995.80 693842.31 231653.96 734540.20 
Brazil 425066.11 614767.85 95320.48 948844.30 
China 1476226.90 3032809.57 684196.20 3534208.75 
India 2014738.56 2833434.11 1497039.43 3246214.16 
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Table 4.8: MS-ARFIMA Forecast: Total Population (in ‘000) 

Countries MS-ARFIMA Model Median Forecast
AUSTRIA (0,l+d,0) 7987.2 

INDIA (2,l+d,0) 1684534.7 
UK (l,l+d,0) 73791.5 

Belgium (l,l+d,0) 11950.1 
France (l,l+d,0) 59144.1 

 

Table 4.9: Transition Probabilities 

Countries 11p  12p  21p 22p
AUSTRIA 0.98 0.02 0.69 0.31 

INDIA 0.99 0.01 0.51 0.49 
UK 0.99 0.01 1.00 0.00 

Belgium 0.933 0.067 0.05 0.95 
France 0.81 0.19 0.84 0.15 
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Figure 4.1: Logarithm of Total Population plots for developed countries 
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Figure 4.2: First Difference of Logarithm of Total Population plots for 
developed countries 
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Figure 4.3: Logarithm of Total Population and first difference plots for 
developing countries 
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Figure 4.4: ARFIMA total population forecast for Austria 
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Figure 4.5: ARFIMA total population forecast for Australia 

 

 



 135

Figure 4.6: ARFIMA total population forecast for Belgium 
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Figure 4.7: ARFIMA total population forecast for France 
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Figure 4.8: ARFIMA total population forecast for Germany 
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Figure 4.9: ARFIMA total population forecast for Sweden 
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Figure 4.10: ARFIMA total population forecast for United Kingdom 
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Figure 4.11: ARFIMA total population forecast for United States 
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Figure 4.12: ARFIMA total population forecast for Brazil 
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Figure 4.13: ARFIMA total population forecast for China 
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Figure 4.14: ARFIMA total population forecast for India 
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5. A Further Look into the Demography-based Income 
Forecasting Method 

5.1 Introduction: The role of stochastic demographic process in 
income forecasting 

An overwhelming spurt of research in the last two decades both in theory (e.g., 
Boucekkine et al. 2002) and empiric (e.g., Kelley and Schmidt, 1995; Malm-
berg and Lindh, 2005) emphasize that population growth, specifically the 
changes in the demographic components (viz., age structure, life expectancy 
rate, fertility and mortality rates, etc.,) exert substantial influence on economic 
growth and development. As Malmberg and Lindh (hereafter, ML, 2005) state, 
three arguments underline the importance of age structure for per capita in-
come. First, the savings argument, which states that countries with high child-
dependency rates will be low and this may lead to low productivity (Coale and 
Hoover, 1958). Second, a high dependency rate implies a low worker per capita 
ratio which directly leads to low per capita income due to pure accounting 
effect (Krueger, 1968; Janowitz, 1973). Third, as demonstrated by Lindh and 
Malmberg (1999), age structure within the working-age population is also of 
enormous importance. These arguments have important implications for long-
term per capita income forecasting. Historically, such forecasts have been 
based primarily on assumptions about the rate of technological change. 

In the empirical growth literature it has been suggested that a stable statisti-
cal relation exist between age structure and per capita income. Therefore, con-
ventional population projections can be used to forecast future trends in income 
growth. An apparent outcome of this perceived advantage is a paradigmatic 
shift in economic growth forecasts – from the conventional technology-based 
forecasting to the recent demography-based forecasting. Malmberg and Lindh 
(2005) in an important research have provided the underpinning and usefulness 
of demography-based income forecasting method. In this chapter, we evaluate 
the key assumptions of the demography-based income forecasts and suggest 
modifications in the forecasting model by accounting for the ‘dynamics’ of 
demographic changes and possible presence and persistence of shocks while 
forecasting per capita income. We are motivated by the fact that embedding 
historical information in a model actually enriched its explanatory power of a 
future event. Demographic shocks of any magnitude – smaller or bigger – 
while being embedded in the income forecasting model is expected to take into 
account the (hidden) demographic shocks exogenous or endogenous. 

The conventional methodological underpinning of the demography-based 
income forecasting method rests on the critical assumption that (components) 
of population remain ‘stationary’ (or stable over time) implying that a shock to 
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the population growth series would not bring about remarkable changes in the 
future growth trajectory. In other words, demographic components are assumed 
to possess ‘short memory’ ability to remember past shocks. This typical feature 
of demographic variables provided the forecasters the necessary platform to 
increasingly employ them in long-run economic forecasting. Interestingly, a 
recent theoretical development – which demonstrates that due to its endoge-
nous nature57 population growth and its components may imply unstable (or 
chaotic) pattern – seems to have been overlooked in the forecasting literature. 
Following this theorization, a shock to the population series in the remote past 
can significantly affect its future growth trajectory and in turn, economic 
growth. Therefore, the future growth path of these variables can become very 
sensitive to their initial distributions (Prskawetz and Feichtinger 1995). More-
over, the population series may even experience many shifts due to endogenous 
cycles (or phase switch) caused by frequent demographic changes and changes 
in the demo-economic policy (Day, 1993). Thus, endogenous nature of popula-
tion growth combined with endogenous phase switching can give rise to cha-
otic or unstable pattern in demographic variables. Recent empirical findings 
(e.g., Gil-Alana, 2003) also provide credence to this claim. 

In view of these developments, it appears to us that the stationary as-
sumption underlying the growth of population and its components is far too 
narrow as it downplays the role of possible shocks in the series which could 
have more than mere short-run impacts on their long-term projections as well 
as that of national income and other macroeconomic aggregates. In fact, the 
‘strength and length of memory’ of demographic variables to remember past 
shocks governs their future growth path and shapes the pattern of interaction 
with the economic system. Taking this as the starting point, this chapter aims to 
provide a new dimension to the demography-based GDP forecasting methods 
by extending the domain of demographic variables from stationarity (i.e., no 
possibility of stochastic shocks) to nonstationarity (i.e., possibility of stochastic 
shocks which are characterized by long memory). 

This point was taken in chapter 3, where components of population change 
are shown to be characterized by non-stationary processes. Building on this 
research, in this chapter we employ long memory data characteristics of popu-
lation growth and its components to forecast per capita income of selected 
developed and developing countries. By doing so we embed historical informa-
tion about the stochastic behavior of demographic variables in the forecasting 
model – a fact which was so far sidelined in the empirical demographic re-
search. Though time series methods are receiving immense popularity in 
demographic forecasting processes (for instance Lee and Tuljapurkar, 1994), 
the propounded methods still lack flexibility and does not appropriately ac-
                                                             
57  In the sense that past population growth affects the economy so that it is endogenously 

determined as part of an interacting system. 
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count for the different demographic dynamics, precisely, the length of demo-
graphic shocks and its corresponding impact on long-run growth of the econ-
omy. The central aim of this chapter is to propose modifications in the conven-
tional demographic forecasting methods by suggesting a long-memory process 
for the evolution of the demographic variables and consequently incorporate 
these dynamics in the forecast of per capita income of some developed and 
developing countries. To gain quick insights into income forecasting problems 
we summarize the main concerns and approaches in section 5.2. In section 5.3, 
we discuss the properties of our model and compare with ML (2005). Data and 
estimation issues are presented in section 5.4. Section 5.5 summarizes the main 
findings of the chapter. 

5.2 Problems in Income Forecasting 
Income forecasting is a challenging task. The conventional technology-based 
forecast suggests that future trajectory of income growth principally depends 
on technological change. However, empirical specification of the parameter of 
technology change is endowed with many problems, important of them is the 
extent of uncertainty inherent in technological change and the specification of 
other growth related variables such as inflation, money supply growth etc. 
Interestingly, recent research seems to have overcome some of the inherent 
difficulties in the technology-based forecasting method by suggesting an alter-
native, viz., demography-based forecasting of economic growth. Lindh and 
Malmberg (1999) show that variations in age-specific population growth ac-
count for a significant variations in some of the key macroeconomic funda-
mentals, like inflation, savings, etc. Therefore, demographic variables, like age 
shares are highly recommended as instrument for forecasting income growth. 
Nevertheless, this apparent appeal of demographic variables as instruments for 
economic growth forecasts may not be taken too easily as the implementation 
of the approach still remains a wide academic debate. 

A recommended way to perform demography-based income forecast is to 
regress GDP on demographic variables and make forecast for some future date. 
It may be noted that, demographic projections are uncertain in nature. To a first 
order approximation this is a question of the assumptions made on fertility, 
migration and mortality in demographic projections (ML, 2005). Moreover, 
probabilistic demographic forecasts can also be included into the model to deal 
with this issue in an explicit way (e.g., Prskawetz et al. 2004). Drawing on the 
effect of age structure on economic growth, the authors derive the uncertainty 
of predicted economic growth rates using probabilistic demographic forecasts 
in case of India, where they combine the effect of social infrastructure along-
side demographic variable (i.e., age structure) for forecasting economic growth. 
Though probabilistic methods provide certain range of values with confidence 
interval for forecast, its biggest limitation as being probabilistic has called for 
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alternative methods. The regression approach a la ML (2005) assumes signifi-
cance in this context. 

Following Lindh and Malmberg (1999), the age-structure information can 
be used in the growth regression in panel data and forecast economic growth 
based on the demographic information. However, a common worry in panel 
data is the problem of heterogeneity both across countries and over time. Thus 
the question is whether it is legitimate to assume a homogeneous model for 
such a variety of countries, different in size, location, history, institutions and 
natural resources. In fact, in some sense, every country is a unique economic 
system related to its neighbors by a multitude of different relations (ML, 2005). 
The authors posit that: 

Using a panel estimation approach confers substantial advantages. Not only 
does the number of observations increase substantially, but it also allows us to 
control for unobservable that are constant over the estimation period as well as 
common time-specific effects. The price to be paid for this is that we need to 
assume that a more or less general model applies to all countries in the sam-
ple. It is, however, neither inconceivable nor impossible to account for some 
country differences within the model. 

Among many possible problems in panel regression analysis (for instance, 
the presence of structural break), ML (2005) note the importance of regression 
of non-stationary time series which result in spurious outcomes. Phillips and 
Moon (1999) demonstrate that this problem can be substantially ameliorated in 
a panel context by the cross-section information. However, the extent of non-
stationarity can still induce problem in panel regression. Bai and Ng (2003) and 
others suggest the use of stochastic common factor model to take account of 
the possible non-stationary feature of regressors in the panel data observing 
that in recent years panel data for many demographic and macroeconomic 
variables are available for large time and cross-section dimension. If non-
stationarity is is a serious concern in individual time series, it can infest the 
same problem when considered in a panel data. Therefore, substantial amelio-
ration of spurious outcome may not eliminate the problem completely. Care 
needs to be taken to treat the non-stationary nature of variables in the panel in 
order that one attempts to achieve a good forecast. A panel forecast method of 
GDP in line with ML but taking non-stationary demography features needs 
further theoretical and empirical development, which is not the focus of this 
chapter although we have preserved it for future research. In this chapter, we 
take note of the non-stationary problem of demographic variables and induct 
their characteristics in the GDP forecast for each individual country. 

Finally, there is a problem of assuming a common data generating process 
(DGP) for all countries in the panel and perform income forecast for a set of 
countries in the global level. The standard way is to assume that cross-country 
observations are drawn from a DGP that is at least partly common to all coun-
tries, viz., the demographic transition and the concurrent industrialization and 
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aging of the population. ML (2005) reiterate that while their observations from 
more developed countries provide some information to forecast the evolution 
of the less developed countries, their sample contains little information regard-
ing the aging society and how it will adapt to a rising dependency burden. 
Recent work on non-stationary panel seems to offer a solution to this problem 
by identifying the set of countries in terms of the common stochastic shocks 
they share and then it is possible to forecast for those blocks of countries. 
While this could be an interesting direction of research, complying with the 
scope of this chapter we would only focus on univariate income forecast by 
incorporating stochastic demographic information in the model. 

5.3 Model 
This section outlines the usefulness of long-memory methodology for demog-
raphy-based income forecasting. ML’s (2005) forecasting technique is de-
scribed first before we elaborate on the long-memory framework in the in-
come-forecasting framework. ML start with a model for a panel regression in 
levels of the logarithm of per capita GDP, y, on the logarithm of age shares, x , 
and a trend function ( ) ttV ,  being the time period: 

 

 
 

iζ  is the country-specific intercept, +−−−−= 65,6450,4930,2915,140k . In 
this equation, GDP per capita is assumed to be described by Cobb-Douglas 
index of age-shares, and ( )tV  is intended to capture technological change. This 
is a standard production function specification with the exception that popula-
tion age shares have been substituted for production factor intensities. To in-
corporate the effects of life expectancy and heterogeneity, ML proposed the 
following model: 

 

 
 

where ( )ite0log  is the log of life expectancy at birth. Theoretically, the model 
allows for changing age share coefficients contingent on how far the demo-
graphic transition has progressed. To account for time-specific effects, tv  has 
been added to the equation. ML (2005) thus describes simple model (Eq. 5.1) 
and interaction model (Eq. 5.2) to analyse the effect of demographic variables 
on per capita income. Based on their previous work (Lindh and Malmberg, 
1999), ML suggests that an aggregation of the age groups (viz., children 0-14, 
young adults 15-29, mature adults 30-49, middle aged 50-64, and old age 65+) 
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works well in growth equations without running into the collinearity problems. 
The limits for these functional groups are not exact. However they vary both 
with time and culture, as well as the institutions that transmit and govern the 
economic effects of the age group. ML assumes that this specification is a 
pragmatic approximation for estimating growth effects from the continuous age 
distribution. The age distribution in turn proxies for the actual functional 
changes over the life cycle which are the real causes for the income effects. 

Equations 5.1 and 5.2 assume that demographic variables, viz., age-specific 
population and life expectancy, are stationary. Non-stationary nature of these 
variables in the panel data would cause spurious regression as mentioned 
above. However, as we have demonstrated in chapter 3 that age-specific popu-
lation may contain long-memory component and therefore shocks are persistent 
in these series. This observation might create additional problem in the panel 
regression. Bai and Ng (2002, 2003), and Im et al. (2003), among others pro-
vide formulation to deal with nonstationarity in panel data that enables testing 
of unit root in a panel framework. A natural question that may arise is: what if 
one or all of the demographic variables (in Eq. 5.1 or 5.2) are non-stationary? 
How do we forecast if demographic variables are characterized by a long-
memory process? It is closer to reality to assume that demographic variables 
might be affected by some shocks, endogenous or exogenous, which can stay 
with the series for some period of time in the future. Apparently, ML’s specifi-
cation rules out the possibility of such shocks and if at all some exist, the au-
thors argue, are ameliorated by panel structure. 

Granger and Joyeux (1980) showed that long-memory in a time series can 
arise due to aggregation of individual series. Even though the extent of memory 
of shocks is ameliorated in the panel, the effects are not completely neutralized. 
Moreover, individual countries demographic dynamics can substantially affect 
forecasting performance. To address these concerns let’s consider the DGP of 

ity  in a long-memory framework. The income growth equations are described 
with and without demographic variables, similarly as ML’s (2005) simple and 
interaction model. We re-write ML’s equations in a long memory framework 
with one notable exception. The formalization of our model concerns with 
univariate long-memory framework, as there is virtually little literature on the 
study of long-memory characteristics in a panel data set up. Two variants of the 
model are considered, viz., model with and without demographic structure. In 
case of the former, we first introduce population growth, and then induct age-
shares information. Aggregate population growth is assumed to suppress dy-
namic information in the model, as aggregation greys out dynamic behavior of 
individual components of population. This problem can be ameliorated by 
introducing age-shares, which exhibit wide variability and are dynamically 
linked to GDP fluctuations. For a discussion on this refer to Lindh and Malm-
berg (1999). The following equations describe our model. 
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L  is the lag operator, ( )LΦ  and ( )Lθ  are autoregressive (AR) and moving 
average (MA) polynomials. ( )Ni ,...,1=  refers to countries, and ( )Tt ,...,1=  
denotes time. itε  is assumed to be normally distributed. itn  is the aggregate 
population growth rate. 1μ  and 2μ  are (Type 1 and Type 2) intercepts. Type 1 
intercept accounts for structure and changes in the dependent variable, i.e., 
whether an independent and/autonomous factor govern the growth of the de-
pendent variable. Type 2 intercept enters as an explanatory variable, which in 
the absence of other regressors, account for some independent exogenous 
changes occurring in the system.  are population age shares. ( )dL−1  
describes the fractional differencing operator which is given by 

 

 
 

where 10 =h  and 
 

 
 

Note that Type 2 intercept is induced in the model as an exogenous drift. 
The contribution to the process takes the form ( ) 21 it

dL μ−− , which since the 
pre-sample terms are truncated, gives a sequence of the form 

 

 
 

when ( )1−= d
t tOh , by a standard result on summation series. This implies that 

the process is non-stationary, with infinite mean and variance in the limit, for 
0>d . For fractional process without drift, the model is stationary for 

5.00 << d . 
Equation 5.5 is the univariate long memory representation of ML’s (2005) 

simple model which incorporates only population age shares. Interactive model 
as in ML (2005) with life-expectancy at birth can be introduced; however we 
given the objective of this chapter, it is not required at this stage. Since the 
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thrust of the chapter lies in introducing fractional feature of demographic vari-
ables in GDP forecasting, long-memory dynamics in age-specific population 
can to some extent account for inclusion of life-expectancy in the forecast, 
although with no absolute certainty. Our idea is to keep the model simple and 
study the effects of long-memory on GDP forecast. Therefore, the interaction 
variables as in ML can be introduced in future research. 

The DGP described by Eq. 5.3 states that ity  is governed by the structure of 
memory, the autoregressive and by moving average polynomial representation 
of iid  shocks. Eq. 5.4 has broader encompassing as it accounts for the effect of 
aggregate population growth. Eq. 5.5 is still broader as it segregates the total 
population into age shares and plugs them into the model. The peculiarity of 
these equations is that we allow for the possibility of demographic dynamics in 
the growth equation, where shocks can have more than mere short-run impacts 
on the historical trajectory of ity . In fact, depending on the non-integer values 
and sign of d , short, long, or intermediate memory properties can arise. For 
instance when 21<d , the series has finite variance, but for 21=d , the se-
ries has infinite variance. The ty  is stationary and invertible when 

2121 <<− d . For 21=d , standard Box-Jenkins techniques will indicate 
that differencing is required and provided that 1<d , differencing will produce 
a series whose spectrum is zero at zero frequency. This heavily-used model is a 
special case of an autoregressive fractionally integrated moving average (AR-
FIMA(p, d, q)) process. 

A detailed description of the properties can be found in the survey of Baillie 
and Bollerslev (1994). In the demographic context see Chapter 3 for a compre-
hensive analysis. Ding, Granger and Engle (1993) suggests that ARFIMA 
models estimated using a variety of standard estimation procedures yield ‘ap-
proximations’ to the true unknown underlying DGPs that sometimes provide 
significantly better out-of-sample predictions than AR, MA, ARMA, GARCH, 
simple regime switching, and related models, with very few models being 
“better” than ARFIMA models, based on analysis of point mean square fore-
cast errors (MSFEs). 

• Estimation strategy 

ML (2005) employ a panel data framework to forecast global income. In this 
chapter, we resort to univariate forecast of world income as well as the income 
of a sample of developed and developing countries with and without considera-
tion of demographic age structure. Our strategy is as follows. First, employing 
ARFIMA methodology we forecast total and age-specific population of differ-
ent countries till 2050. The population age-structure in our case comprise of 
three categories, viz., young 0-14, working age 15-64, and retired cohorts 65+. 
Thus, we perform long-memory forecast of total population and each age group 
and based on the forecasts, we calculate population growth rate,  
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for each country. 

The age shares are calculated as: 

, 

,  

 
for ( )2050,...,1960=t . 

Second, we perform ARFIMA regression of ity  using the regressors as in 
Models 2 and 3 taking into account the demographic information and availabil-
ity of GDP data till current period (in our case it is 2000), and then use the 
parameter estimates to forecast GDP till 2050 given our forecast population 
growth and age shares till 2050. ML (2005) use medium variant population 
projection till 2050 to forecast GDP. Contrarily, we have used our time series 
forecast of age-specific population which takes into account the demographic 
variations and persistence of possible shocks in the economic and demographic 
system. For notational convenience, we will refer to Eq.5.3 as Raw model, and 
Eq. 5.4 and 5.5 as Demographic models. 

5.4 Data and Empirical Results 

5.4.1 Data 

In this section we discuss the forecasting results based on raw and demographic 
models of GDP. The results are compared with ML (2005) and implications are 
drawn from the analysis. We have used data for real GDP per capita (collected 
from Penn World Table version 6.1 by Heston et al. 2002) at purchasing power 
parity in 1996 US dollar. Information on age-specific population has been 
collected from the World Bank Development Indicators. For real GDP, the 
sample is from 1960-2000 and for age-specific population the sample extends 
till 2003. We have selected a set of developed and developing countries to 
compare our results with ML (2005). The selected countries are Belgium, Swe-
den, USA and Japan among developed countries and India and China, among 
developing countries. We have also performed forecasting for the World real 
GDP data to study the pattern of global variation of income till 2050. The re-
sults are discussed in two steps. First, we analyse the pattern of age-specific 
population till 2050 for different countries. Specifically, we will concentrate on 
providing intuition on how population of different vintages would act upon 
economy’s resources. Second, based on the calculation of age-shares and popu-
lation growth rate, the forecasting results are discussed. In course of compari-
son, reference is made to the forecast from the raw model as it would provide 
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an idea about how the allowance of demographic information in the model 
changes forecast pattern. 

5.4.2 Empirical results 

Variations in age shares 

In this sub-section, we analyze the variations in age shares till 2050 for the 
selected developed and developing countries. The analysis is purported to give 
an idea of the effect of different age shares on economy’s resources. Rising 
younger age population (i.e., 0-14) mounts pressure on the economy by con-
suming resources that could have otherwise been used for capital formation. 
Working age population (i.e., 15-64) contributes to economy’s growth by creat-
ing resources. The retired age population (i.e., 65+) also exerts pressure on the 
economy, because like younger cohorts they also force government to plan a 
chunk of economy’s resource for consumption, pension, and retirement bene-
fits. An economy therefore, needs to plan beforehand for the inter-generational 
distribution of resources considering how different age-shares would look like 
in future, say five decades from now. A meticulous economic planning is there-
fore proves handy for efficient management and mobilization of resources. 
More so, the dynamics of age-share movement is important for explaining 
long-term growth of income. To have an idea about how various age shares in 
some developing and developed countries behave, refer to Figure 5.1. 

Population age shares till 2050 have been calculated based on the time series 
projections of age-specific and total population of different countries till 2050. 
Unlike ML (2005), who relied on the medium variant UN projections, we have 
performed an ARFIMA forecast for total and age-specific population. Figures 
for total population forecasts have been adopted from our earlier estimates 
(from Chapter 4). 

A striking ‘common feature’ among all the developed and developing coun-
tries (in Figure 5.1) is that young age population share (0-14) will continue to 
fall in the coming decades, at a faster rate for developed countries (viz., Bel-
gium, Japan, Sweden, and USA) and slower for the world and the developing 
ones (viz., China and India). This is not surprising given the recent trend of 
population growth in developing and developed economies. For the former, 
population growth of young cohorts will decline slowly as the current high rate 
will guide its future trajectory. Similar logic applies for developed countries 
where the current lower rate of young population growth would further lower 
the rate in the coming decades. The pattern is a clear indication of an autore-
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gressive structure, where past high (low) growth of population results in current 
high (low) growth.58 

Some striking features emerge from the plot of age-specific population age-
shares (see Figure 5.1). First, the number of worker (i.e., population 1564) 
seems to experience a steady global rise. Similar trend is observed among 
developing countries, viz., India and China, which will continue to dominate 
the economic power in the coming decades. Though the share of younger co-
horts will continue to fall for these two most populous countries, China is likely 
to experience a rise in retired cohorts, which is more than India’s in 2050. Due 
to the smaller and declining share of retired age population, India is likely to be 
in a better position in terms of economic growth, as she would divert lesser 
resources for consumption end. 

A typical situation is observed for the European countries, e.g., Belgium and 
Sweden, where till the recent period, young and retired people age share are 
almost at par, however the share of the latter is deemed to gradually exceed the 
young age share till 2050. Similar structure is also observed for working age 
share, therefore these countries will experience a similar trend in GDP growth 
in the next decades. Among developed countries, USA’s working age people 
share will remain constant throughout the coming decades though a steady 
decline will be observed for young and retired age shares. Given these dynamic 
demographic information, in the next subsection we examine the pattern of 
income forecast for these countries and compare our results with ML (2050). 

Real GDP per capita and age-specific population forecast 

Table 5.1 summarizes the ARFIMA forecasting models, which are selected on 
the basis of Schwarz criteria and highest likelihood of the estimated models. 
The GDP forecast plots59 for each country and that of the World are presented 
in Figures 5.2 through 5.8. We have estimated ARFIMA(p,d,q) model with a 
maximum order of p  and q  set equal 2. The chosen model for each country 
has been used for forecasting. The regression results are reported in Table 5.2. 
Forecasting results with and without demographic information are presented in 
Table 5.3. All estimations have been performed in Time Series Modelling 
(TSM) package of James Davidson (2005). 

                                                             
58  Note that, demographic process evolves in a slower pace than other economic processes, as 

multitude of factors act and interact with demographic process to ensure faster and slower 
evolution.  

59  The age-specific forecast plots have not been reported in the chapter to limit space. 
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Figure 5.1: Plot of Age-specific population age shares: 1960-2050 

 

 
 

Table 5.1: Selected ARFIMA(p,d,q) Models for Forecasting 

Countries Age 0-14 Age 15-64 Age 65 + Real GDP Real GDP 
    (Pop Growth) (Age Shares)

Belgium (l,l+d,2) (2,l+d,2) (l,l+d,0) (2,d,0) (l,d,0) 
Sweden (l,l+d,0) (l,l+d,0) (l,l+d,0) (l,d,0) (l,d,2) 
Japan (l,l+d,0) (l,l+d,l) (l,l+d,0) (l,d,l) (l,d,0) 
USA (l,l+d,0) (l,l+d,0) (l,l+d,0) (2,d,l) (l,d,2) 
China (l,l+d,0) (l,l+d,2) (l,l+d,0) (0,d,0) (0,d,2) 
India (l,l+d,0) (2,l+d,0) (l,l+d,0) (2,d,0) (l,d,0) 
World (l,l+d,0) (l,l+d,0) (l,l+d,0) (l,d,0) (0,d,0) 

Note: Model selection based on Schwarz criteria. 
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Table 5.2 presents the parameter estimates60 of ARFIMA regression of real 
GDP per capita (at 1996 price PPP) and share of age-structured population for 
a set of developed and developing countries. In general age-specific population 
are observed to exert expected impacts on the countries income per capita, viz., 
theoretical caveat is that age 0-14 have negative, age 1564 exert positive and 
age 65+ have negative effect on the resources of an economy. While theoretical 
prediction about the sign of effects stand true under the most general circum-
stance, say under linearity assumption of the model, it verily depends upon the 
economy’s strength in the form of ‘how quickly the feedback-effect’ takes 
place from the accumulation of these groups of population. From Table 5.2 we 
observe that all the countries exhibit expected effects for the specific age-
groups.61 We also find evidence of significant stochastic shocks in the models. 
Therefore, non-inclusion of such shocks in the forecasting model (as assumed 
in ML for instance) may not reveal much about the trajectory and impact of 
demographic shocks in delivering a better forecast. Positive and larger d  in 
the model indicates long-memory population shocks, which in our estimates 
are mostly mean-convergent; larger demographic shocks can induce high non-
linear interaction between the demography and economic growth system. 

From Table 5.3 it can be observed that younger age population is likely to 
fall in all developed and developing countries. For instance, among the Euro-
pean countries, Belgium will experience a fall from about 1690.4 thousand in 
2010 to 1485.5 thousands in 2050 (See Fig. 5.3 for the corresponding esti-
mates). Whereas for Sweden it is 1499.7 thousands in 2010 and 1383.1 thou-
sands in 2050. Given the current trend this would mean, Sweden will experi-
ence about 10.3 percent decline and Belgium with a 15.5 percent decline in the 
younger population. At the same time, these countries would see an increase in 
the number of working age people, viz., Sweden about 18 percent and Belgium 
about 8.37 percent. Given the number of retired age people in 2005 (viz., 
1754.6 and 1587.6 thousands for Belgium and Sweden respectively), there 
won’t be substantial change in these age groups in 2050. The effect of these 
age-structure changes can be calculated for GDP in 2050. 
                                                             
60  For Belgium, China, India, and the World the GDP series have been detrended before 

estimation such that age share variations do not get affected by a deterministic trend in the 
ARFIMA regression. The purpose of de-trending these series is to remove the possible cy-
clical components from the series such that age-share variations can adequately capture 
variations in GDP over the period of regression. 

61  While the parametric specification of the model often delivers expected sign of impacts of 
the respective age shares (sometimes eliminating the stochastic trend term from the data 
and taking care of the possible heteroscedasticity), Azomahou and Mishra (2006), using a 
non-parametric panel method showed that this may not necessarily be the case. For in-
stance, retired age group may not necessarily exert negative impact on growth as the work-
ing age people once retired, do not become instantaneously unproductive. However this 
statement has to be qualified in light of the development in developing countries where ma-
jority of the population are unemployed. 
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Examining the case of Sweden in Table 5.3 (and the corresponding forecast 
plot, Fig. 5.5, we find that the per capita GDP would stand at about 45752.4 
dollars in 2050 without demographic variations in the forecasting model 
(Model 1). However, once stochastic aggregate population dynamics is embed-
ded in the model a significant rise in the per capita GDP forecast is observed 
(which is 53156.7 dollars in 2050). Further improvement in the forecast is 
warranted once stochasticities in the population components (Model 3) are 
taken into account. The results are indicative of the fact that (1) a demography-
based GDP forecast puts an optimistic figure for future, (2) Comparing the 
estimate (which is 59754.5 dollars) with ML (2005) estimate for Sweden for 
the year 2050 (54000 dollars in the interaction model), we find a slightly higher 
forecast for GDP per capita, possibly due to our consideration of long-memory 
features of demographic shocks. Notice that although inducting demographic 
information in the forecasting model delivers higher prediction than the raw 
model (where no demographic information is included), it is difficult to judge 
whether consideration of demographic dynamics alone can exude better and 
higher forecast. We have not so far considered any competing model (like a 
forecast model with other non-demographic variables) to lend a comparison. 
However, our assessment is based on a priori finding of some researchers like 
ML (2005) that demography-based income forecasting models are as good as 
other competing framework. In general our results comply with ML’s conclu-
sion about the relevance of demographic dynamics in income forecasting. 

In ML(2005) a hump around 2010 for Sweden is observed, where after 
reaching an estimated income level of about 48000 dollar, the amount declines 
to about 36000 dollar in four decades. Our forecast does not predict such 
humps,rather it shows a steady increase over time. The possible reason may be 
in the assumption of the data generating process (DGP). Long-memory DGP 
assumes certain degree of smoothness, where the forecast is made simultane-
ously considering the effect of shocks (the memory parameter), the endogenous 
system (the autoregressive parameter) and some possible external shocks (the 
moving average parameter), besides the built in demographic information for 
the forecast. ML’s DGP follows a panel structure, and it is possible that due to 
the differences in DGPs, the smoothness of the forecast may follow in one and 
disappear in the other. 

ML (2005) showed that due to recent baby boom around 1990, Sweden 
would have very fast growth over the next two decades while the US would 
stagnate earlier and Japan already stagnated. The interaction model which loads 
increased longevity has a much more positive path but still stagnating in the 
long run. Similarly, considering some examples of less developed economies, 
the authors showed that the ‘difference between forecasts between India and 
China have a similar pattern as for the USA although at lower levels and the 
simple model stagnates later in China and later still in India’. 
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Table 5.2: Parameter estimates of ARFIMA regression between GDP and age-
structured Population relation. Sample (1960-2000) 

Country Belgium Sweden Japan USA 
Intercept 11.280 (0.511) 9.335 (0.04) 6.626 (2.310) 11.553 (0.34) 
Age 0-14 -7.404 (4.283) -1.364 (1.816) -1.052 (0.858) -0.795 (1.291) 

Age 15-64 1.918 (3.250) 1.503 (2.236) 1.571 (1.019) 8.939 (2.460) 
Age 65+ -5.937 (3.787) -0.308 (1.231) -1.752 (1.081) -0.231 (3.578) 

d -0.113 (0.030) 0.653 (0.221) 0.029 (0.004) 0.241 (0.220) 
AR1 0.587 (0.060) -0.153 (0.181) 0.492 (0.050)  
AR2     
MAI  -0.987 (0.170)  -0.128 (0.125) 
MA2  -0.289 (0.130)  -0.015 (0.022) 

R2 0.99 0.99  0.99 

 China India World  
Intercept 8.936 (0.915) 6.444 (0.163) 9.056 (3.336)  
Age 0-14 -8.132 (0.970) -1.766 (0.536) -3.316 (0.510)  

Age 15-64 1.389 (1.309) 2.041 (0.833) 0.482 (0.292)  
Age 65+ -0.835 (6.094) -9.847 (8.843) -0.410 (0.506)  

d -0.022 (0.008) 0.544 (0.140) 0.017 (0.002)  
AR1 0.438 (0.265)   
AR2 -0.089 (0.140) 

0.196 (0.124) 
  

MAI -1.064 (0.072)    
MA2 -1.040 (0.072)    

R2 0.98 0.99 0.97  
Note: Standard errors are in parentheses. 

 
Comparing our long memory GDP forecasts62 with ML’s it can be observed 

that India’s annual per capita GDP will grow to about 11000 dollar in 2050 
using Model 3, i.e., with age shares. In case of China, the same model forecasts 
17094 dollars in 2050. These estimates are higher than ML’s interaction model 
(Table 5.4). Note that the raw model does not predict substantial difference in 
the forecast between India and China. However, as we induct demographic 
information in the model, viz., model 2 and 3, the differences become promi-
nent. For instance, accounting for population growth in the model, China would 
have per capita GDP of 14401 dollars in 2050, while India will have 10532 
dollars during the same time. For India the increase is very little, which is about 

                                                             
62  Note that our forecasts are basically point forecasts sequentially performed over long period 

of time. Although these forecasts do not reveal much about parameter uncertainty in com-
parison to interval forecasts, a study of the estimated confidence interval for the point fore-
cast provides some idea about the range of values the forecast would fall. Moreover, all the 
forecast plots accompany density forecast figures to help explain the amount of uncertainty. 
Standard practice in time series based forecasts is to take account of point forecasts, at the 
least while estimating an ARFIMA type of model. 
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200 dollars more than the raw model. For China, Model 2 improves forecast 
about 4000 dollar more than the raw model (model 1 without demographic 
information). The forecast further widens when we accommodate age-shares in 
the model. For India, there is a significant change of forecast values from 
10532.3 dollars with Model 2 to 11204.5 dollars in 2050. For China, although 
the figure is much higher than India’s, looking at the growth (from 2010 till 
2050), it can be easily seen that, India’s income growth is faster than that of 
China. The possible reason could be due to the specific pattern of age-share 
variation (as explained in the preceding subsection). The 95% confidence band 
for these estimates are provided in Table 5.5. 
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Table 5.4: Malmberg and Lindh GDP Forecasts (in dollars) 

Countries Simple model Interaction model
China 9000 13500 
India 7200 10200 
Japan 40000 75000 
USA 44000 62000 

Sweden 42000 54000 
Note: Figures are calculated from Malmberg and Lindh (2005) for the year 2050. Actual 
figures are not available, hence these are closer approximations. 

 
Among developed countries, Japan’s per capita GDP is estimated to be 

higher than other countries (both developed and developing). The raw model 
forecasts 44002.4 dollars in 2050, which increases to 53050.5 dollars when we 
introduce population growth in the model. However, a hopping 75886.9 dollars 
is reached when we incorporate age-share dynamics in the forecasting model.63 
ML’s interaction model forecasts about 75000 dollars, although the simple 
model (without life-expectancy rate) projects GDP about 40000 dollars for 
Japan in 2050. For USA, the demographic model with population growth pro-
jects GDP per capita at 49217.3 dollars with the lower limit of the 95% confi-
dence band calculated at 45615.4 dollars and upper limit at 51948.1 dollars 
(Table 5.4). While for age-share model, the forecast is still higher (65186.0 
dollars) which is also more than ML’s estimates from simple and interaction 
models. The lower and upper 95% confidence band for our age-share model are 
59994.0 dollars and 70122.6 dollars respectively. Generally tighter confidence 
bands are indication of lower amount of uncertainty where the forecast value 
would range between 5 percent confidence interval. Looking at the forecast 
values and their confidence band we observe narrow confidence band for our 
forecasts which is a rough measure of predictive uncertainty. Predictions from 
a model with lower uncertainty are the ones which are more reliable. However, 
to examine if our forecasts are ‘accurate’, we need to find an alternative meas-
ure. 

Note that accuracy of forecast is related to reliability in the following way: 
Accuracy = precision + reliability. For our purpose it is necessary to comment 

                                                             
63  Even though Japan’s population shows in general a declining trend except an expected 

continuous rise of retired population till 2050, a declining population does not necessarily 
entail negative economic growth. Productivity growth can still boost GDP per capita, and if 
large enough, even overcome the effect of population decline. The coefficients of stochastic 
shocks, d is higher for USA and lower for Japan. Greater magnitude of long-memory 
demographic shocks would reduce predicted values while interacting with different popula-
tion components. Although the concomitant rise in retired population and a fall in the work-
force, Japan is accompanied by systemic social changes including the employment system, 
the social security system and the financial system where this high-per capita income ap-
pears plausible and sustainable. 



 163

upon the precision of our forecasts. Standard convention to check for forecast 
accuracy is to examine either the ex post error terms or to simulate the ex ante 
errors. Concerning the first possibility, a rough measure of forecast accuracy is 
therefore to compare the mean-square error of the models although a study of 
the simulated ex-ante error terms can throw light on the predictive accuracy. To 
compare between ‘raw and demographic’ models we may take note of the AIC 
(Akaike Information Criterion) values; a model with higher AIC is generally a 
better model and more informative. Comparison of the mean square error 
across models would reveal which of them have better predictive accuracy. 
Table 5.6 reports results of the mean square errors from the estimation of fore-
cast models with and without demographic information (Model 3 here). It is 
evident that the mean square error is smaller for the demographic model for all 
countries and therefore our stochastic demography-based income forecast 
model can be said to provide better prediction than the raw model. 

For USA the younger population will remain more or less constant over the 
decades, while work force would increase and the number of retired people will 
also experience concurrent decrease. This seems to have an income effect 
which would mean that the less number of retired people would continue to 
contribute to the income growth along with the then current work force. Given 
the constant growth of younger cohorts, USA is likely to be in the advantage 
and might experience accelerating growth in income in the coming decades. 
However, Japan’s income growth will far exceed USA in 2050 and would be 
the richest nation on the earth. Also it may be noted that World income will 
continue to grow along with each age-specific population group. In 2050, the 
per capita GDP for the world will be 8453.2 (with Model 2) which is a growth 
of about 36 percent in 5 decades. Inclusion of demographic variations increase 
forecast from 7615.2 dollars to 7956.1 dollars (using population growth) and 
8453.2 dollars (with age shares). A general trend thus may be noted from 5.3 – 
that inclusion of demographic information improves forecast. Raw model does 
not incorporate demographic variations, and therefore, GDP forecasts can be 
assumed to be governed mainly by exogenous shocks in the form of moving 
average parameters, or some endogenous shocks (reflected in the form of auto-
regressive structure). However, corroboration of demographic information 
enriches the forecasting model so that variations in income can be accounted 
for by demographic variations. 
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Table 5.5: Confidence Band for Real GDP per capita Forecast (in US dollars) 

Country/Variables Lower 95% CI Upper 95% CI 
BELGIUM   

1. Pop Growth 32016.3 45752.4 
2. Age Shares 45379.4 51042.1 

CHINA   
1. Pop Growth 2070.4 74906.8 
2. Age Shares 6730.5 22814.4 

INDIA   
1. Pop Growth 5171.4 20054.0 
2. Age Shares 7492.1 18774.4 

JAPAN   
1. Pop Growth 49365.2 57411.5 
2. Age Shares 64796.1 87203.5 

SWEDEN   
1. Pop Growth 17038.0 161943.0 
2. Age Shares 56670.0 62818.2 

USA   
1. Pop Growth 45615.4 51948.1 
2. Age Shares 59994.0 70122.6 

WORLD   
1. Pop Growth 6646.9 9269.6 
2. Age Shares 8073.2 8556.6 

 

Table 5.6: Comparison of Models: Mean Square Error 

Country No Demography Demography 
Belgium 0.056 0.029 
Sweden 0.035 0.023 
Japan 0.054 0.034 
USA 0.069 0.039 
China 0.201 0.110 
India 0.100 0.072 
World 0.018 0.013 

 

5.5 Discussion and Conclusion 
Using long memory (age-structured) population projections, this chapter pro-
vided income forecast of the world economy along side a selected developed 
and developed countries. ML (2005) research has been extended in the long-
memory framework (in a univariate setting). Literature is replete with the evi-
dence that long-memory DGP of a time series permeate more dynamics of the 
observed system and has the ability to model future with rich information about 
stochasticity of a variable. Indeed, the use of ARFIMA framework for model-
ing age-specific population and concomitantly employing fractional framework 
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for GDP forecasting offers advantage in that we are able to incorporate more 
dynamic information of the demographic and economic system in the forecast-
ing model. Endogenous nature of population growth is assumed (this is a model 
characteristics due to the occurrence of possible feedback effect from demog-
raphy to the economy and vice versa) which contributes to the economic 
growth and affect long-term variation in growth. The assumption of autoregres-
sive population structure accommodates endogenous nature of population and 
when it interacts with economic output, an endogenous economic system is 
generated. In this sense the inclusion of long-memory demographic information 
in the GDP forecasting model describes economic system quite distinctly. 

The thrust of the chapter lies in the recognition that demographic variables, 
like other macroeconomic variables, may be subject to shocks, and that the 
shocks may have more than mere short-run impacts on the demographic sys-
tem. Hence there is a need to model demographic variables in a flexible 
framework that incorporates both short- and long-run dynamics. Outright as-
sumption of stationarity of these variables straightaway eliminate the possibil-
ity of shocks having long-run impact. Therefore, the assumption of long-
memory data generating process for demographic variables allows us to under-
stand its interaction with the rest of the economy. Important points emerge 
from the comparison of forecasts between our long-memory demographic 
model (Model 2 and 3) and ML’s simple and interaction models. 

Note that ML’s simple model (which incorporates only age-shares) is in fact 
the long-memory demographic model of this chapter. We have not added life-
expectancy in the equation, and hence there is no interaction. Effect of life-
expectancy is expected to be captured by the long-memory dynamics of the 
demographic system. The main idea of the inclusion of life expectancy in the 
demographic model is that the relationship between income and demographic 
variables is likely to shift over time and stage of development. Interactions 
occur in the system between the expected rate of return from education and life 
expectancy, which ultimately govern the growth of income. However, this 
interaction – which appears to be complex in nature, needs an exhaustive mod-
elling. Once again there could arise the questions of stochastic or non-
stochastic nature of the variable and implications of its interactions given this 
backdrop. 

In ARFIMA, the memory parameter is expected to capture the nature of per-
sistent shock in the economy. Autoregressive structure would capture endoge-
neity in the system, specifically the way the current state of the economy reacts 
to or depends on the past. Independent or autonomous changes are captured by 
intercepts. It is not surprising to see that the forecasts based on long-memory 
demographic model (with age share) is similar to the forecasts from ML’s 
interaction model. Though more investigation is required to substantiate the 
argument that forecasts from interaction model (with life expectancy) is com-
parable to ARFIMA forecast with demographic model (without life expec-
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tancy), it provides a first-hand information about the simplicity of ARFIMA 
model and the rich stock of information it carries with to explain the demo-
graphic system. Some distinct differences in the forecast emerge as summa-
rised below. 

For the convenience of comparison we have estimated a raw model (without 
demographic information) and compared the projections from this model with 
that of demographic models. We find that inclusion of demographic variations 
predicts higher forecasts and given the smallest mean square error this is reli-
able. The relevance of demography in our forecast model however qualifies 
ML’s argument that demography-based income forecast is more informative as 
economy responds to demographic changes more acutely (Lindh and Malm-
berg, 1999). In general we find that long-memory forecasts with demographic 
variations have a little higher projection than ML’s interaction model, though 
the difference is not substantial. The forecast accuracy has been checked look-
ing at the 95% confidence interval.64 Narrow confidence band is indicative of 
better accuracy of forecast. 

Our age-specific population forecasts show that young age population (0-14) 
will experience decline both in developed and developing countries, a bit faster 
for the latter, for instance India and quite steadily for countries like USA and 
the European countries, viz., Belgium and Sweden. Working age population 
will substantially fall for Japan but at the same time there will be an alarming 
rise of the retired people. Belgium and Sweden are likely to experience steady 
increase both working age and retired people, almost by an offsetting amount. 
Generally, a visible difference in the population number of three age groups 
exert various income effects on the economy and thereby affect the intergen-
erational transfer and management of resources. European countries will 
mostly experience a steady rise in the growth rate. The currently aging devel-
oped countries will experience a stagnating or even negative growth trend in 
GDP. Most developing countries will, however, experience accelerating growth 
and converge to although not reach the income levels of the developed world. 
The main exceptions to this are to be found in sub-Saharan Africa where the 
impact of AIDS on the age distribution postpone any growth take-off. How-
ever, even in these countries the UN assumptions that the AIDS epidemic will 
be brought to an end results in increasing growth rates toward the end of the 
period. 

Fractional framework (be it in a univariate or panel setting) is a very useful 
tool to accommodate movement of shocks and model their interaction with the 
economy. This recognition is getting popularity in the demographic analysis 

                                                             
64  Instead of the confidence band, the relevant standard errors could be reported. However, 

our preference for the confidence band is based on the standard reporting in the forecasting 
literature. Added motivation is that the confidence band gives us an idea about the tightness 
or wideness of the actual forecast. 



 167

recently, though the literature is very sparse. Our strategy of modelling demo-
graphic variables in a long memory framework and use the dynamic informa-
tion for long-run forecasting of income would provide a new direction of re-
search in the demographic context – a departure from conventional wisdom. 
Though we have extended ML (2005) framework in a long-memory set up in 
the univariate context, an extension to panel framework will be interesting. The 
efficacies of long-memory in panel data are yet to be theoretically established, 
which we preserve for an extension of the current research. 

Figure 5.2: Global real GDP per capita forecast 
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Figure 5.3: Belgium real GDP per capita forecast 
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Figure 5.4: USA real GDP per capita forecast 
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Figure 5.5: Sweden real GDP per capita forecast 
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Figure 5.6: Japan real GDP per capita forecast 
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Figure 5.7: India real GDP per capita forecast 
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Figure 5.8: China real GDP per capita forecast 
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6. Conclusions: Policy Analysis and Development 
Objectives 

The central objective of this book has been to study the consequences of sto-
chastic demographic system in economic growth processes. It was assumed 
that stochasticities in the demographic system could be an outcome of endoge-
nous variation (due to its interaction with the economic system and own evolu-
tion) and exogenous changes (forced upon by the environment). Based on this 
assumption, the book introduced stochastic long-memory features of the demo-
graphic system and studied how it would contribute to economic growth fluc-
tuations. From a broader perspective, the book made an exception to the con-
ventional assumption in empirical and theoretical growth literature that 
‘population growth is stationary’. It was observed that this simplistic assump-
tion was largely forced by methodological complexity in the demographic 
processes and to some extent by the unavailability of the state-of-the-art 
econometric technique two decades ago. However, drawing upon evidences 
from real life economic situations and demographic variations, we found that 
demographic system need not be characterized as a stationary system. We 
made an attempt to tread beyond this conventional assumption and allowed the 
interplay of non-stationary demographic shocks with the economic system. 
From broader perspective, the book endeavored to provide a new analysis of 
demography-economic growth relation based on stochastic characterization of 
the demographic and so demography-economic system. 

By explicitly emphasizing the relevance of temporal variation in the evo-
lution of demographic system, we brought out the underlying dynamics of 
demography-economic growth relation. We stressed that despite their inherent 
complex mechanism demographic variables cannot escape the impact of shocks 
accumulated over time. Indeed, any process, physical or non-physical, does 
evolve over time. Therefore, time must play important role in deciphering their 
influences on other variables in the system. The traditional assumption that 
demographic processes remain stable or stationary over time, is to some extent 
misleading, though for the sake of a broader theoretical analysis, it seems very 
useful. For meaningful and accurate empirical measurement, it is all the more 
necessary to recognize the influence of shocks, which may be transitory in 
nature, but over time the aggregation of which can cast spell on the entire eco-
nomic system. From a fairly broader perspective, the core of the book lied in 
dealing with such issues and introducing a mechanism through which demo-
graphic and economic growth relation can be better studied. For long term 
policy and development objectives of different countries it is pertinent that the 
government measure the magnitude of demographic shocks and based on the 
nature of cross-persistence of shocks of stationary or non-stationary demo-
graphic system, appropriate policies be undertaken. For instance, in Chapter 3 
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we found evidence of long-memory component of demographic system which 
had more than mere short-run effects on the aggregate economy. This implies 
that the demographic system needs to be stabilized first because it forms the 
core of the process in economic growth. For developing countries perspective it 
would mean, for example, that the spurt of young age population must be con-
tained and more resources must be devoted to education to increase the buffer 
of human capital such that the growth of the economy can be accelerated to the 
optimum as economy progresses over time. 

The four principal chapters (Chapter 2 through Chapter 4) of this research 
addressed the above issues in parts. First, in Chapter 2, by first sticking to the 
conventional stationary assumption and extending Kelley-Schmidt’s analysis to 
the current decade we observed some variations in the results which are differ-
ent from Kelley and Schmidt. In particular, we observed that addition of a 
decade did change the effect of birth and death rates on economic growth of 
developed and developing countries. Though different explanation might ac-
crue to such decadal variations, the most important one appears to us is the lack 
of treatment of time dimension in the panel regression. With standard panel and 
cross-section regressions, the major conclusions that emerge from this chapter 
are: (1) further birth rate reductions in developing countries would do no more 
good for the economic progress of these countries. (2) Effect of growth-
enhancing effect of population density is found for all decades. 

An important conclusion from this chapter is the finding of positive effect of 
birth for developed countries. In view of this fact, the recently proposed ‘zero-
population growth’ policy for the bulk of developed countries might need a 
rethinking. It also emerged from our analysis that the standard methodology to 
translate demographic and economic growth variables to five, ten or more years 
of averaging in fact average out the hidden dynamics present in the system 
which in our opinion could be delineated via accounting for time variation by 
each year. In the extant empirical growth model, we stick to such averaging as 
this avoids the problem of persistency in the data. However, in view of the 
development of modern methodological tools, the analysis of demography-
economic growth nexus can be further broadened. It was also brought out in 
this chapter that unless one explicitly accounts for temporal dynamics in the 
demography-economic growth models (such as the convergence-patterns), the 
consistency of the effect of demographic variables on economic growth cannot 
be fully ascertained. Long-years of aggregation and averaging as often used in 
empirical economic growth literature only discounts the persistent shocks in the 
system if there were any. For the sake of approximating realistic economic 
situations, it is necessary to study the persistent behavior of growth variables 
while making long-term economic decision and projections. 

Due to the apparent need of accounting for detailed temporal dynamics in 
the empirical economic growth regressions, in Chapter 3 we investigated if 
demographic variable, like aggregate population and age-specific population 
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display some stochastic memory features. And if so, how does one incorporate 
them in the analysis of economic growth model where population is assumed to 
be endogenous to the system via an interaction and feedback mechanism. We 
addressed these questions by examining the memory properties of aggregate 
and age-specific population and their impact on economic growth. Our analysis 
for about 200 countries covering both developed and developing countries 
evinced that population series contain substantial stochastic memory and thus 
warrant implications for the development objectives of developing and devel-
oped countries. On the basis of their memory features, we were able to classify 
the countries sharing ‘common stochastic memories,’ such that appropriate 
policies could be designed looking at whether the population series of these 
countries suffer from non-mean convergent or stationary shocks. We also pro-
vided a theoretical framework to show that variations in the degree of stochas-
tic shocks of population would in fact welcome variations in the response of 
output in the long-run. Specifically, steeper response of output could be ob-
served as population growth becomes gradually non-stationary. Our research 
also brought out the importance of stochastic demographic shocks in explaining 
and being explained by the economic growth variations of developed and de-
veloping countries. 

Having demonstrated that aggregate and age-specific population series ex-
hibit significant memory features (in Chapter 3), in the next chapter (Chapter 4) 
we provided population forecast based on their long-memory features. Popula-
tion projection has held nerve for the modern forecasting theory, however, 
application of time series methods have not been so popular except some nota-
ble but sparse contributions from demographers. We forecasted population and 
age-specific population for a set of developed and developing countries using 
the popular ARFIMA methodology while also allowing for endogenous demo-
graphic shift in the series. We found that ARFIMA models produced forecasts 
which were at least as reliable as more traditional demographic forecasts. 
Moreover, ARFIMA method have more advantages than the standard ARIMA 
and most other demographic forecasting methods viz., high, low, and medium 
variant projection techniques used by US Census Bureau and United Nations. 
Thus it seems apparent that for any forecasting exercise it is always handy to 
incorporate as much dynamic information in the model as possible to deliver 
reliable and economically meaningful forecasts. 

The forecast values of UN high variants appeared to be more or less com-
patible with our ARFIMA forecasts. We demonstrated that European countries’ 
total population would steadily rise while a faster growth was deemed for de-
veloping countries like India and China. Interestingly, going by our projections, 
India is expected to replace China as the most populous nation on the earth by 
2050. This might result from China’s population control policy which signifi-
cantly controls its future growth trajectory in contrast to India’s so-called nor-
mative approach of ‘stabilizing population’ where, not ‘controlling population’ 
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might cost the country with heavy demographic pressure. For India, the task is 
rendered even more difficult by a relatively rapid rate of population growth that 
results in the addition of nearly 20 million every year. However, the conven-
tional family planning approach with its emphasis on contraceptive targets (i.e. 
the number of couples using contraception) has shown to be ineffective over 
the years, which gives credence to the fact that the population size will soar in 
five decades. 

By employing a flexible data generation process in forecasting, like AR-
FIMA, we depicted that the desirable demographic dynamics could be dis-
played and the complex core of the system in terms of ‘response to shocks’ can 
be better characterized. Therefore, the ARFIMA forecast for total and age-
structured population, as resorted to in the book, could possibly serve as pro-
viding complementary information, if not completely an alternative to the oft-
practiced methods such as probabilistic projection or high, medium, low variant 
projections. 

Utilizing the stochastic behavior of the demographic system, we also per-
formed demography-based income projections for some developed and devel-
oping countries in the book (Chapter 5). The major conclusions are as follows. 
We noted that long-memory forecasts with demographic variations exhibit 
higher projection values than earlier forecasts, such as ML although the differ-
ence was not substantial. Our forecasting model was presumed to be more 
informative due to the fact that we could account for the possible subtle varia-
tions of shocks while performing projections. We found that our forecasts were 
higher than ML who assumed stationary behavior for age-structured and total 
population. Demography-based income projections were shown to fare better 
than non-demographic models. Moreover, under further demographic decom-
position and consideration of stochastic dynamics, the forecasts were found to 
improve which indicates that the more dynamic information one would embed 
in the forecasting model, the better would be the forecasts. 

To conclude, the book made a modest attempt in trying to introduce the role 
of stochastic features of the demographic system in economic growth. While 
this research has answered some basic questions concerning the long-run eco-
nomic growth consequences due to stochastic demographic variations, it can be 
further extended in several other directions. There are several possible aspects 
of the research on which further work could be initiated. First, although in 
Chapter 3 we provided a long-memory demography and economic growth 
linkage, a complete formulation of the problem in an endogenous growth theo-
retic setting can give further insights about their long-run behaviour. Different 
welfare implications can be derived and intergenerational transfer of resources 
can be studied from such formulation. Second, forecasting of demography-
based GDP in the book has been carried out in the univariate setting. However, 
a long-memory panel framework could be built and forecasting of individual as 
well as ‘blocks’ of countries could be performed based on common stochastic 



 178

memory and their interactions with the economic system. Forecasting accuracy 
of ARFIMA models for demography and demographic-economic system could 
also be checked given the various non-linear models, such as AR, ARMA, 
Markov Switching, etc. 

Another possible extension of the book would be to examine the long-run 
equilibrium relationship between demographic variation and economic growth 
assuming that long-memory shocks characterize both the demography and 
economic system. A fractional cointegration analysis can provide insights into 
their co-movement and most importantly to answer some of the important 
questions in economics growth: Does stochasticity in the demographic system 
cause persistent growth variations in the world economy and/or in different 
countries? To what extent economic growth variations could be contributed to 
the demographic dynamics? On a different angle, the causal link between 
demographic pressure induced innovation and economic growth could also be 
studied in a stochastic growth setting. 
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