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Abstract

This paper proposes a joint error serial correlation test to be applied to linear
panel data models after generalised method of moments estimation. This new
test is as an alternative inferential tool to both the m2 test of Arellano and Bond
(1991) and the overidentifying restrictions test. The proposed test, called the m2

(2;p)

test, involves an examination of the joint signi�cance of estimates of second to pth-
order (�rst di¤erenced) error serial correlations. The small sample properties of the
m2
(2;p) test are investigated by means of Monte Carlo experiments. The evidence

shows that the proposed test mostly outperforms the conventional m2 test and has
high power when the overidentifying restrictions test does not, under a variety of
alternatives including slope heterogeneity and cross section dependence.

Key Words: method of moments; dynamic panel data; serial correlation test; slope
heterogeneity; cross section dependence; m2 test; overidentifying restrictions test.
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1 Introduction

The use of generalised method of moments (GMM) estimation for linear panel data mod-
els has gained popularity over last decade. This method has been widely used in economic
analysis, such as labour participation, cross-country growth convergence, government be-
haviour, among many others. It is well-known that the validity of moment restrictions
is essential for GMM estimation. Sargan (1958) and Hansen (1982) proposed a test for
the validity of the overidentifying restrictions, called the overidentifying restrictions test
hereafter, which serves as a general misspeci�cation test. Also, in linear dynamic panel
models, existence of error serial correlation will invalidate subsets of moment restrictions.
A second order �rst di¤erenced error serial correlation test, called m2 test, and the Sar-
gan�s di¤erence test for error serial correlations, proposed by Arellano and Bond (1991),
have become standard diagnostic tools in applied research.
Recently, two major concerns over the use of GMM estimation have been raised in

the literature. First, ignorance of the heterogeneity of slope coe¢ cients in dynamic linear
panel data models will result in persistent residual serial correlation, leading to inconsis-
tency of GMM estimator (see Pesaran and Smith, 1995). Second, if the model is subject
to (heterogeneous) cross section dependence arising from unobserved common factors,
again the GMM estimator will be inconsistent (see Holtz-Eakin, Newey and Rosen, 1988,
Ahn, Lee and Schmidt, 2001, Robertson and Sara�dis, 2006, Sara�dis, Yamagata and
Robertson, 2006). Importantly, these scenarios generally imply non-trivial higher order
error serial correlation, resulting in invalidity of all moment restrictions. In addition,
under more general qth-order moving average or autoregressive errors, the ms test of
Arellano (2003), s = 1; 2; :::; p, may not be powerful enough, while the Sargan�s di¤erence
test may not be appropriate.
Under such misspeci�cations, the overidentifying restrictions test is expected to reject

the null hypothesis with probability tending to one as the sample size tends to in�nity.
However, recent literature contains reports on its poor �nite sample behaviour, especially
when there are relatively many overidentifying restrictions. The �nite sample evidence of
Bowsher (2002) and Windmeijer (2005) suggests that the overidentifying restrictions test
tends to reject the null too infrequently, unless the time series dimension is very small.
Accordingly, the power of the overidentifying restrictions test with �nite sample can be
very low. Furthermore, Windmeijer (2005) reports that the use of the infeasible weighting
matrix (using the unknown true parameter) fails to improve the �nite sample performance
of the overidentifying restrictions test. Bond and Windmeijer (2005) illustrate that the
bootstrap overidentifying restrictions tests, based on the bootstrap method proposed by
Hall and Horowitz (1996) and Brown and Newey (2002), generally have inferior �nite
sample performance to the asymptotic tests.
In view of this, the current paper proposes a joint test for the second to pth-order �rst-

di¤erenced error serial correlation, called them2
(2;p) test, which can serve as an alternative

misspeci�cation test. This test has not been appeared in the existing literature.1 The
asymptotic local power of the m2

(2;p) test is investigated, which yields two main results.
First, AR(q) and MA(q) errors are locally equivalent alternatives in Godfrey�s (1981)
sense. This implies that the rejection of the null hypothesis by the m2

(2;p) test may not
help to indicate whether the errors are MA(q) or AR(q). Second, the asymptotic power
of an overspeci�ed m2

(2;p) test can be higher than that of the m
2
(2;q+1) test. This implies

1See Inoue and Solon (2006) for a portmanteau test for serial correlation in a classical �xed e¤ects
model, in which the regressors are strictly exogenous.
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that the power of the proposed joint serial correlation test can be higher than that of the
conventional m2 test, under the varieties of alternatives such as AR(q) and MA(q) errors,
slope heterogeneity, and cross section dependence.
The small sample properties of the m2

(2;p) test with p > 2 will be compared to those of
them2 test and the overidentifying restrictions test by means of Monte Carlo experiments.
The evidence shows that the proposed test often outperforms the m2 test under the
varieties of alternatives, such as AR(1), AR(2) and MA(2) errors, slope heterogeneity,
and error cross section dependence. In the case of MA(1) error, the joint test and the m2

test have very similar power estimates. Importantly, the m2
(2;p) test with the maximum p

available has high power where the overidentifying restrictions test does not.
Section 2 contains a discussion of the model and the estimation method. The existing

tests are reviewed in Section 3. Section 4 proposes the joint serial correlation test, m2
(2;p)

test, then discusses its power properties under the various alternatives. The �nite sample
evidence is reported in Section 5, and Section 6 contains some concluding remarks.

2 Model and Estimation Method

Consider the following model

yit = �i + �yi;t�1 + �
0xit + uit, i = 1; 2; :::; N , t = 2; 3; :::; T , (1)

where �i is an individual e¤ect with �nite mean and �nite variance, j�j < 1, � is a
(K � 1) parameter vector which is bounded, xit = (x1it; x2it; :::; xKit)0 is a (K � 1) vector
of predetermined regressors such that E (xisuit) 6= 0 for s > t, zero otherwise. First
di¤erencing (1) gives

�yit = ��yi;t�1 + �
0�xit +�uit, i = 1; 2; :::; N , t = 3; 4; :::; T , (2)

where �yit = yit � yit�1, �xit = xit � xit�1, �uit = uit � uit�1. For further discussion,
stacking (1) for each i yields

yi = �i�T�1 + �yi;�1 +Xi� + ui, i = 1; 2; :::; N , (3)

where yi = (yi2; yi3; :::; yiT )
0, �g is a (g � 1) vector of unity with natural number g,

yi;�1 = (yi1; yi2; :::; yiT�1)
0, Xi = (xi2;xi3; :::;xiT )

0, ui = (ui2; ui3; :::; uiT )
0. The matrix

version of the �rst di¤erenced equation is de�ned by

�yi = ��yi;�1 +�Xi� +�ui, i = 1; 2; :::; N , (4)

where�yi = (�yi3;�yi4; :::;�yiT )0,�yi;�1 = (�yi2;�yi3; :::;�yiT�1)0,�Xi = (�xi3;�xi4; :::;�xiT )
0,

�ui = (�ui3;�ui4; :::;�uiT )
0, or

�yi = �Wi� +�ui, (5)

where �Wi= (�yi;�1;�Xi), � = (�;�
0)0.

De�ne the matrix of instruments

Zi =
�
ZY i ZXi

�
(T � 2� h); (6)
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where h = hy + hx,

ZY i =

2666664
yi1 0 0 0 � � � � � � � � � 0
0 yi1 yi2 0 � � � � � � � � � 0
0 0 0 yi1 � � � � � � � � � 0
...

...
...

...
. . . ::: :::

...
0 0 0 0 � � � yi1 � � � yiT�2

3777775 (T � 2� hy), (7)

where hy = (T � 1)(T � 2)=2 and

ZXi =

2666664
x0i1 x0i2 0 0 0 0 � � � � � � � � � 0
0 0 x0i1 x0i2 x0i3 0 � � � � � � � � � 0
0 0 0 0 0 x0i1 � � � � � � � � � 0
...

...
...

...
...

...
. . . ::: :::

...
0 0 0 0 0 0 � � � x0i1 � � � x0iT�1

3777775 (T � 2� hx), (8)

hx = K(T + 1)(T � 2)=2. GMM estimation is based on the moment restrictions

E[Z
0

i�ui] = 0. (9)

The Arellano-Bond two-step GMM estimator is de�ned as

��N =
�
A0
N
�
�1N AN

��1
A0
N
�
�1
N bN ;

where AN = N�1PN
i=1 Z

0
i�Wi, bN = N�1PN

i=1 Z
0
i�yi, �
N = N�1PN

i=1 Z
0
i� _ui� _u

0
iZi

with � _ui = �yi ��Wi
_�N , where _�N is the one-step GMM estimator

_�N =
�
A0
N
_
�1N AN

��1
A0
N
_
�1
N bN ;

where _
N = N�1PN
i=1 Z

0
iHZi, H is a (T � 2 � T � 2) matrix, (s; r) elements of which

are hs;r, where hs;s = 2, hs;s+1 = hs+1;s = �1, and hsr = 0 for js� rj > 1.
In order to proceed, the following assumptions are made:

Assumption 1: fy�i ;X�
i g
N
i=1 is a sequence of independently and identically distributed

random matrices, where y�i = (yi1;y
0
i)
0 and X�

i = (xi1;X
0
i)
0.

Assumption 2:

(i) uit is independently and identically distributed, with mean zero and a strictly positive
variance �2, and has a �nite fourth order moment.

(ii) E (uitjyit�1; yit�2; :::; yi1;xit;xit�1; :::;xi1; �i) = 0, t = 2; 3; :::; T .

(iii) The coe¢ cient on the lagged dependent variable satis�es j�j < 1.

Assumption 3: rank (E[Z0i�Wi]) = K + 1.

Assumption 4: M = E (�i�
0
i) is a (p+h�1�p+h�1) symmetric and positive de�nite

matrix, where �i =
�
�0i; (Z

0
i�ui)

0�0 with �i = ��i2; �i3; :::; �ip�0, �is = �uit�uit+s,
s = 2; 3; :::; p.
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Assumption 1 is required in order to apply the standard iid central limit theorem
later. It can be relaxed to the �independently but not necessarily identically distributed�
case. The stronger assumption is employed for the ease of the exposition. Assumption 2(i)
excludes heteroskedastic time series. Assumption 2(ii) concerns sequential moment condi-
tions, which imply E(�iuit) = 0, E(yi1uit) = 0, E(xi1uit) = 0, t = 2; 3; :::; T . Assumption
2(iii) assures the stability of yit process; see Arellano (2003), for example. Assumption 3
is an identi�cation condition and Assumption 4 ensures that the test statistic proposed
later has a chi-square distribution with p� 1 degrees of freedom, asymptotically.

3 Existing Tests

The standard serial correlation tests in dynamic linear GMM models are the m2 test
and Sargan�s di¤erence test, both of which are proposed in Arellano and Bond (1991).2

Slightly more general versions of these test statistics are discussed below.

3.1 The ms Test

As a generalisation of the m2 test, Arellano (2003; p.121-123) proposes the ms statistics,
s = 1; 2; ::; p, with p � T � 3, which are intended to detect particular orders of �rst
di¤erenced error serial correlation. The hypotheses of interest areH0 : E(�uit�uit+s) = 0
against H1 : E(�uit�uit+s) 6= 0. The ms test statistic is de�ned as

ms =
1p
N�v2s

NX
i=1

��is, (10)

where

��is =

T�sX
t=3

��uit��uit+s; (11)

with ��uit = �yit ��w0
it
��N , and

�v2s =

 
N�1

NX
i=1

��2is

!
+ �!0Ns �Q

�1
N �!Ns � 2�!0Ns �Q�1

N A
0
N
�
�1N

 
N�1

NX
i=1

Z0i� _ui��is

!
,

where

�!Ns = N�1
NX
i=1

 
T�sX
t=3

��uit�wi;t+s

!
; (12)

�QN = A
0
N
�
�1
N AN . (13)

Under the null hypothesis, ms
d! N(0; 1), as N ! 1 with T �xed. The ms test is

designed to be powerful against sth order �rst-di¤erenced error serial correlation. There-
fore, it may not have enough power against more general higher order serial correlations.
In this paper, we focus on the m2 test statistic, since it represents the properties of the
ms statistics and is one of the most frequently reported test statistics in the empirical
literature.

2We do not examine the Hausman (1978) test approach, which is considered by Arellano and Bond
(1991), since it will be asymptotically equivalent to the Sargan�s di¤erence test; see Newey (1985) and
Hayashi (2000).
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3.2 Sargan�s Di¤erence Test

The Sargan�s di¤erence test is designed to check the validity of subsets of moment re-
strictions. Unlike the ms statistics, Sargan�s di¤erence test statistics can be applied as
joint error serial correlation tests, such as H0 : E(�uit�uit+s) = 0 for all s = 2; 3; :::; p.3

To motivate the Sargan�s di¤erence test, suppose the alternative is the MA(q) error,
uit =

Pq
`=0  `"it�` with  0 = 1. Then, decompose the matrix of instruments Zi into two

subsets

Zi =

"
Z1i

(T�2�h1)
; Z2i
(T�2�h2)

#
, (14)

such that, under the null hypothesis of no error serial correlation E[Z
0
1i�ui] = 0 and

E[Z
0
2i�ui] = 0, but under the alternative hypothesis of MA(q) error E[Z

0
1i�ui] 6= 0 but

E[Z
0
2i�ui] = 0. For example, testing against the alternative of MA(1) errors, Z1i consists

of yit�2, xit�1 and xit�2, and Z2i consists of the additional lagged instruments. Then, the
Sargan�s di¤erence test is de�ned as

SD = S(��N)� S(��N2) (15)

where

S(��N) =

 
N�1=2

NX
i=1

��u0iZi

!
�
�1
N

 
N�1=2

NX
i=1

Z0i��ui

!
(16)

with ��ui = �yi ��Wi
��N , and

S(��2N) =

 
N�1=2

NX
i=1

��u02iZ2i

!
�
�1
2N

 
N�1=2

NX
i=1

Z02i��u2i

!
(17)

with ��u2i = �yi ��Wi
��2N , where

��2N=
�
A0
2N
�
�12NA2N

��1
A0
2N
�
�1
2Nb2N ,

A2N = N�1PN
i=1 Z

0
2i�Wi, b2N = N�1PN

i=1 Z
0
2i�yi, �
2N is based on the corresponding

one-step GMM estimator based only on the instruments Z2i. Under the null hypothesis
of E[Z

0
1i�ui] = 0, SD d! �2(h1). For later usage, S(��N)

d! �2(h � K � 1) under the
null.
The drawback of Sargan�s di¤erence test for testing general error serial correlations

is the requirement of h2 � K + 1 valid moment restrictions under the alternatives.
Clearly, �rst order autoregressive error, for instance, does not allow this requirement to
be satis�ed.
In the next section, a joint error serial correlation test will be proposed, which is

designed to detect higher order error serial correlations. Its power properties are analysed.

4 The m2
(2;p) Test for Error Serial Correlation

The hypotheses of our interest are

H0 : E(�uit�uit+s) = 0 jointly for s = 2; 3; :::; p(� T � 3) (18)

3Arellano and Bond (1991) proposed the use of Sargan�s di¤erence test for testing against MA(1)
error.
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against
H1 : E(�uit�uit+s) 6= 0, for some s, (19)

t = 3; 4; :::; T � 2. We de�ne a joint test statistic for second to pth order error serial
correlation, for T � 5; as

m2
(2;p) = �

0
N
�H
�
�G0 �G

��1
�H0�N , (20)

where �N is a (N�1) vector of ones, �H = (��1; ��2; :::; ��N)
0, ��i = (��i2; :::; ��ip)

0
, ��is is de�ned

by (11), �G = (�g1; �g2; :::; �gN)
0, �gi = (�gi2; :::; �gip)

0
, �gis = ��is � �!0Ns �Q�1

N A
0
N
�
�1
N Z

0
i� _ui, where

�!Ns and �QN are as de�ned by (12) and (13), respectively.4 Now the theorem can be
stated as:

Theorem 1 Consider the panel data model (1). Suppose Assumptions 1-4 hold. Then
under the null hypothesis (18),

m2
(2;p)

d! �2(p� 1), (21)

as N !1 with �xed T , where m2
(2;p) is de�ned by (20).

5

See Appendix A for a proof.6

Observe that the Arellano�s (2003)ms statistics for s = 2; 3; :::; p is simply �0N�hs�1=
p
N�v2s ,

where �hs�1 is the (s� 1)th column of �H and N�v2s is the (s� 1)
th diagonal element of �G0 �G.

Thus, the m2 test and the m2
(2;2) test are equivalent.

4.1 Power Properties of the m2
(2;p) Test under Various Alterna-

tives

As with any test for misspeci�cation, the power properties of the m2
(2;p) test depends on

the assumed alternative and the true data generation process; see, for example, Davidson
and MacKinnon (1985). Initially the asymptotic power of the m2

(2;p) test under the local
AR(q) and MA(q) errors are investigated. Discussions of the importance of the m2

(2;p)

test under slope heterogeneity and error cross section dependence are then provided.

4.1.1 Asymptotic Power Analysis under the Local AR(q) and MA(q) Errors

Without loss of generality, we focus on the panel AR(1) model speci�cation, namely

yit = �i + �yi;t�1 + uit, i = 1; 2; :::; N , t = 2; 3; :::; T , (22)

4An alternative formulation, which is asymptotically equivalent to m2
(2;p), would be

�0N �G
�(�G�0 �G�)�1 �G�0�N

where the (i; s) element of �G� is �g�is = ��is � �!
0
Ns
�Q�1
N A0

N
�
�1N Z0i��ui.

5The m2
(2;p) test based on Blundell and Bond (1998) GMM estimator could be easily constructed.

However, to save the space, such a version is not considered in this paper.
6For unbalanced panel, t = 1; 2; :::; Ti, the joint test still can be computed, so long as min1�i�N Ti � 5.

In this case, note that the cross section dimension depends on s = 2; 3; :::; p. Denoting this cross section

dimension as Ns, it can be shown that m2
(2;p)

d! �2(p� 1) as min2�s�pNs !1.

7
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where �i � iid(0; �2�), and, under no misspeci�cation, uit � iid(0; �2). Also the yit process
is assumed to be started long time ago. For simplicity, it is assumed that only the most
recent lagged levels are used as instruments, namely, Zi = diag(yi1; yi2; ::; yiT�2).
An asymptotic expansion of N�1=2PN

i=1 ��i around ��N = �, with all cross section
averages replacing averages of expectations, yields

1p
N

NX
i=1

��i =
1p
N

NX
i=1

�i � �! �Q�1�a0�
�1
1p
N

NX
i=1

Z0i�ui + op(1), (23)

where �i = (�i2; :::; �ip)
0
, �! = (�!2; :::; �!p)

0, �!s = N�1PN
i=1

PT�s
t=3 E(�uit�yi;t+s), �Q =

�a0�
�1�a, �a = N�1PN
i=1E(Z

0
i�yi;�1), �
 = N�1PN

i=1E(Z
0
i�ui�u

0
iZi).

Asymptotic Local Equivalence As with the results in Godfrey (1981) for the well-
known joint Lagrange Multiplier (LM) serial correlation test, it turns out that AR(q)
and MA(q) errors are asymptotically locally equivalent alternatives for the m2

(2;p) test, as
below.
The natural alternatives which result in higher order error serial correlation may be

MA(q) errors

uit =

qX
`=1

 `"it�` + "it, (24)

where j `j <1, ` = 1; 2; :::; q, as well as AR(q) errors

uit =

qX
`=1

�`uit�` + "it, (25)

"it � iid(0; �2"), and it is assumed that the roots of 1�
Pq

`=1 �`z
` = 0 lie strictly outside

the unit circle. Observe that, as AR errors are persistent, a simple AR(1) errors results
in higher order serial correlation, in a sense that E (uituit+s) 6= 0, for s > 1.
Now consider local versions of MA(q) and AR(q) errors, namely  ` = N�1=2�` in

(24) and �` = N�1=2�` in (25), ` = 1; 2; :::; q. It is assumed that 0 < j�`j < 1, but
satisfying stationarity condition of uit for given N , as above. Next de�ne the rth-order
error autocovariance

r = E(uituit+r) = E(uituit�r), r = 0; 1; ::. (26)

For both local AR(q) and MA(q) errors, r can be solved with respect to the parameters
�2" and �`, ` = 1; 2; :::; q,

7 and they are

r =

8<:
�2 + o(N�1=2), for r = 0;
�2�r=

p
N + o(N�1=2); for r = 1; 2; :::; q;

o(N�1=2); for r > q.

Let the non-central chi-square distribution with n degrees of freedom with non-centrality
parameter � be denoted by �2(n; �). Under these local alternatives,

m2
(2;p)

d! �2(p� 1;'0pV�1
p 'p), (27)

7See, for example, Hamilton (1994).
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where Vp is plimN!1(�G
0
p
�Gp=N), 'p =plimN!1N

�1=2PN
i=1 ��i, which is decomposed as

'p = cp + dp, (28)

where

cp = �2

0BBBBBBB@

(T � 4) (2�2 � �3 � �1)
...

(T � q � 1) (2�q�1 � �q � �q�2)
(T � q � 2) (2�q � �q�1)
(T � q � 3) (��q)

0p�q�1

1CCCCCCCA
;

dp = �2�! �Q�1�a0�
�1� T�2

 
qX
`=2

�`�2�` �
qX
j=1

�j�1�j

!
,

with 0g being a (g � 1) vector of zeros.
This asymptotic local equivalence of them2

(2;p) test statistic between AR(q) and MA(q)
errors means that the m2

(2;p) test is powerful against both MA(q) and AR(q) alternatives,
but that the rejection of the null hypothesis by the m2

(2;p) test may not help to indicate
whether the errors are MA(q) or AR(q). Furthermore, the rejection of no error serial
correlation merely means that the null hypothesis is not likely to be correct and does not
necessarily mean that the test is in favour of particular alternatives (See Davidson and
MacKinnon, 1993; p.364). An important implication of this result is that it might be a
good idea to regard the m2

(2;p) test as a misspeci�cation test, in a sense that the rejection
of the null hypothesis by the test does not imply a particular model speci�cation.8 The
same implication applies to the m2 test, given its equivalence to the m2

(2;2) test.
Sargan�s di¤erence test for MA(q) errors, de�ned by (15), uses precise information

about the alternative, but the m2
(2;p) test does not. A question which may then arise

is whether the Sargan�s di¤erence type test is more powerful than the m2
(2;p) test under

MA(q) errors. Arellano and Bond (1991) compare the power of the Sargan�s di¤erence
test with that of them2 test under MA(1) error. They use a Monte Carlo experiment, the
evidence from which shows that the m2 test is more powerful than the Sargan�s di¤erence
test.9

In equation (28), cp re�ects the asymptotic bias of N�1=2PN
i=1 �i, and dp is due to

non-zero �! and the asymptotic bias of
p
N(��N��). Observe that only the �rst q elements

of cp are non-zero and these elements a¤ect power. In addition, all p� 1 elements of the
other component, dp, are non-zero, even though the magnitude of �!s decays as s increases.
This �nding might indicate that an overspeci�ed joint test statistic, m(2;p) with p > q+1,
may not lose much power comparing to just speci�ed joint test statistic, m(2;q+1), under
local AR(q) or MA(q) errors. This possibility will be investigated next.

Some Local Power Comparison De�ne the power function of the noncentral chi-
square tests as

�� (n; �) = Pr
�
�2 (n; �) > �2n;�

�
8See also Davidson and MacKinnon (1985) and Godfrey and Orme (1996).
9Godfrey (1981) examines the power of the LM test and the Likelihood Ratio (LR) test against the

MA(1) alternative, and �nd that the LR test is more powerful, which uses precise information about the
alternative. Note that the LR and LM test statistics in Godfrey (1981) are asymptotically equivalent,
but the Sargan�s di¤erence test and the m2

(2;2) are not.

9
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where � is the size of the test, such that Pr
�
�2 (n; 0) > �2n;�

�
= �. Das Gupta and

Perlman (1974) claim that if we de�ne

h(�) = h (�;n; �; �) > 0;

for � > 0, to be the unique value satisfying

�� (n; �) = �� (n+ �; � + h(�)) , (29)

where � is a positive integer, then it is proved that h(�) is strictly increasing in �. This
result shows that the power of the noncentral chi-square test is strictly decreasing in the
number of degrees of freedom.
We would like to compare the asymptotic power functions of m2

(2;p) and m
2
(2;q+1) for

p > q + 1; using (29). By (27), the asymptotic power function of m2
(2;p) test statistic

is ��
�
p� 1; �

�
�21; �

2
2; :::; �

2
q;T; �; �

2; �2�
��
. Since this is highly nonlinear in parameters, it

seems impossible to obtain general results for local power comparison among the joint
tests. Rather, we focus on the comparison of the local power functions of m2

(2;2) andm
2
(2;3)

test statistics under the AR(1) or MA(1) local alternatives, with the panel AR(1) model
de�ned by (22) for T = 6, �2 = 1 and �2� = 1. In this case, it can be shown that

m2
(2;2)

d! �2
�
1; �1

�
�21;�

��
; (30)

m2
(2;3)

d! �2
�
2; �2

�
�21;�

��
. (31)

Given the value of �, �1
�
�21;�

�
and �2

�
�21;�

�
become linear functions of �21. As �

2
1 can

take any �nite non-negative value, what matters is the ratio � (�) = �2
�
�21;�

�
=�1
�
�21;�

�
.

Figure 1 reports the plot of the ratio � (�) for �0:99 < � < 0:99, which is the range of
interest.10 The maximum of � (�) is 1.695 at � = 0:14, and the minimum is 1.471 at
� = �0:53. Also, the local minimum where � is positive is 1.573 at � = 0:61.
Table 1 provides the required value of �21 to achieve the target power of �0:05

�
1; �2

�
=

�0:05
�
2; � (�) �2

�
= 0:05, 0.10, 0.20, 0.50, 0.90 and 0.95, at � = 0:14; 0:61;�0:53. As can

be seen, for all values of the target power, m2
(2;3) requires smaller values of �

2 than m2
(2;2),

at the 5% signi�cance level. This �nding indicates that, at least with T = 6; �2 = �2� = 1,
the proposed m2

(2;3) test achieves higher power than the m
2
(2;2) test for �1 < � < 1, under

the local AR(1) or MA(1) errors. Moreover, since the m2
(2;2) test and the m2 test are

equivalent, the m2
(2;3) test is superior to the m2 test, in terms of this asymptotic local

power comparison, in this particular situation.11

Next we discuss power properties of them2
(2;p) test under slope heterogeneity and cross

section dependence.

4.1.2 Slope Heterogeneity

The results of Pesaran and Smith (1995) imply that ignoring slope heterogeneity in the
linear dynamic panel model may create persistent error serial correlation. Consider a
slope heterogeneity version of the model (1)

yit = �i + �iyi;t�1 + �
0
ixit + "it, i = 1; 2; :::; N , t = 2; 3; :::; T , (32)

10A note of derivation of this result is available from the author upon request.
11Small sample evidence on the power of these tests under non-local alternatives will be provided later.
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where �i = � + �1i, �1i � iid(0; �2�1), �i = �+�2i, �2i � iid(0;��2). Then the error of
homogeneous model (1), uit, can be written as

uit = �1iyi;t�1 + �
0
2ixit + "it. (33)

It is clear that the error term is persistently serially correlated, and the regressors and
the error term will be correlated. Thus, together with the local analysis in the case of
AR(q) and MA(q) errors, the proposed joint serial correlation test, m2

(2;p) with p > 2, is
likely to have higher power than the m2 test. There does not seem to be a direct test
of slope heterogeneity in dynamic linear panel models for large N and �xed T in the
literature.12 Therefore, the serial correlation test and the overidentifying restrictions test
can be useful in playing the role of slope homogeneity test.

4.1.3 Cross Section Dependence

Ignorance of error cross section dependence also generate error serial correlation. Consider
the multi-factor error structure of the model (1)

uit = �
0
ift + "it, (34)

where �i � iid(0;��), E(�i"jt) = 0 for all i, j, t, and ft is a (m � 1) random vector
which is distributed as iid(0;�f ). This type of error generates heterogeneous error cross
section dependence, as discussed in Holtz-Eakin, Newey and Rosen (1988), Ahn, Lee and
Schmidt (2001) and Sara�dis, Yamagata and Robertson (2006), among others. Taking
expectations, after conditioning upon ft, yields

E(�uit�ui;t+s) = E [(�f 0t�i +�"it) (�
0
i�ft+s +�"i;t+s)] (35)

= �f 0t���ft+s.

Note that the magnitude of E(�uit�uit+s) does not necessarily decrease as s increases
with given t. Therefore, the power of the proposed joint serial correlation test is likely to
increase as the value of p for m2

(2;p) increases.
13

4.2 Discussions

First, it is easily seen that the Sargan�s di¤erence test is not justi�ed under the alternatives
speci�ed by (25), (33) and (34).14 Even under the MA(q) error model for which the
Sargan�s di¤erence test is valid, the m2

(2;q+1) test will be recommended, given the �nite
sample evidence of Arellano and Bond (1991).15

A natural choice of the test against these and other misspeci�cations might be the
overidentifying restrictions test proposed by Sargan (1958) and Hansen (1982), which
is de�ned by (16). However, the evidence in the recent literature suggests that the �-
nite sample behaviour of the overidentifying restrictions test can be very poor. Bowsher

12For large (N and T ) panels, see Pesaran, Smith and Im (1996) and Pesaran and Yamagata (2008),
for related issues.
13Sara�dis, Yamagata and Robertson (2006) proposed Sargan�s di¤erence test for heterogeneous error

cross section dependence.
14If xit is strictly exogenous, a Sargan�s di¤erence test (and Hausman test) could be applicable, by

utilising the instruments consists of subsets of Xi; see Sara�dis, Yamagata and Robertson (2006).
15See the discussion in Section 4.1.
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(2002) shows that the overidentifying restrictions test becomes severely undersized with
an increasing number of overidentifying moment restrictions in pure autoregressive panel
data models with normal errors. The most striking evidence is the �nding of Wind-
meijer (2005). He considered the linear model with only predetermined regressors and
heteroskedastic non-normal errors. He compared the size properties of the overidentifying
restrictions test based on an infeasible weighting matrix, obtained treating true parame-
ter as known, and the feasible one de�ned by (16). He found that the two statistics had
almost exactly the same size properties, which deteriorates as the number of overiden-
tifying restrictions rises. Given that the m2

(2;p) test has power against a broad range of
model misspeci�cations, as shown above, it can serve as an alternative misspeci�cation
test to the overidentifying restrictions test.
In practice, there is no clear theoretical guidance about the best choice of p for the

m2
(2;p) test. The choice made partly depends on what kind of misspeci�cations one has in

mind. If there is enough reason to doubt the usefulness of the qth order moving average
or autoregressive error serial correlation alternative, it may be reasonable to choose p to
be slightly greater than q+1. If one uses the joint serial correlation test as an alternative
to general misspeci�cation tests, it may be desirable to set p to be its maximum value or
close to it, so long as N is su¢ ciently large.16

When the proposed joint serial correlation test rejects the null hypothesis, it does
not direct to a particular alternative model speci�cation, as has been emphasized above.
Thus, a researcher, who has faced by such a rejection, may have to proceed to identify
the source of such misspeci�cations in separate analyses.17

5 Small Sample Properties of the Joint m2
(2;p) Test

In this section, the �nite sample behaviour of proposed m2
(2;p) test with p > 2 is compared

with that of the m2 test of Arellano and Bond (1991) and the overidentifying restrictions
test.18 In order to see the e¤ects of increasing p in the m2

(2;p) test under a variety of
alternatives, the performance of all m2

(2;3),..., m
2
(2;T�3) tests is investigated. When the

behaviour of the overidentifying restrictions test is discussed, particular attention is paid
to the m2

(2;T�3) test. We consider six types of misspeci�cations which lead to error serial
correlations: AR(1) errors; MA(1) errors; AR(2) errors; MA(2) errors; heterogeneous
slopes; and heterogeneous error cross section dependence. The rejection frequencies based
on the size-corrected critical value are also provided for the power comparison.19

16One could examine the m2
(2;p) tests for di¤erent values of p. However, in this case the test procedure

would be subject to multiple testing problem and one cannot control the overall signi�cance level, in
general; see Savin (1983).
17For example, to sort out AR(1) errors, add one more further lagged dependent variable as a regressor;

to cope with cross section dependence, adopt the estimation methods by Holtz-Eakin, Newey and Rosen
(1988), Ahn, Lee and Schmidt (2001).
18The �nite sample evidence reported in Bowsher (2002) suggests that to some limited extent, the size

can be controlled by reducing the number of moment restrictions.
19As Horowitz and Savin (2000) point out, the tests based on the size-corrected critical values are

of limited empirical relevance. We report the size-corrected power of the tests because the bootstrap
test, which is the potential alternative to the size-corrected test, seems unreliable in this application,
especially for the overidentifying restrictions test; see Bond and Windmeijer (2005).
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5.1 Design

The �rst data generating process (DGP) considered is a panel ARDL(1,0) model

yit = �i + �yi;t�1 + �xit + uit, i = 1; 2; :::; N ; t = �48;�47; :::; T , (36)

which may be of greater practical interest than the panel AR(1) model. yi;�49 = 0 and
�rst 50 observations are discarded. Also, we set � = 0:5, � = 0:5. uit is de�ned below
but for the size of the test uit = "it, where "it � iidN(0; �2").
The DGP of xit considered here is

xit = �xxi;t�1 + �ui;t�1 + vit, i = 1; 2; :::; N ; t = �48;�47; :::; T , (37)

where �x = 0:5, vit � iidN(0; �2v). � is set to 0:5. xi;�49 = 0 and �rst 50 observations are
discarded. Following Kiviet (1995) and Bun and Kiviet (2002), we control the signal-to-
noise ratio under the null, uit = "it through �2v. De�ne the signal as �

2
s = var (y�it � "it),

where y�it = yit � �i=(1 � �). Then, denoting the variance of the error by �2" = var("it),
we de�ne the signal-to-noise ratio, $ = �2s=�

2
". Speci�cally

�2v = ��2
��
�2" (1 +$)

�
=a1 � b1

	
where

a1 =
(1 + ��x)

(1� �2x)(1� �2)(1� ��x)

b1 = 1 + (�� � �x)
2 +

2(�� � �x)(�+ �x)

1 + ��x
.

We set $ = 3. Also we choose �2� such that the ratio of the impact on var(yit) of the
two variance components �i and "it is constant across designs. More precisely,

�2� = (1� �)2 a1b1; (38)

see Sara�dis, Yamagata and Robertson (2006) for detailed derivation.
Another DGP considered is derived from Windmeijer (2005) and can be written as

yit = �i + xit� + uit, i = 1; 2; :::; N ; t = 1; :::; T , (39)

where �i � iidN(0; 1), � = 1; uit is speci�ed above, but "it = �i't�it, �i � iidU [0:5; 1:5],
't = 0:5 for t = �49; :::; 0 and 't = 0:5+0:1(t�1) for t = 1; :::; T , and �it � iid�2(1)�1.
The regressor xit is generated as (37), except that �2v = 1, and an extra term, �i, enters
in the right hand side.
We consider seven di¤erent error speci�cations, denoted by (a)-(g). Constants c,  ,

�" are controlled so that V ar(uit) = 0 = 1 in the case of (36):
(a) First, there are no misspeci�cations:

uit = �""it, (40)

�" = 1.
(b) The second speci�cation is the AR(1) error model,

uit = �1uit�1 + �""it, (41)

13
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where �2" = (1� �21). �1 = 0:2 is considered; so that 0 = 1 and 1 = 0:2, with the DGP
(36).
(c) The third speci�cation is the MA(1) error scheme,

uit = �" ("it +  1"it�1) , (42)

where �2" = (1 +  21)
�1with  1 = 0:2; so that 0 = 1 and 1 = 0:2 with the DGP (36).

(d) The fourth speci�cation is the AR(2) error model,

uit = �1uit�1 + �2uit�2 + �""it, (43)

where �2" = (1 + �2)[(1� �2)
2 � �21]=(1� �2), with �1 = 0:2 and �2 = 0:1; so that 0 = 1,

1 = 2=9 and 2 = 13=90 with the DGP (36).
(e) The �fth speci�cation is the MA(2) error process,

uit = �" ("it +  1"it�1 +  2"it�2) , (44)

where �2" = (1 +  
2
1 +  

2
2)
�1 with  1 = 20=103,  2 = 13=90 so that 0 = 1, 1 = 2=9 and

2 = 13=90 with the DGP (36).
Note that these particular designs of AR(2) and MA(2) errors are chosen to empathize

the usefulness of joint serial correlation test relative to the m2 test. Speci�cally, under
these designs, E (�uit�uit+2) = 22 � 1 = 0:07 and E (�uit�uit+3) = �2 = �0:14; so
the latter is twice as large as the former in absolute value. This result implies that the
m2 test is likely to be less powerful than the m2

(2;3) test.
(f) The sixth speci�cation allows for heterogeneous slopes. The term � in (36) is

replaced by �i � iidN(0:5; 1), and � is kept homogeneous. The constant � in (39) is
replaced with �i � iidN(1; 1).
(g) The �nal speci�cation permits heterogeneous error cross section dependence, with

uit = c2
�
�ift + �2""it

�
, (45)

�i � iidU [�1; 1], ft � iidN(0; �2f ), �
2
f = �2" = 1. We set c

2 = 3=4.
We consider all combinations of N = 100; 200; 400, T = 7; 11 for DGP (36) and

T = 6; 10 for DGP (39). All experiments are based on 2000 replications. The rejection
rates are based on an estimated 5% critical value, which is obtained as the 0.95 quantile
of the test statistics under consideration over 10000 replications.

5.2 Results

Table 2 contains results for the case of a linear dynamic panel ARDL(1,0) model with
predetermined regressors. The size results are reported in panel (a). The size of the m2

test and the m2
(2;p) tests are satisfactory for all combinations of N and T . On the other

hand, the overidentifying restrictions test tends to reject the null too infrequently. The
degree of under-rejection by the overidentifying restrictions test becomes worse when T
is increased to 11, due to a increase of the number of moment restrictions. This �nding
is consistent with the results of Bowsher (2002) and Windmeijer (2005).
Next, consider evidence about the power properties under varieties of alternatives,

which is contained in panels (b)-(g) in Table 2. Given the size distortion of the overiden-
tifying restrictions test, a size-adjusted power is reported in parentheses. In the case of
AR(1) error speci�ed by (41), the power of the m2

(2;p) tests with p > 2 dominates that of

14
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the m2 test almost all of the cases, as predicted in section 4.1. Focusing on the choice
of p of the joint m2

(2;p) test, when T = 11 the power increases as p rises from 2 to 5,
then slightly decreases afterwards. Across designs, the overidentifying restrictions test
has very low power, partly due to its size distortion towards below the signi�cance level.
Nevertheless, in terms of the size-adjusted power, the m2

(2;T�3) tests are also superior to
the overidentifying restrictions test. Turning attention to MA(1) errors speci�ed by (42),
the power of the m2

(2;p) tests with p > 2 dominates that of the m2 test most of the cases,
as predicted in section 4.1. In the Monte Carlo design, MA(1) and AR(1) errors yield the
same �rst order autocorrelation of uit, though the power gained by increasing p in the
case of MA(1) error is not as much as in the case of AR(1) errors. This result may be
explained as follows. Recall that (28) shows that the mean shift of the test statistic under
the alternative is decomposed into non-zero sth order autocovariances of �uit, E(�is), and
the bias of the estimator of slope coe¢ cient. In the case of non-local AR(1) error, all
E(�is), s = 2; 3; :::; p, are non-zero, whereas, in the case of MA(1) error only E(�i2) is
non-zero, which may lead to such a di¤erence in power. Another property to point out
is that the power of the m2

(2;p) tests is in general higher in the case of MA(1) error than
in the case of AR(1) error,. Probably this property re�ects the fact that the bias of the
estimator of slope coe¢ cient reduces the magnitude of the mean shift of the test statistics
and such a bias is larger with AR(1) errors than with MA(1) errors.
In the case of AR(2) error speci�ed by (43) the m2 test has virtually no power, due

to the choice of the parameters in autoregressive errors, as explained above. In contrast,
the m2

(2;p) test increases its power substantially as p rises. For T = 7, the overidentifying
restrictions test seems more powerful than the m2

(2;T�3) test, but the reverse relationship
is true for T = 11. In the case of MA(2) error speci�ed by (44), similar properties of the
behaviour of tests hold to those in the case of AR(2) error.20

In the case of slope heterogeneity, where � in (36) is replaced with �i � iidN(0:5; 1)
and � is kept constant, the m2

(2;p) tests with p > 2 dominate the m2 test, except for
N = 100. For T = 7, there is no clear ranking in terms of power between the m2

(2;T�3)
test and the overidentifying restrictions test, but the m2

(2;T�3) test is superior for T = 11.
In the case of cross section dependence speci�ed by (45), power estimates of the m2

(2;p)

tests monotonically increase as p increases, as discussed in Section 4.1. The power of the
m2
(2;T�3) tests is exceeded by that of the overidentifying restrictions test when N becomes

larger.
Table 3 reports the results in the case of a linear panel model with predetermined

regressors. The size results are reported in panel (a). The estimated size of the m2
(2;p)

tests tend to lower than the signi�cance level for small N and large p. The overidentifying
restrictions test tends to reject the null very infrequently. The power properties of the m2

test and the m2
(2;p) tests are similar to those reported in Table 2. The evidences suggest

that the power of the overidentifying restrictions test is extremely low across designs and
dominated by the m2

(2;T�2) test.
Overall, the performance of the m2

(2;p) tests with p > 2 is at least as good as the
conventional m2 test, and is superior to the latter in the majority of cases. Also, the

20The power of the joint tests under the AR(2) or MA(2) errors is lower than that under the AR(1)
or MA(1) errors. This is explained as follows. Under the AR(2) or MA(2) errors in the experiments,
when T = 7, jE(�i2)j = 0:21 and jE(�i3)j = 0:28. On the other hand, under the AR(1) or MA(1) errors,
jE(�i2)j = 0:8, which is much larger than the sum of jE(�i2)j and jE(�i3)j under the AR(2) or MA(2)
error design.

15



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

m2
(2;T�3) tests are superior to the overidentifying restrictions test in many, but not all

cases. The proposed joint serial correlation tests can serve as a general misspeci�cation
test as an alternative to the overidentifying restrictions test.

6 Concluding Remarks

This paper has proposed a joint error serial correlation test for linear panel data models
estimated by the generalised method of moments (GMM) estimation. The proposed
serial correlation test, called m2

(2;p) test, examines second to p
th-order (�rst di¤erenced)

error serial correlations jointly. The asymptotic local power analysis of the m2
(2;p) test

reveals that (i) AR(q) and MA(q) errors are locally equivalent alternatives in Godfrey�s
(1981) sense; (ii) the asymptotic power of an overspeci�ed m2

(2;p) test can be higher than
that of the just speci�ed test. This implies that the power of the proposed joint serial
correlation test can be higher than that of the conventional m2 test, under the varieties
of alternatives such as AR(q) and MA(q) errors, slope heterogeneity, and cross section
dependence.
The small sample properties of the m2

(2;p) tests with p > 2 has been compared with
those of the m2 test, which is equivalent to the m2

(2;2) test, and also with those of the
overidentifying restrictions test by means of Monte Carlo experiments. The evidence
shows that the m2

(2;p) tests with p > 2 mostly outperform the m2 test under several
alternatives, such as AR(1), AR(2) and MA(2) errors, slope heterogeneity and error cross
section dependence. In the case of MA(1) errors, the m2

(2;p) tests with p > 2 and the
m2 test have very similar power. It is important to note that the m2

(2;p) test with the
maximum p available has high power when the overidentifying restrictions test does not.
In view of these results, it is concluded that the proposed joint serial correlation

test may serve as a useful alternative to the conventional m2 and the overidentifying
restrictions tests.
It may be worth making two remarks. There is no clear theoretical guidance about

how to choose p for the m2
(2;p) test. The implications for power properties depend upon

the nature of actual misspeci�cation. The absence of prior information about the number
of test indicators (i.e. p here) is typical of the implementation of misspeci�cation checks,
e.g., the RESET test and the Lagrange multiplier test for serial correlation; see Godfrey
(1988;p.79-80). Second, a rejection of the null of no error serial correlation by the pro-
posed test does not necessarily imply the acceptance of any particular alternative model
speci�cation. Thus, a researcher, who has been faced by such a rejection, should proceed
to identify the source of misspeci�cations without relying solely on the test outcome and
estimation of the data-inconsistent model; see, for example, Davidson and MacKinnon
(1985) and Godfrey and Orme (1996) for further discussion.

16



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

A Proof of Theorem 1
Recall ��i =

�
��i2; ��i3; :::; ��ip

�0
with ��is =

PT�s
t=3 ��uit��uit+s, s = 2; 3; :::; p(� T � 3). Replacing the

averages in the right hand side of a Taylor series expansion of N�1=2PN
i=1 ��i around ��N = � with

averages of expectations yields

1p
N

NX
i=1

��i =
h
Ip�1;��B�Q

�1 �A0 �
�1
i 1p

N

NX
i=1

�
�i

Z0i�ui

�
+ op(1); (A.1)

where �B =(�!2; �!3; :::; �!p)
0 with �!s = N�1PN

i=1E(
PT�s

t=3 �uit�wi;t+s), �Q = �A0 �
�1 �A, �A = N�1PN
i=1E(Z

0
i�Wi),

�
 = N�1PN
i=1E(Z

0
i�ui�u

0
iZi). As the �rst term of the right hand side have mean zero and the as-

ymptotic variance-covariance matrix
�Vp = �D �M�D

0
, (A.2)

where �D = [Ip�1;��B�Q
�1 �A0 �
�1] and

�M =

�
�R �F
�F0 �


�
, (A.3)

with �R = N�1PN
i=1E (�i�

0
i) and �F = N

�1PN
i=1E (�i�u

0
iZi). As �M is a (p+h�1�p+h�1) positive

de�nite matrix by Assumption 4 and �D has full row rank, �Vp is positive de�nite. Under Assumptions
1-4,

N�1=2 �V�1=2
p

�H0�N
d! N(0p�1; Ip�1); (A.4)

then, since �VN � �Vp = op(1) with �VN = �G0 �G=N ,

�0N
�Hp
N

 
�G0 �G

N

!�1
�H0�Np
N

d! �2(p� 1) (A.5)

as N !1, under the null hypothesis, as required.
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Figure 1: The plot of the ratio of noncentrality parameters of the asymptotic
distributions of m2

(2;3) and m
2
(2;2) statistics under local MA(1)/AR(1) errors, in

the case of a panel AR(1) model

Notes: � (�) = �2
�
�2;�

�
=�1

�
�2;�

�
is the ratio of noncentral parameters, where �2

�
�2;�

�
and �1

�
�2;�

�
are noncentral parameter of the asymptotic distribution of m2

(2;3) and m
2
(2;2) statistics under local

MA(1)/AR(1) errors, respectively, given the panel AR(1) model yit = �i + �yit�1 + uit, i = 1; 2; :::; N ,
t = 1; 2; :::; T , �i � iid(0; �2�), j�j < 1, uit � iid(0; �2), with T = 6, �2 = �2� = 1.

Table 1: Value of �2 in the noncentral chi-square distributions �2
�
1; �2

�
and

�2
�
2; �(�)�2

�
to achieve the power �0:05 (n; �)

�2
�
1; �2

�
�2
�
2; �(�)�2

�
�0:05 (n; �) � �(0:14) = 1:695 �(0:61) = 1:573 �(�0:53) = 1:471
0:05 0:00 0:00 0:00 0:00
0:10 0:65 0:47 0:50 0:54
0:20 1:11 0:78 0:84 0:89
0:50 1:96 1:31 1:42 1:51
0:90 3:24 2:10 2:26 2:42
0:95 3:60 2:32 2:50 2:67

Note: The required �2 with which the power functions �0:05
�
1; �2

�
and �0:05

�
2; � (�) �2

�
achieve the

target value, 0.05, 0.10,...,0.95, are obtained, where � (�) is the ratio of noncentral parameters of the
asymptotic distribution of m2

(2;3) and m
2
(2;2) statistics under local MA(1)/AR(1) errors, given the panel

AR(1) model yit = �i+�yit�1+uit, i = 1; 2; :::; N , t = 1; 2; :::; T , �i � iid(0; �2�), j�j < 1, uit � iid(0; �2),
with T = 6, �2 = �2� = 1. As shown in Figure 1, at � = 0:14 (�0:53) � (�) is at the maximum (minimum)
for �0:99 � � � 0:99, and at � = 0:61 � (�) is at the local maximum for 0 � � � 0:99.
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Table 2: Size and Power of the Tests: A Dynamic Panel ARDL(1,0) Model
with Predetermined Regressors

(a) Size (b) AR(1) Error
Test,N 100 200 400 100 200 400

T = 7 T = 7
m2 5.40 5.05 5.50 24.10 (22.75) 42.45 (43.45) 69.50 (69.15)
m2
(2;3) 4.95 4.80 4.95 25.80 (27.35) 49.80 (51.25) 83.40 (83.50)

m2
(2;4) 4.90 4.90 4.80 26.20 (27.80) 52.55 (53.10) 86.30 (87.50)

S(��N ) 2.90 4.40 4.80 8.05 (14.15) 32.85 (37.25) 81.75 (79.75)
T = 11 T = 11

m2 4.55 4.95 5.30 43.80 (45.50) 72.80 (74.15) 95.35 (95.80)
m2
(2;3) 5.10 4.80 4.90 55.10 (57.20) 88.10 (87.10) 99.55 (99.55)

m2
(2;4) 4.65 5.40 5.35 62.15 (63.85) 92.60 (92.20) 99.90 (99.98)

m2
(2;5) 4.80 5.35 5.10 62.85 (64.25) 94.00 (93.85) 100.00 (100.00)

m2
(2;6) 4.55 5.05 5.15 61.90 (63.40) 94.50 (93.90) 100.00 (100.00)

m2
(2;7) 4.05 5.25 4.90 59.25 (62.90) 94.40 (94.35) 100.00 (100.00)

m2
(2;8) 4.05 5.65 4.70 57.00 (62.05) 94.35 (93.85) 100.00 (100.00)

S(��N ) 0.00 1.45 3.90 0.00 (5.85) 18.50 (34.50) 90.85 (89.75)
(e) MA(1) Error (d) AR(2) Errors

Test,N 100 200 400 100 200 400
T = 7 T = 7

m2 44.15 (43.20) 73.05 (73.80) 95.45 (95.50) 5.15 (4.80) 5.30 (5.70) 5.40 (5.60)
m2
(2;3) 44.00 (44.00) 75.55 (76.00) 97.30 (97.30) 7.45 (7.45) 9.60 (9.90) 15.45 (15.75)

m2
(2;4) 43.20 (44.05) 77.30 (77.35) 97.90 (98.10) 8.20 (8.98) 12.80 (12.90) 24.20 (25.55)

S(��) 10.20 (18.10) 48.75 (51.95) 92.85 (93.00) 4.15 (9.10) 15.60 (17.80) 45.25 (45.95)
T = 11 T = 11

m2 75.45 (76.30) 97.25 (97.50) 99.90 (99.90) 5.15 (5.25) 5.10 (5.45) 6.35 (6.70)
m2
(2;3) 80.80 (81.60) 99.00 (99.05) 100.00 (100.00) 12.30 (13.10) 21.00 (21.35) 36.30 (36.35)

m2
(2;4) 83.60 (84.55) 99.45 (99.55) 100.00 (100.00) 20.55 (21.50) 36.60 (37.40) 66.35 (67.25)

m2
(2;5) 83.00 (83.65) 99.45 (99.45) 100.00 (100.00) 23.55 (24.25) 45.60 (46.10) 80.15 (79.95)

m2
(2;6) 81.80 (82.00) 99.50 (99.50) 100.00 (100.00) 25.40 (25.70) 50.45 (50.90) 84.45 (84.40)

m2
(2;7) 80.95 (82.05) 99.45 (99.45) 100.00 (100.00) 25.10 (27.25) 52.55 (52.60) 87.25 (87.50)

m2
(2;8) 78.35 (80.20) 99.25 (99.30) 100.00 (100.00) 24.75 (27.00) 53.15 (53.85) 87.85 (87.95)

S(��N ) 0.00 (5.85) 27.85 (45.55) 97.25 (97.45) 0.00 (4.95) 8.50 (20.25) 63.75 (65.65)
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(Table 2 continued)
(e) MA(2) Errors (f) Slope Heterogeneity:

Test,N 100 200 400 100 200 400
T = 7 T = 7

m2 8.15 (7.70) 13.60 (14.40) 21.80 (22.25) 19.25 (18.60) 31.00 (32.15) 50.30 (51.15)
m2
(2;3) 14.35 (14.35) 22.55 (23.10) 45.70 (46.15) 17.95 (17.95) 37.90 (38.65) 65.10 (65.40)

m2
(2;4) 16.20 (16.70) 30.65 (30.80) 57.05 (59.00) 17.15 (17.60) 37.75 (37.90) 70.90 (72.55)

S(��N ) 6.25 (12.10) 25.10 (28.25) 67.10 (67.70) 3.90 (8.35) 27.70 (30.40) 80.15 (80.95)
T = 11 T = 11

m2 12.20 (13.00) 23.10 (23.55) 43.70 (44.85) 33.65 (34.65) 53.90 (54.70) 83.05 (83.60)
m2
(2;3) 31.20 (23.30) 57.95 (58.45) 89.05 (89.05) 40.45 (41.15) 72.60 (73.30) 96.55 (96.55)

m2
(2;4) 47.05 (48.55) 80.10 (80.60) 98.25 (98.40) 44.95 (46.80) 80.70 (81.20) 98.95 (99.00)

m2
(2;5) 48.90 (49.75) 82.50 (83.20) 99.15 (99.15) 43.30 (43.95) 81.15 (81.70) 99.35 (99.35)

m2
(2;6) 48.45 (48.90) 84.10 (84.35) 99.40 (99.40) 41.50 (41.95) 82.00 (82.25) 99.45 (99.45)

m2
(2;7) 46.50 (48.70) 84.80 (84.85) 99.45 (99.45) 40.30 (42.85) 81.25 (81.35) 99.45 (99.45)

m2
(2;8) 47.05 (48.60) 85.40 (85.85) 99.55 (99.55) 37.40 (40.15) 80.20 (80.55) 99.25 (99.25)

S(��N ) 0.00 (5.15) 14.45 (29.95) 85.65 (86.25) 0.00 (4.55) 7.05 (19.40) 81.45 (82.60)
(g) Cross Section Dependence

Test,N 100 200 400
T = 7

m2 37.00 (34.90) 49.20 (47.90) 57.65 (60.80)
m2
(2;3) 50.60 (47.40) 65.70 (64.10) 75.25 (77.45)

m2
(2;4) 56.30 (54.50) 73.15 (71.90) 82.40 (85.00)

S(��) 39.75 (49.85) 80.75 (80.70) 93.20 (93.85)
T = 11

m2 38.60 (36.75) 54.40 (51.35) 63.90 (63.50)
m2
(2;3) 55.00 (50.30) 71.00 (68.30) 80.50 (80.60)

m2
(2;4) 63.45 (61.40) 80.55 (79.80) 88.85 (88.60)

m2
(2;5) 68.05 (66.65) 85.50 (84.30) 92.65 (92.95)

m2
(2;6) 72.35 (71.15) 89.25 (88.15) 95.65 (95.40)

m2
(2;7) 75.10 (75.75) 91.30 (90.00) 96.50 (96.70)

m2
(2;8) 76.40 (77.20) 92.10 (90.85) 97.15 (97.45)

S(��N ) 0.00 (8.10) 72.05 (84.20) 99.15 (99.30)

Notes: The data is generated as yit = �i + 0:5yi;t�1 + �xit + uit, where �i � iidN(0; �2�) with �
2
�

de�ned by (38); � = 0:5 except panel (f), where �i � iidN(0:5; 1); uit is speci�ed by (40)-(45); xit =
0:5xi;t�1 + 0:5ui;t�1 + vit, vit � iidN(0; �2v), i = 1; 2; :::; N ; t = �48;�47; :::; T , with yi;�49 = 0 and
xi;�49 = 0. The �rst 50 observations are discarded. The signal-to-noise ratio is �xed 3 through �2v
under the null. m2 signi�es the Arellano and Bond (1991) test, m2

(2;p) signi�es the proposed joint test for

second to pth order �rst di¤erenced error serial correlation, S(��N ) signi�es the overidentifying restrictions
test. All tests are based on optimal two-step Arellano and Bond (1991) GMM estimator. The m2 test
results is based on the m2

(2;2) test, and the m
2
(2;p) statistics are compared to �

2(p � 1) distributions.
The S(��N ) statistic is compared to �2(h � 2) distributions, where h is de�ned by (6). The �gures in
parenthesis are size-adjusted power, which are based on the simulated distributions of test statistics with
10000 replications. All tests are conducted at 5% signi�cance level. All experiments are based on 2000
replications.
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Table 3: Size and Power of the Tests: A Linear Model with Predetermined
Regressors

(a) Size (b) AR(1) Errors
Test,N 100 200 400 100 200 400

T = 6 T = 6
m2 4.65 4.75 4.90 19.35 (18.60) 29.20 (31.65) 50.15 (46.70)
m2
(2;3) 2.75 3.95 5.10 16.60 (22.02) 32.35 (37.60) 59.20 (59.55)

m2
(2;4) 3.15 3.45 4.80 14.70 (20.00) 31.75 (36.30) 61.70 (60.80)

S(��N ) 2.00 3.00 4.00 2.10 (5.65) 3.15 (5.95) 4.70 (7.15)
T = 10 T = 10

m2 5.15 4.50 4.60 31.10 (32.80) 49.40 (52.05) 75.25 (76.15)
m2
(2;3) 3.65 4.00 4.35 34.30 (37.45) 59.30 (63.20) 89.55 (88.85)

m2
(2;4) 3.50 4.00 4.80 36.60 (40.25) 63.55 (69.25) 92.50 (92.95)

m2
(2;5) 3.30 3.50 4.95 34.75 (41.75) 65.15 (69.45) 94.10 (94.60)

m2
(2;6) 3.10 3.60 4.85 34.50 (42.35) 64.90 (69.80) 94.50 (94.55)

m2
(2;7) 2.90 2.85 5.00 31.70 (40.75) 65.15 (70.60) 94.55 (94.80)

m2
(2;8) 2.95 3.50 5.35 28.00 (38.85) 62.30 (71.05) 94.35 (94.50)

S(��N ) 0.45 1.65 2.30 0.45 (5.05) 1.95 (6.60) 6.15 (9.40)
(c) MA(1) Errors (d) AR(2) Errors

Test,N 100 200 400 100 200 400
T = 6 T = 6

m2 30.55 (31.00) 52.90 (52.75) 75.25 (73.95) 5.65 (5.65) 4.50 (4.45) 4.15 (4.00)
m2
(2;3) 25.95 (30.90) 53.05 (56.50) 80.25 (80.85) 6.10 (8.30) 8.85 (10.55) 13.25 (13.55)

m2
(2;4) 23.50 (29.00) 50.00 (53.10) 81.15 (81.55) 6.40 (8.40) 9.80 (11.40) 16.30 (16.75)

S(��) 2.40 (5.75) 4.20 (6.60) 6.75 (8.60) 1.65 (5.10) 3.80 (5.45) 4.50 (6.35)
T = 10 T = 10

m2 53.15 (53.90) 78.95 (79.80) 95.25 (95.25) 3.90 (3.95) 4.60 (5.05) 4.25 (4.35)
m2
(2;3) 53.90 (56.65) 83.50 (84.80) 98.15 (98.15) 9.00 (9.95) 14.50 (16.50) 23.00 (23.00)

m2
(2;4) 52.50 (57.10) 85.55 (87.35) 98.85 (98.85) 12.45 (14.20) 23.50 (26.30) 40.90 (41.75)

m2
(2;5) 50.05 (57.15) 85.40 (87.10) 98.95 (98.95) 13.45 (18.10) 27.25 (30.80) 51.20 (51.70)

m2
(2;6) 47.90 (56.30) 83.45 (86.25) 98.75 (98.80) 13.40 (19.40) 30.20 (34.95) 57.55 (59.90)

m2
(2;7) 45.30 (54.30) 81.75 (85.65) 98.70 (98.85) 13.85 (20.25) 32.00 (37.55) 59.85 (62.45)

m2
(2;8) 41.75 (52.55) 80.90 (85.00) 98.60 (98.85) 12.80 (19.15) 30.85 (38.80) 61.80 (63.45)

S(��N ) 0.15 (5.10) 3.25 (8.35) 8.70 (12.70) 0.10 (4.40) 2.00 (5.00) 3.90 (6.75)
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(Table 3 continued)
(e) MA(2) Errors (f) Slope Heterogeneity

Test,N 100 200 400 100 200 400
T = 6 T = 6

m2 3.80 (4.00) 5.05 (4.85) 8.85 (8.45) 11.90 0.(11.45) 15.95 (17.05) 26.45 (25.85)
m2
(2;3) 8.45 (10.90) 13.50 (16.00) 22.90 (23.60) 10.45 (14.70) 18.40 (23.00) 36.40 (38.20)

m2
(2;4) 8.60 (11.30) 13.90 (16.20) 30.15 (30.55) 10.00 (14.25) 19.80 (23.40) 40.25 (42.05)

S(��N ) 2.50 (5.40) 3.85 (5.60) 4.15 (6.10) 2.00 (5.95) 3.20 (5.45) 4.30 (5.60)
T = 10 T = 10

m2 5.65 (5.90) 9.00 (9.60) 19.90 (20.35) 14.45 (12.95) 20.95 (22.60) 34.45 (34.70)
m2
(2;3) 17.30 (19.05) 28.75 (30.20) 54.00 (53.95) 17.10 (18.70) 31.00 (33.70) 56.60 (54.15)

m2
(2;4) 23.90 (26.75) 44.05 (47.70) 75.30 (76.05) 21.45 (22.80) 38.00 (43.45) 68.65 (68.15)

m2
(2;5) 23.30 (28.85) 46.55 (50.25) 78.90 (79.50) 21.30 (26.05) 41.45 (46.30) 77.10 (75.00)

m2
(2;6) 23.40 (30.65) 47.90 (52.10) 83.50 (84.25) 21.70 (27.35) 42.70 (48.60) 80.05 (79.10)

m2
(2;7) 23.20 (30.30) 48.80 (54.45) 84.05 (85.45) 19.85 (26.55) 42.55 (50.05) 80.20 (80.40)

m2
(2;8) 20.65 (29.95) 47.55 (54.90) 83.50 (85.65) 18.05 (25.80) 41.30 (50.45) 81.15 (80.65)

S(��N ) 0.20 (4.65) 1.40 (6.60) 4.75 (7.50) 0.15 (6.00) 2.80 (5.20) 3.20 (5.30)
(g) Cross Section Dependence

Test,N 100 200 400
T = 6

m2 29.30 (29.90) 41.50 (40.30) 48.20 (51.75)
m2
(2;3) 43.00 (46.15) 57.05 (57.75) 68.20 (72.50)

m2
(2;4) 49.70 (54.20) 65.50 (65.25) 76.05 (78.20)

S(��) 20.95 (29.90) 42.60 (46.75) 64.55 (69.25)
T = 10

m2 20.45 (19.60) 27.65 (26.35) 37.75 (40.25)
m2
(2;3) 29.30 (27.60) 38.20 (40.90) 53.90 (55.35)

m2
(2;4) 34.60 (34.75) 47.35 (50.55) 65.20 (66.40)

m2
(2;5) 39.50 (43.05) 55.00 (57.55) 72.25 (74.05)

m2
(2;6) 46.20 (48.05) 61.65 (64.55) 78.50 (79.60)

m2
(2;7) 48.80 (53.85) 65.70 (69.15) 81.90 (83.95)

m2
(2;8) 51.80 (57.90) 69.70 (72.95) 83.70 (85.80)

S(��N ) 6.25 (27.20) 42.05 (56.85) 76.55 (82.35)

Notes: The data is generated as yit = �i + �xit + uit, where �i � iidN(0; 1); � = 1 except panel (f),
where �i � iidN(1; 1); uit is speci�ed by (40)-(45), but under the null uit = "it, "it = �i't�it, �i �
iidU [0:5; 1:5], 't = 0:5 for t = �49; :::; 0 and 't = 0:5 + 0:1(t� 1) for t = 1; :::; T , and �it � iid�2(1)� 1;
xit = �i + 0:5xi;t�1 + 0:5ui;t�1 + vit, vit � iidN(0; 1), i = 1; 2; :::; N ; t = �48;�47; :::; T , with yi;�49 = 0
and xi;�49 = 0. m2 signi�es the Arellano and Bond (1991) test, m2

(2;p) signi�es the proposed joint test for

second to pth order �rst di¤erenced error serial correlation, S(��N ) signi�es the overidentifying restrictions
test. All tests are based on optimal two-step Arellano and Bond (1991) GMM estimator. The m2 test
results is based on the m2

(2;2) test, and the m
2
(2;p) statistics are compared to �

2(p � 1) distributions.
The S(��N ) statistic is compared to �2(hx � 1) distributions, where hx is de�ned by (8). The �gures
in parenthesis are size-adjusted power, which are based on the simulated distributions of test statistics
with 10000 replications. All tests are conducted at 5% signi�cance level. All experiments are based on
2000 replications.
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