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Abstract

This paper proposes a computationally simple way to construct con�dence sets for a pa-

rameter of interest in models comprised of moment inequalities. Building on results from the

literature on multivariate one-sided tests, I show how to test the hypothesis that any particular

parameter value is logically consistent with the maintained moment inequalities. The associated

test statistic has an asymptotic chi-bar-square distribution, and can be inverted to construct

an asymptotic con�dence set for the parameter of interest, even if that parameter is only par-

tially identi�ed. Critical values for the test are easily computed, and a Monte Carlo study

demonstrates implementation and �nite sample performance.

JEL classi�cation: C3, C12

Keywords: Partial identi�cation, Inference, Moment inequalities

1 Introduction

When the assumptions of an econometric model are not restrictive enough to point identify para-

meters of interest, but nonetheless impose meaningful restrictions on the values these parameters
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may take, the parameters are said to be partially identi�ed, see Manski (2003). Much of the early

research on partial identi�cation has not focused on issues of statistical inference, and for good

reason. First, su¢ cient characterization of the identi�ed set is a necessary precursor for statistical

inference. Second, in some cases, the size of the estimated identi�ed set is signi�cantly larger than

the imprecision of estimates due to sampling variation, as in Manski and Nagin (1998). However,

in order to build con�dence regions, perform hypothesis tests, or compare set estimates to point

estimates derived from more restrictive models, sampling variation must be taken into account.

This paper proposes a computationally attractive way to perform inference via pointwise testing

in the spirit of Anderson and Rubin (1949, 1950) in a large class of models whose application

often results in partial identi�cation: moment inequality models. These are models in which the

parameter of interest, denoted �0, is known to satisfy a moment restriction of the form E [m (z; �0)] �
0, where z is an observable random vector, and m is a known, vector-valued function of the data

and a possibly multivariate parameter of interest �0. Such restrictions are common implications

of optimizing behavior and appear in many econometric models. Some examples include bounds

on regression parameters when there is measurement error, studied by Frisch (1934) and Klepper

and Leamer (1984), bounds on treatment e¤ects as in Balke and Pearl (1997), Hotz, Mullin, and

Sanders (1997), Manski and Pepper (2000), bounds on joint cumulative distribution functions

(Frechet (1951)), and bounds on regression parameters with interval data as in Manski and Tamer

(2002). Moon and Schorfheide (2005) consider models comprised of both moment inequalities and

equalities where there is point identi�cation.

This paper contributes to the literature on inference on partially identi�ed parameters by o¤er-

ing a way to perform inference on a (possibly multivariate) parameter �0 using �xed critical values

based on the asymptotic distribution of a test statistic. Previously, Imbens and Manski (2004)

showed one way this can be done when �0 is univariate and interval-identi�ed. Chernozhukov,

Hong, and Tamer (2007) were the �rst to provide general methods for consistent set estimation

and inference with potentially multivariate �0, covering cases where the identi�cation region can

be written as the minimizer of a criterion function. Research on this subject has since expanded

considerably, and the reader is referred to Chernozhukov, Hong, and Tamer (2007) for an excel-

lent overview of this literature. Recent research in this area includes Andrews, Berry, and Jia

(2004), Pakes, Porter, Ho, and Ishii (2004), Galichon and Henry (2006a), Galichon and Henry

(2006b), Romano and Shaikh (2006), Andrews and Guggenberger (2007), Andrews and Soares

(2007), Bontemps, Magnac, and Maurin (2007), Bugni (2007), Canay (2007), Guggenberger, Hahn,

and Kim (2008), Fan and Park (2007), Stoye (2007), Beresteanu and Molinari (2008), and Romano

and Shaikh (2008). Examples of recent papers that employ such methods include Ciliberto and

Tamer (2004), Ishii (2005), Rosen (2006), Blundell, Gosling, Ichimura, and Meghir (2007), Blundell,

Browning, and Crawford (2008), Ho (2008), and Molinari (2008).

Methods for inference applicable in contexts with multivariate �0 have relied on subsampling,
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bootstrapping, or simulation for approximation of asymptotic critical values. In this paper, the

test statistic used to perform inference has an asymptotic chi-bar-square distribution, and can

be inverted to construct an asymptotic con�dence set for the parameter of interest. Relative to

inferential methods based on subsampling or bootstrapping, this has the computational advantage

of not requiring resampling of one�s data to obtain critical values for a test statistic over each

element of the parameter space.

To motivate the con�dence sets of this paper, it is useful to �rst consider inference when there

is point-identi�cation. When �0 is point-identi�ed, one may construct a con�dence set Cn such
that in repeated sampling

lim
n!1

P f�0 2 Cng = 1� �, (1)

for pre-speci�ed level 1 � �. This is the starting point taken for motivation of the con�dence

regions constructed in this paper. However, when �0 is partially identi�ed, the standard methods

for constructing such a set Cn do not apply without modi�cation, as they rely on point identi�cation
as a necessary condition. In this context, there is some set of values, ��, which are observationally

equivalent to �0, called the identi�ed set. In the class of models considered here, a con�dence set

that satis�es (1) for one value of �0 = �0 2 ��, may not do so for another value �0 = �00 2 ��.
Because any two such values �0 and �00 are by de�nition observationally equivalent, no amount of

sample data will allow the researcher to distinguish between any two such values.

Thus, the goal of this paper is construction of sets that satisfy

inf
�2��

lim
n!1

P
�
� 2 Cptn

	
= 1� �, (2)

where P is taken to be the measure induced by repeated sampling from the true population distrib-
ution. Since �0 2 ��, i.e. the true �0 is necessarily a member of the identi�ed set, such sets Cptn will
contain �0 with at least probability 1�� for n su¢ ciently large, i.e. limn!1 P

n
�0 2 Cptn

o
� 1��.

To this end, I employ a pointwise testing procedure, in the vein of Anderson and Rubin (1949)

and Anderson and Rubin (1950). In the face of either weak or partial identi�cation, pointwise ap-

proaches have also been employed by, for example, Dufour (1997), Staiger and Stock (1997), Stock

and Wright (2000), Hu (2002), Kleibergen (2005), and Guggenberger and Smith (2005), among

others. Some recent papers have also considered sets that provide uniform asymptotic coverage

in both P and � 2 ��, see for example Imbens and Manski (2004), Fan and Park (2007), and

Stoye (2007). Andrews and Guggenberger (2005) and Andrews and Guggenberger (2007) provide

conditions under which the con�dence sets of this paper have uniformly valid asymptotic coverage.

The procedure employed in this paper makes use of results on multivariate one-sided hypoth-

esis testing, such as Bartholomew (1959a), Bartholomew (1959b), Kudo (1963), Perlman (1969),

Gourieroux, Holly, and Monfort (1982), Kodde and Palm (1986) and Wolak (1991); see Sen and

Silvapulle (2004) for a thorough compendium. Results in this literature apply in cases where
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the parameter of interest is point-identi�ed. This paper extends these methods to the moment

inequality setting, where there is no consistent point estimate for �0, by relying on the asymptotic

behavior of the moment restrictions. Speci�cally, I construct a test statistic Q̂n (�) that, under

su¢ cient regularity conditions, when scaled by n and evaluated at any element � of the identi�ed

set ��, has an asymptotic distribution that is a mixture of chi-square distributions, the chi-bar-

square distribution. This test statistic is then inverted to construct con�dence sets for �0 with

pre-speci�ed asymptotic coverage. The test statistic is a function of the moments that comprise the

imposed modeling restrictions on �0. As such, the theory needed to guarantee proper asymptotic

coverage relies completely on the distribution of observables. The inferential method is relatively

straightforward to implement in practice and is demonstrated with a speci�c example in section 5.

A drawback is that in general the cuto¤ value for the test statistic Q̂n (�) di¤ers for di¤erent

values of � 2 ��. That is, nQ̂n (�) is not asymptotically pivotal because its asymptotic distribution
depends on the variance of those components of m (z; �) that have expected value zero. This

problem is overcome by building con�dence sets for �0 by using an upper bound on the number of

such components. The dimension of m (z; �), J , is clearly an upper bound, but in models with

partially identi�ed parameters there is often a smaller upper bound which can be used to achieve

more accurate inference. As discussed further in section 4, in some cases use of this upper bound

may lead to coverage in�ation, in the sense that inf�2�� limn!1 P
n
� 2 Cptn

o
may exceed 1 � �,

though the test on which the con�dence sets are based is consistent regardless. In cases where there

is no obvious upper bound implied by the modeling restrictions, it is straightforward to estimate.

The paper proceeds as follows. Section 2 presents the moment inequality model. Section 3

describes the pointwise testing procedure. Section 4 then presents two ways to construct con�dence

sets based on the hypothesis test of section 3. Section 5 presents a simple example as illustration

and investigates the performance of con�dence sets via Monte Carlo simulation. Section 6 concludes

and o¤ers avenues for continued research. All proofs are in the Appendix.

2 The Model

Let fzi : i = 1; :::; ng denote a random sample of observations of z distributed with population

distribution P with support Z � Rs. Each observation zi represents all information observed by

the econometrician for each i = 1; :::; n. If partial identi�cation is a result of missing data, for

example, then zi excludes those characteristics of individual i in the population that are missing.

�, rather than �0, is used to denote a representative value of the parameter of interest. �� denotes

the set of values of � 2 � that satisfy the restrictions of the model, i.e. �� is the identi�ed set for
�0. The �true�underlying value of � in the model is denoted �0, but in general �0 might not be

point-identi�ed by the restrictions of the model.

The focus of this paper is moment inequality models. The model is summarized by the restric-
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tions

E [m (z; �0)] = E

2664
m1 (z; �0)

...

mJ (z; �0)

3775 �
0BB@
0
...

0

1CCA . (3)

J < 1 is the number of moment inequalities of the model. Formally, the model is given by the

following three assumptions.

Assumption A1 (random sampling) Z � fzi : i = 1; :::; Ng are i.i.d. observations distributed P .
Assumption A2 (compact parameter space) �0 is an element of the compact space � � Rk.
Assumption A3 (moment inequalities) E [m (z; �0)] � 0, where m (�; �) : Rs ��! RJ .
These assumptions yield the following identi�ed set for �0.

De�nition 1 Given assumptions (A1)-(A3), the identi�ed set for �0 is

�� = f� 2 � : E [m (z; �)] � 0g .

The identi�ed set for �0, ��, is the set of parameter values � that satisfy the restrictions of the

model, and thus �0 is necessarily an element of this set. If �� is a singleton, then �� = f�0g and
�0 is point identi�ed. If �� is empty, the model is misspeci�ed. If �� � � but is neither empty nor
singleton, then �0 is partially identi�ed. In this case, the model is informative even though �0 is

not point identi�ed. By de�nition of the identi�ed set, there is no way to distinguish between any

of the elements of �� being the true �0 on the basis of observables; any element of the identi�ed

set is a plausible value for �0, as all elements of �� are observationally equivalent by de�nition.

The con�dence sets of this paper are based on a test of the hypothesis that � 2 �� against the
alternative � =2 ��, or equivalently, the test

H0 : E [m (z; �)] � 0 (4)

H1 : E [m (z; �)] � 0,

for any �xed candidate value of � 2 �. The next two sections provide theoretical justi�cation and
a description of how to perform this test with pre-speci�ed asymptotic size �. Once the testing

procedure is established for �xed �, a 1 � � con�dence set for �0 is constructed by taking the set
of � that are not rejected by this hypothesis test.

The hypothesis test is based on a test statistic Q̂n (�) such that if nQ̂n (�) exceeds a criti-

cal value, the null hypothesis is rejected. That is � 2 �� is rejected if nQ̂n (�) > C��, where

sup�2�� limn!1 P
n
nQ̂n (�) > C

�
�

o
= �. This implies that the set Cptn �

n
� : nQ̂n (�) � C��

o

5
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satis�es condition (2) as

inf
�2��

lim
n!1

P
�
� 2 Cptn

	
= inf

�2��
lim
n!1

P
n
nQ̂n (�) � C��

o
= 1� sup

�2��
lim
n!1

P
n
nQ̂n (�) > C

�
�

o
= 1� �.

This further implies that limn!1 P
n
�0 2 Cptn

o
� 1��. While the focus of this paper is pointwise

inference, Andrews and Guggenberger (2005) and Andrews and Guggenberger (2007) give su¢ cient

conditions for such con�dence sets to provide uniformly valid asymptotic coverage. The next section

explains how the pointwise test is carried out and characterizes the asymptotic distribution for the

statistic nQ̂n (�) on which the test is based.

3 Asymptotic Behavior of the Test Statistic

In this section, I consider a test of the hypothesis (4) for any �xed candidate value of �. To test this

hypothesis, I construct a test statistic, Q̂n (�) whose asymptotic distribution, when scaled by n, is

chi-bar-square (a mixture of chi-square random variables) under the null hypothesis, while under the

alternative hypothesis, nQ̂n (�) ! 1. The test statistic is in general not asymptotically pivotal,

but can still be used to construct con�dence sets for �0. Depending on the variance of the binding

moments over ��, the con�dence sets may be conservative, in the sense that condition (2) may be

satis�ed with weak inequality (�) rather than equality. This is not relevant for the theoretical

result of this section, but is an important consideration in the actual construction and accuracy

of con�dence regions. A more detailed discussion is deferred to the details of implementation

discussed in section 4.

In order to test whether � is contained in the identi�ed set implied by the restrictions (3), I

employ the following statistic:

Q̂n (�) = min
t�0

h
Ên [m (z; �)]� t

i0
V̂ �1�

h
Ên [m (z; �)]� t

i
,

where V̂� is the sample variance of m (z; �), and where the minimization is taken over the vector t

of dimension J , constrained to have all elements non-negative. The value of Q̂n (�) is a function

of the sample moment functions evaluated at �, as well as V̂�. Given any �xed value of � being

tested, Q̂n (�) is the solution of a quadratic minimization problem over a polyhedral cone, for which

the Kuhn-Tucker conditions characterize a unique minimum, see Kudo (1963). Thus, for any �xed

value of � being tested, Q̂n (�) is straightforward to compute using the necessary and su¢ cient

Kuhn-Tucker conditions, which are that for each j = 1; :::; J ,h
V̂ �1�

h
Ên [m (z; �)]� t

ii
j
= 0 and tj > 0.
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or h
V̂ �1�

h
Ên [m (z; �)]� t

ii
j
� 0 and tj = 0.

Explicitly imposing these conditions substantially simpli�es the computation of Q̂n (�).

If the moment restrictions E [m (z; �)] � 0 are true, i.e. if � 2 ��, then Q̂n (�) should be small.
In this case, violations of Ên [m (z; �)] � 0 are attributable to no more than sampling variation.

This is because the population version of Q̂n (�) (and the probability limit of Q̂n (�) under su¢ cient

regularity, see Proposition 1) is

Q (�) = min
t�0

[E [m (z; �)]� t]0 V �1� [E [m (z; �)]� t] ,

where V� is the variance of m (z; �). Q (�) measures the distance of � from ��, as Q (�) = 0 if and

only if E [m (z; �)] � 0, and is otherwise positive. Manski and Tamer (2002) and Chernozhukov,

Hong, and Tamer (2007) derive conditions for consistency of parameter sets that minimize an

objective function, and their results apply here. The focus of this paper is inference, yet in

practice estimation precedes inference, so the application of these results to Q̂n (�) is stated formally

in Proposition 2.

Outside the context of estimating partially identi�ed parameters, test statistics of similar form

have been used previously in the literature on multivariate one-sided hypothesis testing, e.g.

Bartholomew (1959a), Bartholomew (1959b), Kudo (1963), Perlman (1969), Gourieroux, Holly,

and Monfort (1982), Kodde and Palm (1986), and Wolak (1991). In these prior studies, however,

the distribution of unobservables is modeled parametrically, and �0 is point identi�ed and can be

consistently estimated. Here, there is no parametric speci�cation for unobservables and �0 need

not be point identi�ed. Thus, inference is based on the estimated moment functions rather than

an estimate of �0. The formulation that is closest to that considered here is that of Wolak (1991).

Wolak shows that the limiting distribution of test statistics of the form Q̂n (�) depends only on

those constraints that are satis�ed with equality, i.e. those that bind, at the least favorable value of

� satisfying the null hypothesis, here that E [m (z; �)] � 0. In his model, however, there is a known
function which determines the boundary of the null hypothesis, h (�) rather than E [m (z; �)]. Thus,
in the setting of this paper, aside from the complication that here �0 is only partially identi�ed,

it is also the case that E [m (z; �)], the function that determines the boundary of the null hypoth-
esis, is not known, but rather must be estimated. This is a notable di¤erence because, as shown

in Proposition 3, the asymptotic distribution of nQ̂n (�) is degenerate except on the boundary of

the hypothesis that E [m (z; �)] � 0 i.e. the set of � such that E [mj (z; �)] = 0 for at least one

j 2 f1; :::; Jg.
To derive asymptotics for Q̂n (�), I impose the following two additional assumptions.

Assumption A4 (�nite variance of m on ��) For some K <1, for each (i; j) 2 f1; :::; Jg2,

7
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sup
�2��

���E �m (z; �)m (z; �)0�ij��� < K, i.e. each element of E �m (z; �)m (z; �)0� is bounded for all � 2 ��.
This also implies that the moments E [m (z; �)] are bounded.
Assumption A5 (positive de�nite variance) For each � 2 ��, V� is positive de�nite.

Assumption (A4), along with (A1), guarantees that the strong law of large numbers and a

central limit theorem hold for E [m (z; �)], while assumption (A5) guarantees that V� is invertible.
Under (A1) and (A4), it follows that for all � 2 ��,

Ên [m (z; �)] =
1

n

nX
i=1

m (zi; �)
a:s:! E [m (z; �)] , (5)

V̂n [m (z; �)] =
1

n

nX
i=1

�
m (z; �)� Ên [m (z; �)]

��
m (z; �)� Ên [m (z; �)]

�0
(6)

a:s:! var fm (z; �)g � V�,

and
p
n
n
Ên [m (z; �)]� E [m (z; �)]

o
d! N (0; V�) . (7)

The validity of assumption (A4) depends on the problem at hand. In the absence of (A4), what

is needed for the asymptotic results of this section are the three conditions written above; the

consistency of the sample mean and variance for m (z; �) over ��, and a central limit theorem

for
p
n
n
Ên [m (z; �)]� E [m (z; �)]

o
for each � 2 ��. Both the assumption that the observa-

tions are i.i.d. and that the rate of convergence of Ên [m (z; �)] to En [m (z; �)] is
p
n can be

relaxed, as long as (5), (6), and (7) can be shown to hold at each � 2 �� for some sequence of
constants an ! 1 replacing

p
n. Assumption (A5) rules out singularity of the asymptotic vari-

ance of
p
n
n
Ên [m (z; �)]� E [m (z; �)]

o
. While in many cases this restriction is plausible, it is

restrictive. In particular, in the context of interval identi�cation it rules out the case where the

estimators for the boundaries of the interval are perfectly correlated or when they are approximated

by the same estimator. Because the goal here is construction of a con�dence set Cptn such that

inf
�2�� limn!1 P

n
� 2 Cptn

o
= 1 � �, it is enough for these conditions to hold pointwise over ��.

If instead the researcher�s goal was to construct a con�dence set with uniform asymptotic coverage

then stronger conditions would be needed, see Andrews and Guggenberger (2007).

Before proceeding with distributional results, Proposition 1 �rst establishes consistency of the

sample objective function, and Proposition 2 o¤ers su¢ cient conditions for consistent set estimation,

which typically precedes inference in applications. For these results, it is convenient to de�ne

q (�; t) � [E [m (z; �)]� t]0 V �1� [E [m (z; �)]� t] ,

8
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and

q̂n (�; t) �
h
Ên [m (z; �)]� t

i0
V̂ �1�

h
Ên [m (z; �)]� t

i
,

so that Q (�) = min
t�0

q (�; t) and Q̂n (�) = min
t�0

q̂n (�; t). Properties of the functions q and q̂n translate

directly to properties of Q̂n and Q.

Proposition 1 Let (A1)-(A5) hold. De�ne t̂�n (�) � argmin
t�0

q̂n (�; t),and t� (�) � argmin
t�0

q (�; t).

Then t� (�) is unique, t̂�n (�) is unique with probability approaching one as n ! 1, and for any
� 2 �, Q̂n (�)

p! Q (�), and t̂�n (�)
p! t� (�). Furthermore, t̂�n (�)� t� (�) = Op

�
n�1=2

�
.

Proposition 1 follows from the convexity and continuity of q (�; t) and q̂n (�; t) in t. These

properties provide su¢ cient regularity to apply the results of Andrews (1999), necessary to ensure
p
n convergence in probability of t̂�n (�) to t

� (�) when � is on the boundary of the null hypothesis

E [m (z; �)] � 0. If, in addition, the convergence of Q̂n (�)
p! Q (�) is uniform over �, then the

results of Chernozhukov, Hong, and Tamer (2007) can be applied to formulate a consistent set

estimator for ��, as stated in Proposition 2.

Proposition 2 Let (A1)-(A5) hold, and assume that q (�; t) is continuous in � and that Q̂n (�) is
stochastically equicontinuous. Then Q̂n (�)

p! Q (�) uniformly over � 2 �. In addition let �n be a
sequence of positive constants such that �n !1 and �n=n! 0 as n!1. Then

�̂�n =
n
� 2 � : nQ̂n (�) � �n

o
is a consistent set estimate for �� in the Hausdor¤ norm.

The next proposition provides the asymptotic distribution of nQ̂n (�), but �rst some additional

notation is required. For expositional convenience, I refer to the subset of the J moment inequalities

such that E [mj (z; �)] = 0 as the set of binding moments. Without loss of generality, let the �rst

b (�) moments be the subset of binding moments at �, so that E [mj (z; �)] = 0, j = 1; :::; b (�),

and E [mj (z; �)] > 0, j = b (�) + 1; :::; J . Let m� (z; �) =
�
m1 (z; �) ; :::;mb(�) (z; �)

�0 denote the
subvector of moments that have mean zero, and let V �� = var (m

� (z; �)). Pr
n
�2j � c

o
denotes the

probability that a chi-square random variable with j degrees of freedom is at least as great as the

constant c, where �20 denotes a point mass as zero. The following proposition characterizes the

limiting distribution of nQ̂n (�) under the hypothesis that � 2 ��.

Proposition 3 Let assumptions (A1)-(A5) hold. Then for any value of � 2 ��, for any constant
c,

lim
n!1

P
n
nQ̂n (�) > c

o
=

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j > c

	
, (8)

9
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where w (�; �; �) is the weights function de�ned by Wolak (1987) and Kudo (1963), and the �2j
random variables of the summation are independent. For those � 2 �� such that E [m (z; �)] > 0,
limn!1 P

n
nQ̂n (�) > 0

o
= 0. If � =2 �� and each element of E

�
m (z; �)m (z; �)0

�
is �nite, then

for any constant c > 0, limn!1 P
n
nQ̂n (�) > c

o
= 1.

Proposition 3 closely follows Lemma 1 of Wolak (1991). The �rst step to the proof shows that the

limiting distribution of nQ̂n (�) is determined only by those terms that correspond to components

of E [m (z; �)] that are exactly equal to 0. Multiplication of Q̂n (�) by n is equivalent to multiplying
each of the

�
Ên [m (z; �)]� t

�
terms in Q̂n (�) by

p
n. For those moments j where E [mj (z; �)] > 0,

p
nÊn [mj (z; �)] diverges to in�nity, and the Kuhn-Tucker conditions for minimization guarantee

that t̂�n (�), will satisfy the �rst order condition
h
V̂ �1�

h
Ên [m (z; �)]� t

ii
j
= 0 with probability going

to 1 as n!1. This implies that these moments do not contribute to nQ̂n (�) asymptotically. On
the other hand, for those moments that are equal to zero,

p
nÊn [m

� (z; �)]
d! N (0; V �� ), and these

components do contribute to the asymptotic distribution of nQ̂n (�). For any realization from

the N (0; V �� ) distribution, any number of nonnegativity constraints up to b (�) may bind in the

solution to nQ̂n (�), t̂�n (�). The number of binding constraints on t̂
�
n (�) generally di¤ers from the

number of binding moment inequalities b (�), but the latter provides an upper bound for the former.

Conditional on any number r of binding nonnegativity constraints, the limit distribution of nQ̂n (�)

is �2r . Unconditionally, the weights of the chi-bar-square distribution are precisely the probabilities

with which exactly r constraints bind for each r = 0; :::; b (�). An immediate implication is that

when E [m (z; �)] > 0, t�n (�) = Ên [m (z; �)] is chosen with probability going to one, i.e. none of the
constraints bind, so that nQ̂n (�)

p! 0. Finally, the test is consistent against �xed alternatives, as

� =2 �� implies that nQ̂n (�)!1.
The weights function w (b (�) ; b (�)� j; V ) has arisen repeatedly in research on multivariate one-

sided hypothesis tests. As the limit distribution of nQ̂n (�) conditional on r constraints binding

is �2r , the weights correspond to the probabilities with which each feasible number of constraints

bind, or equivalently the number of components of t̂�n (�) that are equal to zero, so that

w (b (�) ; b (�)� j; V �� ) = lim
n!1

P
�
t̂�n (�) has j components equal to zero

	
.

These weights are referred to as �level probabilities�of a chi-bar-square distribution. Closed form

expressions for the weights are given by Wolak (1987) for the case where b � 4, or where V �� is

diagonal. More generally, closed-form expressions for the weights have not been obtained, but

if V �� and b (�) were known, they could be approximated with arbitrary accuracy by means of

simulation. For example, one such method outlined by Sen and Silvapulle (2004, pp. 78-80) is to

simulate draws of a random variable Z from the N (0; V �� ) distribution and compute the frequency

with which argmint�0 (Z � t)V ��1� (Z � t) has j components equal to zero, each j, in place of

10
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w (b (�) ; b (�)� j; V �� ).
If V �� and b (�) were known, then it would be straightforward using such techniques to compute

the cuto¤ value C�� such that
b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
n
�2j > C

�
�

o
= �. Unfortunately, V �� and

b (�) are not known. A seemingly intuitive solution might be to use sample analogs V̂ �� and b̂ (�) in

place of these, but this doesn�t work here because the CDF of the limit distribution given by (8) is

discontinuous in b (�). This problem can, however, be overcome by considering the least favorable

asymptotic distribution of the test statistic over ��. Section 4 details how this can be done by

using an upper bound for b (�) to construct a cuto¤ value Cb
�
� such that

inf
�2��

lim
n!1

P
n
nQ̂n (�) � Cb

�
�

o
= 1� �, (9)

or, in some cases

inf
�2��

lim
n!1

P
n
nQ̂n (�) � Cb

�
�

o
� 1� �. (10)

4 Computing Con�dence Sets

This section provides two ways to compute cuto¤ values for nQ̂n (�) and build con�dence sets

that cover �0 with at least probability 1 � � asymptotically. Both methods have the advantage

that the cuto¤ values are easy to compute with software that provides values of chi-square CDFs.

The �rst method is generally applicable. The second method shows how knowledge that V �� is

diagonal can be used to compute a cuto¤ value that satis�es (9). It is also shown that in this

case assumption (A5), which requires that V� is nonsingular, can be relaxed. Cases where V �� is

diagonal include both the mean with missing data and regression with censored outcomes such as

those considered by Beresteanu and Molinari (2008), Manski and Tamer (2002), and Romano and

Shaikh (2006). This is a useful special case since it occurs with moment restrictions that comprise

mutually exclusive conditioning events, as in the case of i.i.d. data with discrete covariates.

Both approaches make use of an upper bound on b (�) for � 2 ��; an obvious upper bound is the
total number of moment inequalities, J . In some settings, it may be credible to impose a smaller

upper bound; more generally, I use b� to denote the assumed upper bound. This may happen when

the model implies both upper and lower bounds on the expectation of a function of �, a common

occurrence in models with partial identi�cation. Such knowledge can be useful for inference. In

some cases, the model may not upon inspection deliver an obvious upper bound on the number

of binding moments. However, it is straightforward to estimate such a bound employing similar

reasoning to that of Andrews and Soares (2007) or Chernozhukov, Hong, and Tamer (2007). For

example, Chernozhukov, Hong, and Tamer (2007) Remark 4.5 motivates estimation of the number

11
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of binding moments for any �, b (�), by

b̂ (�) =
JX
j=1

1
h
Ên fmj (z; �)g � c

p
(log n) =n

i
,

for some constant c > 0, since limn!1 Pr
n
b̂ (�) = b (�)

o
= 1. One might then use b̂� =

sup�2�̂�n
b̂ (�) in place of b� in computation of critical values Cb

�
� below, where �̂�n is a consistent

estimator for ��.1

As discussed in the introduction, the goal of the procedures is construction of a con�dence set

Cptn =
n
� : nQ̂n (�) � Cb

�
�

o
with �xed cuto¤ Cb

�
� that satis�es

inf
�2��

lim
n!1

P
�
� 2 Cptn

	
= 1� �. (11)

If equality is replaced by �, then Cptn is asymptotically conservative. Whether (11) holds with

equality or inequality depends on the variance of the binding moments, V �� over the identi�ed

set. This is because the cuto¤ value is based on the variance matrix that gives the highest (most

conservative) possible value of Cb
�
� , see Perlman (1969). If this variance matrix is a member

of fV �� : � 2 ��g, then (11) is satis�ed with equality. If the worst-case variance matrix used to

compute Cb
�
� is not a feasible value for V �� for � 2 ��, then (11) is satis�ed with weak inequality

(�). However, even in this case the set is not arbitrarily large, in the sense that a test based on

the conservative cuto¤ is consistent.

Still, in some cases an estimator for the desired critical value which is not conservative asymp-

totically may be preferred. Critical values with this property for the test that uses nQ̂n (�) can

be computed via simulation or the bootstrap, see e.g. Chernozhukov, Hong, and Tamer (2007) and

Andrews and Soares (2007). For instance, one of the generalized moment selection (GMS) proce-

dures of Andrews and Soares (2007) can be implemented by taking a large number of simulation

draws Z� from the N (0; IJ) distribution and then computing the 1� � quantile of

Sn (�) = min
t�0

h
V̂
1=2
� Z� + ' (�n)� t

i0
V̂ �1�

h
V̂
1=2
� Z� + ' (�n)� t

i
,

where �n is a J-vector with elements �nj � ��1n n1=2Ên [mj (z; �)] =V̂
1=2
�;jj , ' (�) : RJ ! RJ such that

'j (�n) =
���nj��+, and where �n is a sequence of constants such that �n !1 and ��1n n

1=2 !1 as

n!1. See Andrews and Soares (2007) for details as well as other feasible simulation procedures.
Such an approach requires computation of separate critical values for each � being tested, but will

not be asymptotically conservative and will have favorable asymptotic power properties. There

is thus a trade-o¤ between the computational ease of employing critical values Cb
�
� described here

1 I thank Victor Chernozhukov and Francesca Molinari for suggesting this approach for estimation of b (�).
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and the greater asymptotic precision of critical values based on GMS. A practical approach in

applications might be to �rst construct a con�dence set Cptn using the easy to compute but po-

tentially conservative critical value Cb
�
� . If Cptn is su¢ ciently small for the application at hand

(and in particular if it is empty), then one can stop here. However, if a more precise estimator

is desired, one may then compute quantiles of Sn (�), say C�� (�), and construct the con�dence setn
� 2 Cptn : nQ̂n (�) � C�� (�)

o
. As n!1, this set should be smaller than Cptn , so that only values

of � 2 Cptn need to be tested, circumventing the need to compute C�� (�) for � =2 C
pt
n .

4.1 General Implementation

The asymptotic distribution of nQ̂n (�) obtained in Proposition 3 is discontinuous in b (�) and V �� .

However, whatever V �� , an upper bound on b (�) can be used to construct a cuto¤ value that can be

used to perform the hypothesis test (4). This cuto¤ value can then be used to build conservative,

asymptotically valid con�dence sets for �0. The following corollary provides the result.

Corollary 1 Let (A1)-(A5) hold. Let sup�2�� b (�) = b�. Then for any c,

sup
�2��

lim
n!1

P
n
nQ̂n (�) > c

o
� 1

2
Pr
�
�2b� > c

	
+
1

2
Pr
�
�2b��1 > c

	
.

This result is due to Perlman (1969)2, and follows from the fact that the weights function satis�es

the properties 0 � w (b (�) ; b (�)� j; V �� ) � 1=2,
bX
j=0

w (b (�) ; b (�)� j; V �� ) = 1, and Pr
n
�2j > c

o
is

increasing in j, for any c > 0. The upper bound on the tail probability of the limit distribution

of nQ̂n (�) is obtained by putting as much weight as possible on the highest terms of the chi-bar-

square summation of (8). Exactly how slack the inequality is depends on the feasible values of

the variance matrix V �� over � 2 ��. Corollary 1 provides a way to construct asymptotically valid
con�dence sets for �0 since if Cb

�
� solves

1

2
Pr
n
�2b� > C

b�
�

o
+
1

2
Pr
n
�2b��1 > C

b�
�

o
= �, (12)

then limn!1 P
n
nQ̂n (�0) 2 Cptn

o
� 1� �, where Cptn =

n
� 2 � : nQ̂n (�) � Cb

�
�

o
.

4.2 Implementation when V �� is diagonal

When V �� is a diagonal, then w (b (�) ; b (�)� j; V �� ) only depends on b (�) and j, but not V �� . This
is because the weights function depends only on the correlation matrix associated with V �� . When

all of the o¤ diagonal elements of V �� are zero, the weights function takes the simple form given by

2Perlman derives upper bounds on tail probabilities of mixtures of F distributions that employ the same weights
function.
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the following corollary. This result also provides a smaller cuto¤ value for the hypothesis test (4)

than that of Corollary 1, and thus a smaller con�dence region when V �� is diagonal.

Corollary 2 Let (A1)-(A5) hold. Suppose that V �� is diagonal for all � 2 �� and that sup�2�� b (�) =
b�. Then

w (b (�) ; b (�)� j; V �� ) = 2�b(�)
�

b (�)

b (�)� j

�
, (13)

and 8c 2 R,

sup
�2��

lim
n!1

P
n
nQ̂n (�) > c

o
=

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j > c

	
. (14)

Just as Corollary 1 provides a way to construct con�dence sets for �0 so does Corollary 2 when

V �� is diagonal. If C
b�
� solves

b�X
j=0

2�b
�
�
b�

j

�
Pr
n
�2j > C

b�
�

o
= �, (15)

then

Cptn =
n
� 2 � : nQ̂n (�) � Cb

�
�

o
satis�es (11).

In addition, when the variance of the binding moments is diagonal, a simpler test statistic,

n ~Qn (�), can be used that is in this case asymptotically equivalent to nQ̂n (�). De�ne

~Qn (�) �
JX
j=1

1
h
Ên fmj (z; �)g < 0

i
�
h
Ên fmj (z; �)g

i2
=V̂�;jj ,

where V̂�;jj is the jth diagonal entry of V̂�, the estimated variance of mj (z; �). Moreover, the

convergence in distribution of n ~Qn (�) to a chi-bar square random variable holds when V� is singular,

as long as V �� is nonsingular. The result is driven by the fact that since the binding constraints

have a diagonal variance matrix, replacing o¤-diagonal elements of V̂� with zero in Q̂n (�) has no

e¤ect asymptotically. This modi�cation of Q̂n (�) gives ~Qn (�). The formal result is stated below.

Proposition 4 Suppose that V �� is diagonal and nonsingular for all � 2 ��, sup�2�� b (�) = b�, and
that (A1)-(A4) hold. Then n ~Qn (�) converges in distribution to a chi-bar square random variable

and 8c 2 R,

sup
�2��

lim
n!1

P
n
n ~Qn (�) > c

o
=

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j > c

	
.

If � =2 �� and each element of E
�
m (z; �)m (z; �)0

�
is �nite, then for any constant c > 0,

limn!1 P
n
n ~Q (�) > c

o
= 1.
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4.3 Implementation Summary

In this subsection, I brie�y outline the steps required to compute a con�dence set Cptn for �0 with

asymptotic coverage of at least 1� �, when sup�2�� b (�) = b� and assumptions (A1)-(A5) hold.

1. Compute the unique value of Cb
�
� such that

sup
V ��

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
n
�2j > C

b�
�

o
= �.

- If V �� is diagonal, this is the value of C
b�
� that solves

b�X
j=0

2�b
�
�
b�

j

�
Pr
n
�2j > C

b�
�

o
= �.

- If V �� is not diagonal, this is the value of C
b�
� that solves

1

2
Pr
n
�2b� > C

b�
�

o
+
1

2
Pr
n
�2b��1 > C

b�
�

o
= �.

2. Choose a �ne grid G of candidate values of � over the parameter space ��. For each � 2 G,
compute nQ̂n (�). If nQ̂n (�) � Cb

�
� , then � 2 C

pt
n . If nQ̂n (�) > Cb

�
� , then � =2 C

pt
n .

Appropriate choice of grid values G depends on the particular application. How �ne the

grid should be depends on the desired level of precision for Cb
�
� . If �

� is known to be su¢ ciently

regular (e.g. closed and convex), certain values of � may be able to be included or discarded without

explicitly evaluating nQ̂n (�). However, the characteristics of the con�dence set will depend on

the particular moment functions in any given application. If the moment functions are irregular,

then it may be advantageous to employ an adaptive method for selecting grid points, such as the

Metropolis-Hastings algorithm. In section 5, the con�dence set can be characterized su¢ ciently

well that use of a grid is unnecessary.

5 Monte Carlo Study

This section demonstrates the application and performance of the inferential method prescribed in

the context of inference on the mean with missing data. An application to an incomplete model

of oligopoly behavior with data from a cartel is given by Rosen (2006).

Consider the setup of Imbens and Manski (2004): Let f(xi; di) : i = 1; :::ng be a random sample
from a population of (x; d) pairs with support [0; 1]�f0; 1g, where d = 1 indicates that x is observed,
while if d = 0, x is not observed. The probability that x is observed, p = Pr fd = 1g, is assumed
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to be less than one, and is not known to the researcher, but is consistently estimated by its sample

analog. The goal is inference on �0 � E [x]. Let �1 = E [xjd = 1], which is identi�ed by the
sampling process. This model yields two moment inequalities:

� � �L � p � �1,

� � �U � p � �1 + 1� p,

or, in the form of (3),

E [m1 (x; d; �)] = E [� � xd] � 0, (16)

E [m2 (x; d; �)] = E [1� d+ xd� �] � 0.

The identi�ed set for �0 in this model is �� = [�L; �U ], and the variance of m (x; d; �) is

V� = V = var (�xd; xd� d) =
 
�2l �lu

�lu �2u

!
,

where �2l = var (xd), �
2
u = var (xd� d),and �lu = cov (xd; d)� var (xd). Q̂n (�) is given by

Q̂n (�) = min
t1;t2�0

 
Ên [� � xd]� t1

Ên [1� d+ xd� �]� t2

!0
V̂ �1

 
Ên [� � xd]� t1

Ên [1� d+ xd� �]� t2

!
,

where V̂ is the sample analog of V . Since p < 1, only one of E [m1 (x; d; �)] or E [m2 (x; d; �)] can

be equal to zero. Thus, the maximum number of binding constraints is one, and V � is a scalar.

Because in this case the limit distribution of nQ̂n (�) is a sum of only two terms, by the reasoning

of Corollary 1 the weights are known exactly; each of the two terms of the summation have weight
1
2 . Applying this result, the cuto¤ value for nQ̂n (�) needed to build a con�dence set for �0 with

at least 1� � asymptotic coverage is the unique value of Cb�� that solves

1

2
Pr
n
�20 > C

b�
�

o
+
1

2
Pr
n
�21 > C

b�
�

o
= �.

Since Cb
�
� > 0, Pr

�
�20 > C

b�
�

	
= 0, and this equation simpli�es to

1

2
Pr
n
�21 > C

b�
�

o
= �.

Algebraic manipulation of nQ̂n (�) in this context yields a simple analytical form for the associated

con�dence set:

CMI
n =

h
�̂l � z1�� � �̂l=

p
n; �̂u + z1�� � �̂u=

p
n
i
.
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where z1�� is the 1�� quantile of the standard normal distribution, �̂l and �̂u are sample analogs
of �l and �u, �̂l = Ên [xd], and �̂u = Ên [1� d+ xd]. This con�dence set is straightforward to

compute and no grid of candidate parameter values is needed to construct it.

I simulate i.i.d. draws of (x; d) in order to compare con�dence regions constructed according to

the moment inequality approach to those of Imbens and Manski (2004). The two methods yield

nearly identical results. Let the moment inequality con�dence set of level � be denoted CMI
� , for

moment inequalities, and the Imbens/Manski con�dence set CIM� . The sets CIM� are constructed

as described in section 4 of their paper. That is the con�dence sets constructed according to their

method are:

CIMn =
h
�̂l � �Cn � �̂l=

p
n; �̂u + �Cn � �̂u=

p
n
i
,

where �Cn solves

�

 
�Cn +

p
n

�̂u � �̂l
max (�̂u; �̂l)

!
� �

�
� �Cn

�
= 1� �. (17)

Their sets have the additional property that their coverage is uniform over all � 2 [p � �1; p � �1 + 1� p]
and the population distribution P , even if p is not bounded away from 1.

I provide simulations under two di¤erent speci�cations for the distribution of (x; d). For

the �rst speci�cation, I draw x from the uniform(0; 1) distribution and d from the Bernoulli(p)

distribution, independently of each other, inducing joint distribution F1. Under this speci�cation,

x is missing completely at random. The second distribution, denoted F2, is one in which (x; d) are

not independent of each other, so that missingness is not at random. In this case, x is distributed

beta(4; 2) conditional on d = 0, and beta(2; 4) when d = 1. In this case, x tends to be higher

when it is not observed; the conditional distribution of x given d = 0 stochastically dominates that

of x given d = 1, with E [xjd = 0] = 2=3 and E [xjd = 1] = 1=3 . The simulated sample data is

then f(~xi; di) : i = 1; :::; n; ~xi = xi if di = 1, ~xi = ; if di = 0g. Since all values of �0 in the interval
[�L; �U ] are observationally equivalent, a con�dence set is only guaranteed to have correct coverage

for �0 if it achieves the desired asymptotic coverage for each � 2 [�L; �U ]. The coverage frequencies
reported here are thus the in�mum of observed coverage frequencies over � 2 [�L; �U ].

Tables 1 and 2 compare the empirical coverage of each of the two con�dence sets for di¤erent

choices of n; p; � when (x; d) � F1, while tables 3 and 4 do the same for (x; d) � F2. The number
of repetitions is �xed at R = 5000 in all cases. For the results reported in Tables 1 and 3, p = 0:7,

while for those in Tables 2 and 4, p = 0:9. The empirical coverage probabilities for both types of

regions are very close to each other and approximate the desired target coverage probability rather

well. The case where the observed coverage probabilities of the two types di¤er most are those sets

with nominal level 0:99. In this case, the coverage from the moment inequality approach is always

slightly less than the coverage of Imbens and Manski�s con�dence sets, though both are very close

to the nominal level in all cases. The overall performance of the two approaches is comparable.
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Table 1: Observed coverage probabilities for p=0.7 when x is uniformly distributed on the unit
interval and missing completely at random.
Target Coverage (p = 0:7) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIMn CMI
n CIMn CMI

n CIMn CMI
n CIMn CMI

n

n � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7496 0:7496 0:8514 0:8514 0:9514 0:9514 0:9982 0:9888
500 0:7520 0:7520 0:8498 0:8498 0:9516 0:9514 0:9986 0:9896
1000 0:7514 0:7514 0:8516 0:8516 0:9504 0:9504 0:9978 0:9888

Table 2: Observed coverage probabilities for p=0.9 when x is uniformly distributed on the unit
interval and missing completely at random.
Target Coverage (p = 0:9) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIMn CMI
n CIMn CMI

n CIMn CMI
n CIMn CMI

n

n � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7540 0:7510 0:8554 0:8544 0:9498 0:9494 0:9956 0:9884
500 0:7492 0:7492 0:8484 0:8484 0:9460 0:9460 0:9974 0:9882
1000 0:7482 0:7482 0:8484 0:8484 0:9454 0:9454 0:9978 0:9906

Table 3: Observed coverage probabilities for p=0.7 when x|d=1 is distributed beta(2,4) and x|d=0
is distributed beta(4,2).
Target Coverage (p = 0:7) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIMn CMI
n CIMn CMI

n CIMn CMI
n CIMn CMI

n

n � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7470 0:7470 0:8464 0:8464 0:9480 0:9480 0:9960 0:9854
500 0:7430 0:7430 0:8458 0:8458 0:9464 0:9464 0:9968 0:9882
1000 0:7474 0:7474 0:8502 0:8502 0:9484 0:9484 0:9972 0:9904

Table 4: Observed coverage probabilities for p=0.9 when x|d=1 is distributed beta(2,4) and x|d=0
is distributed beta(4,2).
Target Coverage (p = 0:9) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIMn CMI
n CIMn CMI

n CIMn CMI
n CIMn CMI

n

n � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7352 0:7352 0:8296 0:8292 0:9346 0:9340 0:9916 0:9890
500 0:7566 0:7566 0:8488 0:8488 0:9452 0:9452 0:9978 0:9890
1000 0:7358 0:7358 0:8374 0:8374 0:9446 0:9446 0:9954 0:9878
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6 Conclusion

The con�dence sets of this paper are guaranteed to provide a pre-speci�ed level of asymptotic

coverage for a parameter of interest in models that consist of a �nite number of moment inequalities.

Many models in this class have appeared in the literature, and these models comprise a large

subset of models with partially identi�ed parameters. The method for constructing con�dence

sets is easy to implement, as the cuto¤ values used to invert the test statistic are based on an

analytical asymptotic distribution and do not require bootstrapping, subsampling, simulation, or

tuning parameters to compute.

The cuto¤ values for the test statistic nQ̂n (�) are computed by making use of an upper bound

on the feasible number of moments that bind at �. Upper bounds that are strictly smaller than the

total number of inequalities are common in settings with partial identi�cation. This is used to pro-

vide an upper bound on the 1�� critical value for the test of interest which is easy to compute. In
some cases, the method may be asymptotically conservative, in the sense that asymptotic coverage

may be greater than the nominal level. Methods that provide asymptotically exact critical values

may in these cases be preferred, though these typically involve greater computation in practice and

may employ tuning parameters. There is thus a trade-o¤ between ease of implementation and

precision of the asymptotic approximation employed, as discussed in section 4.

This paper focuses on building con�dence sets for the parameter of interest �0. Some other

approaches to inference have resulted in con�dence sets as well as con�dence collections for ��; see

Beresteanu and Molinari (2008) for the latter. These are each conceptually di¤erent, and which

type is appropriate depends on the context and the researcher�s goal in any particular application.

It would be of interest to determine whether the testing procedure of this paper could be modi�ed

to perform inference on ��. In addition, this paper, like much of the literature to date, has focussed

on inference based on a �nite number of moment restrictions. It seems an important direction

for future research would be to devise inferential methods that can accommodate an in�nite set of

unconditional restrictions asymptotically, as are implied by conditional moment inequalities with

continuous conditioning variables.

Appendix: Proofs

Proposition 1

Proof. Let q̂n (�; t) �
�
Ê [m (z; �)]� t

�0
V̂ �1�

�
Ê [m (z; �)]� t

�
, so that Q̂n (�) = min

t�0
q̂n (�; t).

Similarly, let q (�; t) � (E [m (z; �)]� t)0 V �1� (E [m (z; �)]� t), so that Q (�) = min
t�0

q (�; t). Fix �.

Uniqueness of t� (�) follows from the strict convexity of q (�; t) in t, guaranteed by (A5), and the

fact that the minimizer of a strictly convex function on a convex set is unique. Consistency of

V̂� yields that t�n (�), the minimizer of q̂n (�; t), is unique with probability going to 1 as n ! 1,
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since V̂� is positive de�nite (and therefore q̂n (�; t) is strictly convex) with probability approaching

1 under (A5). (5), (6), (7) and a Slutsky Theorem imply that q̂n (�; t)
p! q (�; t) pointwise for

each �; t. Since q̂n (�; t) is convex in t, Theorem 2.7 of Newey and McFadden (1994) implies that

q̂n (�; t) converges uniformly in t > 0 to q (�; t) for �xed �. In addition, uniform convergence holds

over any compact set [0; T ] by the continuity of q (�; t) in t. Therefore q̂n (�; t)
p! q (�; t) uniformly

over t � 0, so that Q̂n (�)
p! Q (�), further implying convergence in probability of the minimizer

over t � 0 of q̂n (�; t) to that of q (�; t), i.e. t̂�n (�)
p! t� (�). This establishes that assumption 1 of

Andrews (1999) holds, and his assumptions 2, and 3 follow because q̂n (�; t) is quadratic in t and

by (7). Thus Andrews (1999) Theorem 1 implies that
p
n
�
t̂�n (�)� t� (�)

�
= Op (1).

Proposition 2

Proof. The �rst result follows from pointwise convergence of Q̂n to Q and Newey and McFadden

(1994), Theorem 2.8. Set consistency in the Hausdor¤ metric under the stated conditions follows

from Chernozhukov, Hong, and Tamer (2007), Theorem 3.1.

As a preliminary step to proposition 3, I �rst prove the following lemma.

Lemma 1

Consider the minimization problem

QP = min
t2RJ

(x� t)0 V �1 (x� t) s.t. t1 � 0, (18)

where x; t 2 RJ , and x1; t1 2 Rb, b � J , s.t. t = (t01; t
0
2)
0 and x = (x01; x

0
2)
0. QP is a quadratic

program in which the �rst b components of the minimand t are subject to nonnegativity constraints.

In the application of the lemma, b will correspond to the number of elements of E [m (z; �)] equal
to zero. Let V11 be the b� b leading submatrix of V so that

V =

 
V11 V12

V21 V22

!
.

Then

QP = min
t12Rb+

(x1 � t1)0 V �111 (x1 � t1) . (19)

Proof. Let � � V �1 and partition � so that

� =

 
�11 �12

�21 �22

!
,
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where �11 is b� b and �22 is (J � b)� (J � b). Let t� be the value of t that solves QP , so that

QP = (x� t�)0 � (x� t�) .

The Kuhn-Tucker conditions for (18) are

(i) For j = 1; :::; b, Either t�j = 0 and [�� (x� t�)]j � 0, or t�j > 0 and [�� (x� t�)]j = 0.

(ii) For j = b+ 1; :::; J , [�� (x� t�)]j = 0.

By conditions (i) and (ii),

��11 (x1 � t�1)� �12 (x2 � t�2) � 0, (20)

��21 (x1 � t�1)� �22 (x2 � t�2) = 0. (21)

Solving for (x2 � t�2), the latter condition is

(x2 � t�2) = ���122 �21 (x1 � t�1) . (22)

Now

QP = (x� t�)0 � (x� t�)

= (x1 � t�1)
0 �11 (x1 � t�1) + (x1 � t�1)

0 �12 (x2 � t�2) + (x2 � t�2)
0 [�21 (x1 � t�1) + �22 (x2 � t�2)]

= (x1 � t�1)
0 �11 (x1 � t�1) + (x1 � t�1)

0 �12 (x2 � t�2) ,

by (21). Now using (22) it follows that

QP = (x1 � t�1)
0 �11 (x1 � t�1)� (x1 � t�1)

0 �12
�
��122 �21 (x1 � t�1)

�
= (x1 � t�1)

0 ��11 � �12��122 �21� (x1 � t�1)
= (x1 � t�1)

0 V �111 (x1 � t�1) ,

where the last equality follows by the partition inverse result.3 All that remains is to show that

t�1 minimizes (19): min (x1 � t1)
0 V �111 (x1 � t1) s.t. t1 � 0, but this follows from the Kuhn-Tucker

minimization condition (i) as shown below:

The Kuhn-Tucker conditions for t�1 that solves (19) are for j = 1; :::; b;

either t�j = 0 and
�
�V �111 (x1 � t�1)

�
j
� 0; or t�j > 0 and

�
�V �111 (x1 � t�1)

�
j
= 0:

3 If V = ��1 then V11 =
�
�11 � �12��122 �21

��1
.
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()

either t�j = 0 and
�
�
�
�11 � �12��122 �21

�
(x1 � t�1)

	
j
� 0;

or t�j > 0 and
�
�
�
�11 � �12��122 �21

�
(x1 � t�1)

	
j
= 0.

By (22), this is equivalent to condition (i) from the Kuhn-Tucker conditions for the initial program

(18):

With Lemma 1 in hand, I now prove Proposition 3.

Proposition 3

Proof. Suppose � 2 ��. Let b = b (�) be the number of components of E [m (z; �)] equal to zero,
and let

vn �
p
n
�
Ên [m (z; �)]� E [m (z; �)]

�
,

and

v�n �
p
n
�
Ên [m

� (z; �)]� E [m� (z; �)]
�
.

Then

nQ̂n (�) = min
t�0

n �
h
Ên [m (z; �)]� t

i0
V̂ �1�

h
Ên [m (z; �)]� t

i
= min

t�0

�
vn +

p
n (E [m (z; �)]� t)

�0
V̂ �1�

�
vn +

p
n (E [m (z; �)]� t)

�
= min

t�0

�
vn +

p
nE [m (z; �)]� t

�0
V̂ �1�

�
vn +

p
nE [m (z; �)]� t

�
= min

s
[vn � s]0 V̂ �1� [vn � s] subject to s = t�

p
nE [m (z; �)] ; t � 0

= min
s

[vn � s]0 V̂ �1� [vn � s] : s � �
p
nE [m (z; �)] .

Partition s such that s = (s0b; s
0
c)
0, so that sb are the �rst b elements of s, corresponding to those in-

equalities that bind, and sc the remainder. Furthermore, let ~m (z; �) = (mb+1 (z; �) ; :::;mJ (z; �))
0.

Then because E [mj (z; �)] = 0 for j � b,

nQ̂n (�) = min
s

[vn � s]0 V̂ �1� [vn � s] : sb � 0, sc � �
p
nE [ ~m (z; �)] .

Because
p
nE [ ~m (z; �)]!1 as n!1, and V̂�

p! V�, it follows by a Slutsky Theorem that

nQ̂n (�)
p! min

s
[vn � s]0 V �1� [vn � s] : sb 2 Rb+, sc 2 RJ�b,
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and by Lemma 1,

min
s

[vn � s]0 V �1� [vn � s] s.t. sb 2 Rb+, sc 2 RJ�b = min
s2Rb+

[v�n � s]
0 V ��1� [v�n � s] .

Under (A1) and (A4) v�n
d! v where v � N (0; V �� ). By a continuous mapping theorem it follows

that

nQ̂n (�)
d! min
s2Rb+

[v � s]0 V ��1� [v � s] .

The statistic mins2Rb+ [v � s]
0 V ��1� [v � s] measures the distance of the normal random variable v

from the nonnegative orthant. By Wolak (1991)

Pr

(
min
s2Rb+

[v � s]0 V ��1� [v � s] � c
)
=

b(�)X
j=0

w (b; b� j; V �� ) Pr
�
�2j � c

	
;

Now suppose that � =2 ��, so that there exists k 2 f1; :::Jg such that E [mk (z; �)] < 0. Assume

(A1)-(A5). Let � (�) � E [m (z; �)], and let �̂� = V̂ �1� , and �� = V
�1
� .4 Then,

P
n
nQ̂n (�) > C

b�
�

o
= P

�
nmin
t�0

h
Ên [m (z; �)]� t

i0
�̂�

h
Ên [m (z; �)]� t

i
> Cb

�
�

�
(23)

= P
n
min
s
[vn � s]0 �̂� [vn � s] > Cb

�
� : s � �

p
n� (�)

o
where vn =

p
n
n
Ên [m (z; �)]� � (�)

o
. Let s�n be the unique value of s that solves this minimization

problem, so that

P
n
nQ̂n (�) > C

b�
�

o
= P

n
[vn � s�n]

0 �̂� [vn � s�n] > Cb
�
�

o
.

Let �� be the orthogonal matrix that diagonalizes ��, so that �����0� is a diagonal matrix with

diagonal entries equal to the eigenvalues of ��, i.e. �����0� = diag (d�;1; :::; d�;J), where the d�;j
are the eigenvalues of ��. Since �� is positive de�nite, each d�;j > 0. Such a matrix �� exists by

Corollary 21.5.9 of Harville (1997). Then

[vn � s�n]
0 �̂� [vn � s�n] = [vn � s�n]

0 �� [vn � s�n] + op (1)

=

JX
j=1

��
(vn � s�n)

0 ��1�
�
j

�2
d�;j + op (1) .

The constraint s � �
p
n� (�) in (23), implies that the k-th component of s�n diverges to �1. Since

vn = Op (1), nQ̂n (�) diverges to 1 and lim
n!1

P
n
nQ̂n (�) > C

b�
�

o
= 1.

4 If V� or V̂� are singular a positive de�nite generalized inverse may be used, and the proof goes through unchanged.
Such a generalized inverse exists by Lemma 14.4.1 of Harville (1997).
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Corollary 1

Proof. This follows by Perlman (1969), Theorem 8.1.

Corollary 2

Proof. The �rst part, (13), follows from Wolak (1987) who derives the result for V � = �2I,

and from Sen and Silvapulle (2004, Proposition 3.6.1 (11)). The latter result is that the weights

function only depends on the variance through its associated correlation matrix. If V � is diagonal,

the correlation matrix is the identity matrix, so that w (b; j; V �) = w (b; j; Ib). The second part,

(13), follows from the fact that
bX
j=0

2�b
�
b
j

�
Pr
n
�2j � c

o
is monotonically increasing in b, so that

sup
�2��

lim
n!1

P
n
nQ̂n (�) � c

o
= sup

�2��

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � c

	
= sup

�2��

b(�)X
j=0

2�b(�)
�
b (�)

j

�
Pr
�
�2j � c

	
�

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j � c

	
.

Proposition 4

Proof. Let �� (~��) be a diagonal matrix with jth diagonal entry 1=V�;jj (1=V̂�;jj), the inverse of
the (estimated) variance of m (z; �). Assume (A1)-(A4) and that V �� is diagonal with all diagonal

entries positive. Then

n ~Qn (�) = n

JX
j=1

1
h
Ên fmj (z; �)g < 0

i
�
�
Ên fmj (z; �)g

�2
=V̂�;jj

= nmin
t�0

h
Ên [m (z; �)]� t

i0
~��

h
Ên [m (z; �)]� t

i
.

The proof of Proposition 3 goes through unchanged, as ~��
p! ��, with the partition inverse result

used to prove lemma 1 applied to ��.
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