Scaffolding Science Teachers in Open-Inquiry Teaching

Valk, Ton van der; Jong, Onno de

Postprint / Postprint
Zeitschriftenartikel / journal article

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with:
www.peerproject.eu

Empfohlene Zitierung / Suggested Citation:

Nutzungsbedingungen:
Mit der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.

Terms of use:
This document is made available under the "PEER Licence Agreement ". For more Information regarding the PEER-project see: http://www.peerproject.eu This document is solely intended for your personal, non-commercial use. All of the copies of this documents must retain all copyright information and other information regarding legal protection. You are not allowed to alter this document in any way, to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public. By using this particular document, you accept the above-stated conditions of use.

Diese Version ist zitierbar unter / This version is citable under:
http://nbn-resolving.de/urn:nbn:de:0168-ssoar-134445
SCAFFOLDING SCIENCE TEACHERS IN OPEN-INQUIRY TEACHING

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Science Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TSED-2007-0212.R3</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research Paper</td>
</tr>
<tr>
<td>Keywords:</td>
<td>curriculum, inquiry-based teaching, scaffolding, science education, teacher development</td>
</tr>
<tr>
<td>Keywords (user):</td>
<td>professional development, open-inquiry, implementation</td>
</tr>
</tbody>
</table>

URL: http://mc.manuscriptcentral.com/tsed Email: editor_ijse@hotmail.co.uk
1. Introduction

A wave of science curriculum reform aiming at active and autonomous learning is going on in many countries. A successful implementation of science courses, however, will require teachers to develop sufficient knowledge of new curriculum contents and methods and appropriate competence to teach them. This puts new demands on the professional development of science teachers. From an extensive review of research on science teacher education, De Jong, Korthagen and Wubbels (1998) concluded that it is important to develop courses that include strong relationships between course activities and teaching activities in the school in order to bridge the gap between pedagogical (content) theory and teaching practice. They also indicated that courses need to create a safe and supportive learning climate for teachers and acknowledge that changing teachers’ conceptions and teaching strategies is a process that takes its time.

In the past decade, there has been a growing interest in the role of teacher networks or communities of practice (Wenger, 1998) for school-based professional development. Learning in a network context can reduce experienced teachers’ existing resistance to change and innovations (Van Driel, Beijaard & Verloop, 2001). It can also contribute to a growth in teachers’ confidence in the value of their own practical knowledge by sharing them with colleagues and to an increase in willingness to experiment with ideas from colleagues in their own classroom (Adams, 2000). Networks can also facilitate the acceptance of new ideas and practices when the implementation is supported by materials that engage teachers in instruction and foster a sense of experimentation (‘learning by doing’). This way of learning is also referred to as ‘work-based learning’ (Bailey, Hughes & Moore, 2004) and facilitates teachers to become co-owners of the innovations (Putnam & Borko, 2000). Academic staff members can have a specific position in communities of practice, which however suffers from a dilemma: providing guidance and structure to teachers, in balance with facilitating teachers’
construction of new classroom practices. This dilemma is analogous to the teacher’s dilemma in the classroom (Richardson, 1992): ensuring that students learn expected subject matter content on the one hand and empowering students to build on their own thinking on the other. This analogy is reflected in the congruence principle in teacher education (Korthagen, Kessels, Koster, Lagerwerf, & Wubbels, 2001), saying that teacher educators should treat teachers as they expect teachers to treat students (‘practise what you preach’).

In the Netherlands, a new curriculum reform for upper secondary education was launched in 1998. One of the central issues of this reform was promoting active and autonomous learning by students. Related to science subjects, it means, among others, that students should learn to carry out open-inquiry projects, including laboratory work and writing reports. In line with this, an open-inquiry assessment should be part of the final examinations. These innovations require a change in the role of teachers, from the usual instruction-oriented role to a more guidance-oriented role (Smits, 2003). Many teachers are not adequately prepared to implement open-inquiry settings and to help their students. This situation can also be found in other countries (Roydchoudhury & Roth, 1996). In order to support science teachers to implement the reform, a school-based Professional Development Trajectory (PDT) was developed aiming at teachers’ learning how to give students space as well as structure. Therefore, it focused on teachers ‘guiding by scaffolding’ in open inquiry. In this trajectory, upper secondary school science teachers and science teacher educators collaborated in a community of practice. The secondary school teachers’ contribution to the community included preparing and reporting about guiding their students’ open-inquiry learning, whereas contributions by the teacher educators included preparing and scaffolding the teachers in taking on their new roles. In the present article, a study of this trajectory on teaching for open-inquiry is presented.

The study was guided by the following central research question: In what ways can secondary science teachers be successfully scaffolded in open-inquiry teaching that combines giving
space and structure to students? The result of the study may contribute to a research-based design of supporting secondary science teachers in teaching for autonomous learning in science education.

2. Theoretical Framework

Inquiry in secondary science classrooms

The extensive literature on inquiry in science education is recently reviewed by Lunetta, Hofstein, and Clough (2007). They found that inquiry is often described as the process of identifying problems and formulating questions, designing and planning investigations, collecting and analysing data, summarizing results, reaching conclusions, and communicating the research. Teaching for inquiry learning may vary in the amount of autonomy given to students. At the one end of the continuum of student autonomy lies inquiry in which the teacher provides a research question and gives explicit step-by-step instructions how to carry out the investigations (McDermott, 1996). At the other end of the continuum lies open-inquiry, that is, the teacher gives maximum opportunities to students to formulate their own research question, to design their laboratory activities, to generate their own interpretations of collected data, and so on (Berg, Bergendahl, Lundberg & Tibell, 2003).

Traditionally, laboratory activities in the classroom are based on a ‘cookbook’ approach, thus hampering students to develop reflective thoughts on what they have done. Based on observations of dozens of classroom laboratory sessions by several teachers, Gallagher and Tobin (1987) found that high school teachers rarely asked students if they understood what they were doing, why they were doing it, or what the results would show. Moreover, the teachers appeared to pay much more attention to laboratory reports than to the process of inquiring and interpreting data. Many teachers even dictated conclusions or wrote them on the chalkboard for students to copy. Hodson (1993) pointed out that practical work is often not
taught very effectively, and even in laboratory settings few students have the opportunity to develop an insight into how to conduct investigations. In a large-scale study, Solomon, Scott and Duveen (1996) showed that less than half of about 1000 secondary school students were able to relate theory to an experiment that they had carried out.

Several scholars have shown that bringing students into a more open-inquiry environment, i.e. science laboratory teaching that leaves problems, answers, and methods of investigation more open to students, may stimulate them to learn much more autonomously how to do an investigation. Gibson and Chase (2002) pointed out that middle school students enjoy being involved in open-ended laboratory tasks, asking their own questions, finding ways to answer those questions, and realise the learning value of different inquiry approaches. Crawford, Krajcik and Marx (1999) indicated that middle school students could improve their ability to ask good research questions and to connect questions with knowledge claims and evidence as they become more accustomed to open-inquiry learning. Roth (1994, 1995) and Hofstein, Shore and Kipnis (2004) investigated open-inquiry and problem-oriented teaching-learning contexts, and found that most secondary school students had a remarkable willingness and ability to generate questions, to design and plan activities, to collect and analyse data, and to report the results. Hofstein, Navon, Kipnis and Mamlok-Naaman (2005) found that an inquiry-laboratory group asked more questions in general and more higher order questions than a control group of students.

Guiding by scaffolding

The open-inquiry approach, compared to traditional classroom laboratory settings, demands new roles and responsibilities from students and teachers alike. In the teacher-centred ‘cookbook’ setting, the main role of the students consists of carrying out the prescribed activities. They have little control over problems and solutions. The role of the teachers
consists of **guiding by prescribing** student activities, or, less restrictive, **guiding by modelling**, that is, by showing students how to handle experiments, how to interpret data, and how to reach conclusions. In the autonomy setting, however, students gain ownership of their investigations, for instance, by framing research questions themselves and looking for appropriate methods to find answers on their own. In the case of full autonomy, the teachers’ role is **guiding by laisser-faire**, i.e. offering students full space to organise their own activities. However, students have to learn to fulfil the autonomy role. When enabling them to assume this role, which would be beyond their unassisted efforts, the teacher’s role consists of guiding in a way that is often called **guiding by scaffolding** (see for an early use of this term: Wood, Bruner & Ross, 1976).

The idea of scaffolding emerged from socio-constructivist views of learning, especially Vygotsky’s (1978) socio-cultural notion of the ‘zone of proximal development’ (ZDP). This zone reflects the distance between the actual development level of the learner as determined by activities that can be performed without assistance and the potential development level of the learner as determined by performance of tasks under guidance of a more capable person. This person guides the learner through the ZPD towards a new actual development level in a gradual process of scaffolding. The broad idea of scaffolding is addressed extensively in the literature (Davis & Linn, 2000; Fellows, 1994; Mercer & Fisher, 1992). Scaffolding begins with establishing the learner’s initial conceptions and goal conceptions, which is, in terms of Vygotsky (1978), clarifying the actual development level of the learner and the intended potential development level. Bliss, Askew and Macrae (1996) identified a number of important scaffolds like giving approval, probing learner’s ideas, structuring task activities, and providing general hints or specific suggestions that will help the learner throughout the task. Asking questions to the learner and using appropriate written materials are other important scaffolding tools.
Several studies report difficulties teachers have with scaffolding in science education. In a study of scaffolding problem-solving learning in the science laboratory, Reigosa and Jiménez-Aleixandre (2007) found difficulties related to excessive task demands, stereotype school culture reflecting procedural display rather than genuine problem solving, and within-group interactions and roles. In a study of guiding students undertaking science investigations, Tomkins and Tunnicliffe (2001) warned for a scaffolding ‘pitfall’, that is, the teacher can be so focused on teaching the intended learning goals that he or she hardly listens to students and does not give them intellectual space. However, they assert that much of students’ classroom talk has a considerable learning value and should be used by the teacher when scaffolding. Another important source of difficulties is teachers’ insufficient knowledge of and experience with scaffolding students (Bliss, et al., 1996). In our experience, open-inquiry by scaffolding is difficult to carry out as the teachers are not prepared for the role of giving students space as well as structure and they do not see this role exemplified by their colleagues at school. This underscores the need to support teachers who want to implement open-inquiry settings in guiding students by scaffolding.

3. Framework of the project

In the project we cooperated with science teachers from two secondary schools. With them, we discussed the opportunities for working in science teams within each school, combined with teaching activities for promoting autonomous student learning. A specific element of the science curriculum reform for upper secondary level was selected, the Final Open-Inquiry (FOI) task, a part of the new examinations. We agreed with the teachers to focus on preparing students for this assignment by doing a mini-FOI. The mini-FOI is an open-inquiry assignment comparable to the FOI, but shorter in time (20 instead of 80 student hours), and it deals with a specific theme. In the present project the theme was ‘water quality’.
A school-based professional development trajectory (PDT) for scaffolding teachers in open-inquiry teaching was developed. For this, scaffolding tools were designed for supporting teachers in finding a proper balance between offering students sufficient ‘space’ for open-inquiry learning on one hand, and sufficient structure for that on the other. So, ‘guiding by scaffolding’ was the leading principle that grounded the PDT. Four other ideas were included that had a supportive function. The idea of a ‘community of practice’ led to the establishment of a community in which different groups of participants took part: secondary school teachers from the biology and chemistry departments, and science teacher educators who acted as coaches as well as researchers. The participants shared their (practical) knowledge and experiences in a safe and supportive atmosphere. The teams of participating science teachers in the two schools were headed by a teacher-coordinator. The ‘congruence’ principle implied that the teachers who were learning to guide their students by scaffolding were supported by coaches who guided them by scaffolding. The coaches offered the teachers structure that was in balance with sufficient intellectual space to develop new knowledge and teaching practice.

The idea of ‘learning by doing’ was elaborated as ‘learning by teaching’. This meant that no formal course was offered, but that participants were invited to take part in a trajectory of activities in the school connected to the goals set, including: the preparation of open inquiry lessons, teaching the lessons and reflecting afterwards on the activities and the results in the light of the goals. Finally, the idea of making teachers ‘co-owners of innovations’ was elaborated as follows. The coaches made an inventory of teachers’ concerns about the curriculum reform of ‘open inquiry’. They constructed ‘scaffolding tools’, that is, teaching materials intended to meet the concerns. The teachers were asked to adopt/adapt these tools for use in their classrooms, as scaffolding tools for their students.

The PDT activities were planned in four phases: (i) orientation in which the teachers set goals related to concerns they have about teaching for open-inquiry learning and activities that take
these concerns into account (teaching a mini-FOI); (ii) preparation in which the participants prepared their mini-FOI lessons; (iii) enacting in which the mini-FOI was taught in the classroom; (iv) evaluation in which the participants reflected on their teaching and learning process. Each teacher spent about 50 hours on this project: 12 on attending PDT-meetings; 10 on teaching the mini-FOI lessons and giving feedback on student products, and the rest on preparation and development activities.

The PDT was accompanied by a study focusing on the ways in which science teachers can be successfully scaffolded in open-inquiry teaching. The framework of the project is summarised in Table 1. It shows that the project consisted of four parts with interrelated professional development activities, research activities and the development of teaching materials. Each part was related to a specific research question. These questions are an elaboration of the central research question and are formulated as follows:

1. **What are the teachers’ concerns about open-inquiry teaching?**

2. **(How) do the teachers adopt/adapt the scaffolding tools for classroom use?**

3. **(How) do the teachers implement the scaffolding tools in the mini-FOI lessons?**

4. **(How) do the teachers value the Professional Development Trajectory, especially their experiences with the scaffolding tools?**

 [Insert Table 1 about here]

4. Designing the scaffolding tools

Guiding by scaffolding is a general teaching principle and, from this notion, a broad variety of general scaffolding tools can be generated, such as asking questions and hints for structuring task activities, but criteria for selecting appropriate scaffolding tools in specific situations are lacking (Bliss, et al., 1996). In our study, we used the concerns identified with the teachers (see the Findings section) as a starting point. Based on these concerns, we formulated three teacher learning goals (LGs). To guide teachers’ learning process towards these LGs, we designed
three teacher scaffolding tools (STs). We added a fourth LG based on the function of the mini-FOI: preparing students for the full FOI. The teachers should learn how support students in reflecting on their open-inquiry process. This LG was also accompanied by an ST. The LGs and STs are given in Table 2.

[Insert Table 2 about here]

Scaffolding tool 1 consisted of a suggestion for the general outline of the open-inquiry project. For this, a scheme of the general structure of the mini-FOI was designed (see Figure 1). The teachers could use this scheme to scaffold students’ learning when structuring their own open-inquiry activities.

[Insert Figure 1 about here]

Scaffolding tool 2 consisted of a hint for offering focusing activities to students. For this, a particular task for students (the ‘water jars task’) was designed (see Figure 2). The teachers could use this task to scaffold students’ learning when designing their research question and research plan.

[Insert Figure 2 about here]

Scaffolding tool 3 suggested teachers to include go/no go assessment activities at the end of each phase of the inquiry. For this, a go/no go assessment worksheet was designed (see Figure 3). The teacher could use this worksheet to scaffold students’ learning process by giving feedback, and, when necessary, to ask students to revise their activities or products.

[Insert Figure 3 about here]

Scaffolding tool 4 consisted of a suggestion for offering reflection activities to students. For this, a student peer assessment form was designed to be used at the end of the open-inquiry, that is, after the poster presentations (see Figure 4). In addition, it was suggested that the teachers could ask questions to students, such as: what did you learn about designing a research question, and how would you use that when doing the full FOI later on?
5. Methods, data collection and analysis

Two upper secondary schools were selected for participating in the project. Willingness of the teachers to cooperate in the science team was a main criterion for selection. From these schools, seven science teachers (referred to below as T1 – T7), having 5 to 20 years of experience, participated in the project. The teachers were guided by two experienced science teacher educators who acted as coaches as well as researchers.

The study was characterised by a multifocal research lens (Borko, 2004) and a combination of qualitative and quantitative research methods (multi-method approach; Baxter & Lederman, 1999). Many aspects of learning in a community of practice were mapped, including individual teacher learning and group learning. Table 3 gives a summary of the data sources that were generated and collected in the different parts of the project. In Table 3, the number of pages of the transcriptions is indicated (page A4, single spaced). For each part, the methods of collecting and analyzing the data are elaborated in the below.

[Insert Table 3 about here]

Part 1: Orientation - identifying teachers’ concerns

A teacher questionnaire was constructed consisting of a question about the duration of their teaching experience, a question about the disciplines they were teaching and the following open question: ‘What concerns do you have about open-inquiry at upper secondary level?’ In meeting 1, the teachers completed the questionnaire and discussed their answers to the open question. The data collected in this project part were analyzed focusing on concerns about teaching open-inquiry, on guiding students in particular. This was done by two researchers independently. Firstly, they analyzed the written answers and the transcribed audio-recordings of the meeting by identifying teachers’ concerns and clustering them into categories using an
iterative procedure during which the data were constantly compared with each other. The notes
of the researchers had a supportive function. Secondly, by comparing and discussing the
analyses (investigator triangulation; Janesick, 2000), they aimed to reach consensus about the
interpretation of the data. Thirdly, they presented the raw data and their interpretations to a
third researcher for a final check. Issues raised were discussed until consensus was reached.

Part 2: Preparation - adopting/adapting the scaffolding tools

The teachers prepared the mini-FOI lessons in three teams. As school 1 would teach the mini-
FOI in two classes, it formed two teaching teams: one team of three, a chemistry teacher T1
and two biology teachers (T2 and T3), and one team of two: a chemistry teacher T4 and a
biology teacher T5. School 2 formed one team: a chemistry teacher and a biology teacher (T6
and T7) for one class. In meeting 2, the coaches presented the tools ST1 and ST2 and the
teachers discussed adopting and adapting them for use in their classrooms. In meeting 3, the
teachers reported about their efforts to include the mini-FOI in the school timetable.
Subsequently, tool ST3 was discussed. When meeting 4 took place, the teachers of school 1
had already started the mini-FOI. These teachers reported on their experiences, in particular on
problems with the ‘go/no go assessment’. Improvements were discussed. Because of time
constraints, tool ST4 was presented on paper only.

The data collected in this project part consisted of transcriptions of the audiotaped meetings,
observer notes and adapted teaching material. The analysis was done by two researchers
independently. Firstly, they split up the transcriptions into parts, linking each part to the
respective scaffolding tools. Secondly, they identified teachers’ learning process in terms of
the categories: discarding, adopting or adapting the scaffolding tools. Oral and written
arguments of the teachers were also analyzed. The notes of the researchers had a supportive
function. Thirdly, the adapted teaching materials were analyzed to find out whether or not the
issues of discussion were reflected in the adaptations. Finally, they compared and discussed the analyses applying the same procedure as described in project part 1.

Part 3: Enacting - implementing the scaffolding tools

The three mini-FOI lessons of two hours each were taught in three classes. All lessons were audiotaped by one of the researchers. The transcriptions resulted in about 20 pages text each lesson. After most lessons, the researcher had an informal review talk with the teacher teams and made notes of this talk. Again, the data were analyzed by each of the researchers independently. Firstly, each of them identified the learning process of the teams in terms of discarding or using the adopted/adapted scaffolding tools in their lessons. Secondly, the ways of using them were also identified. The results obtained from the three teams were compared. The notes of the observers had a supportive function. Finally, they compared and discussed the analyses applying the same procedure as described in project part 1.

Part 4: Evaluation- valuing the PDT

A teacher evaluation questionnaire was constructed, consisting of two sections:

- Section 1 on teachers’ opinions of the amount of ‘space’ and the amount of ‘structure’ they had provided their students with (see Figure 5). These questions were asked after each of the three lessons;

- Section 2 on teachers’ opinions of their learning experiences (see Figure 6). These questions were asked after the preparation part of the project.

The data of section 1 were processed by calculating the mean score on the space-item and the structure-item respectively for getting a measure for the openness and structuredness of the lessons as perceived by the individual teachers. Moreover, group mean scores for each lesson were calculated as well as overall mean scores. The data of section 2 were processed by counting the number of ticks per topic.
In meeting 5, an evaluative discussion was started by sharing the given answers and illustrations. The discussions were recorded on audiotape and transcribed. The data were analyzed by using the same procedure as applied in project part 1; this time the analysis categories regarded the amount of space and structure provided and the teachers’ learning experiences.

[Insert Figure 5 and 6 about here]

6. Findings

Part 1: Orientation - identifying teachers’ concerns

Categorising the answers to the open question in the initial teacher questionnaire and the concerns that appeared in the discussions during meeting 1, three main categories of concerns were identified (Table 4). We defined a category as a main category when at least three of the seven teachers expressed concerns in the category under consideration.

[Insert Table 4 about here]

Part 2: Preparation - adopting/adapting the scaffolding tools

The results of project part 2 are summarised in Table 5 and elaborated below. After some discussions that focused on ‘understanding biology and chemistry’ rather than on ‘doing inquiry’, the teachers accepted ‘doing inquiry’ as the aim of the mini-FOI; they adopted scaffolding tool 1 and adapted it to local circumstances. Actually engaging in some student activities themselves contributed to this result.

[Insert Table 5 about here]

Scaffolding tool 2 was introduced by having the teachers carry out the water jars task themselves. In the subsequent discussion, the teachers recognised that students often don’t feel the need to focus when starting an open-inquiry. Students are willing to suggest a topic for inquiry, but encounter difficulties as soon as they have to formulate an accompanying research question and plan. The teachers concluded that students have to learn to cope with uncertainty
at the start of an open-inquiry but are not likely to do so. Therefore, the teachers wanted to
have a ‘no-guidance phase’ preceding the water jar task. They expected students to experience
feelings of uncertainty, which would motivate them to learn strategies of coping with open-
inquiry and to determine a focus. They wanted to present the water jars task as an example of
such a strategy. Therefore, they adapted tool ST2 (see Figure 7).

[Insert Figure 7 about here]

The teachers adopted scaffolding tool 3 without change. They expected that it would facilitate
the monitoring and would also improve the quality of students’ mini-FOI results. One of the
teachers expressed how he wanted to use it in the classroom:

I want to give my students supporting points on the way. Well, a go/no go assessment is
such a supporting point, you provide students with structure. [T3]

The teachers also adopted scaffolding tool 4 without change. They wanted to use it for evoking
student reflection not only on the posters but also on the mini-FOI as a whole. They recognised
the importance of having a reflective discussion at the end of each session. As one of them
stated:

At the end of each lesson, we should take time for evaluation. Together we should have
a look at the completed worksheets and discuss what is good and what should be
improved as all of us find reflection very important. [T7]

Part 3: Enacting - implementing the scaffolding tools

The results of project part 3 are summarised in Table 6 and elaborated below. The teams
implemented the tool ST1 as intended. They also implemented the adapted ST2 (focusing
activities).

[Insert Table 6 about here]
In meeting 4, team 1 and team 2 reported that the students had asked what the ‘no guidance phase’ was good for. As a consequence, team 3 (that started teaching the mini-FOI after this meeting) included reflection activities in the classroom by asking the students ‘What was difficult for you in this assignment’, resulting in a classroom discussion about the need for more focus, leading to the water jars task. Teacher T6 observed that this task did support students in focusing and said to his team mate:

It is nice to see how the jars task starts the discussion again. The process was not proceeding; they were at a loss what to do. Then I showed the jars and all groups came up with new ideas they had not yet thought of. [T6]

The teachers scaffolded the focusing towards a research question. An example of this is shown in the following transcript:

<table>
<thead>
<tr>
<th>Student</th>
<th>Sir, we want to get water from an agricultural place and from a natural place. The amount of phosphate and nitrate and then the life in it. If it is polluted, has it to do with that.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher 1</td>
<td>You know, the kind of research you want to do, if I am right, is the influence of a certain factor on something else. What is the influence of nitrate on life</td>
</tr>
<tr>
<td>Student</td>
<td>Yes, we want to investigate something</td>
</tr>
<tr>
<td>Teacher 1</td>
<td>Something like that. Go and think in that direction</td>
</tr>
<tr>
<td>Student</td>
<td>Yes</td>
</tr>
<tr>
<td>Student</td>
<td>But what should we write down as a research question?</td>
</tr>
<tr>
<td>Teacher 1</td>
<td>The relation between the influence of this on that. Something like that. Just try.</td>
</tr>
<tr>
<td>Student</td>
<td>[look into a book of experiments] Let’s look, 5 and 6 (experiments on phosphate and nitrate) and then look at living beings in the water</td>
</tr>
</tbody>
</table>
This transcript shows that T1 scaffolds students in formulating a research question by stating ‘the influence of a certain factor on something else’. That results in students realising that they have to formulate a research question. This makes them become more concrete in what they want to measure.

The teams implemented the tool ST3 in different ways. Because of lack of time, team 1 discussed research questions and plans without ending up with a definitive go/no go assessment. Team 2 started the go/no go assessment, discussed in plenary the criteria for getting a ‘go’ but also did not finish the assessments because of lack of time, concluding:

Everybody has advanced a good deal into the right direction. But if I would now have to give a go or no go, most groups would get a no go. There is a lack of focus. [T4]

Team 3, having heard the lack of time experienced by the other two teams, took sufficient time for the go/no go discussion. They made their criteria for a ‘go’ explicit, discussed the group products in plenary and then did the go/no go assessment. They experienced that giving a ‘no go’ raised a need to assess the subsequent improvements as well.

Finally, the teams implemented tool ST4. They dealt with the results of the student peer assessments in different ways. The teachers of team 1 opted for reporting about the assessment they had done themselves. They summarised the stronger and weaker points of the posters. The teachers of team 2 opted for paying attention to students’ assessment of the posters. Having heard the experiences of their colleagues, in a plenary lesson the teachers of team 3 paid attention to quality criteria for reporting an open-inquiry on a poster and to a general discussion about what students had learnt from doing the mini-FOI.
Part 4: Evaluation – valuing the PDT

In the answers to the questionnaire the teachers indicated that they perceived to have provided their students more with space than with structure (see Table 7a). There are some differences between individual teachers. In their opinion, the amount of space provided increased from the first to the last lesson, and the amount of structure decreased (see Table 7b). Table 8 shows that during the PDT most teachers learnt in particular about scaffolding students and cooperation with colleagues from other science subjects. Moreover, a new aspect was mentioned by several teachers as an important learning experience: planning the inquiry by the students.

[Insert Table 7 and 8 about here]

These learning experiences were elaborated in the discussion after the completion of the questionnaire. Working together helped them to shift their focus from content to the common aim of the mini-FOI, as is illustrated by the following quote:

"It was an eye-opener that we aimed at the same objectives. [...] we had the same approach towards students. Therefore I was able to transmit very clearly the aim of the mini-FOI to the students: this is an exercise. [T3]"

The mini-FOI experiences had also, to some extent, resulted in changes of teachers’ ideas about teaching in their usual lessons, for instance, using group work in open inquiry lessons more often.

The teachers found the scaffolding tools extremely instructive for them as well as for the students. They all expressed that, after this PDT, they would use them again in the mini-FOI, the full FOI, and in open-inquiry tasks in regular lessons. The teachers liked the general outline of the mini-FOI (ST1) and the different aspects incorporated in it, like the planning in three lessons. They mentioned this structuring of the inquiry process as one of the strong aspects of the mini-FOI. They found that scaffolding students by focusing activities (ST2) should be a
part teaching open-inquiry. They had learnt that students have to cope with uncertainty and that
teachers should give a critical feedback to students’ research questions and research plans at an
early stage. The teachers said to have greatly appreciated working with go/no go assessment
(ST3) in the mini-FOI. As one of them said:

The go/no go is of great interest during the FOI. I did not succeed in giving every
group a go/no go assessment but I did discuss the criteria in a plenary lesson. And
what should improve to get a ‘go’. [T6]

However, some teachers were concerned that the assessment would require more time for
additional guidance and for a second assessment of the improved research question and plan.
They were enthusiastic about using the peer assessment form (ST4) and had noticed that
students had been critical towards each other. As one of the teachers stated:

Through the form, you give them glasses with which to look at the posters. I think that
is very instructive. [T5]

The peer assessment form also helped teachers to promote reflection on the complete inquiry
process. They had learnt that they should plan sufficient time for reflective student activities.

7. Conclusions, discussion and implications

Conclusions

The overall research question of this study was: In what ways can science teachers be
successfully scaffolded in open-inquiry teaching that combines giving space and structure to
students? In order to answer this question, a school-based Professional Learning Trajectory
(PDT) was implemented. It consisted of four parts: orientation, preparation, enacting and
evaluation.

Research question 1 What are teachers’ concerns about open inquiry teaching? Using the data
obtained in the orientation part of the PDT, this question can be answered as follows. Three
main teacher concerns about open inquiry teaching were identified. They were useful for
designing three teacher learning goals and related scaffolding tools. A fourth learning goal and
a connected scaffolding tool were added, related to the function of the mini-FOI in the
curriculum. The teachers agreed to use the mini-FOI in their classrooms. In the preparation
part of the PDT, the mini-FOI and the scaffolding tools were discussed by the teachers.

Research question 2: (how) do the teachers adopt/adapt the scaffolding tools for classroom
use? In the preparation part of the PDT the teachers adapted scaffolding tool 1 (ST1) to local
circumstances, adapted ST2 by adding an introduction activity to evoke a need for focussing
on designing a research question and plan, and adopted the two other tools (ST3 and ST4).
Probably because they felt it could contribute to solve their concerns, they accepted the
structure the coaches provided them with (the scaffolding tools). By taking the space they got
for adapting them, they got the opportunity to become owner of the adopted tools.

Research question 3: (how) do the teachers implement the scaffolding tools for classroom use?
This question was answered in the enacting part of the PDT. The teachers implemented the
tools ST1 (scheme of structure of mini-FOI) and ST2 (focusing activities) in the mini-FOI
lessons as intended. The teachers of the third team even added reflection activities to ST2. The
two other tools, ST3 (go/no go assessment) and ST4 (student peer assessment), were partly
implemented by the teachers of teams 1 and 2 and fully implemented by the teachers of team
3. It seems that, probably because of not adapting, teams 1 and 2 had not become an owner of
tools ST3 and ST4. Team 3 was better prepared for implementing these scaffolding tools
because they taught the mini-FOI after being informed about the experiences with the tools by
the teams 1 and 2.

Research question 4: (How) do the teachers value the PDT, especially their experiences with
the scaffolding tools? Finally, in the evaluation part, we found that the PDT was positively
valued by the teachers. They had learnt in particular about scaffolding students, cooperation
with colleagues from other science subjects and planning open-inquiry. Over the lessons, they felt to have provided their students increasingly with space and decreasingly with structure. Although that order fits with teaching open inquiry, it may also reflect that the teachers learnt how to combine space and structure while teaching the mini-FOI. The teachers intended to use the scaffolding tools again in the mini-FOI, in the full FOI later on, and in open-inquiry tasks in regular lessons.

It is concluded that science teacher can be successfully scaffolded in open inquiry teaching by participating in a professional development trajectory that is designed as follows. First, the scaffolding in the PDT is made explicit by using scaffolding tools that combine giving space and structure to students. Second, the scaffolds are mainly based on teachers’ concerns about open-inquiry teaching. Third, the teacher scaffolding tools are exemplary for scaffolding students. Fourth, the teachers get the opportunity to adapt the scaffolding tools for their students, to implement them in the classroom and to evaluate experiences. Fifth, the PDT activities are embedded in a cooperative setting: team-teaching, exchange of experiences with colleagues from other schools and guidance by coaches from university.

Discussion and implications

The present study has shown that it is possible and fruitful to scaffold science teachers in open-inquiry teaching. The principle of ‘guiding by scaffolding’ is often applied by adults for guiding youngsters, but we have expanded this: a more educated adult (the coach) scaffolds less educated adults (the teachers). It is essential to define the ‘zone of proximal development’ of the less educated group and to agree about the learning goals. For that, we investigated the concerns of the teachers about the innovation of open-inquiry teaching. It appeared that such concerns can be used successfully as the main base for designing teacher learning goals and related scaffolding tools. It also appeared that a professional development trajectory can be
successful, i.e. the teachers learn how to scaffold students in open-inquiry, when the scaffolding tools have a double character: the coach uses them for scaffolding the teachers and the teachers can use them (if needed in an adapted form) for scaffolding their students in open-inquiry.

The success of the professional development trajectory can be explained by the synergy between the leading principle of ‘guiding by scaffolding’ and four supporting ideas. First, the idea of ‘learning by doing’ was not only applied in the meetings, learning by experiencing and adapting the scaffolding tools, but also in the schools: learning by teaching in the classroom. This elaboration is in line with McBride, I Bhatti, Hannan and Feinberg (2004) who stress the importance of engaging teachers in inquiry-based science in such a way that they can bring their new insights to their classrooms and implement the best ideas in their teaching. The implementation in the classroom was promoted by the second supportive idea: ‘community of practice’. This idea was applied by designing a professional development trajectory in which several social groups met in a cooperative setting. At the school level, teachers from different departments (biology, chemistry) cooperated not only during in the meetings, but also in teaching the mini-FOI in the classroom. They functioned in small teams headed by a teacher-coordinator. At the inter-school level, teachers from different schools met each other. At the institutional level, the university coaches cooperated with the upper secondary school teachers. Such approach is useful to all sides. Teachers cross school boundaries and get new input and feedback on their teaching approach. Coaches can implement and test their innovative ideas about supporting teachers in curriculum innovations, such as scaffolding teachers in open-inquiry teaching. Moreover, coaches get informed about teaching practices in school and how the ideas are made feasible in classroom practice. This reciprocal aspect is important to bring about co-ownership of the innovation of open-inquiry teaching (the third supportive idea). It can solve the ‘agenda setting dilemma’ (Richardson, 1992) as all partners contribute to the
agenda of the meetings. Co-ownership of the teachers also appeared from teachers’ implementation of the scaffolding tools in the classroom and their intentions to use them in their future teaching. It indicates that teachers can become co-owners of an innovation if their concerns are taken into account when the innovation is introduced into the school. With that, we are back to the scaffolding tools and their double character, which originated from the fourth supporting idea, the ‘congruence principle’, originally developed for student teachers (Korthagen et al., 2001).

Synergy between the guiding principle and the supportive ideas has to be realized in concrete actions. For instance, designing teaching materials that are not offered to the teachers as ready-made products but as drafts that could be adapted to the local circumstances and to teachers’ preferences, formation of innovation teams of teachers leaded by a team coordinator, and adapting timetables for creating space for implementing an innovation in the classroom.

These days, many innovations in science education have a socio-constructivist character. This means that the innovations should focus on active, autonomous learning and promote communication about science among students and between students and their teacher(s). In order to realise this, professional development of teachers is needed and the learning environment, in which the professional development takes place, should also have a socio-constructivist character. We have found evidence that it is possible to implement a professional development programme for science teachers that is based on the described ideas and on the synergy between them. On the one hand, this approach needs to be put into practice in more contexts, in other schools, other countries, with other topics than open-inquiry, with students of other ages, in other sections of education (primary, tertiary). On the other hand, more research should be done in these kinds of programmes. Is it possible to get more profound learning results? In our opinion, effective curriculum innovation should go hand in hand with professional development and with cooperation within schools, between schools and
between schools and institutes for teacher education and research. Such innovations will challenge schools and teachers to participate. The scaffolding approach has to be practised by teacher educators as well in pre-service teacher education. Developing the scaffolding approach and implementing this approach in schools and teacher education institutes is the future task for the community of teacher educators, researchers, and teachers in schools.

References

Table 1. Framework of project activities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDT activities</td>
<td>Research activities</td>
<td>Teaching materials</td>
<td></td>
</tr>
<tr>
<td>Meeting 1: Clarifying concerns; discussing mini-FOI as a common activity</td>
<td>Examining concerns → Development of teacher learning goals</td>
<td>Scaffolding tools to be used in the PDT</td>
<td></td>
</tr>
<tr>
<td>Meetings 2, 3, 4: Preparing mini-FOI lessons about the theme ‘water quality’</td>
<td>Examining discussions about the mini-FOI lessons, in particular about the scaffolding tools</td>
<td>Adapted scaffolding tools to be used in school classrooms</td>
<td></td>
</tr>
<tr>
<td>Classroom practice: Team teaching of the mini-FOI</td>
<td>Examining the implementation of the scaffolding tools in the classroom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meeting 5: Evaluation of the mini-FOI lessons and PDT</td>
<td>Examining teachers’ valuing of the PDT, especially their experiences with the scaffolding tools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. The teacher learning goals and scaffolding tools

<table>
<thead>
<tr>
<th>Teacher learning goal (LG)</th>
<th>Scaffolding tool (ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Teachers are able to scaffold students in structuring open-inquiry</td>
<td>1. Scheme of general structure of the mini-FOI</td>
</tr>
<tr>
<td>2. Teachers are able to scaffold students in focusing on an open-inquiry issue</td>
<td>2. Focusing activities: the water jars task</td>
</tr>
<tr>
<td>3. Teachers are able to scaffold students in developing quality control of open-inquiry</td>
<td>3. Go/no go assessment worksheet</td>
</tr>
<tr>
<td>4. Teachers are able to scaffold students in reflecting on their open-inquiry process</td>
<td>4. Student peer assessment form</td>
</tr>
</tbody>
</table>
Table 3. Summary of data collection in the four parts of the study

<table>
<thead>
<tr>
<th>Data collection</th>
<th>project part 1</th>
<th>project part 2</th>
<th>project part 3</th>
<th>project part 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher questionnaires (initial and evaluation)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Transcriptions of audiotaped PDT meetings</td>
<td></td>
<td>100 pages</td>
<td>25 pages</td>
<td></td>
</tr>
<tr>
<td>Researchers’ notes</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Teacher products (e.g. teaching material, e-mails)</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Transcriptions of audiotaped mini-FOI lessons</td>
<td></td>
<td></td>
<td></td>
<td>180 pages</td>
</tr>
</tbody>
</table>
Table 4. Teachers’ concerns about open-inquiry in the classroom

<table>
<thead>
<tr>
<th>Category of teachers’ concerns</th>
<th>Number of teachers (N=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How to guide students in structuring open-inquiry</td>
<td>4</td>
</tr>
<tr>
<td>2. How to guide students in focusing on parts of an open-inquiry task</td>
<td>3</td>
</tr>
<tr>
<td>3. How to monitor and assess students’ progress</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 5. Summarised results of project part 2

<table>
<thead>
<tr>
<th>Scaffolding tool</th>
<th>Teacher team 1</th>
<th>Teacher team 2</th>
<th>Teacher team 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scheme of general structure of mini-FOI</td>
<td>Adaptation to local circumstances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Focusing activities: the water jars task</td>
<td>Adaptation by adding an introduction activity to evoke a need for focusing on research question and plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Go/ no go assessment worksheet</td>
<td>Adopted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Student peer assessment form</td>
<td>Adopted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Summarised results of project part 3

<table>
<thead>
<tr>
<th>Scaffolding tool</th>
<th>Teacher team 1</th>
<th>Teacher team 2</th>
<th>Teacher team 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scheme of general</td>
<td>ST1 implemented as intended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure of mini-FOI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Focusing activities:</td>
<td>ST2 implemented as intended</td>
<td>idem; reflection</td>
<td></td>
</tr>
<tr>
<td>the water jars task</td>
<td></td>
<td>activities added</td>
<td></td>
</tr>
<tr>
<td>3. Go/ no go</td>
<td>ST3 implemented partly</td>
<td>idem; discussion on</td>
<td>ST3 implemented</td>
</tr>
<tr>
<td>assessment worksheet</td>
<td></td>
<td>criteria for a ‘go’ assessment</td>
<td>fully + discussion on</td>
</tr>
<tr>
<td>4. Student peer</td>
<td>ST4 implemented without evaluation</td>
<td>ST4 implemented with evaluation of</td>
<td>ST4 implemented</td>
</tr>
<tr>
<td>assessment form</td>
<td>of students’ assessments</td>
<td>students’ assessments</td>
<td>fully, focusing on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>quality criteria for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>posters</td>
</tr>
</tbody>
</table>
Table 7. Teachers’ opinions on the amount of ‘space’ and ‘structure’ provided in their lessons

a. Teachers’ mean scores on the space-item and the structure-item (see Figure 5)

<table>
<thead>
<tr>
<th>Teachers</th>
<th>Amount of ‘space’ provided (mean score)</th>
<th>Amount of ‘structure’ provided (mean score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>T2</td>
<td>3.7</td>
<td>3.0</td>
</tr>
<tr>
<td>T3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T4</td>
<td>3.8</td>
<td>2.7</td>
</tr>
<tr>
<td>T5</td>
<td>3.8</td>
<td>2.7</td>
</tr>
<tr>
<td>T6</td>
<td>4.0</td>
<td>2.7</td>
</tr>
<tr>
<td>T7</td>
<td>4.8</td>
<td>3.0</td>
</tr>
</tbody>
</table>

b. Group mean scores (N=6) on the space-item and the structure-item over lessons (see Figure 5)

<table>
<thead>
<tr>
<th>lesson</th>
<th>Amount of ‘space’ provided (mean score)</th>
<th>Amount of ‘structure’ provided (mean score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.8</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>4.2</td>
<td>2.5</td>
</tr>
<tr>
<td>1+2+3</td>
<td>4.0</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Table 8: Teachers’ opinions of their learning experiences

<table>
<thead>
<tr>
<th>Topics</th>
<th>Learnt during preparation</th>
<th>Learnt during enacting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaffolding students</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Assessing students</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cooperation with colleagues from other science subjects</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Input the students gave</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cooperation between students</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Aspects not yet mentioned</td>
<td>3 (planning)</td>
<td>2 (planning)</td>
</tr>
</tbody>
</table>
Figures and captions

<table>
<thead>
<tr>
<th>Timetable</th>
<th>Teaching and learning activity</th>
</tr>
</thead>
</table>
| * Lesson 1; teachers A and B (2 hours in week nr. x) | * Orientation in groups on an interdisciplinary topic, resulting in a research question and a plan of experiments
* Reflection: what did we learn about open-inquiry |
| * Homework (estimated time 2 hours) | * Selection and preparation of experiments
* Studying relevant theory |
| * Lesson 2; teachers A and B (2 hours in week nr. x + 1) | * Execution of the experiments
* Reflection on what we learnt about open-inquiry |
| * Homework (estimated: 2 hours) | * Data processing
* Suggested conclusions |
| * Lesson 3; teachers A and B (2 hours in week nr. x + 2) | * Formulating conclusions by the group
* Preparation and presentation of a poster
* Reflection on the mini-FOI as a whole: what did we learn about open-inquiry |

Figure 1. Scaffolding tool 1: scheme of general structure of the mini-FOI
The water jars task

- The teacher puts four jars on the demonstration desk, filled with green, turbid water; bright, transparent water; muddy water; water with some plants and small insects.
- The teacher asks the students to put the jars in order from ‘good water quality’ to ‘poor water quality’ and give arguments.
- The students discuss in groups
- In a plenary lesson, the teacher asks the groups to present their order, with arguments
- As a conclusion, the teacher focuses on the question of ‘what do you mean with water quality; how do you investigate water quality?’
- The students reflect on the question of what the purpose of the activity was.

Figure 2. Scaffolding tool 2: focusing activities: the water jars task
Teacher’s decision for go/no go (at the bottom of the student worksheet of lesson 1)

* Go: You can go on to the next task

* No Go: Before going on to the next task, you should: (i) reformulate your research question, or (ii) add some experiments in your planning, or (iii) something else, viz. . . .

Figure 3. Scaffolding tool 3: go/no go assessment worksheet
Questions for peer assessment

1. Has it become clear what the group’s research question was about?
2. Has it become clear what the group has done to answer their research question?
 * What we found clear was ……
 * What we did not find clear was ……

Figure 4. Scaffolding tool 4: student peer assessment form

Evaluation questionnaire about teachers’ scaffolding in the classroom

Your opinion on your scaffolding in the classroom

<table>
<thead>
<tr>
<th>very few</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>very much</th>
</tr>
</thead>
</table>

* how much ‘space’ did you provide your students with?
* how much ‘structure’ did you provide your students with?

Illustration of my answer:

Figure 5. Questions from the teacher evaluation questionnaire, section 1. These questions were asked after each of the three lessons.
Evaluation questions about teachers’ learning experiences

By preparing the mini-FOI with colleagues and coaches, I learnt in particular about:
[tick 3 alternatives at most]
[] scaffolding students
[] assessing students
[] cooperation with colleagues from other science subjects
[] the input the students gave
[] cooperation between students
[] an aspect not mentioned yet, namely …..

Illustration of my answers:

Figure 6. Question from the teacher evaluation questionnaire, section 2. These questions were asked after the preparation part and after the enacting part of the project.
The water jars task and its introduction

Phase 1: ‘no guidance’

- The teacher presents the research scope using vague terms only, saying something like ‘investigate water quality’, without giving any explication
- Students brainstorm in small groups about how to proceed
- Classroom discussion aiming at expressing students’ feelings of uncertainty and evoking a motive: how to start open-inquiry?

Phase 2: structuring and focusing

- The water jars task (see Figure 3)
- Reflection on strategies how to start open-inquiry

Figure 7. The adapted focusing activities (scaffolding tool 2)