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Introduction 
 

This book is an investigation into the necessary structure of the aether – 
the stuff that fills the whole universe. (I assure readers that it is not the 
sort of aether that could have a current in it – the aether wind that Mi-
chelson and Morley  famously failed to detect.1 ) 
 Assuming what I call the aether exists, we lack knowledge of its 
structure. In fact one of my aims is to exhibit the immense variety of 
structures that, for all we know, it could have. Here I use the words 
‘know’ and ‘knowledge’ with neither litotes nor hyperbole – we lack 
knowledge because the available arguments do not establish their con-
clusions ‘beyond all reasonable doubt’. Nonetheless, we can form rea-
sonable beliefs about its structure. I shall argue that it has no point parts: 
either the aether is composed of granules that are extended atoms; or it 
is point-free (gunky) in that every part is the sum of parts of less exten-
sion (diameter).2 In particular, the aether does not have the structure of 
orthodox Space-time.3 To say it had that orthodox structure would be to 

                                                 

1  To have a current, a part of aether that exists now must be identical to some 
part that existed a short while ago. I deny that this can happen. If we simplify 
the exposition by assuming that Time is discrete then the lack of current is 
because: (1) a part of the aether at one time is not strictly identical to any part 
of the aether at the preceding time; and (2) a part of the aether x at one time 
is caused to exist by the sum of all the aether at the previous time that is in 
the past light cone from x.  

2  By an atom of aether I mean a part u of the aether that is not the sum of the 
proper parts. If we assume classical mereology every atom is a simple, that it 
has no proper parts. By a granule I mean a part u of the aether that is not the 
sum of parts of lesser quantity (hypervolume). It is not analytic that granules 
are atoms, but on my preferred hypotheses they all are.  

3  Because mathematicians use the term ‘space’ freely to refer to systems with 
properties that are reminiscent of geometry, I am adopting the convention 
that ‘Space’ is written with an upper case ‘S’ when used literally. Then, for 
the sake of uniformity, ‘Space-time’ and ‘Time’ also have upper cases.  
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say that the aether was the mereological sum of uncountably many 
points, and that every non-empty set of points had a mereological sum.4  
 The granules or gunk disjunction is more specific than the grit (i.e. 
discrete) or gunk thesis I have previously defended (2004). For I am able 
to argue against the thesis of Point Discretion, namely that every part of 
the aether of finite diameter has finitely many point parts.  
 Previously, I have suggested that it an empirical question as to 
whether Space-time (or, better, the aether) is continuous and hence, I 
say, gunky, or not (Forrest, 1995). I fear the situation is more complicat-
ed than that. To be sure, the empirical confirmation of (some variant on) 
String Theory would provide a strong case for a continuous theory. 
Without such confirmation, the answer will depend on how we weigh up 
two competing intuitions: (1) that the non-contingent structure is highly 
symmetric; and (2) that the non-contingent structure is simple. I shall 
argue that a highly symmetric non-contingent structure leads to a contin-
uous point–free hypothesis. Considerations of simplicity would other-
wise support granules, and specifically the hypothesis I shall call Pseu-
do-set Granules. The current state of physics is highly speculative. But, 
for what it is worth, it supports a continuous point-free aether hypothesis 
unless we have a rather strong preference for simplicity over symmetry. 
 In neither of these two cases are there any points. It is traditional, 
however, to think of Space, and hence Space-time, as continuous and 
made up of points. As already indicated, I shall consider, but reject, the 
thesis that the aether is likewise continuous and made up of points. I 
draw the conclusion that the aether should be distinguished from Space-
time, which is either a fiction, or real but a construct. Not much hangs on 
this, however, and readers may prefer to identify the aether with Space-
time and draw the conclusion that the tradition is incorrect.  
 In this Introduction I say why I believe the aether exists, I say why 
we should not assume at the outset that it is the same as Space-time, I 
sketch the main arguments of the book, and I consider some metaphysi-
cal preliminaries. 
                                                 

4  The Orthodoxy states rather more than this, ascribing to Space-time the 
structure of a topological manifold, but this manifold structure is not the ob-
ject of my criticism.  
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1. The aether 
I used to be persuaded by Graham Nerlich’s The Shape of Space (1994) 
that Space-time and its parts were mind-independent substances, and that 
they were not dependent on spatio-temporal relations between other 
things. Subsequently, I have come to believe that our universe is made 
up of aether and that Space-time, if it exists, is best understood as a 
structured set of properties, namely point locations. So I stipulate that if 
there is some fundamental kind of stuff that fills our universe and if 
there is only one such fundamental kind of stuff it is to be called the ae-
ther.5 It follows that substantivalists who, as I once did, hold that Space-
time is itself a substance, and who deny there is anything other kind of 
fundamental stuff filling the universe, should identify it with the aether.6 
So for them there is no change of topic. 
 To justify the topic of this book, I need first to argue that there is 
precisely one kind of fundamental stuff filling the whole universe, and 
then argue that we should initially be open-minded as to whether it is the 
same as Space-time. First, then, I argue that there is some kind or kinds 
of stuff filling our universe. I claim no originality here and begin by not-
ing the way that the topological properties of the universe – its shape, 
for short – have explanatory power. Thus Nerlich (1994) points out that 
the shape of the universe includes its being globally orientable, and so it 
is not possible for someone – call her Alice – to take a trip that will turn 
her into a mirror image of her former self when you she comes back.7 If 
                                                 

5  We might want to treat particles as holes in the aether. If so the aether need 
not fill our universe. This is a variation I shall subsequently ignore, treating 
particles as temporally long but spatially thin parts of the aether characterised 
by some special property, such as electric charge. 

6  What do I mean by ‘stuff’? What do I mean by ‘fundamental’? By ‘stuff’ I 
mean a homoemerous substance, that is a substance all of whose parts are of 
the same kind, provided we do not treat differences of mereological struc-
ture, of shape and of size as differences of kind. A fundamental kind is one 
whose members do not depend ontologically on other kinds.  

7  If, to our surprise, the universe turns out to be non-orientable, then the exam-
ple must be changed, but the argument still works.  



 

 

4

the universe had a twist in it like a Möbius strip and so were not orienta-
ble, then such a trip would be possible.8  
 As this example shows the shape of the universe explains otherwise 
mysterious facts. Hence we should not treat shape as a mere convention: 
it is a genuine property of some substance, the universe maybe. Suppose, 
however, that the universe is made up of at most a countable infinity of 
objects such as particles and strings, with gaps between them. Then the 
shape of the sum of these entities is not the same as that of Space-time: 
the latter has all the gaps filled in. Hence we should ask whether the sub-
stance that has the shape with explanatory power is the sum of all the 
objects or whether it is something larger. Consider Alice’s journey from 
Earth in year 2100 to Earth in year 2120 via – why not? – Twearth in 
2110, where the years are as recorded by Alice. If she makes this jour-
ney then indeed Earth-2100 is connected to Twearth-2110. But what we 
are explaining is whether or not she would comes back a mirror image if 
she should make the trip and return. And if no one makes this trip then 
Earth-2100 might not even be connected to Twearth-2110 in the uni-
verse, because the potential paths connecting them might all have to pass 
through gaps. Hence the shape with explanatory power is a property of 
something that has the gaps filled in. Nerlich takes this something to be 
Space-time. For the sake of neutrality let us just call it a universe-filler, 
bearing in mind that all-pervading fields would be universe-fillers that 
many physicists already posit. Then Nerlich’s argument provides a case 

                                                 

8  Another example of shape, due to Vesselin Petkov (2007) is that the number 
of dimensions has explanatory power, as Kant noted (1910, vol 1: 24). For 
instance, the electrostatic force obeys the inverse square law not an inverse 
cube law, as it would do if there were 4 (macroscopic) spatial dimensions. 
Or, even more elementary, if Space had an extra dimension then light would 
leak into the extra dimension, and so its intensity would not obey the inverse 
square law. Given a relational theory of Space-time, there must be at least 
three spatial dimensions, but nothing constrains us to have as few dimensions 
as we can make do with. Thus, if four coordinates <t, x, y, z> suffice for 
Space-time we could still use five <s, t, u, v, w> if we liked and take the 
whole physical universe to lie in the hyperplane given by the equation s + t + 
u + v + w = 0. The minimum number of coordinates that we can use does not 
explain why light does not leak into an extra dimension.  
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for the existence of at least one universe-filler. Here I note that Nerlich 
assumes the shape of Space-time is contingent, but that does not affect 
the argument, provided it is conceivable that it has different shapes. For 
necessary truths can be used to explain other necessary truths. The next 
stage of the argument for the existence of the aether is to examine and 
reject various objections to Nerlich’s argument.9 
 One way of objecting to Nerlich’s argument might be to adopt the 
common-sense idea that when we talk of properties of the universe we 
include the gaps, just as when someone buys a bushel of grain the gaps 
help make up the volume. (Not even the prophet Amos would complain 
that customers were being cheated provided the grain was pressed 
down.) This amounts to an appeal to a counterfactual conditional: if the 
gaps were filled, then the universe/grain would have such and such a 
property. Any such proposal is threatened with circularity: until we 
know what shape the universe is supposed to have, we do not know what 
the gaps are, but it is precisely by filling in the gaps that we obtain the 
shape of the universe. To avoid circularity, there has to be some more or 
less natural, less or more conventional, stipulation as to how the gaps are 
to be filled in. We could, for instance, stipulate that the volume of a heap 
of grain is the smallest volume of any convex region that the grain mak-
ing up the heap would fit into. Now, I do not deny that in some cases 
there is a suitable stipulation, and in the symmetric case, discussed in 
Chapter Seven, it may well be possible to use the symmetries to fill in 
the gaps. Such ways of stipulating how the gaps are to be filled in un-
dermine, however, the explanatory power of the shape of the universe. 
For whether or not Alice could have returned, as a mirror image is not a 
matter of stipulation, however natural the stipulation might be.  
 Even a natural gap-filling stipulation undermines the explanatory 
power of the universe’s shape, then. In addition, it is metaphysically 
possible that no natural stipulation will succeed. I concede that in the 
actual universe there may well be enough particles, strings etc to ensure 
that there is suitable Space-time if we fill in the gaps in a natural way. 
But we have been explaining features that are either implied by the laws 
                                                 

9  These have been extensively discussed in the literature. For fairly recent sur-
veys see (Callender 2002) and (Nerlich 2003). 
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of nature alone or implied by the laws together with the very early histo-
ry of our universe. The explanation should hold, therefore, for variants 
on the actual universe. In particular we may suppose that all the objects 
are contained in a region of finite spatial diameter. In that case, what 
shape is Space-time meant to have? Space might be infinite or it might 
be finite but unbounded. In the latter case it could indeed be a higher 
dimensional analog of the sphere or the torus (and so orientable) or else 
have a twist in it like the Möbius strip or the Klein bottle (and so non-
orientable). There is danger that we will adopt a convention that Space 
be hyper-spherical in this case, making it true by convention that Alice 
would not return as a mirror image. I take that to be a reductio ad absur-
dum of the suggestion that Space-time is orientable by natural conven-
tion. 
 Another way of objecting to Nerlich’s argument might be to ex-
plain the shape of the universe as the result of various necessary symme-
tries of the universe. For instance, if the universe has the shape of (four 
dimensional) Minkowski Space-time this might be explained by noting 
that light-cone structure has the Poincare´ group of symmetries. I am an 
enthusiast for using symmetries to characterise the shape of the aether, 
but symmetries presuppose some structure for them to be symmetries of. 
In Chapter Seven I concede that this does not require there to be some-
thing that fills the whole universe – a universe made up of enough ob-
jects (particles strings  or branes) might suffice, provided these objects 
had the same number of dimensions as Space, and provided it was nec-
essary that no part of space-time was too far from any object. Such ne-
cessity is not plausible. For we are here considering an alternative to a 
universe-filler and so there are assumed to be some parts of Space-time 
that are true vacua, that is, not occupied by anything. Assuming there are 
some true vacua, why should it not be possible to have one too large for 
this proposal to succeed? 
 A third way of objecting to Nerlich’s argument  is to try to para-
phrase statements apparently about Space-time as about the actual and 
possible things. One problem with this is that merely possible things 
spatially related to actual things are strange beasts indeed, even more 
peculiar than David Lewis’  possible worlds. Another is that there are 
too many possible objects to fit into finitely many dimensions, even if 
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possible objects can overlap, like W. V. O. Quine’s possible fat men 
(1948:23-24). This problem is most easily stated by considering Space 
and ignoring Time, but it can be adapted to Space-time. For every posi-
tive integer n there is a possible object Obj(n) with disjoint parts a1, . . . , 
an each distance one unit from every other one. But for any finite num-
ber of dimensions m, there is some n such that no Obj(n) could be part 
of an m dimensional space. For example if Space is flat and 3 dimen-
sional then n ≤  4. (For three dimensions, we can find small regular tet-
rahedra but not their 4 dimensional analogues, the pentatopes.)10  
 A variant on the third objection is to rely on the many worlds inter-
pretation of quantum theory, which might be taken to show that each lo-
cation is occupied in some world. This is, however problematic, because 
the same location would then be occupied by things with incompatible 
properties. Consider, for instance, the puzzling case of the electron that 
goes through two slits in a screen. (Or else consider some more realistic 
analog of this famous thought experiment). On the many worlds inter-
pretation, there are worlds in which the electron goes through one slit 
and worlds in which its counterpart goes through the other.11 How 
wholesome compared to the Copenhagen mystery mongering! But mys-
tery returns with a vengeance if we think of a single location that both 
has and does not have an electron in it. Therefore, as might seem obvi-
ous anyway, the different worlds are in different locations. It follows 
that the excellent many worlds interpretation requires a larger Space-
time and hence we still have the problem of the gaps.  
 There is an argument, then, for there being one or more kinds of 
universe-fillers. But there might be many universe-fillers, such as two 
distinct fields.12 Now fields may be thought of as the aether with various 
                                                 

10  More generally, by the Nash Embedding Theorem (Nash 1956) we can em-
bed any n dimensional Euclidean manifold in a 2n + 1 dimensional Euclide-
an space. So Obj(2n + 3) could not be part of the m dimensional manifold.  

11  Not quite! I say that the electron is the sum of parts in many worlds, rather 
than having distinct counterparts, but that is a detail.  

12  More precisely, two fields whose values cannot be zero or for which any as-
signment of a zero value is arbitrary, because the theory has a gauge group. 
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field properties, and particles may be thought of as parts of aether with 
some properties concentrated near a curve in the aether. Again if we ac-
cept String Theory, and so add some extra ‘compactified’ dimensions to 
Space-time, resulting in say 10 dimensions, then the strings are parts of 
the aether with some special property concentrated near a two dimen-
sional surface. In that sense there would only be the one fundamental 
universe-filler, which I call the aether. Now, talk of the fundamental 
cries out for further explication in terms of ontological dependence, 
which is controversial. Fortunately, in this case, it is fairly clear in what 
sense fields are less fundamental than the aether. For consider the stand-
ard philosophical example of the lump of clay and the statue made up of 
that clay. And consider the case in which the clay neither exists before or 
after the statue. Then they share their non-modal properties, but the dif-
ference is that some shape-property that the clay has accidentally (i.e. 
not essentially) the statue has essentially: the lump of clay might have 
been a vase, the statue could not have been. Whatever we say of the clay 
and the statue we can say of the aether and the field.13 And, whatever we 
say, we may infer that the clay/aether is more fundamental than the stat-
ue/field. If you are otherwise sceptical about talk of the more fundamen-
tal, or one thing existing in virtue of others, then this could be a stipula-
tion. If you go so far as to identify the clay and the statue (by denying 
the existence of non-trivial essential properties) then please identify the 
field with the aether. Whichever way this topic is handled, it remains the 
case that we can apply Ockham’s Razor to prefer just one fundamental 
kind of universe-filler to more than one.  
 In addition to the above Ockham’s Razor argument, there would be 
an analogue of the mind/body problem if there were two fundamental 
universe-fillers, call them aerthur and maertha.  There would have to be 
a co-incidence relation between some parts of aerthur and some parts of 

                                                                                                                                                    
This ensures that there is a difference between having no field and having a 
field of zero value.  

13  For what it is worth, I deny that there are any modalised properties, of the 
form essentially F. I hold that the statue is the lump qua having various 
shape properties, and that if x has property F, x qua F is essentially F even if 
x is only accidentally F.  



 

 

9

maertha. This is problematic in two ways. First a part of the aerthur with 
suitable properties would be a concrete thing, as would a part of the 
maertha with suitable properties. Initially we resist the thesis that two 
things could coincide, and it is only when examples such as the lump of 
clay and the statue are drawn to our attention that we might concede that 
thesis. So the proposal that an aerthurian thing might coincide spatially 
with some maerthan thing remains counter-intuitive. The other problem 
with the co-incidence of aerthurian things and maerthan things is that it 
makes a mystery of location. If there is some fundamental universe-filler 
then, ignoring complications, the location of an object, a particle say, 
composed of that universe-filler just is the part of the universe-filler it 
occupies, which is quite without mystery. But that account cannot be ap-
plied to two fundamental universe-fillers, for which there would be an 
otherwise redundant primitive relation of co-location.  
 I conclude that the fundamental universe-filler is unique. Now, it 
would be nice if we only needed the geometric properties of the aether 
as in the geometrodynamic program that seeks to model particles as top-
ological features of the aether. The symmetries that are required by a 
continuous aether hypothesis would exclude this, but it might turn out to 
be correct on the hypothesis of granulated aether. And in that case we 
could say the aether is the only universe-filler. But even if, as in the 
symmetric case, we need to posit further properties and relations I have 
argued that there is only one fundamental universe-filler, which is then 
somewhat like Aristotelian prime matter.14  
 Our universe is filled, then, with aether, which we might or might 
not identify with Space-time. One reason for not automatically identify-
ing the aether with Space-time is that in some cases the latter may be 
considered to depend on the spatio-temporal relations between parts of 
the aether, resulting in a relational theory of Space-time combined with 
realism about the aether. For example, let us assume a point-free, ‘gunk’ 

                                                 

14  James Franklin informs me that my aether corresponds to Aquinas’ ‘materia 
signata’, ‘materia subjecta dimensioni’ (In Boeth. de Trin., Q. iv, a. 2), or 
‘materia sub certis dimensionibus’ (De Nat. Mat., iii) ). Franklin points out 
that the aether, as I understand it, cannot be prime matter, because to have a 
universal twice the matter must already have some structure.   
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aether, every part of which has at least one proper part.  Given fairly 
weak constraints on its mereology and topology, we may then describe 
‘points’ in a Whiteheadian fashion  (Whitehead 1929 Ch. 2, Roeper 
1997, Forrest 2010). These ‘points’ are not parts of the aether but set-
theoretic constructs, namely ultrafilters  with respect to the interior par-
thood relation, «,  where x « y just in case for some small positive δ eve-
ry part of the aether disjoint from y is at least δ from x.15 Centuries of 
mathematical and physical practice have some authority as to how we 
use the term ‘Space’ and hence ‘Space-time’. It may well be analytic, 
therefore, that Space-time, if it exists, is composed of points. In the case 
of point-free, ‘gunky’ aether, I grant realism about Space-time, with one 
proviso, but claim it depends for its existence on the aether.16 The provi-
so is that we should be realists not so much about Space-time points but 
about the properties that would ordinarily be described as being located 
at such and such a point.  But this is minor and systematic adjustment to 
genuine realism about Space-time.17 
 Another case in which we should distinguish the aether from 
Space-time is if, for the sake of a dynamic theory of Time, we grant the 
reality of the present (and perhaps the past) aether but not the future ae-
ther. In that case it is intuitive that Time exists (in the basic tenseless 

                                                 

15  A filter  is a set W of parts of the aether such that: (1) if x ∈ W and x « y 
then y ∈ W; and (2) if x ∈ W and y ∈ W then there is some z ∈ W such that 
z « x and z « y. (Note that there is no empty part of the aether so there is no 
guarantee that x and y even have a common part.) An ultrafilter is a filter W 
such that if W ⊆ V and V is also a filter then W = V. (See Forrest 2010.)  

16  I stipulate that by realism about Xs I mean belief in the mind-independent 
existence of Xs. Realism about Xs does not, therefore, imply the belief that 
the Xs are fundamental entities.   That is, realism about Xs is compatible 
with believing that all (or some) of the Xs depend for their existence on some 
things that are not Xs.  

17  I take it that an extended thing is located at every point in its location and 
located in every region of Space-time of which its location is part. 
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sense of ‘exists’) in the future and in the past, and so the aether only oc-
cupies part of Space-time.18 
 The chief reason for distinguishing Space-time from the aether is, 
however, the traditionally a priori character of local geometry. (It is 
noteworthy that Euclid’s Fifth postulate, long recognised as more prob-
lematic than the other axioms, concerns the non-local feature of parallel 
lines never meeting.) To be sure, the unification of Space and Time into 
Space-time required a replacement of geometry by chronogeometry, as 
Alexander Alexandrov called it, but traditionalists may still make the a 
priori knowledge claim that Space-time is a topological manifold, and a 
fortiori made up of uncountably many points. Now I have no objection 
to a priori knowledge claims, provided they are granted to be defeasible, 
but I shall be arguing that our intuitions (themselves, I suspect, a priori) 
about any stuff filling the universe, enable us to reject what I call the Or-
thodoxy, namely the thesis that the aether has the structure traditionally 
ascribed to Space-time. There is a case, then, for the conclusion that the 
aether is not the same as Space-time. 
 I fear that if the aether is discrete then Space-time is a fiction: it is 
as if parts of the aether have locations in a continuous point-based 
Space-time. For example, consider the 3 dimensional case and suppose 
the aether is made up of simple parts that are represented as tetrahedra. 
Then the fictitious Space is the sum of fictitious tetrahedral sums of 
points. We could have taken this to be a construct not a fiction if we 
were realists about the properties such as being at the centre of a tetra-
hedral simple. But if the necessary structure of the aether is point-free I 
am reluctant to hypothesise even a non-instantiated property that is ana-
lysable in terms of the centre of something simple.  
 If we had an intuition that Space-time was real then the need to 
treat it as a fiction would be a defect in the discrete theories of the ae-
ther. I shall not, however, take that as a serious objection. First, I do not 
find relational theories of Space and Time counter-intuitive, and I re-
                                                 

18  This is problematic in the case of granulated aether, but for the symmetric 
case discussed in Chapter Seven we can construct the future Space-time giv-
en the aether’s past existence. Alternatively, we may construct both past and 
future given an extended present aether, say a layer of Planck time thickness. 



 

 

12

quired arguments such as Nerlich’s to be persuaded that relational theo-
ries were incorrect. Second, we should be wary about combining an intu-
ition that something of a certain kind exists with claims that it is analytic 
that things of this kind have rather specific properties. For typically our 
intuitions are less precise than our concepts. So if you claim that it is in-
tuitive that Space-time is real you should allow a conceptualisation of 
Space-time loose enough to permit its identification with the aether.19 
 More important than the above reasons for distinguishing the aether 
from Space-time is adopting a methodology in which we do not auto-
matically assume identity, so as to protect the study of the aether from 
traditional geometry. To be sure, we might reject the a priori knowledge 
claims about Space-time, even if demoted to intuitions, but, in case we 
do not, it is good to set up a barrier preventing such geometric intuitions 
contaminating the discussion of the universe-filler. 
 The distinction between the aether and Space-time is corroborated 
by the practice of speculative physicists, who often talk of Space-time 
‘emerging’ from some more fundamental structure. Initially, I took such 
remarks to imply the existence of that whereof we can only speak math-
ematically – I call it SAD.20 But on closer examination they seem to be 
talking of the aether, taking for granted a traditional structure for Space-
time. Thus David Rideout, in his dissertation on Causal Set theory under 
the supervision of Rafael Sorkin (Rideout 2001, p.2), writes: 

The Causal Set program postulates that Space-time is a macroscopic 
approximation to an underlying discrete causal order. The other fa-
miliar properties of a Space-time manifold, such as its metrical ge-
ometry and Lorentzian signature, arise as ‘emergent’ properties of 
the underlying discrete order. 

I interpret the ‘underlying discrete causal order’ as Point Discretion, and 
as such a theory of the aether itself. What is said to ‘emerge’ is Space-

                                                 

19  At the risk of annoying some readers I say that the prime example of this is 
the divine. It is intuitive that there is something divine, but it is rash then to 
rely on a claimed analytic truth that the only divine thing would be God – an 
agent of unlimited power and knowledge. 

20  This is no acronym – I judge such a posit to be ‘sad stuff’.  
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time, which is, therefore, not the aether. 
 I have explained why my topic is aether rather than Space-time, but 
I repeat that there are some hypotheses on which the aether just is Space-
time, for instance, that in which the aether has simple point parts in one 
to one correspondence with the coordinate quadruples used to represent 
Space-time.  
 Neither points nor point locations should be confused with the co-
ordinate quadruples used to represent them. Clearly a change of coordi-
nate axes results in a different assignment of coordinates to a given 
point, or a given point location. 
  
2 A synopsis of the argument  
My aim is to discover the necessary structure of the aether, and in Chap-
ter One I survey the hypotheses. A standard philosophical method would 
be to argue from our intuitions for some hypothesis and against the oth-
ers. But there is a complication. At the Rutgers 2007 MMT Conference, 
I used this method, arguing from premises I found intuitive to the con-
clusion that Space-time (or, as I would now say, the aether) had the 
structure of Point Discretion, only to have it pointed out to me that this 
too is contrary to our intuitions.21 Because our intuitions are jointly in-
consistent, my method is first to exhibit this inconsistency (Chapter 
Two) and then raise the question as to which of our intuitions about the 
structure of the aether we should discard.22 By the end of Chapter Three 
I shall have drawn up a provisional list of the more likely hypotheses. I 
divide theories of the aether into four using the twofold classification: 
continuous/discrete, point-based/point-free. I choose one example from 
each class, the four exemplars as I call them, and other hypotheses are 
conveniently considered as variants on these exemplars. These exem-

                                                 

21  I confess not to remember the name of the graduate student who pointed this 
out to me. No point has hypervolume and on Point Discretion a unit hyper-
volume of the aether is the sum of finitely many points and so would have to 
have non-zero hypervolume, which is inconsistent. 

22  Chapter Two substantially overlaps a revised version of my paper at the Rut-
gers MLT conference (Forrest 2012). 
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plars are the hypotheses that are judged best at an early stage in the in-
quiry. 
 Two of the four are discrete theories: Point Discretion and Extend-
ed Simples. Point Discretion is the hypothesis that any part of the aether 
of finite diameter is the sum of finitely many points. Extended Simples 
is the hypothesis that the aether is the sum of disjoint extended granules, 
and that these granules are not merely atomic but simple (that is, without 
proper parts.).  
 The remaining two exemplars are best described by stating which 
sets of coordinate quadruples represent parts of the aether. There is no 
empty part so nothing corresponds to the empty set. In both the exem-
plars, although not on some variants, sets that represent parts of the ae-
ther correspond to all the non-empty members of a certain Boolean alge-
bra X of sets. (To say X is a Boolean algebra of sets is to say that the 
complement of any member of X is also in X and that the union of any 
two members of X is also in X.23 ) One of the continuous exemplars, the 
Borel Continuum, is a point-based theory, in which X consists of all the 
Borel sets of coordinate quadruples. These Borel sets form not just a 
Boolean algebra but a Boolean σ-algebra,. That is, given any set U in X 
the complement of U is also in X, and given any sequence of members 
of X, U1, U2 etc, indexed by the positive integers, the union of the Uj is 
also in X. The Borel sets make up the smallest σ-algebra containing all 
the open sets of coordinate quadruples. For any coordinate quadruples 
<t, x, y, z> the singleton {<t, x, y, z>} is a Borel set. So there is a point 
corresponding to any quadruple. In fact it is not easy, although it is pos-
sible, to show that there are any non-Borel sets of coordinate quadruples 
without relying on the Axiom of Choice.  
 This leaves one other exemplar, Arntzenius Continuum. In this case 
the Boolean algebra X of sets used to represent parts of the aether is the 
same as for Borel Continuum, but one part of the aether is represented 
by many Borel sets. Borel sets U and V represent the same part of the 
aether if the sets U - V and V - U are both of Lebesgue measure zero. 
                                                 

23  Here, as elsewhere, I take the aether to be 4 dimensional unless the contrary 
is explicitly asserted. So the complement of a set of quadruples Y is the set 
of all quadruples not in Y.  
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Because the empty set represents nothing, we stipulate that all and only 
the Borel sets of positive measure represent parts of the aether. So we 
may think of the Arntzenius Continuum as obtained from the Borel Con-
tinuum by first ignoring parts of zero hypervolume and then identifying 
those that differ by zero hypervolume.  
 I shall consider, and reject, the Orthodoxy, by which I mean the 
hypothesis that parts of the aether are in one to one correspondence with 
the non-empty sets of all quadruples of real numbers. Borel Continuum 
and the Orthodoxy agree on what points there are but disagree in that the 
former restricts just which sets of points have a mereological sum.  
 In Chapter Three I make a provisional comparison between the ex-
emplars  and some variants before considering any structure additional 
to mereology, quantity and extent. According to that comparison, the 
ranking is as follows: Point Discretion, then Extended Simples, then 
Arntzenius Continuum, and in fourth place, Borel Continuum, which is, 
nonetheless, preferable to the Orthodoxy. This is provisional in two 
ways. The first is that among the (defeasible) intuitions I hope readers 
share there is the requirement that the aether have further structure, such 
as a topological one. I consider this structure in Chapter Four, noting 
that point-set topology may be adapted not merely to the point-free 
(‘gunk’) hypotheses but also to Extended Simples and other granule hy-
potheses. There is, however, a serious problem in combining topology 
with Point Discretion. A corollary is that Point Discretion will only be 
tenable if there is some necessary structure that renders topology redun-
dant. A highly symmetrical structure could serve that purpose but I shall 
argue in Chapter Seven that this leads to other difficulties for Point Dis-
cretion, thus completing my case against that hypothesis. 
 Thus far, the discussion will be ‘armchair’ in the sense of conduct-
ed independently of physics. In the remaining chapters I discuss ways in 
which physics might affect the conclusions reached in Chapter Four. 
Chapter Five presents the case for my disjunction: the aether is either 
symmetric and continuous, or it is granulated. The case is based on the 
problem of characterising a differentiable manifold.  
 In Chapter Six I take a closer look at discrete theories. I show that 
if, improbably in my judgement, String Theory or some variant turns out 
to be correct then we should reject discrete theories. The reason for this 
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is that String Theory and its variants rebut the underminer for the prima 
facie persuasive Argument from Scale Invariance, namely that discrete 
theories posit an arbitrary scale for distance. The underminer is based on 
the significance of the Planck length. Another current research program, 
Loop Quantum Gravity, initially seems to support a discrete theory but 
on closer examination fails to. A third program, which has not been re-
ported on as widely, is Causal Set theory. This is a commendably simple 
approach and is usually based on Point Discretion, but it can be adapted 
to granule hypotheses such as Extended Simples. 
 I end Chapter Six by considering some metaphysical arguments in 
favour of discrete Time, and I argue that these do not give further sup-
port to discrete theories of the aether.  
 In Chapter Seven I consider how we can characterise suitably 
symmetric aether. Finally I speculate what a ‘theory of everything’ 
would look like in the two cases being considered, namely granules and 
symmetry. And I provide a consideration to suggest that the symmetry 
intuition should trump the simplicity one.  
  
3. The metaphysics of structure and characterisation problems 
The aether has layers of, metaphysically or nomologically necessary, 
structure. There is the mereological structure, the topological and, ac-
cording to most theories of physics, a differentiable structure. We seek 
not merely to describe this structure in a way that enables us to distin-
guish various hypotheses, but in a way that enables us to understand 
what the aether is. 
 I would be nice to say that this requires us to describe the aether’s 
essential, as opposed to accidental, properties. Or maybe it is to describe 
the aether in an intrinsic rather than an extrinsic way. Many readers will, 
however, deny that there can be accidental but non-contingent proper-
ties, and reject the intrinsic/extrinsic distinction in the case of necessary 
properties. So neither of these is an accommodating ways of thinking 
about the necessary structure of the aether. In their place, I shall rely up-
on the way the characterisation helps us understand what is being char-
acterised. Hence we should avoid back-to-front characterisations, that is, 
those that reverse the order of explanation. Thus we should, for the most 
part, avoid characterising the coordinate-independent in terms of coordi-
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nates or the frame independent in terms of relativistic frames of refer-
ence. Likewise we should, for the most part, avoid offering characterisa-
tions using set-theoretic constructions. I use the qualification ‘for the 
most part’ because we have to judge these characterisations on a case by 
case basis. For instance, if the best metaphysics cum physics requires 
there to be a unique ‘privileged’ relativistic frame then there is no gen-
eral requirement to avoid using this choice of frame in characterising 
various structures. Again, sometimes what we are characterising clearly 
is a set, so a set-theoretic construction does not reverse the order of ex-
planation. For example, if asked to characterise a group, in the mathema-
ticians’ sense of course I would say that a group is a set whose members. 
. . . By contrast, I think the ‘definition’ of real numbers as sets of ration-
als is back-to-front, because the rationals are real numbers and so we are 
attempting to characterise the reals generally in terms of sets of some of 
them.24 
 This requirement sets up what I call the characterisation problem 
for a given structure: how to describe it without cheating, that is, revers-
ing the order of explanation. Suppose, for example, we want to charac-
terise a regular tetrahedron. We could explain, to a child, say, what we 
are talking about just by showing examples of (almost) regular tetrahe-
dra, contrasting with examples of clearly irregular tetrahedra, prisms, 
square pyramids, cones, cubes and so on. The child will soon have a 
concept of regular tetrahedron. But how do we characterise it? One 
proper way is to say a regular tetrahedron is a finite convex solid that has 
triangular faces of the same area, meeting in threes at each of four verti-
ces and having six edges of the same length. It is back-to-front to say 
that a regular tetrahedron is the regular solid with the fewest number of 
faces, because that compares it with other regular solids, whose charac-
terisation is no more fundamental.  
 But is it back-to-front to say that the regular tetrahedron is the con-
vex polyhedron whose group of (orientation preserving) rotational sym-

                                                 

24  For example, I would reject the characterisation of π as {x: ∀y((0 < y < x) ⊃ 
(siny > 0))}, where x and y range over rationals, and ‘⊃’ is the material con-
ditional.  
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metries is isomorphic to a certain twelve-member group, namely A4?25 I 
hold that this is a satisfactory characterisation because symmetry is an 
essential component of regularity, in the sense in which Thaetetus dis-
covered that there were precisely five regular convex polyhedra.26 I have 
two things to say to readers who disagree. The first is that this bears on 
the choice between simplicity and symmetry regarding the structure of 
the aether. If characterisation in terms of symmetry is cheating then it 
may turn out that you are committed to a granulated aether (grit) hypoth-
esis. (See Chapter Seven.) The second is that our disagreement might 
reflect a disagreement over universals. For a distance-and-orientation 
preserving rotation would seem to be a two-place universal. For many 
pairs of faces stand in the very same rotation relation. I follow David 
Armstrong(1978) in taking universals to be constituents of objects (and 
more generally states of affairs). Hence the rotational symmetries that a 
regular tetrahedron possesses are some of its constituents. So it is not 
back-to-front to characterise the regular tetrahedron’s structure in terms 
of these symmetries. By contrast those nominalists such as Lewis who 
think of a relation as a set-theoretic construct out of the things related 
should say that symmetry-theoretic characterisations of structure are 
cheating, because it is back-to-front to characterise something in terms 
of the sets it belongs to.27  
 The characterisation problem will be used in Chapter Five, where it 
will be raised for the case of differentiable structure. 

                                                 

25  Here A4 may in turn be characterised as the von Dyck group D(2, 3, 3), that 
is, the unique-up-to-isomorphism group with three generators a, b and c such 
that a2 = b3 = c3 = abc = Id. 

26  Mathematicians use words such as ‘regular’ or ‘normal’ rather freely to pick 
out some well-behaved species of a mathematical genus, but I am concerned 
with the pre-theoretic idea of a regular polyhedron as opposed to some math-
ematical explication.  

27  Although the claim that sets depend on their members is intuitive, there is, in 
addition, an argument for it. Sets are, some say, required to be well-founded 
in order to avoid paradoxes, and this requirement is only justified by the 
principle that a set depends on its members not vice versa.  
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 This discussion of symmetries leads on to my quasi-realism about 
universals. By that I mean I shall refer to properties and relations with 
apparent commitment to their being universals. I take such quasi-realism 
to be the starting point for the debate between realists and nominalists. 
We speak and think as if there are universals. If such speech and talk can 
be paraphrased without commitment to universals then so be it, but what 
I object to is a double standard, in which some philosopher happily talks 
as if there are universals except when doing metaphysics, when it be-
comes problematic. I would like to emphasise, however, that by ‘real-
ism’ about universals I mean the thesis that universals exist, not the the-
sis that they are fundamental, which I call fundamentalism about univer-
sals. 
 This brings me to the tricky issue of ontological dependence. I of-
ten say that some things, the Xs, exist in virtue of others, the Ys. I take 
this to be synonymous with saying that the Ys depend ontologically on 
the Xs or that the Xs are the ontological grounds for the Ys. I do not as-
sume that readers agree with these judgements, all things considered. 
But I do assume that we have intuitions about dependence, such as Kit 
Fine’s (1995) example of the singleton {b} depending on its member, b. 
In Chapter Two I use an intuition about dependence to support the prem-
ise that every region contains a connected part. The only exemplar that is 
inconsistent with this is the Arntzenius Continuum. In Chapter Three I 
show, however, that this results in no advantage for Borel Continuum' 
over Arntzenius Continuum. This illustrates the way in which I am sup-
posing we have intuitions about ontological dependence without the 
conclusion reached requiring those intuitions to be veridical.  
 An apparent exception to this caution in reliance upon intuitions 
about dependence was my claim that there is only one fundamental kind 
of all-pervading stuff, made above. But there I was at pains to use the 
clay/statue example to enable readers to avoid explicitly saying that the 
less fundamental exists in virtue of the more fundamental.  
 In spite of my official caution, I am an enthusiast for ontological 
dependence, which is more than supervenience (McLaughlin and Ben-
nett 2011). If the X’s depend ontologically on the Ys then, I grant, the 
X’s supervene on the Ys. But ontological dependence, unlike superveni-
ence, is anti-symmetrical: if the Xs depend on the Ys then the Ys do not 
depend on the Xs. If asked to add anything, I would say that ontological 
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grounding is much like causation. In fact I think ontological grounding 
is the same as being a sustaining cause. The chief difference between it 
and efficient causation is that the necessity involved in ontological 
grounding is metaphysical, not merely nomological.  
 And this brings me to my next metaphysical preliminary. I stipulate 
that anything that is metaphysically necessary is also nomologically nec-
essary. With that stipulation in place I can assert that by the necessary 
structure of the aether I mean the nomologically necessary structure. 
Hence I say nothing contrary to the hypothesis that there are metaphysi-
cally possible worlds in which the aether is continuous, in which it is 
discrete, in which there are points, and in which there are none. Indeed, 
nothing I say is contrary to the thesis that there are metaphysically pos-
sible worlds with no aether at all. 
  
4 Kantian objections to latter day metaphysics 
I am no scholar and a fortiori no Kant scholar, but as an intuition-wallah 
I should say something about my appeal to many and varied intuitions, 
and it is convenient to do this by considering some Kantian objections. 
This is especially appropriate because Kant began the Critique of Pure 
Reason by considering Space and Time and someone might hold that he 
was right about them, even if he got carried away later on, using his dis-
covery to cure every wooden leg – from induction to religion. As I inter-
pret him, Kant held that various propositions about (Time and) Space are 
true because they are made true by our ways of (introspecting and) imag-
ining/perceiving. If Kant is right, there is no Space-time in itself, and we 
should only be concerned as to how we may represent things spatio-
temporally. The representation starts with the idea of Cartesian coordi-
nates for Space, and we may develop it to consider the representation of 
Space-time by quadruples of real numbers, then restrict this representa-
tion to overlapping neighbourhoods as in the theory of differentiable 
manifolds, and if necessary consider n-tuples of reals with n > 4.  
 Even those who are otherwise unconvinced by Kant might well 
consider that this representation of Space-time using quadruples of real 
numbers has much to commend it and reflects our situation in the world, 
carrying around as each of us does a set of axes whose origin is here-
now and has four directions: future, forwards, upwards and to the left 
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(or, if you prefer, to the right). If Kant is correct, then I take this to be an 
additional reason to distinguish the aether about which I am a realist, 
from the Space-time, the structure of which could be taken as imposed 
by our imposition of the representing quadruples.  
 To be sure, Kant would go on to deny the possibility of knowing 
the aether as it is in itself. I concede that we neither know the aether, nor 
know that the aether exists. Now, we may contrast knowing something 
with knowing that something is the case.28 The latter is the topic of Get-
tier’s fame and something that analytic philosophers have obsessed 
about; the former is something of which direct perception by sight and 
touch are the paradigms, resulting in metaphors of seeing or feeling real-
ity when discussing non-perceptual knowledge. Plato held that there is 
non-perceptual knowledge of things in themselves, but Kant may well be 
right and Plato wrong in this regard. Contemporary philosophers, how-
ever, talk of intuitions – but not in the same sense as Kant. These could 
perhaps thought of as akin to direct perception, ‘seeing through a glass 
darkly’ maybe, if we mix St Paul with Plato. But they don’t have to be. 
Instead I take intuitions to be beliefs that are: (1) not obviously grounded 
in experience, (2) not inferred from other beliefs, and (3) resilient. The 
third clause is intended to exclude thoughts the believer has but recog-
nises as silly, such as that something nasty will happen because it is Fri-
day 13th. Resilience does not, however, ensure that intuitions are inde-
feasible.  
 I readily grant that intuitions are not knowledge. This is not primari-
ly because they are uncertain. For even on those occasions where a con-
silience of intuitions results in beliefs very close to certainty or where 
the intuition is self-evident, there is something lacking that non-
inferential knowledge is usually considered to have, namely counterfac-
tual dependence on the way things are (Goldman 1976, Nozick 1981). 
Consider, for instance, an intuition that I rely upon and which I call 
Hume’s Razor (Forrest 2009): Necessities are not to be multiplied more 
than necessary. The idea is that you should be reluctant to hypothesise 
that some truth is necessary. If Spinoza was right and all truths are nec-
                                                 

28  The two kinds of knowledge overlap in those cases in which knowing that p 
is knowing the state of affairs that p.  
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essary then, presumably the rest of us would still consider it extravagant 
to posit necessities unnecessarily.  
 Kant also argued that a priori knowledge claims – unless restricted 
in scope – lead to contradictions – the infamous antinomies. Kant’s illus-
trations of this may be construed as cases of conflicting intuitions, and 
merely show that not all intuitions count as knowledge. I also note that 
there is scope for resolving antinomies by making distinctions. Consider, 
for instance, an antinomy that is marginally relevant to this work. Kant 
argues both that the world has no beginning and that it must have one.29 
Whether or not you find Kant’s somewhat obscure arguments persua-
sive, you might perhaps agree that Space-time has no beginning, but 
hold that the physical universe has one. Maybe you hold that the Big 
Bang is the universe’s birth rather than a mid-life crisis. Or you might be 
persuaded by the Kalam argument as presented by William Craig  (Craig 
2000). Any reason for believing aether has a beginning, but Space-time 
does not, provides us with a reason for distinguishing aether from Space-
time. 
 There remains the question of justification: why trust our intui-
tions? Well some of them are self-evident, that is they are obvious in a 
resilient way – they stay obvious even when argued about and reflected 
upon. But some important intuitions, including the reliability of intuition 
itself, are not self-evident. Notoriously, David Hume  drew our attention 
to the way reliance on induction was not self-evident (not ‘intuitive’ in 
his sense of the word). Nor are appeals to Ockham’s Razor, or to sim-
plicity more generally. Should we therefore adopt the sceptical position 
that only self-evident intuitions are to be trusted? No, for as Alvin Plant-
inga (1984) has pointed out that sceptical position can no more be justi-
fied than the intuitions it rejects.  
 I conclude that any attempt at the justification of intuitions that are 
not self-evident is bound to rely on intuitions that are not self-evident 
either, and so be circular (see Hales 2000). In that case, it is tempting to 
try to justify some but not other intuitions: those without which the sci-
                                                 

29  I explicate the concept of a beginning of X to mean an interval of time, in 
some part of which X exists but it is not the case that X  existed before that 
interval. 
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ences would be undermined; those that gave our ancestors a greater 
chance of survival and reproduction; or those that are attributed to divine 
providence. But that does not avoid the circularity of justifying intuitions 
intuitively. So I can do no other than assert that reasoning from intui-
tions is on the whole reliable.30 And if you want to pick and choose, as-
serting the reliability of some but not others, then I am puzzled but I 
cannot argue against you. Let me be more explicit: I assert that intuitions 
are to be trusted unless they are defeated, that is either undercut or rebut-
ted (Pollock 1967). Undercutting, or as I say, undermining, occurs if a 
good case can be made for their having arisen in an unreliable way, re-
buttal if they clash with other beliefs, such as other intuitions. My asser-
tion could be thought of as faith – faith in human reasoning powers – or 
as a Jamesian ‘passional choice’.31 Because the undefeated intuitions 
form the basis of metaphysical reasoning this defence of intuition is also 
a charter for a metaphysicians pride movement. (To all philosophers 
who are still ashamed to be called metaphysicians, I say, ‘Come out of 
the closet!’) 
 It is customary to assert your own intuitive judgements and leave it 
up to others to agree or disagree. I shall follow this convention while 
noting the peculiarity of ignoring the intuitions of others. I hope, howev-
er, that there is a consensus concerning intuitions about the aether, even 
if none can be found when it comes to politics and religion. By a con-
sensus, in this context, I do not mean that all share my intuitions, merely 
that none of my intuitions are judged counter-intuitive by others or vice 
versa.  
  
5. Metaphysics and the philosophy of physics 
One distinguished metaphysician expressed surprise that an investigation 
into Space and Time could contain an a posteriori component. My shift 

                                                 

30  When I say ‘can do no other’ I mean by way of justification. Whether we 
accept the reliability of intuition as a mystery or explain it (in terms of God ) 
is another question.  

31  For a recent defence of ‘passional choices’ see (Bishop 2007).  
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of topic from Space-time to aether deals with that. The opposite is ex-
pressed by the following remark by a philosopher of physics: 

The use of alleged pre-theoretic, a priori intuitions in investigating 
issues of ontology is inappropriate in the context of formulating in-
terpretations of physical theories. 

There are two distinct criticisms implicit in this quote. The first concerns 
the suspicion that the intuitions relied upon are not pre-theoretic but re-
flect, say, immersion in Newtonian physics. My response is that intui-
tions are defeasible and they may, on occasion, be undermined by an ex-
amination of how we came to have them. That some intuitions have been 
undermined is, however, a bad reason for their wholesale rejection. To 
be sure some may find the bad reasoning intuitive but that intuition is 
self-refuting.  
 The other criticism in the quote asserts that there is an intellectual 
activity of ‘formulating interpretations of physical theories’ that is best 
done without resort to intuitions. The criticism illustrates the gap sepa-
rating metaphysics from philosophy of physics. The latter concerns rig-
orous proofs and, as the quote indicates, distrusts arguments based on 
intuition. I have already defended my reliance on intuitions and I chal-
lenge philosophers of physics to explain how we can do without them if 
we are to investigate the reality that scientific realists believe – correctly 
I say – to explain the phenomena.  
 Consider, for example, that paradigm of philosophy of physics, the 
Hole Problem This problem, which delayed General Relativity from 
1913 to 1915, was re-introduced by John Stachel  and subsequently pre-
sented as an argument against realism about Space-time by John Norton  
and John Earman. (Norton 2008). If the Space-time is real there is a fact 
of the matter as to whether a given macroscopic object, a rock say, has a 
given location. We then note that the states defined by the distribution of 
the energy-momentum and the gravitational field can neither be inferred 
from observation nor determined by Einstein’s equations. This is quite 
general, but is most easily illustrated in the case in which we expect 
Special Relativity to be a good approximation, nearly ‘empty’ Space-
time with just a few small well-separated rocks in it. (Of course, I say 
that Space-time would not be nearly empty but rather full of the aether.) 
General Relativity permits a state described as just such an approxima-
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tion to Special Relativity, in which the aether is almost flat everywhere. 
There are, however, infinitely many other solutions including those in 
which the aether is almost flat outside the ‘hole’ and highly curved in-
side it. (The problem arises because General Relativity implies six inde-
pendent equations but the gravitational field requires ten scalar functions 
to specify it.) Other things being equal, it is reasonable to conclude that 
two ‘states’ that are indistinguishable in this way are in fact two descrip-
tions of the same state. But if we do draw this conclusion, then there is 
no fact of the matter as to whether a given event, say the collision of two 
rocks, has a location, for such locational ‘facts’ depend on which ‘state’ 
is used to describe the one true state.  
 This argument relies heavily on an intuition, namely that other 
things being equal it is reasonable to conclude that two ‘states’ that are 
indistinguishable in this way are in fact two descriptions of the same 
state. And this is a metaphysical intuition, one about the things in them-
selves. To be sure, it could be dressed up as a rule of scientific enquiry, 
partly constitutive of the scientific method. I am inclined to agree, but 
treating our reliance upon an a priori metaphysical intuition as constitu-
tive of scientific method in turn shows that science has not and cannot 
emancipate itself from metaphysics.  
 I conclude that the gap between metaphysics and philosophy of 
physics should never have arisen.  
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1. A Survey of Hypotheses about the Aether’s 
Structure  

 
The obvious features of the aether are: (1) its mereological structure, 
namely that it has parts and that some parts of the aether are parts of oth-
er parts; (2) the way parts of the aether vary in extent; and (3) the way 
they vary in quantity. The aim of this chapter is to survey hypotheses 
about these elements of structure. The survey will exhibit the great varie-
ty of the hypotheses between which I will be choosing, and so counter 
the blancmange prejudice, namely the assumption that the aether has no 
interesting structure.  
 The survey will also, I hope, provoke readers into provisionally 
judging them in an a priori way, and so overcome any empiricist scru-
ples they might have. I say ‘provoke’ because it is customary not to 
bother with ‘silly’ or ‘crazy’ hypotheses unless you intend to defend 
them. But this custom covers-up our reliance upon the a priori intuitions 
used to reject them, as does the careless dismissal of such hypotheses on 
grounds of simplicity. At the point where readers exclaim, ‘spare us any 
more hypotheses’ I urge them to be honest about their reliance on the 
(defeasible) a priori.32 
 My survey is carried out subject to certain restrictions. One of these 
is that extent is explicated as diameter; bearing in mind that Relativity 
seems to imply that diameter is frame relative. Likewise the quantity of a 
region will initially be explicated as its hypervolume – the 4 dimensional 
volume analog – although in the next chapter I shall argue that this is not 
always the case. These restrictions are, therefore, simplifications for the 
purposes of exposition.  
 To survey the hypotheses I use the method of coordinate represen-
tation. There are other methods, such as describing the actual structure 
                                                 

32  Recently Laurence Bonjour (1998) has defended rational insight as a source 
of a priori beliefs. This suggests a remarkable faculty. Possibly we have such 
a faculty, and if so the only explanation I find satisfactory is divine provi-
dence. But I see no need to posit it. For I hold to an epistemology in which 
any belief whatever is rational unless there are grounds for questioning it that 
due diligence either has or should have revealed.  
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by noting that adjoining some fictions results in a more familiar struc-
ture. That may be compared to Hartry Field's program of science without 
numbers, where numbers are presented as fictional additions to the phys-
ical entities (Field 1980). Because the method of representation is easier, 
I shall ignore the method of fictions except for some very special cases, 
notably the fictional addition of the empty region. 
 I begin with a brief account of the mereology of the aether, partly 
to introduce ideas that will be needed later, but chiefly to combat the 
blancmange prejudice mentioned above. Although no issues will be set-
tled in this chapter, the sheer variety of hypotheses shows that there is a 
question to be answered as to the mereological structure of aether and 
that it goes beyond the debate over whether there are aether atoms .  
  
1. Aether mereology33  
I begin by restricting attention to full parts of the aether. The contrast is 
with, for example, the putative part of the aether consisting of 50% of 
the aether everywhere. Ockhamist appeals to simplicity support the posi-
tion that all parts of the aether are full parts, but I shall have occasion to 
consider the alternative in Chapter Five. In accordance with this re-
striction to full parts I define a region to be a full part of the aether, and 
concentrate on the mereology of regions. To avoid confusion, I do not 
call parts of Space-time regions.  
 Mereology concerns the part/whole relation, x ≤  y. As is standard, 
I stipulate that everything is part of itself, x ≤  x, and define proper par-
thood, x < y by: x < y if x ≤  y and x ≠  y. I take it as self-evident, and no 
doubt analytic, that parthood is transitive, that is, a part of a part is a 
part, and that proper parthood is anti-reflexive.  
 The other axioms are metaphysical hypotheses, even if we grant 
their non-contingency. For instance, because of the restriction to one 
kind of stuff, the aether, the mereology is taken to be extensional, that is 

                                                 

33  For expositions of mereology see Peter Simons (1987) and Achille Varzi 
(2009). 
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no two non-atomic regions can have the very same regions as proper 
parts.34  
 An upper bound of some regions, the Fs, is defined to be any re-
gion of which every F is a part. A lower bound of the Fs is any region 
that is part of every F. Two regions without a lower bound are said to be 
disjoint. Otherwise they are said to overlap. One of the differences be-
tween the part/whole relation on the aether and many other orderings is 
that there is something, œ, the whole aether, of which every region is 
part, but there is no empty thing, ø, that is part of every region. The other 
difference is that because the relation of being disjoint is of intuitive im-
portance there are two rival ways of explicating the non-technical idea of 
the combination of two or more region into a larger one. I shall stipulate 
that the word ‘sum’ is reserved for this non-technical idea of the combi-
nation operation and not be used as synonymous with fusion, which is 
thus one potential explication of summation. Although the definition of a 
fusion of the Xs is familiar it is somewhat convoluted: a fusion of the Xs 
is some region that overlaps all and only the regions that overlap some 
X. It is customary to speak of the fusion, assuming uniqueness. Unique-
ness of fusion follows from the principle of Weak Supplementation, 
namely that if x is a proper part of y then there is some part z of y dis-
joint from x. Weak Supplementation will be discussed further below.  
 More straightforward than fusion is the idea of the join x∨y of x 
and y, or more generally the join of the Xs, ∨X. It is the least upper 
bound, that is, an upper bound (of x and y or the Xs, respectively) that is 
part of every other upper bound. If there is a join thus defined, then it is 
unique. Joins are one possible explication of sums. Likewise we may 
define the meet (x∧y, or ∧X) as the greatest lower bound, that is, a lower 
bound of which every lower bound is part. Clearly disjoint regions have 
no meet. It is, however, intuitive that overlapping regions always do. If 
there is a meet then it is unique.  
  
Some hypotheses about mereology 

                                                 

34  Controversies about extensionality (Varzi 2009) arise because of the way one 
thing can be constituted by another, as in the lump of clay and the statue.  
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One way of assuming more than the minimum amount of mereology is 
to make the plausible supposition that any two overlapping regions have 
a meet and any two regions a join. Likewise it is intuitive that both the 
distributivity laws hold. 35 To state the laws neatly we take the meet of 
disjoint regions to be the fictional empty region, ø. If we adjoin this fic-
tional region ø, then I say we are considering a lattice of regions, reserv-
ing the term ‘mereology’ for the system of real regions. So a distributive 
lattice of regions is one in which any two members have a join and a 
meet and the distributive laws hold: x∧(y∨z) = (x∧y)∨(x∧z) and 
x∨(y∧z) = (x∨y)∧(x∨z). A mereology whose lattice is distributive will 
be called a distributive mereology. 
 Another operation of interest on a lattice is the complement ¬x of a 
region x. This is the join of all the regions disjoint from x. Clearly ¬ø = 
œ and ¬œ =ø. If the distributive laws hold then the complement of a join 
is the meet of the complements, and the complement of a meet the join 
of the complements. If in addition, for any x, ¬¬x = x, then a distributive 
lattice is said to be Boolean, as is the corresponding mereology.  
 We may also define the difference x – y as the join of all the parts 
of x disjoint from y. In a lattice x – y = x∧¬y.  
 It is intuitive that the mereology of the aether is Boolean as are all 
the four exemplars. The cases of infinite joins and meets are not so clear. 
 If finite meets distribute over arbitrary joins, the mereology be-
comes a complete Heyting lattice if the fictional empty region ø is ad-
joined.36 I call this a complete Heyting mereology. It may be thought of 
as the result of weakening classical mereology by abandoning Weak 
Supplementation.  

                                                 

35  The necessary and sufficient condition for either of the two distributivity 
laws is that (even including the fictional empty region ø) there are no five re-
gions that instantiate the mereological relations represented by the Hasse di-
agrams M5 and N5. As a corollary either distributivity laws implies the other 
(Grätzer 1971).  

36  The categories of complete Heyting algebras, frames and locales have the 
same objects, which I call complete Heyting lattices, but differ in their mor-
phisms. See (Johnstone 1982.) 
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 Classical mereology (restricted to regions) or general extensional 
mereology as it is widely called, is obtained by adjoining to the transitiv-
ity and anti-reflexivity of parthood the one, deceptively simple, axiom 
that any regions have a unique fusion. This implies that the unique fu-
sion is a join. In fact it shows that if we adjoin the fictional empty region 
the mereology becomes a complete Boolean algebra. The principles of 
classical mereology imply those of complete Heyting mereology but the 
converse is not the case. The difference between classical mereology and 
(non-classical) complete Heyting mereology may be illustrated in a heu-
ristic way by considering the case in which every region has positive di-
ameter but there is a point particle. Then in classical mereology the par-
ticle should either be inside a given region or outside it, while in com-
plete Heyting mereology the particle could as it were be sitting on the 
fence between two regions.  
 The case for classical mereology is based upon the intuitive princi-
ple of Weak Supplementation, namely that if x is a proper part of y then 
there is some part z of y disjoint from x. From this it follows that the join 
of some regions must be a fusion, and that any fusion must be the join. 
Classical mereology follows from Weak Supplementation together with 
the principle that any regions have a fusion. Although I consider Weak 
Supplementation somewhat intuitive, I want to contrast it with a much 
firmer intuition, Interior Part Supplementation: 

If x is an interior part of y then there is some part z of y dis-
joint from x.  

To say that x is an interior part of y is to say that x is separated from 
every region z disjoint from y. Separation may in turn be characterised 
in the continuous case by saying that two regions x and y are separated if 
they are a positive distance apart. (See Chapter Two, Section Three, for 
further discussion of separation). In the next chapter I consider a premise 
(Premise Eight: Hypervolume Supplementation) that is more intuitive 
than Weak but less intuitive than Interior Part Supplementation. 
 Suppose we do not assume Weak Supplementation but assume the 
lattice obtained by adjoining ø is a complete Heyting lattice. Then the 
complement ¬x of x is defined, as above, as the join of all the y disjoint 
from x. It follows that x ≤  ¬¬x. If x = ¬¬x then x is said to be regular. 
The regular members of a complete Heyting lattice form a complete Bool-
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ean lattice (although the join in the subsystem of regular regions is not al-
ways the same as the join in the system of all the regions). One way to ob-
tain a classical mereology, then, is fictionally to identify regions x and y 
that are classically equivalent in the sense that ¬ ¬x = ¬ ¬ y.  
  
Explicating summation 
Initially it is not clear whether the non-technical idea of the sum should 
be explicated as join or fusion, so it is worth considering the difference, 
if there is one. To be sure in classical mereology any regions have a 
unique fusion, which is their least upper bound, so there is no difference, 
but classical mereology, although intuitive, is defeasible.  
 I now argue that the sum is a join that is also a fusion. First, I note 
that if the join of the Xs exists then it overlaps every region that overlaps 
some X. Hence, if it fails to be a fusion, that is because it overlaps some 
region disjoint from every X, and hence has a part disjoint from every X, 
which is not what we expect from the sum of the Xs.  
 Next I consider an example. Because I am here considering the 
general concept of summation I am not required to restrict myself to the 
aether but I may consider Time in isolation from Space. In that case, one 
hypothesis we might consider is that all Time’s parts are intervals, rep-
resented by sets of real numbers of the form {t: a < t ≤  b}, where a < b 
and we allow as special cases a = -∞ and b = ∞.37 Call this hypothesis 
Intervals Only. It generalises to the aether, where it becomes the hypoth-
esis that all regions must be convex, but I find that much less intuitive 
than Intervals Only for Time. Now consider the two intervals c and d 
represented by {t: 1 < t ≤  2} and {t: 3 < t ≤  4}. They have a join e rep-
resented by {t: 1 < t ≤  4}. But they have no fusion. Intuitively they have 
no sum because the sum, if it existed would have to be represented by {t: 
1 < t ≤  2} ∪{t: 3 t ≤  4}, but on Intervals Only there is no such part of 
Time. This example supports the requirement that the sum of regions 
should be a fusion. 
 On the other hand, it is intuitive that the sum of regions contains 
every one of them as parts, so the sum, if it exists, must be an upper 

                                                 

37  The use of the half-open intervals is not essential for the example.  
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bound. If it is not a least upper bound then why should not some smaller 
one deserve to be considered a sum? Intuitively a sum, if it exists, should 
be unique. Joins are unique but fusions not always so. Therefore the sum 
should be the join. I explicate the idea of the sum, then, as a join that is 
also a fusion. One intuitively appealing requirement for mereology is, 
then, that any Fs have a sum, and hence a join that is also a fusion of the 
Fs. This will be defended in the next chapter. It is, however, weaker than 
classical mereology, which requires that fusions be unique. In fact it 
holds in a complete Heyting mereology, in which there can be two re-
gions u and v, where u is a maximal proper part of v. In that case u is a 
fusion of v and vice versa. Rather than take this as counter-intuitive, I 
think we should grant that, outside classical mereology, fusion fails to 
explicate summation.  
 
Simples and other atoms 
Given classical mereology any region x ≠  œ has a unique complement. 
This enables us to divide œ into atoms and gunk, where an atom is a part 
that is not the sum of two disjoint parts and any part of gunk has a prop-
er part. In classical mereology atoms coincide with simples, that is, parts 
of œ with no proper parts. In that case, either there are no atoms, so ae-
ther is gunk, or the aether is the sum of atoms, in which case there is no 
gunk, or the aether is the sum of two portions, the sum of all atoms and 
the sum of all gunk. I reject the latter hypothesis on Ockhamist grounds. 
The only further question of mereological interest is then just how many 
atoms there are or how many parts to gunk. If, however, mereology is 
non-classical but the aether is the sum of atoms, then by definition all 
simples are atoms but it is an open question whether all atoms are sim-
ples.  
  
The size of a mereology 
‘How big is the mereology of regions?’ Here the only answers that we 
are tempted to, but should not, ignore are those in which there are too 
many parts to have a cardinal number assigned. For instance, suppose 
the aether, œ, is a hypersphere and is made up of points (regions of zero 
diameter). Then each point might be an exact replica of the whole of œ, 
with its own diameter function, which might then be considered to be of 
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infinitesimal amount. We might also consider the hypothesis that what 
we think of as the whole of aether is but a point in another, qualitatively 
identical region. By itself this does not provide an exotic mereology, it is 
gunk with no more regions than there are real numbers. Now, however, 
let us go further and suppose that for every limit ordinal α there is a 
point corresponding to every sequence of ‘worlds within worlds’ in-
dexed by the ordinals less than α. The resulting hypothesis is one of hy-
pergunk, (Nolan 2004, Hazen 2004) in which there is an absolute infini-
ty of regions, that is, more than that of any set.  
  
A survey of hypotheses about mereology 
Even before we consider diameters and volumes we have, then, quite a 
variety of hypotheses about the structure of the aether. Of these the ones 
that I take to be most significant are hypotheses about gunk versus at-
oms, and about the number of regions along with the following hypothe-
ses, which I have already described. 

Distributive mereology: If we adjoin ø, any two regions have a join 
and a meet and the distributivity principles hold. 

Boolean mereology: A distributive mereology, whose lattice is 
Boolean 

Summation mereology: A lattice mereology in which any regions 
have a join that is also a fusion. 

Complete Heyting mereology: A summation mereology where the 
following infinite distributivity principle holds in the lattice: 

For any x and any Fs, the meet of x with the join of the Fs 
is the join of the meets of x with individual Fs 

Classical mereology: A mereology for which any regions have a 
unique fusion, so if ø is adjoined the lattice is complete Boole-
an.38 

                                                 

38  The initially plausible hypothesis that classical mereology holds for the ae-
ther does not imply that it holds more generally. I have suggested that sets 
can be replaced by pseudo-sets, which have as their pseudo-members parts. 
Thus, {b}*, the pseudo-singleton of b, has b as a proper part that has every 
proper part of {b}* as a part, and so there is no part x ≠  {b}* such that {b}* 
is the sum of b and x (Forrest 2002).  
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A classical mereology must be complete Heyting and Boolean. A com-
plete Heyting mereology must be a summation mereology. And a sum-
mation mereology must be a distributive mereology. A Boolean mereol-
ogy that is also a summation mereology must be classical. A summation 
mereology that satisfies Weak Supplementation must be classical.  
 All these hypotheses about mereology have curmudgeon variants, 
obtained from the same lattices but with the qualification that not only ø 
but also some joins of disjoint regions are fictional. These fictions in-
clude all the joins of the regions that do not touch. The intuition behind 
these curmudgeon variants is that if a ‘region’ is disconnected then ‘it’ is 
in fact many regions, not one. In the next chapter I undermine this intui-
tion. I also consider that this intuition is defeated by the following Scat-
tered Object Argument. The first premise is that there are scattered mate-
rial objects. The second is that a scattered object is constituted by a scat-
tered region. So there are scattered regions. Although quantum theory 
clouds our understanding of such things, I claim that familiar objects, 
including ourselves, are scattered, consisting of nuclei that never touch 
each other, together with electrons that never touch the nuclei. This sup-
ports the first premise. The second premise could be rejected on the 
grounds that a material object is constituted by many regions not a single 
one. To that I reply that this introduces a mysterious mode of constitu-
tion to be contrasted with the way in which a single region constitutes a 
material object.39 
 The Scattered Object Argument is not totally persuasive, so it is 
worth bearing in mind curmudgeon variants. Of the exemplars, one, 
Arntzenius Continuum has no curmudgeon variant, because it implies 
that there are regions without connected parts. (See Chapter Two.) So 
curmudgeons should reject rather than modify it. Otherwise, all the re-
gions are sums of connected ones and curmudgeons may treat them as 
fictions. Apparent reference to disconnected regions may then be para-
phrased as plural reference to the connected parts.  
 Another family of hypotheses is obtained by proposing that a 
countable family of regions has a join and a meet but not all uncountable 
                                                 

39  The only difference between the material object and the region is that some 
accidental properties of the region are essential properties of the object   



 

 

36

families do. The case for the existence of arbitrary sums is based on the 
intuition that unrestricted principles are more plausible than restricted 
variants. I note that as a reason for preferring unrestricted summation.  
 I list these hypotheses because they are supported by distinct intui-
tions, but the reader might supplement the list using Peter Simon's thor-
ough discussion (1987). My purpose is to emphasise the variety of hy-
potheses, and so open up the question of the mereological structure of 
aether, rather than taking it for granted that classical mereology holds. 
As far as I can see, the case for classical mereology is based on two 
premises: (1) Weak Supplementation, which is intuitive but not as firmly 
so as the analog based on interior parthood, mentioned above; and (2) 
Universal Summation, which has an advantage over Countable Summa-
tion, but only because unrestricted rules are simpler than restricted ones. 
The resulting support is genuine but not especially strong. 
  
2. Coordinate representation 
If the aether has the structure of a manifold, it is the join of suitable 
overlapping regions each of which has a coordinate representation, but 
there may not be a representation of the whole aether.40 If, however, we 
are concerned only with the local structure of the aether that complica-
tion is irrelevant. So, one way of examining this local structure is to rep-
resent regions by sets of quadruples. I require the diameter and hyper-
volume of a region to be approximately that of the representing set. This 
mention of diameters and hypervolumes might alarm readers for neither 
is fundamental to the description of regions. Diameter is frame-relative, 
and hypervolume may be replaced by the greater-hypervolume-than or-
dering. But my initial aim is to use our intuitions about hypervolume and 
diameter in order to rank hypotheses, delaying their further discussion 
                                                 

40  I shall have more to say about manifolds in Chapters Four and Five. A 4 di-
mensional aether-manifold is the sum of (mereo-) topologically open regions 
uj, j = 1, 2 etc, where, for each j, uj is represented by an open subset of ℜ4, 
the topological space of all quadruples of reals, in such a way that the open 
parts of uj are in one to one correspondence with some of the open subsets of 
ℜ4. We may always suppose that for each j, uj is represented by the whole of 
ℜ4. 
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until Chapter Four. That is quite compatible with diameter and hyper-
volume being derived from more fundamental relations. To be sure, the 
diameter depends on which relativistic frame is used, but that is of no 
concern in this chapter because we are representing regions using coor-
dinate quadruples – any such representation already requires a choice of 
coordinate axes, and hence a frame. 
 Concentrating on the local structure if necessary, I take the aether, 
œ, to be represented using some or all the coordinate quadruples in some 
open convex set Œ, so Œ ⊆ ℜ4 the set of all quadruples of real numbers. 
Readers may choose to consider the special case in which Œ = ℜ4, with 
no loss of generality relevant to this chapter.  
 ℜ4 is equipped with a norm, that is, the distance from <0,0,0,0>, 
defined by ||<t,x,y,z>|| = √(t2 + x2 + y2 + z2), and with the Lebesgue 
measure µ. I use the technical phrase ‘Lebesgue measure’ in place of 
‘hypervolume’ because I am considering sets of quadruples rather than 
regions. The basic idea is that the Lebesgue measure of a set of quadru-
ples is the hypervolume of a region in a fictitious 4 dimensional Euclid-
ean space whose points are represented using Cartesian coordinates t, x, 
y and z. 41 
 The distance between quadruples ξ and η is ||ξ - η||. If X ⊆ ℜ4, 
then |X|, the diameter of X = sup{||ξ - η||: ξ∈ X, η ∈ X}, that is, is the 
least upper bound of {||ξ - η||: ξ∈ X, η ∈ X} or +∞ if there is no upper 

                                                 

41  More formally, the Lebesgue measure µ is uniquely characterised as follows: 
1. If a, b, c, d, e, f, g and h are real numbers with a ≤ b, c ≤ d, e ≤ f, g ≤ h 

then µ({<t,x,y,z>: a ≤ t ≤ b, c ≤ x ≤ d, e ≤ y ≤ f, g ≤ z ≤ h}) = (b – a)(d – 
c)(f – e)(h – g).  

2. The Lebesgue measure is a non-negative real number or + ∞ 
3. If X ⊂ Y and X and Y have Lebesgue measures then µ(X) ≤  µ(Y). 
4. If X ⊂ Y ⊂ Z and if X and Z have the same Lebesgue measure then Y 

has a Lebesgue measure.  
5. Lebesgue measure is countably additive on pairwise disjoint sets. That is, 

for any countable sequence Xm of sets of quadruples such that Xm∩Xn= 
Ø if n ≠  m, µ(∪Xm) = ∑µ(Xm), provided all the Xm have a Lebesgue 
measure. 
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bound. It follows that if ξ is a quadruple, ||ξ|| = |{ξ,<0,0,0,0>}|, so unless 
ξ = <0,0,0,0> ||ξ|| ≠ |{ξ}|.  
 ℜ4 has a topology, namely a family of open subsets T of ℜ4 con-
taining Ø and ℜ4 itself, such that T is closed under the operations of fi-
nite intersection and arbitrary union. T is specified as follows: a set U is 
open just in case, for any ξ ∈ U there is some positive number ε such 
that if ||η - ξ|| < ε then η ∈ U. A closed set is one whose complement is 
open. It follows that both the empty set ∅ and the set of all quadruples, 
ℜ4 are both open and closed. No other sets of quadruples have that dis-
tinction. The closure of a set is the intersection of all the closed sets that 
include it, and the interior of a set is the union of all the open sets in-
cluded in it. The closure of any set is closed and the interior of any set is 
open. A set is said to be regular open (also called perfectly open) if it is 
the interior of its closure. A non-empty open set is said to be connected 
if it is not the union of two disjoint non-empty open sets. So ℜ4 is itself 
connected. 
 A representation of the aether is a mapping Φ assigning to any re-
gion u one or more non-empty sets of quadruples of real numbers Φ(u). 
For the moment I consider the case in which the representation is a sin-
gle-valued function, that is, it assigns a single set of quadruples to a re-
gion. I require that diam(u) ≈ |Φ(u)|. I require that if u has a volume and 
if Φ(u) has Lebesgue measure µ(Φ(u)), then hvol(u) ≈ µ(Φ(u)). Here di-
am(u) is the diameter of u and hvol(u) is the hyper-volume of u, the 4 
dimensional analog of ordinary volume. The symbol ‘≈’, used for ap-
proximate equality, is required in place of ‘=‘ for two reasons. The first 
and most straightforward is that if the aether is curved there will be a 
distortion due to the curvature. We may restrict attention to a region 
chosen so that this is no more than 1% and largely ignore this distortion 
as irrelevant. The second is more serious. Something peculiar might go 
on when we reach the Planck barrier. Suppose K ≈ 1044, so (1/K)sec is 
of the order of magnitude of Planck time. For instance Point Discretion 
might be correct with some K4 points in a hypercube of side one (light) 
second. In that case there could be further distortion so that, in (light) 
second units, diam(u) is within 1% of |Φ(u)| ± 1/K. Likewise we might 
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suppose that hvol(u) is within 1% of µ(Φ(u)) ± 1/K4.The details do not 
matter much and I continue to write diam(u) ≈ |Φ(u)| and hvol(u) ≈ 
µ(Φ(u)). 
 The representation should preserve the part/whole structure: for all 
parts u, v of œ, if u ≤ v then Φ(u) ⊆ Φ(v) We should not assume, how-
ever, that the representation is faithful, that is a one to one correspond-
ence, in the sense that if u ≠ v then Φ(u) ≠ Φ(v). For if there are points u 
and v an infinitesimal distance apart then there is a coordinate quadruple 
<t,x,y,z> such that Φ(u) = Φ(v) ={<t,x,y,z>}.  
 Even if it is faithful, the coordinate representation might not pre-
serve joins and meets. The most familiar example is Tarski Continuum,, 
the hypothesis that the regions are represented faithfully by precisely 
those sets that are non-empty regular open sets of coordinate quadruples 
(Tarski 1956). One of the nice features about Tarski Continuum is that 
the regions satisfy the principles for classical mereology because any 
regions, even infinitely many, have a join and that join is the unique fu-
sion of the regions. In fact for any non-empty set of regions W, Φ(∨W) 
is the interior of the closure of ∪{Φ(w): w ∈ W}. But the representation 
does not always preserve joins, as the following example shows. In this 
case we suppose the aether œ is infinite and the set representing it, Œ,  is 
the set of all quadruples, but the example copuld be restricted to the case 
in which  Œ is an open ball of coordinate quadruples.  The set of quad-
ruples has a left open half L = {<t,x,y,z>: x < 0} and a right open half R 
= {<t,x,y,z>: x > 0} with a hyperplane H = {<t,x,y,z>: x = 0} separating 
them. So Œ = L∪H∪R Given Tarski Continuum, L represents a region 
u, R represents a region v and H fails to represent, because it is not open. 
The interior of the closure of L∪R is L∪H∪R = Œ.  So  œ = u∨v, even 
though Œ = L∪H∪R ≠ L∪R. A similar result holds if all regions are 
represented by sets of quadruples of 4 dimensions. Both these hypothe-
ses violate Weak Supplementation, as Hud Hudson notes (2005: 50-56). 
 Should we prefer hypotheses with greater restrictions on regions? In 
that case we should prefer Tarski Continuum to the hypothesis that the 
regions correspond to all non-empty open sets, which in turn should be 
preferred to the hypothesis that they correspond to all four-dimensional 
regions. And in that case all these hypotheses should be preferred to the 
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Orthodoxy that all non-empty sets correspond to regions. Or should we 
argue that the fewer and simpler the constraints the better? That would 
support the Orthodoxy. Neither, I say! For both ways of arguing assume 
there exist possible points corresponding to all coordinate quadruples 
and that our hypothesis is about which of these possible points are actu-
al. We should not forget that the sets of coordinate quadruples are repre-
sentations of the parts of œ and so hypotheses about these sets do not 
describe the intrinsic structure of the aether. The criteria of simplicity 
apply to the intrinsic structure not to the way that structure is represent-
ed.  
  
3. The Axiom of Choice and Banach Tarski. 
The Axiom of Choice is intuitive, as shown by the way that it requires 
practice even to notice its use. But the occurrence of non-measurable 
sets (e.g. sets of coordinate quadruples lacking any Lebesgue measure, 
even 0 or ∞) is also somewhat surprising, and Solovay has shown that if 
set theory with the Axiom of Choice is consistent then so is set theory in 
which there are no non-measurable sets (1970). I ask, then, how reject-
ing the Axiom of Choice would affect the investigation of the structure 
of the aether. Consider, for instance, the Orthodoxy that any non-empty 
set of coordinate quadruples represents one and only one region, and so, 
in particular, every singleton represents an point. Given realism about 
sets of quadruples, there is a fact of the matter as to whether the Axiom 
of Choice holds. If it does, then the celebrated Banach Tarski theorem  
also holds.42 Hence there are disjoint regions b1, b2, b3, b4, b5; c1, c2, 
c3, c4, and c5 such that each bj is represented as having the same shape 
and diameter as the corresponding cj, and yet the join of the bj is a ball 
of 1 cm radius lasting for 1 second while the join of the cj is a ball of 2 
cm radius lasting also for 1 second. This result implies that not all re-
gions have a hypervolume, provided we assume: (1) that regions that are 
represented as congruent have approximately equal hypervolume – with-
in 5% is far more accurate than required; and (2) that the hypervolume 

                                                 

42  See Wagon 1985) for an account of the Banach Tarski theorem. In (Forrest 
2004) I use Banach Tarski to argue against the Orthodoxy.  
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of the join of finitely many disjoint regions is the sum of their hypervol-
umes.43 For in that case, if all the regions have a hypervolume then that 
of the ball lasting one second would equal that of one of twice the radi-
us, to within 5%, which is absurd. The assumption that regions repre-
sented by congruent sets of quadruples have volumes within 5% follows 
from the requirement that the diameters are represented to within 1% ± 
1/K, and the obvious assumption that K is greater than 1000. For then 
the error in hypervolumes is less than (1.1)4%, which is less than 5%. 
Curmudgeons who insist all regions are connected may still obtain re-
gions to which no hypervolume can be assigned. They will differ from 
b1, b2, b3, b4, b5; c1, c2, c3, c4, and c5 by regions of zero hypervolume, 
but they will not be disjoint.  
 The Banach Tarski theorem does not hold if we suppose Solovay’s 
Axiom in place of the Axiom of Choice. In that case the Orthodoxy im-
plies that we may assign a hypervolume to any region, as we intuitively 
expect. The Orthodoxy then has an additional intuitive advantage over 
the two continuous exemplars, Borel and Arntzenius Continuum. For on 
the Orthodoxy all regions are composed of aether points using the one 
basic operation of summation. By contrast, on the hypotheses of Borel 
and Arntzenius Continuum regions are composed of fundamental re-
gions (‘globules’) using two basic operations, summation and difference.  
 Initially, then, the Orthodoxy combined with Solovay’s Axiom 
might well be taken as a serious contender for the structure of the aether, 
and defeat the Axiom of Choice. I have, however, two reasons for reject-
ing this defeater, leaving the Axiom of Choice as a defeasible but unde-
feated intuition.  
 My first reason for taking the Axiom of Choice to be undefeated is 
that the case for there being some non-measurable sets, and hence the 
case against Solovay’s Axiom requires only a special, and especially in-

                                                 

43  Typically we suppose that (hyper)volume is represented by Lebesgue meas-
ure, which satisfies countable additivity. It is noteworthy, therefore, that the 
Banach Tarski theorem only requires (hyper)volume to be finitely additive, 
which is intuitively much more secure than countable additivity.  
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tuitive, instance of the Axiom of Choice.44 For that axiom has been as-
sumed at just one point in the argument, namely that given a suitable 
equivalence relation there exists a cross section – a set that contains just 
one member from each equivalence class. To assume that for any equiv-
alence relation we could find a cross-section would be tantamount to as-
suming the Axiom of Choice itself. But the especially intuitive case be-
ing considered is that in which the equivalence relation is ‘natural’ in 
sense that Lewis uses that term, as opposed to ‘artificial’. (Here an artifi-
cial term is one that would not be used to state a hypothesis if we are to 
assess its simplicity.) 
 The other reason why the Axiom of Choice is an undefeated intui-
tion is that its potential defeater, the Orthodoxy without the Axiom of 
Choice, is not as attractive as might initially appear. The Orthodoxy at-
tracts us because, if it is correct, all regions are sums of points, which 
permits the assertion that all other regions depend for their existence on 
points. Because points may reasonably be taken to be simples this is in 
accordance with the thesis that everything depends ontologically on 
simple things, their properties, and their relations. That may in turn be 

                                                 

44  We could use the proof of the Banach Tarski theorem to illustrate this but an 
easier result due to Giuseppe Vitali suffices to show where an instance of the 
Axiom of Choice is assumed. Consider a circle, of unit radius, and say that 
two points are equivalent if one may be obtained from the other by a rotation 
by a whole number of radians. That is, two points on the circle are equivalent 
if for some integer n, there is a path of length n going around the circle, per-
haps many times, connecting the two points. Now consider a set X contain-
ing just one member of each equivalence class. For any integer n, let X(n) be 
the result of rotating X by n radians. Because there are 2π radians in a full 
circle and because π is irrational, X = X(n) if and only if n = 0. The whole 
circle is the union of all the X(n). If X has a countably additive measure in-
variant under rotation, such as Lebesgue measure, then the whole circle has 
length that is the sum of countably many equal quantities, namely the 
measures of the X(n). Let this measure be η. Then 2π is a countable infinity 
times η. This is impossible. For a countable infinity times η is the least upper 
bound of all Nη for positive whole numbers N. If η = 0 (or infinitesimal) the 
least upper bound is 0 (or infinitesimal, respectively). Otherwise it is infinity, 
but in neither case can it be 2π. 
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argued for by means of the intuitive premises that (1) every composite 
thing depends on the parts of which it is composed and how they are re-
lated, and (2) there cannot be an infinite regress of dependence relations. 
(This is the less obscure half of Kant’s Second Antinomy.) Now suppose 
we reject the Axiom of Choice in order to save the Orthodoxy. Then we 
should rely on the intuition that there is a measure of the quantity of eve-
ry region, namely hypervolume. For it was only the occurrence of non-
measurable sets that might have made us reject that intuition. Within the 
scope of that intuition we have a further intuition expressed b the follow-
ing principle. 

Dependent Quantity: 
If something depends ontologically on some disjoint parts then 
its quantity is independent of the relations between those parts.  

Suppose, then, that b and c depend ontologically on some disjoint parts, 
the Bs and the Cs, respectively, all of which are intrinsic duplicates. And 
suppose there is a one to one correspondence between the Bs and Cs. 
Then the quantity of b should equal that of c. So if regions depend onto-
logically on the point parts of a continuous aether, we may derive a con-
clusion known to have been false at least as far back as Duns Scotus, 
namely that regions whose points are in one to one correspondence have 
the same quantity (Solère 2010: 5-6.) Scotus used the example of two 
concentric circles. To be sure the intuitions relied upon in this argument 
are not very firm but they are strong enough to undermine the case 
against the Axiom of Choice.  
 In addition, I note that thesis that all regions are of maximal dimen-
sion, which I am taking to be 4, itself has some initial appeal in the con-
text of continuous aether. In the next chapter I undermine that intuition, 
replacing it with the thesis that all regions depend on those of 4 dimen-
sions. While I do not attach much weight to that intuition I note that 
when combined with the thesis that everything exists in virtue of simple 
things, their properties, and their relations, it completes the antinomy 
and, for what it is worth, weighs against continuous theories of the ae-
ther rather than supporting the Orthodoxy. 
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4. Some examples of the method of representation 
The method of representation enables us to state various hypotheses 
about which sets of quadruples do the representing. Here are some ex-
amples, starting with the exemplars, the first two of which are discrete 
hypotheses.45 
 
Point Discretion 
The most straightforward case, Point Discretion, is that in which the ae-
ther is the sum of points that are represented by the quadruples of inte-
gers. We can generalise, although that case suffices for the discrete ana-
log of Special Relativity. More generally, then, we suppose there is a set 
of quadruples D and a positive number δ such that if ξ ∈ D, η ∈ D and ξ 
≠  η then ||ξ - η|| > δ. It follows that if D is infinite then it is countable. 
The hypothesis is that all and only the non-empty subsets of D represent 
regions.  
 A variant on Point Discretion would be to consider, for instance, 
points represented by the quadruples of rational numbers in Œ. More 
generally, the points may be represented by a set of quadruples D* that 
is countable but for which there is no positive number δ such that if ξ ∈ 
D*, η ∈ D* and ξ ≠  η then ||ξ - η|| > δ. In fact we might assume that D* 
is dense in Œ, that is, its closure is the whole of Œ as in the case of the 
quadruples of rational numbers.  
 Another variant is the infinite dimensional one in which points are 
represented by sequences of real numbers, for instance by infinite se-
quences all but finitely many members of which are zero. 
 
 
Granulated Aether 
By Granulated Aether I mean Extended Simples and its variants. On the-
se hypotheses there are said to be significant small (presumably Planck 
scale) regions, the granules, represented using a set C of pairwise dis-

                                                 

45  See (Van Bendegem 2009) for a survey of discrete theories of Space. 
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joint, non-empty open connected subsets of Œ.46 It follows that C is ei-
ther finite or countably infinite. Extended Simples states that all and on-
ly the unions of members of C represent regions. So every region is the 
sum of extended simples, which are the granules. 47 In that case the ae-
ther is connected if the interior of the closure of the union of C is con-
nected.  
 Is the aether that constitutes our universe connected? I have no ob-
jection to island universes not connected to our part of the universe. It is 
then a matter for stipulation whether we consider them parts of our uni-
verse. I stipulate that they do not. The variety of disconnectedness that 
concerns my investigation into the structure of the aether is that which 
might occur at some small, presumably Planck, scale. We could, for in-
stance, hypothesise aether simples that are represented by sets of diame-
ter ½ whose centres are quadruples of integers. So there would be gaps 
between them. Either this would just be a silly way of representing Ex-
tended Simples or it would imply the triviality of the topological relation 
of adjacency (touching), because no two simples would touch. Assuming 
we have need of topology that would be a disadvantage. So in neither 
case need we bother with this variant. 
 Some readers might prefer to represent aether simples as the sets of 
quadruples that are the closures of the members of C, but because all we 
                                                 

46  A non-empty open set is said to be connected if it is not the union of two dis-
joint non-empty open sets. 

47  As Varzi (2009) notes, several philosophers have recently defended the idea 
of simples that are extended not just in time but in Space. In particular I note 
Ned Markosian (1998), who, however, argues for the principle that every 
maximally connected thing is a simple, which would have the unhappy con-
sequence that the aether has no proper parts. Simons (2004) defends simples 
from the Geometric Correspondence Principle (Simons 2004: 372), which I 
shall discuss in Chapter Three. David Braddon-Mitchell and Kristie Miller 
(2006) propose a connection between extended simples of what I call the ae-
ther and contemporary physics. See also Hudson (2006), Kris McDaniel 
(2007a), and Ted Sider (2007). One of the aims of this work is to present a 
disjunction between Extended Simples and a symmetric continuous aether 
hypothesis. I shall argue, however, that contemporary physics tends to sup-
port the latter.  
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are doing is representing regions there is no genuine difference between 
theories corresponding to the choice of representations. For the differ-
ence, if there were one, would concerns the boundaries of the aether 
simples, but a boundary would be a proper part, and so there are no 
boundaries of simples.  
 Of special interest is the case in which the members of C are poly-
topes, that is, higher dimensional analogs of polyhedra. In that case I say 
the aether simples are polytopic. For instance they might be represented 
by the 4 dimensional analogs of tetrahedra, the pentatopes. Diagram One 
illustrates the difference between Point Discretion and Extended Simples 
in a 2 dimensional case in which the extended simples are represented as 
right-angled triangular regions.48 

 Diagram One 
  
 The most interesting variant on Extended Simples is Pseudo-set 
Granules, a hypothesis in which closed cells represent atoms but these 
atoms are not simple because the hyperfaces, faces edges and vertices of 
the cells also represent atoms, with only the vertices being simple.49 This 
                                                 

48  Based on the Pinwheel Tiling (Radin 1995),  

49  I call this Pseudo-set Granules, because we could develop a theory of sets, or 
as I called them pseudo-sets, in which the pseudo-singleton of u has u as its 
greatest proper part (Forrest 2002). On this theory the granule is a pseudo-
singleton whose ‘member’ is the sum of all its hyperfaces. 
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fails to satisfy Weak Supplementation, but will turn out to have compen-
sating attractions. 
  
Borel Continuum 
The Borel subsets of Œ are the members of B, where B is the intersec-
tion of all those subsets X of Œ that contain the open sets and where X is 
closed under the operations of countable union and the taking of com-
plements. It follows that B contains all closed sets. Every singleton is 
closed, so B contains every finite and every countably infinite set of co-
ordinate quadruples. One of the important features of Borel sets is that a 
Lebesgue measure (representing hypervolume) can be assigned to them. 
So the weird division used in the Banach Tarski theorem involves sets 
that are not Borel. The Borel Continuum is the hypothesis that all and 
only the non-empty Borel sets represent regions.  
 The Borel Continuum is a hypothesis in which there are points, that 
is, point regions. Variants that likewise have points are the Orthodoxy 
that all the non-empty set of quadruples represent regions, and the 
Lebesgue Continuum that all and only the non-empty measurable sets 
represent regions. Assuming the Axiom of Choice, I have noted that the 
Orthodoxy suffers from Banach Tarski trouble, and that neither the 
Borel nor the Lebesgue Continuum obey the principle of arbitrary fu-
sion. They do, however, satisfy Weak Supplementation and countable 
fusion.  
 Another variant on Borel Continuum  is that in which the regions 
are represented by all non-empty Gδ sets that is, countable intersections 
of open sets. All Gδ sets are Borel sets and they are of mathematical in-
terest because every Lebesgue measurable set differs from a Gδ set by a 
set of measure zero. I reject this hypothesis of Gδ Continuum as inferior 
to Borel Continuum for two reasons, both to do with taking comple-
ments. The first is that Gδ Continuum is not Boolean. For we will be 
able to find a region u such that for any region v disjoint from u there 
will be a region w disjoint from u of which v is a proper part.50 The se-
                                                 

50  To prove this first note that the intersection of two Gδ sets is a Gδ set. There-
fore if v is disjoint from u the representing sets of coordinate quadruples V 
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cond is that if Gδ Continuum held then complex regions would be com-
posed of simpler ones as meets. Initially meets might be thought no 
worse than complements as a way in which some regions depend on 
others. But, although neither taking complements nor countable meets is 
an initially intuitive way of grounding some regions in others, a case can 
be made for taking complements, provided we are realists about absenc-
es. No metaphysician should take absences as fundamental entities, but 
the idea of the absence of u depending on region u is fairly intuitive. 
Then the difference u – v can be understood as the result of combining u 
with the absence of v, and, in particular ¬v = œ – v is a combination of 
the whole of the aether with the absence of v. The intuitive idea here is 
that the absence of v 'eats up' a v-shaped hole in the aether, so adding the 
absence of v subtracts v.  
  
Arntzenius Continuum 
This hypothesis differs from the previous ones in that it is most perspic-
uously stated as a many-valued representation. First we consider an 
equivalence relation on the Borel sets B, that of almost identity. This use 
of ‘almost’ is standard in mathematics and means that something holds 
except on a set of measure zero. So X is almost identical to Y if they dif-
fer by a set of Lebesgue measure zero, that is if X – Y and Y – X are 
both of zero measure. Arntzenius Continuum is obtained by representing 
the regions by equivalence classes of Borel sets. That is, Borel sets X 
and Y represent the same region just in case they differ by a set of meas-
ure zero. All and only the sets of positive measure in B represent re-
gions. The restriction to sets of positive measure is required because a 
set of zero measure is equivalent to Ø and so would represent the fic-
tional empty region ø.  

                                                                                                                                                    
and U respectively will have empty intersection. If V ⊂ Œ – U, there is some 
point p, represented by quadruple ξ, in neither u nor v. Then W = V∪{ξ} is a 
Gδ set representing w and w is disjoint from u. It follows that the required 
result holds provided there is a (non-empty) Gδ set U such that  Œ – U is not 
itself a Gδ set. For example, let U be the set of all quadruples whose first co-
ordinate is irrational.  
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 Every measurable set differs from a Borel set by measure zero and 
so we could as easily have represented the regions as equivalence classes 
of measurable sets.51 Using the Axiom of Choice, we could also have 
selected just one Borel set from each equivalence class, with Ø selected 
from the class of sets of zero measure, to obtain a set B* that represents 
the regions using a single-valued function, but that is messy. 
 To characterise the representation we also need to define the diame-
ter and hypervolume of an equivalence class Z of Borel sets, which must 
approximate that of the region represented. Since every member of Z has 
the same measure, the hypervolume of Z is just the measure of any 
member of Z. The diameter of Z is the greatest lower bound of the diam-
eters of members of Z. That is, we may ignore any set of measure zero 
when considering diameters.  
 The representation of Arntzenius Continuum is more complicated 
than that of the other hypotheses, but it would be a mistake to infer that 
it is a complicated hypothesis. It has the slight advantage over Borel 
Continuum of being a classical mereology and has the advantage over 
the Orthodoxy of assigning hypervolumes to all regions. It has the fur-
ther advantage over Borel Continuum that hypervolume is a faithful 
measure of quantity. That is, there are no two regions whose difference 
is of zero hypervolume.  
 This last advantage needs to be understood correctly, because I have 
deemed that the infinitesimal is zero. Consider, then, the situation in a 
Borel Continuum in which there are regions u and v with u a proper part 
of v such that v – u has ‘zero’ hypervolume.52 That could be interpreted 
as a case in which v - u is of infinitesimal hypervolume. The advantage 
of Arntzenius over Borel Continuum may then be expressed as a dilem-
ma facing Borel Continuum. Either the measure of quantity fails to rec-
ord any difference between u and v, because ‘zero’ means ‘literally zero’ 

                                                 

51  In fact the measurable sets may be characterised thus: If W is measurable 
there are Borel sets X, Y and Z such that W - X ⊆ Y, X - W ⊆ Z, and Y and 
Z have measure zero.  

52  Or consider the case in which u is a proper part of v and u and v have the 
same finite hypervolume.  



 

 

50

or we must resort to infinitesimals. The first horn is uncomfortable be-
cause intuitively there should be a measure of the quantity of the most 
fundamental stuff of which the universe is made. When this stuff was 
identified with matter the quantity was thought to be mass, but the aether 
replaces matter, and so hypervolume is the measure in question. It 
should not, therefore, assign literally zero to any difference. The second 
horn is also somewhat uncomfortable because we have an intuitive dis-
like of the (actual) infinity and the (actual) infinitesimal, as shown by the 
widespread and, I say, deserved, acclaim for the way mathematicians 
such as Augustin-Loius Cauchy  and Karl Weierstrass developed a rig-
orous theory of the calculus free from infinities and infinitesimals.  
 This dilemma is not a conclusive refutation, which is why I called 
its horns uncomfortable not sharp, but, together with the advantage of 
classical mereology, it provides the case for preferring Arntzenius Con-
tinuum over Borel Continuum. In Chapter Three, I shall show that an 
apparent advantage of Borel Continuum, arising from Chapter Two, is 
not genuine.  
  
Open Gunk 
A variant on Arntzenius Continuum may be obtained by taking only the 
non-empty open subsets of Œ to represent regions, and once again treat-
ing as equivalent two sets that differ only by measure zero. In that case, 
if Z is an equivalence class of open sets, ∪Z ∈ Z and I call the union of 
an equivalence class of open sets a maximal open set. So the regions 
may be represented in a one to one fashion by the non-empty maximal 
open sets. This is a complete Heyting mereology.53 I mention it largely 
to exhibit the range of hypotheses. It is one of a variety of hypotheses in 
which regions are represented by open sets and in which summation is 
represented by union. I call these Open Gunk hypotheses. They include 
Locale Continuum, the hypothesis I have already mentioned as rejected 
by Hudson because it violates Weak Supplementation. On it the regions 
                                                 

53  The proofs of this result and of the previous result that for any equivalence 
class Z, ∪Z ∈ Z, rely on the fact that in the topological space of n-tuples of 
real numbers the union of a set X of open sets is the union of some countable 
subset of X.  
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are represented in a one to one way by all the non-empty open subsets of 
Œ. I call it Locale Continuum because of its connection with the theory 
of locales (Johnstone 1982). In Chapter Three I shall explain why I re-
ject them. 
 The method of representation enables is to consider other hypothe-
ses such as the following. 
 
Sparse Continuum 
On this hypothesis, we start with the set S of open convex subsets of Œ 
and consider all complements and finite unions of S as representing re-
gions. More precisely, consider S* the intersection of all the sets Z of 
sets of quadruples that: (1) S ∈ Z; (2) if X ∈ Z and Y ∈ Z then X – Y ∈ 
Z and X∩Y ∈ Z. Then the regions are represented by all and only the 
non-empty members of S*.  
  
Tarski Continuum 
Finally I should mention Tarski’s hypothesis that all and only the non-
empty regular open subsets of Œ represent regions(1956). This is not an 
Open Gunk hypothesis because summation fails to correspond to union 
of sets. It is a classical mereological theory.  
  
Curmudgeon variants 
The restriction that all regions are connected may be expressed easily 
enough if the regions are represented faithfully by open sets. For a non-
empty open set is connected if it is not the union of two disjoint non-
empty open sets. More generally, a region u is connected unless there is 
some positive δ such that u is the sum of regions v and w and no region 
of diameter less δ than overlaps both v and w. So if X is the set of non-
empty sets of quadruples used to represent the regions ignoring cur-
mudgeons, then curmudgeons may represent the regions by Xc ⊂ X, 
where, ifU  ∈ X, U ∈ Xc unless there is some positive δ and U is the un-
ion of V∈ X and W∈ X such that no Y ∈ X of diameter less than δ in-
tersects both V and W.  
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Restrictions on the representation of the whole 
I have assumed that Œ ⊆. ℜ4. A variant is obtained by increasing the 
number of dimensions from 4 to k ≥ 9 and representing curved aether 
without approximation in ℜk. We can do this by relying on John Nash’s 
Imbedding Theorem (Nash 1956). In that case, Œ is a 4-dimensional dif-
ferentiable manifold. We may use the diameter as defined in ℜk but the 
measure is that for the manifold not that for ℜk, which would assign ze-
ro to œ.  
 Another restriction is to the union of the boundaries of non-
overlapping polytopic open sets, of the sort used to represent Extended 
Simples. In that case the aether has only 3 dimensions. We could go fur-
ther and take Œ to be the union of the 1 dimensional edges of the poly-
topes. Yet another restriction, based on discrete Time  would be to take 
Œ to be the union of countably many space-like aether hypersurfaces 
corresponding to a discrete sequence of moments.  
  
Fine structure 
The method of representation directs our attention to the fine structure, if 
there is any, because that is what the representation ignores. I shall not 
be concerned much with fine structure because Ockham’s Razor inclines 
me to deny there is any. Moreover, hypotheses that I will be comparing 
can be stated without commitment to whether or not there is fine struc-
ture. It is, however, instructive to state some hypotheses concerning fine 
structure as part of my overall purpose in this chapter, namely showing 
that there is a great variety of ways the aether might be, for all we know.  
 One kind of fine structure would occur if each region x contains a 
certain quantity of aether and if x has parts that have the same extension 
as x but contain only some of x’s aether. In that case even regions that 
have no proper subregions might fail to be simple having parts consist-
ing of a proportion between 0 and 1 of the aether. This will be briefly 
considered in Chapter Five. 
 Another kind of fine structure occurs if the regions are represented, 
perhaps faithfully, as sets of quadruples of non-standard numbers, say of 
the form x +x´ι + x´ι2 where x, x´ and x´´ are standard real numbers and ι 
an infinitesimal. Call this the fine representation. Then there is a coarse 
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representation obtained by ignoring the infinitesimals. There is an 
equivalence relation that holds between regions u and v just in case they 
have the same coarse representation. If there are points, that is regions of 
zero coarse diameter, then the sum of all the points in a given equiva-
lence class is a maximal point. Consider, for example, the maximal point 
with coarse representation {<0,0,0,0>}. Its fine representation is {< t´ι + 
t´´ι2, x´ι + x´´ι2, y´ι + y´´ι2, z´ι + z´´ι2>: t´, t´´, x´, x´´, y´, y´´, z´, and 
z´´ are standard real numbers}. So in this case the maximal point has the 
structure of an eight dimensional space. If we allowed powers of ι up to 
and including the kth, then the maximal points have 4k dimensions. 
 Another way of hypothesising fine structure is to start with a fine 
representation of the regions as sets of quintuples <w; t, x, y, z> where 
<t, x, y, z> ∈ ℜ4 but w ∈ M, some set with a topology on it, for instance 
a manifold. In that case if there are points, then each maximal point has 
the structure of M, which could be of any number of dimensions. Each 
maximal point might for instance have the structure of a circle so w is an 
angle.  
 This survey of fine structure is not intended as exhaustive but mere-
ly sufficient to add to the enormous variety of structures we can con-
ceive of the aether having. It should be noted that if there is fine struc-
ture a point is not an atom. Because I shall largely ignore fine structure 
the important question is not whether the aether is atomic or gunk but 
whether it has points or not.  
  
5. Extent. 
I am delaying most considerations of structure in addition to the mereo-
logical, but some intuitions about extent and quantity will be required 
for the next chapter. We may measure the extent of a region by means of 
a diameter function, which will assign either ∞ or a non-negative real 
number |x| to each region x. It must satisfy: 

Diam 1: If x ≤  y then |x| ≤  |y|; and  
Diam 2: If x and y overlap, and if they have a join x∨y, then 

|x∨y| ≤  |x|+ |y|. 
It is worth pausing to think about plausible hypotheses in which the join 
is not a fusion to check that Diam2 is rightly stated using the join not the 
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sum. On the Intervals Only hypothesis about Time, joins are not always 
fusions but Diam 2 is still intuitively correct, as it would be if, contrary 
to intuition, we supposed that all regions are convex. 
 Unless the aether is discrete, there is an argument against treating 
diameter as a primitive property, analogous to the arguments of Robin le 
Poidevin (2004) and Tim Maudlin (2007: 86-89)  against a primitive re-
lation of distance. The argument is that Diam2 is a necessary constraint 
on the scalar diameter property, but one that lacks explanation. Necessi-
ties should not be multiplied more than is necessary, so we should not 
treat Diam2 as primitive. My response is that we start with the linear or-
dering due to a relation of being of greater extent, about which we can 
say that no part has greater-extent than the whole.54 Then, paralleling the 
methods of measuring extent with rulers, we quantify this obtaining a 
diameter function (arbitrary up to a scale factor).55 Regarding Diam2, 
suppose we had a measure of extent, call it quasi-diameter, that satisfies 
Diam1 but not Diam2. Then we could define an associated distance rela-
tion between regions u and v as the greatest lower bound of the sums of 
the quasi-diameters of chains of overlapping regions joining u to v.56 
Then the diameter of a region w is the least upper bound of the distances 
between parts of w. This method of characterising the diameter could 
fail if the distance function assigned zero to regions that did not have ze-
ro quasi-diameter, but otherwise we obtain a measure of extent that satis-
fies Diam1 and Diam2. Because Special Relativity implies that the di-
ameter is frame-relative it is unlikely, though, that diameter, or even the 
greater extent relation, is a fundamental feature of the aether. So the de-
tails of deriving the diameter function as a way of measuring extent 

                                                 

54  It is a linear ordering in the sense that: (a) it is transitive; and (b) the derived 
relation of being neither of greater nor of lesser extent is an equivalence rela-
tion. 

55  There is a well developed theory of how quantitative scales can be derived 
from linear orderings given various plausible constraints (Suppes and Zinnes, 
1963) (Luce and Suppes 2002).  

56  Each region in the chain overlaps the next, the first overlaps u, and the last 
overlaps v.  
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should not concern us too much. For the present it suffices that we have 
intuitions about diameters.  
 I define a point as a region of zero diameter, noting that atoms need 
not be points and points need not be atoms. To ensure that all atoms are 
points it suffices that the following holds. 

Covering: Given any positive integer N and any region x, x is cov-
ered by (i.e. is part of the join of) regions of diameter less than 
1/N.  

Clearly Covering fails for the aether simples posited in the Extended 
Simples  hypothesis. 
 There are some (mereo-)topological relations that might be consid-
ered primitive but may be defined in terms of diameter if there is a di-
ameter function, and if Covering holds. I say that the adjacency or 
touching relation  holds between regions x and y (x@y) if for every 
positive integer N there is some region z overlapping both x and y such 
that z has diameter less than 1/N. I say that regions x and y are separated 
if they are not adjacent. I say that x is an interior part of y, x « y if, for 
some positive integer N, every region of diameter less than 1/N that 
overlaps x is part of y. It follows that if x « y and y and z are disjoint 
then x and z are separated. And if x and z are separated then x « ¬z. If 
the mereology is classical, then every region is a complement, and so x «  
y if and only if x is separated from ¬y. 
 Adjacency is an equivalence relation on points. To ensure that the 
join of an equivalence class of points is a point it suffices to assume that 
any two regions have a join together with the following: 

Remote Parts: Given any region x and any positive integer N, 
x has parts y and z such that any region overlapping both y 
and z has diameter at least |x| - 1/N.  

  
 
 
6. Quantity 
The quantity of a region is measured by its hypervolume, a function as-
signing either 0, ∞ or some positive real number to all or some of the 
regions. It is intuitive that every region has a hypervolume, but this in-
tuition will be delayed until the next chapter. Meanwhile I am permitting 
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the Orthodoxy, as I call it, in which the regions correspond in a one to 
one fashion to all the non-empty sets of coordinate quadruples. Assum-
ing the Axiom of Choice, the Banach Tarski theorem then shows that not 
every region can be assigned a hypervolume. Therefore, when I state the 
rules governing hypervolumes I am restricting them, if necessary, to 
those regions that have a hypervolume (abbreviated to hvol). We have:  

Superadditivity: If regions u and v are disjoint and w is a region 
such that u and v are both parts of w, then hvol(w) ≥ hvol(u) + 
hvol(v). 

If u and v have a sum, u+v, Subadditivity should also hold, namely that 
hvol(u+v) ≤  hvol(u) + hvol(v). 
 I note, however, that summation is a rather special operation on re-
gions, and in a survey of hypotheses we should not prematurely assume 
the existence of sums. In place of Subadditivity I propose therefore:  

Approximate Subadditivity: If u < v, then given any positive integer 
N, there is some positive integer n and pairwise disjoint regions 
u0, u1,. . . , un such that u0 = u, uj < v and ∑{hvol(uj): j = 0,. . . 
, n} ≥  hvol(v) –1/N. 

  
Conclusions of survey 
This chapter has shown that there are an enormous variety of available 
hypotheses about the structure of the aether, between which to choose. 
My procedure in this work is to begin with some intuitive, considera-
tions and then examine the kinds of extra structure that the aether might 
be supposed to have, including the structures posited by current physics. 
My starting point will be to show that we have inconsistent intuitions 
about the aether and to generate a range of four hypotheses that give up 
just one intuition each, the exemplars.  
  
 
 

2.  Conflicting Intuitions 
 
In the previous chapter I exhibited the variety of hypotheses about the 
aether’s necessary structure. If there was a well supported unified phys-
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ics, then my task would that of the ‘under-labourer’ namely one of inter-
pretation and I could begin by describing the physics. As it is, the phys-
ics, especially quantum gravity, is as speculative as the metaphysics, and 
I find it convenient to discuss the structure of the aether a priori, using 
metaphysical intuitions, and then consider what further structure might 
be required by physics. Now, one way to assess the hypotheses a priori 
would be to go through them one by one listing their pros and cons. The 
sheer number of hypotheses is an obstacle to the survey-and-judge 
method of reaching a rational conclusion. Instead I proceed by first argu-
ing, in this chapter, that our intuitions are inconsistent and then, in the 
next, discussing which to abandon.57  
 In this chapter, then, I state eleven premises, each of which is either 
directly intuitive or supported by intuitions. They are not jointly con-
sistent so at least one premise will have to go. 
  
1. Four stipulations 
1. The sum of the aether regions being considered, œ, is taken to be a 

local region, say, the aether within one (light) year of Earth now. 
That is because in this and the next chapter I concentrate on the lo-
cal structure of the aether, not such global features as whether it has 
the shape like a Klein bottle. As a corollary, when it is required I 
shall be assuming that hvol(œ) is finite. 

2. I distinguish the hypervolume of a region from the Lebesgue meas-
ure of a set of coordinate quadruples. If we represent regions as sets 
of coordinate quadruples the hypervolume should not differ from 
the measure of the representing set except perhaps by a relatively 
small amount due to curvature or perhaps the discrete character of 
the aether. (See Chapter One, Section 2.) 

3. By a point I mean an aether point, that is a region of zero diameter, 
where diameter is a measure of extent and is subject to the follow-
ing stipulation. 

                                                 

57  This chapter differs only slightly from ‘Conflicting Intuitions about Space, 
Space-time, or the aether’ (Forrest 2012), itself derived from my paper at the 
2007 MMT conference in Rutgers University.  
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4. If ξ is a diameter or hypervolume, then either ξ = 0 or ξ = ∞, or 
there is some positive integer N such that 1/N < ξ < N. 

This last stipulation avoids some technicalities but is not intended to ex-
clude fine-grained ways of measuring extent and quantity, ones that al-
lows infinitesimal differences.58 It is merely a stipulation about when a 
measure of extent or quantity is to be called a diameter or hypervolume 
respectively, namely that infinitesimal differences are to be ignored. As 
a consequence, when I argue that the sum of regions of zero hypervol-
ume has zero hypervolume, I shall not rely on the, in any case dubious, 
principle that infinity times zero is infinity, for infinity times an infini-
tesimal could be anything from a smaller infinity to a larger infinitesi-
mal, including all finite values. 
  
 
                                                 

58  The reason for this last stipulation is not just that it avoids unnecessary tech-
nicality. There is, in addition, a good technical reason for it. One of our intui-
tions about hypervolume is that every region has a hypervolume, although 
maybe it is 0 or ∞. If we reject this, as we could decide to, then there might 
be regions that can be assigned a hypervolume zero given my stipulation but 
could not be assigned a finer measure of quantity. To illustrate this, suppose 
classical mereology holds and so every set of regions has a unique sum. Sup-
pose also that the aether is the sum of maximal points u that are in one to one 
correspondence with coordinate quadruples <t,x,y,z>. Suppose, however, 
that maximal points are not simple regions, but each is a copy of the Euclide-
an sphere and hence the sum of simple points in one to one correspondence 
with the members of K= {< x*, y*, z*> : x*2 + y*2 + z*2 = 1}. Then we 
may assign an infinitesimal measure of quantity ι to a maximal point u, and 
zero to a simple point. There is a fine-grained assignment of quantity to any 
point v that is part of a maximal point u, provided v corresponds to a meas-
urable set Kv ⊆ K. The fine-grained measure of the point v equals the meas-
ure (‘area’) of Kp multiplied by the factor ι/4π2. But there are many subsets 
of K that have no measure.(This a corollary of the magical Banach Tarski 
theorem Wagon 1985). So if some proper part, v, of u is a point represented 
by such a non-measurable set, v has zero or infinitesimal extent but has no 
fine-grained quantity. Hence the intuition that any region of zero diameter 
has zero hypervolume is not adequately expressed by saying that any region 
of zero or infinitesimal extent is of zero or infinitesimal quantity.  
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2.  Grounding and an intuition underminer 
One of the central ideas of metaphysics is that some things are the onto-
logical grounds of others, which are then said to exist in virtue of them 
or to depend ontologically on them. I have already mentioned Fine’s ex-
ample that the singleton {b} exists in virtue of b, not vice versa (1995). 
Another example is the claim that surfaces of objects exist in virtue of 
objects.59 If we are considering regions, then we might well generalise 
this to the claim that all regions exist in virtue of 4 dimensional ones. 
 Now consider, for example, the initially intuitive thesis that the on-
ly regions are those of 4-dimension.60 Hud Hudson rebuts a similar the-
sis by appealing to Weak Supplementation (Hudson 2005: 50-56). But I 
think the intuition that all regions are of 4 dimensions may be totally un-
dermined, and hence no longer considered. It is undermined by diagnos-
ing it as the misunderstanding of the intuition that all regions exist in vir-
tue of those of maximal dimension. For the term ‘real’ is equivocal be-
tween: (1) existing; (2) existing independently of any (creature’s) mind; 
and (3) being fundamental, that is not existing in virtue of any other 
things. Once we grasp this, the intuition that there are no surfaces may 
be replaced by the intuition that surfaces are not real in sense (3).  
 A corollary of the undermining of the maximal dimension intuition 
is that points are not directly counter-intuitive. That is, if the existence of 
points clashes with intuitions, that clash must be mediated by an argu-
ment from those intuitions.  
 The moral is to be careful to distinguish grounding from existence 
claims when formulating intuitions. 
  
3. Intuitions about connectedness 
Mereological curmudgeons rely on the intuition that every region is 
connected in some sense, which remains to be explicated. Hence, they 
                                                 

59  The alternative defended by Roy Sorensen (2008: Ch 2) is that to refer to a 
surface of an object is to make a context-dependent reference to a thin but 3 
dimensional part of the object. This is plausible in many contexts, but my ex-
ample assumes surfaces have zero volume.  

60  Or whatever the number of dimensions the best physics requires, maybe the 
10 of String Theory. 
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say, regions have a sum only if some connected region is a fusion of 
them. If I attempt to exhibit a disconnected region, such as the USA, the 
response will be that I have not exhibited one but rather several regions 
(Alaska, the sum of the 48 contiguous states, etc). This intuition may be 
undermined as in the previous section. For we tend to conflate the 
stronger claim that all Xs are Ys with the weaker claim that those Xs that 
are not Ys exist in virtue of the Ys. In this case we tend to conflate the 
claim that all regions are connected with the weaker claim that all re-
gions exist in virtue of connected ones.  
 The intuition that survives the undermining is that every region that 
is not connected depends ontologically on connected parts. Now we 
have a further intuition that quite generally the Ys are grounded in the 
Xs only if the Ys are the sum the Xs suitably related. So we expect every 
region to be the sum of connected regions. Moreover that conclusion is 
itself intuitive. A fortiori, every region has a connected part.  
 I require merely a rather weak explication of connectedness in 
terms of separation, where, in the continuous case:  

Two regions y and z are separated if there is a positive integer 
N such that any region overlapping both y and z has diameter 
greater than 1/N.61 

Here is a more complicated characterisation, which also covers the dis-
crete case: 

Two regions y and z are separated if there are real numbers ξ 
and η that are possible values of the diameter function, such 
that ξ < η and any region overlapping both y and z has diame-
ter greater than η. 

I define a connected region as one that is not the sum of two parts that 
separated. So I have: 
 Premise One: Connected Parts: 

Every region has a part that is connected. 
                                                 

61  The stronger topological characterisation of connectedness will be too strong 
in the case of Arntzenius Continuum, Tarski Continuum and Open Gunk. For 
on this topological characterisation a region is connected if it is not the sum 
of two disjoint open regions. It turns out that no region of Arntzenius Con-
tinuum is connected in this sense. 
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Note that any point is connected. This follows from the stipulation that 
we ignore infinitesimal differences. Hence Premise One holds on any 
point based hypothesis. It will not hold on Arntzenius Continuum.  
 Next we have: 
 Premise Two (Universal Summation):  

Any regions have a sum. 
 My case against the curmudgeons removes the obstacles in the way 
of Universal Summation. On the other hand it is not directly intuitive. It 
may be supported in two ways. The first, due to Lewis (1991: 81-7), is to 
submit that there is no extravagance in positing sums along with their 
summands. For it is they and they are it. The second is the extravagance 
of restricting rules capable of universal formulation. (Call this ‘Frege’s 
razor’, because Frege assumed that set-theoretic axioms were unrestrict-
ed until Russell derived his paradox.) Extravagance is not the only fault 
an ontology can have and if Universal Summation turns out to be incon-
sistent with firmer intuitions then we may reject it. Perhaps it is worth 
noting that Universal Summation follows from Finite Summation to-
gether with the principle that any regions sharing a common part have a 
sum. It is the latter that is more vulnerable. 
 Notice that I have stated Universal Summation regardless of 
whether the regions form a set or a proper class. Partly that is because I 
think that such considerations are intuitively irrelevant, but it is also in 
part because the structure that I am investigating is the local structure, 
say of some region œ of finite diameter, and so the only case that I need 
worry about is that in which the parts of œ form not a set but a proper 
class Ω. But that would tend to undermine intuitions about sums only 
because of some supposed intuition that every proper class X ⊆ Ω has 
too many members to have a join. If there is such an undermining intui-
tion it is itself rebutted by the way the proper class Ω itself has a join 
namely œ.  
  
4. Arbitrarily small regions 
We have some intuitions concerning arbitrarily small regions. The fol-
lowing is typical. 
 Premise Three: The Diameter Hypervolume Nexus 
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Given any positive integer M, however large, there is some 
positive integer N such that any region of diameter less than 
1/N is part of a region of hypervolume less than 1/M.  

I am not assuming as a premise that every region has a hypervolume so I 
cannot yet exclude the case in which however large N is there are re-
gions of diameter less than 1/N with no hypervolume.  
 The restriction to regions of arbitrarily small diameter helps prevent 
scruples arising if we think of the aether as curved. For even a curved 
manifold is locally like a flat one, where, with one proviso, we have no 
trouble with the idea of diameter. And the restriction to the arbitrarily 
small requires considering what happens locally. The proviso is that the 
diameter of a region is relative to the choice of a frame of reference.62 
Fortunately if the Diameter Hypervolume Nexus holds in one frame it 
holds in every other.  
 The next three intuitions are about suitably shaped arbitrarily small 
regions, which I shall call globules. Precision is not important here, but 
given some topological structure we may characterise the globules as 
regions that are topologically equivalent to hyperballs. Instead we could 
characterise them as convex regions of finite diameter of 4 dimensions, 
or, in general, the same number of dimensions as the aether itself.63 The 
reason why precision is not important is that the term ‘globule’ functions 
like the variable X in a Ramsey sentence: there are some regions, the Xs, 
such that all the premises hold if the word ‘globule’ is replaced by ‘X’.  
 Premise Four: Finite Globules 

There is a globule of finite positive diameter and finite positive 
hypervolume, namely œ. 

                                                 

62  The diameter corresponds to a metric in which the norm (length) of a 4-
vector with coordinates <t, x, y, z> is √( t2 + x2 + y2 +z2). 

63   Region y is between regions x and z if for any part y´ of y there are parts x´ 
and z´ of x and z, respectively, such that diam(x´+y) + diam(y´+z´) ≤ di-
am(y´+z´) + diam(y´). A region w is convex if for any parts x and z of w any 
region y that is between x and z is also part of w. A convex region u of finite 
diameter is of less than N dimensions, if for any positive integer m there are 
N regions of diameter less than 1/m such that every convex region containing 
all N as parts also contains u as a part.  



 

 

63

 Premise Five: Arbitrarily Fine Covering. 
If N is a positive integer and if u is a globule of finite diameter 
then u is part of the sum of at most a countable infinity of 
globules of diameter less than 1/N.  

On the assumption that there are only finitely many dimensions a finite 
number of globules would suffice. This premise, like the next, relies on 
an extrapolation from regions we can imagine being occupied to much 
smaller regions that we can only imagine by scaling them up. Such 
‘zooming in’ is not very reliable because it is a case of inductive gener-
alisation, which we know to be not merely fallible but only moderately 
reliable in the absence of buttressing by means of a theory. (In so far as 
we treat the results of zooming-in as intuitive this is a case of defeat by 
explication..)  
 Premise Six: Arbitrarily Thin Boundaries 

If u is a globule of finite diameter, and N is a positive integer, 
then there is a region v of hypervolume less than 1/N such that 
any connected region w that overlaps u, but is not part of u, 
overlaps v.  

Convex regions such a cubes or balls satisfy this principle as would re-
gions whose boundaries are fractals, but a region represented by an open 
dense set of finite measure in the topological space of all quadruples of 
real numbers would not have an arbitrarily thin boundary. For the 
boundary of its representing set would be of infinite measure. Such re-
gions would not count as globules.  
 By Arbitrarily Fine Covering, any simple region must be a point, 
contrary to idea that there are extended simple regions. It might be ob-
jected that Greek atomists believed in extended simple objects, perhaps 
casting doubt on Arbitrarily Fine Covering. On the contrary, the intui-
tion that any extended thing should have left and right halves, or more 
generally be divisible in each direction was produced as an argument 
against the Greek atoms, thus supporting my claim that Arbitrarily Fine 
Covering is intuitive.  
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5. Intuitions about hypervolume 
It is true by definition that if x is part of y then the hypervolume (and 
diameter) of x cannot exceed that of y. In addition, we have the follow-
ing, in which hypervolume is abbreviated to hvol. 
 Premise Seven: The Mereology Hypervolume Nexus 

(1)  If x is part of y, which is part of z, if x and z have hyper-
volumes, and if hvol(x) = hvol(z) then y has a hypervol-
ume and, hence hvol(x) = hvol(y). 

(2)  If y is part of z and z is of zero hypervolume then y has a 
hypervolume, so y has zero hypervolume.  

From this and the Diameter Hypervolume Nexus (Premise Three) it fol-
lows that no point has positive hypervolume. Rather than think of this as 
derived from Premises Three and Seven I suggest that the intuition that 
no point is of positive hypervolume is part of the intuitive basis for the 
Diameter Hypervolume Nexus. 
 If we had initially assigned finer grained hypervolumes that made 
infinitesimal distinctions, then the situation might arise in which a region 
to which no hypervolume may be assigned was part of one of infinitesi-
mal hypervolume. The Diameter Hypervolume Nexus nonetheless as-
signs to such regions zero hypervolume when we ignore infinitesimals, 
in accordance with the stipulation made in Section 1.  
 Another premise relating mereology with hypervolumes is:  
 Premise Eight: Hypervolume Supplementation. 

If x is part of y and hvol(y) > hvol(x) > 0, then y has a part z 
disjoint from x such that hvol(z) > 0.  

This is a weakening of the principle of Weak Supplementation, which is 
used along with the existence of sums of any regions to argue for classi-
cal mereology.. Weak Supplementation states that if x is part of y then y 
has a part z disjoint from x. The idea behind this is that some of y is left 
over when x is removed. I submit that although Weak Supplementation 
is moderately intuitive, Premise Eight is more so. For in the case in 
which hvol(x) = hvol(y) when you take x away there might well be noth-
ing left. Likewise if hvol(x) = 0 taking it away might have no effect.  
 It could be objected that the similar diffidence shows that we 
should not assume that z is disjoint from x. Maybe they have a meet of 
zero hypervolume. I concede that a weaker version of Premise Eight 
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would be even more intuitive, but since Weak Supplementation is itself 
intuitive and Premise Eight more so, I maintain that Premise Eight is it-
self intuitive – with one proviso. The proviso is that, strictly speaking, 
Premise Eight is intuitive only within the scope of the supposition of 
Premise Two. For otherwise a positive amount of stuff left over might be 
scattered in an infinity of regions of zero hypervolume.  
 It is worth recording the weaker, and even more intuitive, version 
of Premise Eight as: 
 Premise Eight* ( Weak Hypervolume Supplementation): 

If x is part of y and hvol(y) > hvol(x) > 0, then y has a part z 
such that hvol(z) > 0, and either x and z are disjoint or 
hvol(x∧z) = 0. 

 It is intuitive that the whole is no greater than the sum of the parts. 
We have, therefore: 
 Hypervolume Subadditivity 

If there is a family of regions, uθ, θ ∈ Θ, each with hypervol-
ume hvol(uθ), which have a sum w, then w has a hypervolume 
and hvol(w) does not exceed Σθvol(uθ), the sum of the hyper-
volumes. 

By Premise Two the sum w is guaranteed to exist.  
 Hypervolume Subadditivity may conveniently be divided into two 
cases. The first concerns the sum of two regions and is the familiar: 

Premise Nine: Finite Subadditivity 
If x and y have hypervolumes, hvol(x + y) ≤  hvol(x) + hvol(y). 

Next there is the transition from the finite to the infinite case and, not 
quite as intuitive, the transition from the countable to the uncountable 
case. For this purpose I need the following  
 Premise Ten: Limiting Hypervolumes 

Consider some totally ordered regions (i.e. given any two of 
them one is a part of the other) each of which has hypervolume 
less than or equal to k. Then, if the regions have a sum this sum 
has hypervolume less than or equal to k.  

 From Premises Two, Nine and Ten we obtain: 
 Countable Subadditivity.  
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Consider a sequence of regions, u1, u2, etc such that, for all j, 
uj has hypervolume. Then the hypervolume of the sum is no 
greater than the sum of the hypervolumes of the uj.  

Countable Subadditivity has intuitive support, illustrated by the follow-
ing cautionary tale against trying to get something for nothing. You 
think Countable Subadditivity is false and so fill up a sequence of re-
gions with twin gold, where in the world being considered twin gold has 
arbitrarily small parts that are still twin gold, but twin gold is as precious 
as gold is in our world. You have to fill the regions up more and more 
rapidly so as to fill them all up, but this is no problem because they are 
smaller and smaller. Worried by curmudgeons you are also careful to 
connect each of the globules to the next by a thin thread using a total of 
only 10cc. The sum of the hypervolumes of the regions is 100cc, so at 
the end of the operation you have used only 110 cc of twin gold. You 
believe, though, that Countable Subadditivity fails and hope that as a re-
sult there is a region w full of twin gold, with hypervolume 200 cc of 
twin gold. But you got it wrong: it turns out that the regions in question 
do have a sum which is full of twin gold but it cannot be assigned any 
hypervolume at all! Both your hope and the unfortunate outcome are ab-
surd. So this is not a metaphysically possible world after all. 
 Premise Ten is intuitive, but may also be argued for by relying up-
on a principle that I have not taken as one of the eleven premises, name-
ly that every region has a hypervolume. Consider the sum of totally or-
dered regions each of hypervolume no greater than k, and assume this 
sum has a hypervolume. If that hypervolume is greater than k we may 
ask, as we did when considering Hypervolume Supplementation, where 
the extra stuff comes from. It comes from nowhere, which is counter-
intuitive. To appreciate the intuitive strength of the assumption that eve-
ry region has a hypervolume – perhaps zero, perhaps positive but finite, 
or perhaps infinite – consider the idea of a liquid, it might as well be 
molten twin gold, which, unlike gold has point parts that are made of the 
same stuff. Although contrary to science we can easily imagine that 
there is such stuff. (And by the principle that necessities are not to be 
multiplied more than is necessary, we should be reluctant to suppose that 
such stuff is impossible.) Now consider a region with no hypervolume 
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but full of this liquid. Then pour it out into a beaker. Does it vanish? Are 
you drowned in an infinity of the stuff, or what? The supposition is al-
most as absurd as the story about trying to increase the quantity of twin 
gold. The intuition here is that hypervolume is the measure of the quanti-
ty of some stuff, in this case the aether. Because the measure is coarse-
grained there may well be regions of zero hypervolume but not ones 
without a hypervolume at all.  
  
6. Premise Eleven and the Axiom of Choice  
Lastly I propose the following. 
 Premise Eleven:  

If every totally ordered set of parts of u of zero hypervolume 
has a join of zero hypervolume then the join of all the parts of 
u of zero hypervolume is itself of zero hypervolume. (A set of 
parts X is totally ordered if for every u and v in X either u is 
part of v or v is part of u.) 

Premise Eleven is a hypothetical and should not be confused with the 
categorical principle that any sum of a totally ordered set of parts of zero 
hypervolume is of zero hypervolume. For Premise Eleven holds of the 
Orthodoxy (combined with the Axiom of Choice) but the categorical 
principle does not. This premise follows from Zorn’s Lemma, itself 
provable using the Axiom of Choice, which I defended in the previous 
chapter. 
  
7. The sum of all the zeros 
If a region u has a part of zero hypervolume then, I shall argue, the sum 
of all its parts of zero hypervolume is a part of zero hypervolume. By the 
combination of the Mereology Hypervolume Nexus (Premise Seven) 
and the Diameter Hypervolume Nexus (Premise Three) any point is of 
zero hypervolume. Hence this result excludes any theory that implies 
that every region is the sum of points, including the Orthodoxy, namely 
that regions are represented by all the non-empty sets of coordinate 
quadruples. 
 First we show that u has a maximal part of zero hypervolume, v. 
For given any totally ordered set W of parts of u with zero-hypervolume, 
by Premise Two W has a sum w, and by Premise Ten w has zero hyper-



 

 

68

volume. So by Premise Eleven u has a maximal part of zero hypervol-
ume, v.  
 Now consider any regions of hypervolume zero – call them the Z. 
By Premise Two they have a sum u. We have just shown that u has a 
maximal part of zero hypervolume, v, that contains all the parts of zero 
hypervolume and hence the Z. So v is an upper bound of Z and v is part 
of u. But by the characterisation of the sum as a least upper bound that is 
also a fusion, u = v, establishing the result that any sum of regions of ze-
ro hypervolume is itself of zero hypervolume.  
 I anticipate the response that for two millennia geometers have re-
lied upon points, and so we should reject any intuitions that might be 
deployed against point-based theories. I have three responses. First, I am 
committed to abandoning one of the eleven premises together with one 
of their supporting intuitions. So point-based theories are not excluded 
by my result. Second, the intuitions are about the aether and I have al-
ready conceded that that Space-time is point-based. Finally, suppose an 
appeal is made to the tradition of Euclidean geometry, to the develop-
ment of Cartesian coordinates, and to the Nineteenth Century perfection 
of geometry, all in support of the Orthodoxy. Then I reply that the Ba-
nach Tarski theorem was a surprising discovery and that had it been dis-
covered by, say, Archimedes, the Orthodoxy would not have been so 
widely accepted.  
 This result that any sum of regions of zero hypervolume is itself of 
zero hypervolume excludes any point-based theory of the aether, such as 
the Orthodoxy that every set of coordinate quadruples represents a re-
gion. But that is not all. It excludes the existence of supersponges, of 
which the Menger-Sierpinski sponge might be familiar Weisstein 2009). 
(By a supersponge for a region u of positive hypervolume, I mean some 
part v of u that is of positive but strictly less hypervolume than u, such 
that there is no connected part of u that is of positive hypervolume but 
disjoint from v.) 
 Now consider a region u of positive hypervolume and v a super-
sponge for u. Let w be the sum of all the parts of u of zero hypervolume. 
By Premise Eight (Hypervolume Supplementation) there is a part x of u, 
disjoint from v, of positive hypervolume. Suppose x has a properly con-
nected part z of positive hypervolume. Hence it has no connected parts, 
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contradicting Premise One (Connected Parts). Therefore to complete the 
argument for the clash of intuitions I need only argue for the existence of 
supersponges. 
  
8. Supersponges 
First suppose that all regions are represented by sets of coordinate quad-
ruples. In that case for any positive integer M, for any integer N ≥ M, 
and for any coordinate quadruple of rational numbers χ, there is a region 
whose representing set is included in the ball center χ radius 1/M and 
includes the ball center χ radius 1/N. Assume for convenience that œ has 
hypervolume at least 1 unit. That there is a supersponge may be demon-
strated as follows. 
 There are countably many planes obtained by varying all but one of 
the coordinates of the quadruples of rationals, and they may be arranged 
as a sequence σk k = 1, 2 etc. Then there is a region wk whose repre-
sentative includes σk but whose total hypervolume is positive but less 
than (½)k. The sum of all the wk is a supersponge for the whole of œ. 
Moreover if we could assume that the set of coordinate within 1/N of a 
quadruple of rationals χ represents a region then we do not need the Ax-
iom of Choice to show the supersponge exists.  
 More generally, we can show the existence of supersponges with-
out assuming coordinate representation, by relying upon Premises Four, 
Five, Six, Nine and Ten. First, by Premise Four (Finite Globules) we 
may suppose that u is a globule of finite hypervolume and diameter. Let 
its hypervolume be 1 unit. Then by Premise Five (Arbitrarily Fine Cov-
ering) for every positive integer N, u is part of the sum of at most a 
countable number of globules of diameter less than 1/N. So we may con-
sider a sequence of globules uj, j = 1, 2 etc such that for any positive in-
teger N, u is part of the sum of the members of the sequence of diameter 
less than 1/N. Then for every globule uj there is a region vj as in Premise 
Six (Arbitrarily Thin Boundaries) of hypervolume no greater than (½) 
j+1. By Countable Subadditivity (which follows from Premises Nine and 
Ten) w, the sum of the vj, has hypervolume no greater than ½. Because 
globules are of positive hypervolume, the region w is the required super-
sponge.  
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Summary of the conflict of intuitions 
From the eleven premises we obtain two results: (1) regions of zero hy-
pervolume have a sum of zero hypervolume; and (2) there exists a super-
sponge for some region of finite positive hypervolume. Now (1), (2), 
Premise Three (Diameter Hypervolume Nexus) and Premise Eight (Hy-
pervolume Supplementation) form an inconsistent tetrad, so one of the 
Premises One to Eleven must be false. In the next chapter I use this re-
sult to discover some hypotheses that do not run counter to more intui-
tions than necessary.  
  



 

 

71

 
3. Which Intuition to Abandon? 

 
Some readers may be exasperated, considering it obvious which premise 
or premises to abandon. My response is that often when an intuition is 
undermined we are tempted to deny that we ever had it. This is especial-
ly the case when we have a Hume moment, reflecting upon an intuitive 
belief and then thinking, ‘Why would I believe that?’ I take this to be a 
partial undermining of a genuine intuition. If readers disagree, assuming 
that in such cases we never had the intuition, then one of the eleven 
premises of the previous chapter should be taken not so much as sup-
ported by intuitions but as a premise that the benighted author thought 
was. The problem remains, though, ‘Which premise lacks support?’ 
 By considering how we might undermine one or other of the eleven 
premises, we have a fairly systematic way of finding a list of theories 
from which to choose the best – or to express indifference between, if 
that is the correct conclusion. I say ‘fairly’ systematic because an intui-
tion that I judge robust might perhaps only seem that way to me because 
of a lack of insight and imagination.  
 After a preliminary, concerning the fine structure of regions, I con-
sider a range of hypotheses that violate only the less firm intuitions. 
Then I provide some, albeit inconclusive, considerations in favour of my 
claim not to have omitted a hypothesis that would have deserved serious 
attention.  
 I am prepared to declare a provisional winner, namely Point Discre-
tion. In Chapter Six I argue against it because of a non-locality problem 
that arises if we combine it with the premise that approximations to Spe-
cial Relativity are nomologically possible.  
 
1. Fine structure  
In order to restrict the number of hypotheses about the structure of the 
aether, I shall ignore the fine structure that can arise in those hypotheses, 
such as Point Discretion, Borel Continuum, and Lebesgue Continuum, 
according to which there are points. I have already mentioned fine struc-
ture in passing, but here I need to note its impact on the exemplars.   
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 By a point I mean an aether point, a region of zero diameter; by a 
simple I mean something without parts. It is not, I say, intuitive that eve-
ry point is simple, although if there are complex points then we might 
well say that they have infinitesimal rather than zero diameter, but I am 
assimilating infinitesimals to zero. 
 If some points are complex then maybe all are, and so points could 
be gunk, that is without simple parts. Whether or not that is the case, we 
may define an equivalence relation on points. For by the standard prop-
erties of diameters, together with the firm intuition that if two regions 
overlap they have a sum, it follows that being part of the same point is 
an equivalence relation on points.  
 If the members of an equivalence class have a join then it is itself a 
point, for if a region is the join of points then its diameter should be the 
least upper bound of the distances between its point parts.64 In that case 
every point is part of a maximal point, where a maximal point is not part 
of any other point. Maximal points must be disjoint. Obviously if all 
points are simple then all points are maximal points.  
 The equivalence relation between points may be extended to re-
gions that are represented as sets of coordinate quadruples. In that case 
regions are equivalent if they are represented by the same set.  
 The simplifying assumption that fine structure is to be ignored 
needs to be remembered in two contexts. The first is that what we con-
sider a point might, perhaps, in fact be many equivalent points. The se-
cond occurs because I mean by a discrete hypothesis one in which every 
region of finite extent is deemed to have finitely many parts if we ignore 
fine structure. Therefore some discrete hypotheses such Point Discretion 
have variants in which maximal points have infinitely many parts.  
 Once we make the simplifying assumption that equivalent regions 
are identified, then there are four exemplars: a point based theory with 
finitely many points in any region of finite diameter, namely Point Dis-
cretion; one with uncountably many points, namely Borel Continuum; 
one with extended simples of positive hypervolume, namely Extended 
                                                 

64  The distance between points u and v is just the diameter of the sum of u and 
v, or, if there is no sum, the greatest lower bound of the diameters of regions 
containing both u and v.  
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Simples; and a gunk theory, namely Arntzenius Continuum, in which 
there are no points but regions of arbitrarily small but positive hypervol-
ume and diameter. 
  
2. Point Discretion 
The first two premises are intuitive once curmudgeons have been si-
lenced. In any case we may state curmudgeon variants if we have to. 
Later I shall consider hypotheses that violate Premise One (Arntzenius 
Continuum) and Premise Two (Borel Continuum). Initially more prom-
ising is the violation of Premise Three, permitting Point Discretion. That 
hypothesis is easily stated if we ignore any fine structure. In that case we 
may treat the points as simples and Point Discretion states that every re-
gion of finite quantity (hypervolume) is the sum of finitely many points. 
A variant that might conceivably be proposed in the context of General 
Relativity is that in which the points are not simple but each has the 
structure of Minkowski Space-time.65 But if we ignore fine structure, 
this will not be distinguished from Point Discretion.  
 The initial problem with Point Discretion is the way that some or 
all points would, it seems, have to have positive hypervolume, which is 
not merely contrary to Premise Three but absurd. For surely the hyper-
volume of a region of diameter x can be no greater than that of a hyper-
cube of side x, which is x4. So the hypervolume of a point must be less 
than (1/M)4 for any positive integer M and hence zero.  
 There are two ways we might try to undermine this intuition. The 
first is to suggest that quantity only emerges as the number of points be-
comes so great that they get blurred as it were. I find this unsatisfactory 
because the quantity was intended as an answer to the question, ‘How 
much?’ and if we are realists about the aether there should be an answer 
to the question in all cases, or at very least in all except perversely com-
plicated cases, such as might arise with non-measurable sets of points 
but not in the discrete case.  

                                                 

65  This would enable us to define velocities for particles, but I do not think we 
need velocities. If aether is discrete what we need is a propensity for one 
state to be followed by another, not a velocity.  
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 Instead, therefore, I undermine the intuitions about hypervolume by 
denying that hypervolume is always the right way of answering the 
quantity question, ‘How much?’ In the case of Point Discretion the right 
way of answering it is to alter the question to ‘How many?’ I agree that 
every region has a quantity, but the quantity is the number of points in it. 
In that case hypervolume emerges as a convenient substitute for the cor-
rect but unknown measure.66 For large regions of not too complicated a 
shape the emerging hypervolume is approximately proportional to the 
correct measure of quantity.  
 This use of approximate hypervolume in place of the precise meas-
ure of quantity is familiar in other contexts. Consider a typical fungible, 
something made up of grains but for which we use a mass term. Consid-
er again the good Biblical example of a bushel of wheat. Prophets were 
rightly angry with merchants who cheated the poor giving them less than 
the bushel they had paid for. But they never complained that the buyer 
had paid for all the gaps between grains and got only air in return. The 
moral is that in circumstances where the precise question is ‘How 
many?’ we often make do with ‘How much?’ 
 Point Discretion is initially an excellent hypothesis, but I shall ar-
gue, in Chapter Five, that there are problems in explaining how Point 
Discretion can approximate a differentiable manifold in the case in 
which the aether is not necessarily symmetric. The symmetric case, dis-
cussed in Chapter Seven, is interesting in that Minkowski Space-time 
has a discrete analog with the points arranged in a regular fashion. Alt-
hough this seems promising I consider it refuted by the Intermittent Par-
ticle Objection. With regret, therefore, I shall reject Point Discretion.  

  
3. Granulated Aether 
Premise Four is almost trivial, merely asserting the existence of some 
region that is a globule. It might, for instance, be represented by a con-
vex set of coordinate quadruples. I shall argue, that Premises Five (Arbi-
trarily Fine Coverings) and Premise Six (Arbitrarily Thin Boundaries), 
                                                 

66  Unknown because the number of points per unit of hypervolume (cm4) is not 
known, even though we may suppose it is of roughly the order of magnitude 
10120.  
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however, are not especially firm because they depend on extrapolation 
from the larger to the smaller. Therefore we should not dismiss the 
granule hypotheses as too improbable. On these hypotheses some 
(small) extended regions have positive hypervolume but are not the sum 
of two regions of positive hypervolume – these regions may be called 
granules. Granule hypotheses may be illustrated by the case in which the 
granules are represented by tesseracts (4 dimensional analogs of cubes) 
each touching 80 others, or, for sake of visualisation, the case in which 
there are only 2 dimensions and the granules are square ‘tiles’, so each 
touches 8 others. Another example is the simplicial granulation  in 
which all the granules are represented by pentatopes (also known as 5-
simplices), the 4 dimensional analogs of tetrahedra.  
 It is natural to think of these granules as having extended locations 
in a continuous Space-time. That may be a reason for rejecting a granule 
hypothesis for Space-time itself. If so, this gives us a further reason not 
to identify the aether with Space-time, but no reason to reject granules. 
 Something should be said about the shape of the granules if Ex-
tended Simples is correct. Strictly speaking because simples have no 
proper parts they are shapeless, for our ordinary concept of shape can be 
analysed in terms of spatial relations between proper parts. Granules, 
however, have shape, in an analogical sense, specified by the adjacency 
relations between granules. Here adjacency is a primitive symmetric re-
lation that is represented as follows: 

If granules x and y are represented by sets of coordinate quad-
ruples X and Y, then x and y are adjacent if and only if the clo-
sures of X and Y intersect.67 

Informally, the granules x and y are adjacent just in case either x = y or 
the representing regions overlap or they touch.  
 Now the shape of things in the ordinary sense explains how they fit 
together. Hence what I am proposing is that individual granules have 
shape in an analogical sense, namely a capacity to have various adjacen-
                                                 

67  A different range of hypotheses is obtained if we modify this, to obtain: If 
granules x and y are represented by sets of coordinate quadruples X and Y 
then x and y are adjacent if and only if the closures of X and Y intersect in a 
3 dimensional set. 
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cy relations.68 That this is a capacity may be shown by considering a co-
herent but implausible structure for the aether in which it consists of 
simple granules represented by unit tesseracts whose centres are quadru-
ples of integers, but where there is a granule just in case not all these in-
tegers are even. So we have missing granules. In this case some granules 
have unrealised capacity for adjacency. 
 An interesting variant on Extended Simples is Skeletal Granulated 
Aether, in which all aether atoms are of 1 dimension. The extended sim-
ple is then replaced by the sum of its edges, namely its one-dimensional 
parts. This would have considerable advantage if we needed to consider 
a (connected piece of) aether of varying dimension for then the same 
simples could make up cells of differing dimensions. As far as I know, 
however, no current physical speculations are of this kind. 
 On the other hand Skeletal Granulated Aether has a problem with 
the characterisation of the hypervolume of the cells. Because it is a 
granule theory it is intuitive that there should be a way of assigning hy-
pervolume to regions. But the only available measures of quantity (either 
the number of simples or the sum of their lengths) fail to distinguish be-
tween a granule and a region of zero (or infinitesimal) hypervolume. For 
instance in the 2 dimensional case a square would have quantity equal to 
4 times the length of the side, but so would a straight line segment made 
up of 4 simples. Therefore we should favour the versions of Granulated 
Aether in which the granules are of maximal dimension. 
 One way in which granule hypotheses differ is by whether they pos-
tulate any lower dimensional regions than whole granules, and in partic-
ular points. The most straightforward, Extended Simples, is that in 
which all regions are sums of the granules, which are therefore aether 
simples. On this hypothesis there are no lower dimensional regions. If 
we suppose, as we should, that granules are globules this violates Prem-
ise Six (Arbitrarily Thin Boundaries) as well as Premise Five. It seems 
to me, however, that since both these premises are based on the same 
zoom-in extrapolation, violating just one of them is no great advantage.  
                                                 

68  Analogy in Aristotle’s pros hen sense, according to which the typical causes 
– as well as effects – of health, that is, certain kinds of diet, certain kinds of 
exercise regime, etc are themselves said to be healthy. 
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 If, however, there are any lower dimensional regions then it would 
be ad hoc to deny that there are ones of all lower dimensions including 
points. In this way we obtain another granule hypothesis, Pseudo-set 
Granules. This is based on a non-classical complete Heyting mereology 
in which some regions are pseudo-singletons, where I say that v is the 
pseudo-singleton {u}* if it has a greatest proper part u, that is, all proper 
parts of v are parts of u. According to this, the only simples are points – 
the ‘vertices’ of the granules. But in some cases the sum, x + y, of two 
points x and y, has the pseudo-singleton {x +y}*, which is an edge, 
namely the edge joining x to y. Likewise in some cases the sum u + v + 
w of three edges u, v, w etc has a pseudo- singleton {u + v + w}*, which 
is a 2 dimensional face; in some cases four or more faces have a sum 
which has a pseudo-singleton, which is a hyperface; and five or more 
hyperfaces have a sum which has an pseudo-singleton, which is a 4 di-
mensional granule. The granule, although not a simple is an atom, in the 
sense that it is not the sum of proper parts. 
 One advantage of Pseudo-set Granules over Extended Simples is 
that we might hanker after a non-dispositional non-analogous shape for 
the granules. This is provided by the relations, in this case mereological, 
between its parts. Another is that adjacency just is overlap, for adjacent 
granules share a boundary. Pseudo-set Granules does not violate Premise 
Six but it does violates Premise Eight. (Consider the sum of two adjacent 
granules x and y. Because they share a boundary, we cannot remove x 
from x + y without removing the whole of y.) It does not, however, vio-
late the (even) more intuitive Premise Eight* 
 Another hypothesis, which I call Hybrid Granules, is that in which 
there are not just simple points but also simples of higher dimension 
such as the edges excluding the two points at their ends, faces excluding 
their vertices and edges, and so on. Then the highest dimensional simple 
is the granule excluding all its hyperfaces, faces, edges and vertices. This 
would be represented by an open set of coordinate quadruples, while the 
cell consisting of a granule with its hyperfaces etc is represented by the 
closed set. Like Pseudo-set Granules, it promises to give us a non-
dispositional account of the shape of the granules: the adjacent lower 
dimensional regions providing a sort of external skeleton that determines 
its shape. Moreover, the only premise it violates is Premise Five.  
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 For all but the most straightforward, Extended Simples, species of 
Granulated Aether, when two granules meet, the points, edges etc could 
be doubled up so that those adjacent to one simple four-dimensional re-
gion are not adjacent to any other. The difference between these variants 
is just one of fine structure, ignoring which I have described three gran-
ule hypotheses. Although there are others these are enough to illustrate 
the range.  
 My aim is not to reject just any of the eleven premises but to find 
one that can be partially undermined. I have already noted in Chapter 
Two the way Premises Five and Six seem to depend on zoom-in, the ex-
trapolation from the larger to the smaller. I now consider in more detail 
the consequent undermining of Premise Five (Arbitrarily Fine Cover-
ing). It may be illustrated using the Left Half/Right Half intuition that a 
granule should, like any other extended region, be the sum of a right half 
and a left half. We could express this as the intuition that in every di-
mension there is a dichotomy of any region extended in that dimension.  
 Intuitive assertions may be analysed, in which case they cease to be 
intuitive, but become conclusions of inferences that may then be criti-
cised. Accordingly, I analyse the intuitive basis of Premise Five, and in 
particular the Left Half/Right Half intuition, as well as Premise Six, as a 
consequence of the zoom-in extrapolation, namely that we can just 
zoom-in on ever smaller regions treating them as if they were macro-
scopic ones. Zooming-in has sometimes been defeated in the history of 
science, notably in the transition from classical to quantum mechanics, 
but maybe it is robust enough to remain in cases where it has not been 
defeated. I am no sceptic about the probability of induction so I grant 
that zoom-in holds, other things being equal. What I am sceptical about 
is that inferences by induction in the narrow sense are robust enough to 
defeat other probabilistic considerations. I conclude, therefore, that 
Premises Five and Six have some support but are not robust. Hence re-
jecting it is a sensible way of resolving the problem stated in the previ-
ous chapter. 
 I have just diagnosed the Left Half/Right Half intuition as a conse-
quence of a zoom-in extrapolation, but Peter Simons has offered an al-
ternative explanation, namely the initial plausibility of what he calls the 
Geometric Correspondence Principle (Simons 2004: 372). This principle 
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states that any extended object has parts corresponding to the parts of the 
region it occupies. As he notes in his defence of extended simples, re-
flection on the case of Space composed of points might make this seem 
less plausible. In addition, I have the following two objections to that 
principle. First, there is some conceptual novelty in my recommendation 
to distinguish the aether from the Space-time that depends for its exist-
ence on the aether and on relations between regions (of the aether). 
Hence the aether and this dependent Space-time are two explications of 
our more intuitive idea of Space-time. Therefore, I am entitled to expli-
cate the Geometric Correspondence Principle as:  

Any extended object has parts corresponding to the parts of the 
aether that constitute it.  

That principle is no threat to Extended Simples.  
 My second objection is that the Geometric Correspondence Princi-
ple itself presupposes the absolute theory of Space-time, namely that it is 
does not depend on the relations between the things we think of as locat-
ed in Space-time. As indicated in the Introduction the case for absolute 
Space-time only holds if it is identified with the aether. Hence either the 
Geometric Correspondence principle holds even for Extended Simples 
or its presupposition of absolute Space-time is false. 
 Assuming we can partially undermine Premise Five by diagnosing 
the intuition as a case of zooming-in, a similar argument should, as I 
have said, undermine Premise Six and so give a slight provisional ad-
vantage to Extended Simples over Pseudo-set Granules, which violates 
Premise Eight, but not, the firmer Premise Eight*. In addition, Extended 
Simples has only one kind of atom, while Pseudo-set Granules has five 
(or generally one more than the number of dimensions.) Hybrid Gran-
ules only violates Premise Five, which is good, but like Pseudo-set 
Granules has 5 kinds of atom, indeed 5 kinds of simple. Provisionally, 
then the order of preference is: Extended Simples, followed by Hybrid 
Granules, with Pseudo-set Granules in third place. 
 According to Extended Simples, a granule has shape only in the 
analogical sense of its capacity to touch other extended simples. If read-
ers dislike this, then they should prefer one of the alternative granule hy-
potheses. But I shall assume that such an account of shape is adequate.  
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 There is the further question of whether the adjacency relation be-
tween granules is a quantitative one. In the 2 dimensional case we might 
propose that the length of the common boundary between the representa-
tives of the ‘tiles’ as the degree to which they touch, with area replacing 
length in the 3 dimensional and volume replacing length in the 4 dimen-
sional cases.69 Initially we might think that one promising physical theo-
ry, Loop Quantum Gravity, supports some granulated aether hypothesis. 
Because that theory assigns areas and volumes it would seem to provide 
a case for degrees of touching. In Chapter Six, however, I argue that 
Loop Quantum Gravity does not support a discrete aether hypothesis, 
and that the most likely theory that does is Causal Set theory, which 
does not require degrees of touching. A straightforward appeal to econ-
omy, therefore, shows that we should reject degrees of touching. 
 Extended Simples is provisionally the best granule hypothesis be-
cause it is the only version with just one kind of simple and that also sat-
isfies the intuitive principle of Hypervolume Supplementation. In fact 
Extended Simples retains Weak Supplementation because it is a classical 
mereological theory. Pseudo-set Granules obeys only the weaker and 
less elegant axioms of complete Heyting mereology. 
 There is, however, a well-known objection to all granule hypothe-
ses, namely the Weyl Tile Problem (Weyl 1949: 43, Van Bendegem 
1987, Forrest 1995, McDaniel, 2007b). This concerns the intrinsic met-
ric of a 2 dimensional tiled Space, that in which the distance between 
tiles x and y is the smallest number of steps from tile to adjacent tile re-
quired to get from x to y. If the tiles are represented by congruent regular 
polygonal regions in a Euclidean plane (squares, triangles or hexagons), 
then the intrinsic metric fails to approximate the standard Euclidean dis-
tance.  
 A related problem (Van Bendegem 2009: 3.1) is the lack of isotro-
py. The pattern of representations of the tiles will be a regular one of 
equilateral triangular, square or hexagonal regions, and so the lines be-
tween the representations of the tiles will be distinguished directions: at 
                                                 

69  In the 4 dimensional case we could assign infinitesimal hypervolumes to 3 
dimensional regions in the representation, infinitesimal squared hypervol-
umes to 2 dimensional ones etc.  
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60° in the case of triangles, at 90° in the case of squares, and at 120° in 
the case of hexagons. 
 In 2 dimensions we may solve both the metric and isotropy prob-
lems using the Pinwheel tiling, made up cells of the same intrinsic shape 
and size but with some the mirror images of others. (See Diagram One, 
based on Radin 1995) The resulting metric approximates the Euclidean 
metric and the tiling has no privileged directions70. Presumably, some-
thing similar holds in higher dimensions.  
 This is not the end of the problem, though. A regular pattern of tiles 
will result in lack of isotropy, contrary to the appeal of symmetry. But in 
the absence of a regular arrangement of granules it would be an astound-
ing coincidence if in fact the granules align themselves so that the result-
ing aether is flat (or of some other highly symmetric shape). This is, of 
course, no problem unless we have reason to take the aether to be flat or 
highly symmetric. I obtain, however, the corollary that if the aether is 
symmetric then it is not made of granules. In Chapter Six, I shall argue 
that either it is symmetric or made of granules. Then the corollary shows 
the disjunction is exclusive.  
 The coincidence of the granules aligning to result in a flat aether 
would not be astounding if we thought of Space-time as independently 
existing. For in that case it would be a priori quite probable that Space-
time was flat and the aether granules would have to fit into it. But be-
cause, I have argued, Space-time depends for its existence on the aether, 
we would have to think of the granules as having adjacency relations 
that, out of all the conceivable arrangements, happen to be result in flat 
aether.  
  
 

                                                 

70  I am indebted to Charles Radin for his correspondence on this topic. The 
Penrose tiling is not isotropic for there are only 10 orientations for the tiles 
(Radin 1995: 27). The pinwheel tiling is, however, isotropic in the sense that 
given any angle θ and any positive angle δ, however small, the proportion 
(i.e. limiting relative frequency as the distance from some given point in-
creases) of tiles with orientations between θ and θ + δ is δ/2π. (Radin, 1995: 
27).  
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Note on Space-time 
I have asserted that, on continuous theories of the aether, Space-time is 
not the aether but a construct that depends for its existence on the aether. 
In the case of granulated aether Space-time would not be a construct but 
rather a fictitious space. First consider a single granule, and its associat-
ed Space-time. We could perhaps think of each point location p as the 
property that an object has if p is its centre of mass, a property that could 
belong to a sum of granules if the individual granules had masses. 
Whether or not we do so, we can associate a topological space associat-
ed with each granule. For instance, suppose the granules are represented 
by pentatopes (5-simplices). In that case, the corresponding space is top-
ologically equivalent to Pent = { <t, x, y, z>: 0 ≤ t ≤ x+y+z, 0 ≤ x ≤ 1, 0 
≤ y ≤ 1, 0 ≤ z ≤ 1}. The whole of Space-time is then the result of identi-
fying parts of the boundaries of the various topological spaces corre-
sponding to granules, where the identified boundaries correspond to the 
hyperfaces between adjacent granules.71 This Space-time could be given 
a metric structure but that metric seems to be of no relevance since the 
aether has a spatio-temporal structure not a purely spatial one.72 More 
important, in 6 or fewer dimensions there is an associated differentiable 
manifold structure specified up to diffeomorphism. (See Chapter Five.) I 
consider this ‘construction’ to result in a fiction because the occurrence 
of centres of mass requires a metric and the choice of metric depends on 
just how we represent the pentatopes. If the metric were of physical sig-
nificance then it would be appropriate to give a structuralist account of 
the centres of gravity. As it is, I judge the centres of gravity to be ficti-
tious properties.  
 
 
                                                 

71  I chose the example of 5-simplices rather than tesseracts here because it is 
the practice of algebraic topologists to consider simplices in this kind of con-
text.  

72  Within the Space-time occupied by a granule we could use the metric for a 
regular 5-simplex in the space of coordinate quadruples. Then the distance 
between points that are not in the same 5-simplex is the minimum that is in 
accordance with the triangle inequality.  
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4. The Orthodoxy and some variants 
The hypotheses I have considered thus far are the discrete ones. I now 
turn to continuous theories of the aether and, because of its familiarity, 
begin with the Orthodoxy. The Orthodoxy is that regions are represented 
by, and stand in a one to one correspondence with, all the non-empty 
sets of coordinate quadruples. A region has hypervolume if and only if 
the representing set has a measure, in which case the Lebesgue measure 
of the representing set approximates the hypervolume (say within 5%). 
Moreover, every region is the sum of its point parts, represented by sin-
gletons, and classical mereology holds. 
 That the measure of the representing set approximates the hyper-
volume is motivated by the restriction to a region of slight curvature. If 
there is no curvature at all then we have exact equality. Approximate 
equality implies that a region has zero or infinite hypervolume if and on-
ly if its representing set has zero or infinite measure, respectively. So an 
point has zero hypervolume.  
 One of the variations on the Orthodoxy is to suppose that some 
points are not simple, but I have already assumed we are here identifying 
equivalent regions so this variant may be ignored unless it is required 
later.  
 Because all points have zero hypervolume, the Orthodoxy and its 
variants are incompatible with the conjunction of Premises Two, Ten 
and Eleven, as noted in the previous chapter. The Orthodoxy itself is in-
compatible with the conjunction of Premises Ten and. Eleven. Premise 
Ten may be partially undermined by an appeal to humility: should we 
trust our intuitions in the uncountable case? Fair enough, but there is still 
a whole heap of trouble for the Orthodoxy and its variants, based upon 
the Banach Tarski theorem, to prove which we only required one appli-
cation of the Axiom of Choice, namely the Cross Section Principle:  

If R is an equivalence relation on the Ws there are some Ws, the Zs, 
such that every W is related to just one Z by R.  

Moreover, as discussed in the previous chapter the application of this is 
to an equivalence relation that is natural and easy to think about. We are 
considering two rotations of a sphere, and points are equivalent just in 
case some finite sequence of these rotations in some order takes one to 
the other. 
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 This application of the Banach Tarski theorem to the Orthodoxy is 
rightly called the Banach Tarski paradox. Intuitively there should not be 
such regions. The paradox immediately implies that there are regions to 
which no hypervolume can be assigned, since hypervolume must be fi-
nitely additive on any regions with zero hypervolume overlaps, and hy-
pervolume depends only on shape and size. But I have an intuition that 
the quantity question ‘How much?’ must have an answer when asked of 
any region, and that the answer is in this case the hypervolume.73 More-
over the equation 1 + 1 = 1 is not even approximately correct, so curva-
ture does not remove the paradox. 
 While I respect tradition, the historical fact that the Orthodoxy ac-
quired its status before the discovery of the Banach Tarski theorem 
should make us suspect that it would never have acquired that status if 
the paradox had been known to Archimedes or to Newton. In addition I 
am prepared to concede that Space-time is as the Orthodoxy states, while 
maintaining that the aether on which it depends is not. In Chapter One I 
argued against any defence of the Orthodoxy by rejecting the Axiom of 
Choice. 
 One interesting family of nearly orthodox hypotheses is obtained 
by rejecting Premise Two, Universal Summation, which is implied by 
the Orthodoxy. So we obtain hypotheses in which we suppose that a 
class of points, the Xs have a sum if and only if they are represented by 
sets of coordinate quadruples of some designated kind. One such variant 
of the Orthodoxy is Lebesgue Continuum: all and only Lebesgue meas-
urable non-empty sets represent regions.  
 Other things being equal we should restrict general principles as 
little as possible. This would support Lebesgue Continuum. There is, 
however, a serious objection to this hypothesis. Consider a non-
measurable set K of coordinate triples <x, y, z>, say one of those used in 
the Banach Tarski theorem. Then we form the product I × K, where I = 
{t: 0 ≤ t ≤ 1}, the unit interval. So I × K = {<t, x, y, z>: t ∈ I, <, x, y, z> 
∈ K}. According to the Orthodoxy I × K represents a non-measurable 

                                                 

73  The alternative explication as ‘How many?’ cannot be correct in this case, 
because it gives the same answer in all cases, namely 2ℵ0. 
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region existing for one unit of Time, but according to Lebesgue Contin-
uum there is no region represented by I × K. And that is what we expect 
intuitively. But now consider J, an uncountable subset of I of measure 
zero, say the Cantor set. Then, J × K has zero measure and hence, ac-
cording to Lebesgue Continuum, does represent a region, b It is strange, 
counter-intuitive even, to allow a weirder set J × K to represent a region 
when the less weird I × K does not.  
 A more incisive objection is obtained by noting that our intuitions 
about spatio-temporal things such as the aether are based on two differ-
ent ways of extrapolating from the 3 dimensional case. We may consider 
the 4 dimensional analogs of the 3 dimensional intuitions, but we also 
retain those intuitions for the 3 dimensional time-slices of the 4 dimen-
sional things. Hence the Banach Tarski paradox should show us that the 
Orthodoxy is false even when restricted to time-slices. But given any set 
of coordinate triples X the set of quadruples J × X would represent a re-
gion according to Lebesgue Continuum and so X represents a time-slice 
of a region.  
 To avoid these pathological yet measurable regions, I deny that 
summation is the only way in which more complicated regions can de-
pend on simpler ones. In this way I obtain a variant on the Orthodoxy, 
which I call Borel Continuum, the thesis that the regions correspond to 
the results of starting with regions we are happy to consider fundamen-
tal, the globules, and then considering the result of both countable sum-
mation and the taking of complements. These are represented by the 
non-empty Borel sets of quadruples. Any Lebesgue measurable set of 
quadruples will differ from a Borel set by a set of measure zero. 
 Borel Continuum violates universal summation. In addition, the 
way I described it illustrates a defect. Intuitively, more complicated re-
gions depend on fundamental ones such as the globules, by being their 
sum. But not all parts of Borel Continuum are sums of globules. That is 
because there are two ways in which more complicated regions depend 
on less complicated ones, summation and taking complements. In some 
cases, we are forced to say that the region u – v depends on u and v. Or, 
equally counter-intuitive, we abandon the thesis that the more compli-
cated regions depend ontologically on the less complicated.  
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 A cross section of a Borel subset of ℜ4 is always a Borel subset of 
ℜ4, so the objection to Lebesgue Continuum does not, however, arise.74  
 
5. Point-free theories 
Point Discretion and Borel Contfinuum are two point-based hypotheses 
about the aether. I now consider some hypotheses in which every region 
has positive hypervolume and every region is the sum of regions of less 
hypervolume. We may call these gunk hypotheses provided we I ignore 
fine structure. 
 These gunk hypotheses have an advantage over point-based contin-
uous hypotheses such as Borel Continuum, namely that the measure of 
quantity, the hyper-volume, is faithful. That is, if region u is a proper 
part of region w and if u is of finite hypervolume then w is of greater 
hyper-volume. Or, to avoid the restriction to the finite case, we have a 
strengthening of Weak Supplementation:  

If u is a proper part of w then there is some proper part v of w 
disjoint from u, and v has positive hyper-volume.  

Although not a firm intuition, I have an a priori preference for the posi-
tion that hyper-volume should be faithful.  
 The first gunk hypothesis I have called Arntzenius Continuum after 
Frank Arntzenius who has proposed it (2008). On it the regions are rep-
resented in a one to many way by sets of coordinate quadruples of posi-
tive Lebesgue measure. That is, the region is represented by an equiva-
lence class of sets. In this case sets X and Y are equivalent if the differ-
ences X - Y and Y - X are both of measure zero. Then region x is part of 
                                                 

74  Without loss of generality, we may take the cross section to be obtained by 
putting x = 0. Define a cylinder-set to be a set W such that <x, y, z, t> ∈ W 
iff <0,x,y, z, t> ∈ W. Then every cross section of an open set is open and so 
a cross section of an open cylinder set and a fortiori of a Borel cylinder set. 
Every union of cross sections of Borel cylinder sets, the Xs, is a cross section 
of a Borel cylinder set, namely the union of the Xs, and every complement of 
the cross section of a cylinder set Y is the cross section of a cylinder set, 
namely the complement of Y. Hence, by mathematical induction on the 
number of operations (union and taking complements) required to form the 
Borel set from open sets, every cross section of a Borel set is the cross sec-
tion of a Borel cylinder set and so itself Borel.  
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region y if for any sets X and Y in the equivalence classes representing x 
and y, respectively, the difference X – Y is of zero measure. Because 
every Lebesgue measurable set is equivalent to a Borel set, we may 
likewise obtain it by identifying equivalent Borel sets of positive meas-
ure. 
 Arntzenius Continuum has some attractive mathematical features.  

1. Not only does it satisfy classical mereology, but also the sum of a 
class Z of regions is the sum of some countable sub-class. 

2. All the eleven Premises except Premise One (Connected Parts) 
hold.  

3. The topology may be characterised by means of a family of open 
regions, where an open region is one that is represented by an 
equivalence class containing a non-empty open set of quadruples. 

4. The union of all the open sets in an equivalence class is itself in 
that class, and therefore may be used to represent the open region. 
I call such a set U a maximal open set meaning that if U is a prop-
er subset of an open set V then V - U is of positive measure.  

5. The open regions generate all regions in the sense that the class of 
all the regions is the smallest class of regions containing the open 
ones, and closed under countable summation and the complement 
operation. 

Because of (5) we do not need to worry about which equivalence classes 
of Lebesgue measurable sets represent regions. Every open region is the 
sum of globules so once we include globules and deny that there are two 
regions differing by one of zero hypervolume the result must be 
Arntzenius Continuum unless we reject classical mereology. 
 Arntzenius Continuum violates Premise One (Connected Parts), 
because the complement of a supersponge contains no connected parts 
larger than a point and Arntzenius Continuum is point-free. This com-
plement of a supersponge is totally disconnected in the sense that it has 
no connected parts. Not only is that seriously weird but it is open to an 
objection based on the intuition that every region depends ontologically 
on fundamental ones that are not too complicated. Totally disconnected 
regions are clearly too complicated. For ease of exposition I assume that 
the fundamental regions are globules. It follows that the totally discon-
nected regions must depend on globules. But they are not the sum of 
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globules for globules are connected. So they would have to depend in 
some other way on the globules. There remains the intuition that every 
region depends on globules. This holds provided we allow more than 
one operation by which some regions ground others, namely summation 
and difference.  
 In this respect Arntzenius Continuum is no worse off that Borel 
Continuum, and because of its other advantages I rank it higher. This 
comparison will survive all the further considerations that I shall discuss, 
so my disjunction ‘Granulated Aether or symmetric continuous aether’ is 
to be understood with the rider that continuous aether is more likely to 
be Arntzenius Continuum than Borel Continuum. It is worth noting, 
though, that Borel Continuum would be advantageous in one respect if 
the aether’s absolute (i.e. frame-independent) temporal ordering did not 
result in the familiar light cone structure.75 The reason for this is that the 
pointy nature of light cones provides us with surrogates for the points 
that Arntzenius Continuum lacks. In the absence of these point-
surrogates the characterisation of the symmetric geometry of the aether 
is somewhat more complicated.. (See Chapter Seven for further details.) 
I am not sure how seriously we should take this one advantageous re-
spect. 
 If we ignore all considerations of the hypervolume of a region, then 
we should take seriously Tarski Continuum, namely the hypothesis that 
the regions correspond to the non-empty regular open sets of quadru-
ples, where a regular open, also called perfectly open, set is one that is 
the interior of its closure (Tarski 1956). This is a classical mereology in 
which every region is the sum of countably many globules.  
 If the only defect was that it violated Premise Ten (Limiting Hy-
pervolumes) then we might have another fit of humility in the face of 
the infinite. Unfortunately, there is not even a finitely additive hyper-
volume on the Tarski Continuum. Moreover unlike the case of the Or-
thodoxy, to go against the intuition that every region has a quantity 

                                                 

75  If the aether has a Minkowski Space-time structure, or some other highly 
symmetric shape, such as de Sitter Space-time,  then there is an absolute (i.e. 
frame-independent) temporal ordering, that in which x precedes y if x ≠  y 
but the future light cone from x contains y.  
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could not even be defended on the (question-begging) grounds that the 
regions correspond to non-measurable classes. Compared to the rather 
minor failing of Arntzenius Continuum I find this quite damning.  

 That there is not a hypervolume assignable to every region of Tar-
ski Continuum follows, appropriately enough, from an analog of the Ba-
nach Tarski theorem for regular open sets, and one that does not require 
the Axiom of Choice (Dougherty and Foreman 1992). There are disjoint 
regular open sets U1 to U5 of total Lebesgue measure no greater than 
4π/3 (the hypervolume of a unit ball persisting for unit time), such that 
V, the smallest regular open set containing  U1 to U5, has measure equal 
to 8n/3 the sum of two balls of unit radius persisting for unit time).  We 
obtain a paradox by taking the regular open sets U1 to U5 and V to rep-
resent regions  u1 to u5 and v. 
 Tarski Continuum is just one version of a family of hypotheses ac-
cording to which the regions are represented by some or all of the non-
empty open sets of quadruples. In Chapter Two I noted some others, the 
Open Gunk hypotheses such as Locale Continuum.. Suppose we restrict 
our fits of humility to the uncountable case and so we grant Countable 
Subadditivity for hypervolumes (i.e. the principle that the hypervolume 
of the sum of countably many regions cannot exceed the sum of the hy-
pervolumes). Then these open region variants violate Premise Eight. 
For if all regions are represented by open sets so are the globules, and 
there will be enough globules for us to find a countable class of them, 
K, whose hypervolumes add up to ½, where I assume that hvol(æ) ≥ 1, 
and whose representatives are dense in Œ, the set of quadruples repre-
senting æ.76 Now consider the countable sum of the K, a region u. It is a 
part of œ but there is no part of œ disjoint from u, for if there were it 
would be represented by an open non-empty set disjoint from U the rep-
resentative of u, contradicting density. So if Weak Supplementation 
holds, u = æ, but in any case by Hypervolume Supplementation (Prem-

                                                 

76  There are countably many quadruples of rational numbers. Those in Œ may 
be arranged as a sequence <q1, q2, . . . >. K consists of globules of hypervol-
ume (½)m+1 represented by an open set containing qm, for all positive inte-
gers m.  
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ise Eight), vol(u) = vol(æ) ≥ 1. Hence the sum of the K has hypervol-
ume greater than the sum of the hypervolumes of the K, contradicting 
Countable Subadditivity, which follows from Premises Nine and Ten. 
(See the previous Chapter.) 
 There are difficulties even if we reject Countable Subadditivity. For 
we may consider again the variant on Banach Tarski used to refute Tar-
ski Continuum. There are disjoint regular open sets U1 to U5 of total 
Lebesgue measure no greater than 4π/3 (the hypervolume of a unit ball 
persisting for unit time), such that V, the smallest regular open set con-
taining their U1 to U5, has measure equal to the sum of two balls of unit 
radius persisting for unit time, which we may take to be a region v of 
hypervolume 8π/3. So V is the interior of the union of the closures of 
U1 to U5. To preserve the finite additivity of hypervolume we would 
have to suppose that U1 to U5 are all subsets of an open set W repre-
senting a region w of hypervolume less than v. By Hypervolume Sup-
plementation, v has a part x disjoint from w. So x is represented by a 
non-empty open set X disjoint from U1 to U5 but nonetheless a subset 
of V, contradicting the supposition that V is the interior of the union of 
the closures of U1 to U5. 
 Nor can we rescue Open Gunk theories by retreating from Premise 
Eight to the weaker, but more firmly intuitive, Premise Eight*. For if all 
regions are represented by open sets the two principles coincide. For 
two open sets intersecting in a non-empty set must intersect in a non-
empty open set and hence one of positive measure. The retreat from 
Premise Eight to Premise Eight* was only viable in the case of Pseudo-
set Granules. 
  
6. Should we reject countable summation? 
Thus far I have supposed that even if Premise Two (Universal Summa-
tion) fails any countable infinity of regions have a sum, but some might 
reject even that intuition. This leads to a hypothesis according to which 
if we adjoin the fictitious empty region ø then the lattice of regions 
forms a Boolean algebra but we do not require countable additivity of 
pairwise disjoint regions. (This is similar to Achille Varzi’s definition 
of a closed mereology in Varzi 2000.) In that case we may restrict atten-
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tion to comparatively few regions, by taking the algebra associated with 
the mereology to be the Boolean algebra generated by the globules, as 
in Sparse Continuum in which the globules are represented by non-
empty convex open sets.  
 Such hypotheses are open to the criticism I made of Borel Continu-
um, namely that regions are not constituted by the summation of more 
fundamental ones (the globules). In addition, problems arise because, 
although we do not assume countable summation, there are still cases in 
which one region is in fact the sum of countably many others and in 
some such cases Countable Subadditivity fails. Consider a region u rep-
resented by a non-empty convex open set U of coordinate quadruples. 
For convenience take u to have hypervolume 1 unit. Then arrange the 
quadruples of rationals in U as a sequence χ1, χ2, χ3, . . . . There for 
each j is a region vj whose representing set is U∩Wj where Wj is the 
ball center χj radius (½)j+1. Then u is in fact the sum of the vj, but the 
sum of the hypervolumes of the vj is less than 1 unit. What this example 
shows is that the attempt to restrict the regions to ones that can be de-
scribed easily without assuming infinite summation results in infinite 
sums that are counter-intuitively large. Hence I reject Sparse Continuum 
and its variants, unless a strong case can be made for them on other 
grounds. 
  
 

7. Countably many points or granules 
A fairly natural suggestion is that the region of finite diameter œ is the 
sum of a countable infinity of points. I call this the Aleph Null Hypothe-
sis. In that case we represent regions as non-empty subsets of some 
countable set of quadruples dense in Œ, the set representing œ. If all 
points have zero hypervolume, it then follows by Countable Subadditivi-
ty that every region of positive hypervolume has zero hypervolume, 
which is a contradiction. But if some region has positive hypervolume 
then we have a violation of Premise Three (the Diameter/Hypervolume 
nexus). In the case of Point Discretion we were able to undermine that 
intuition by replacing the, ‘How much?’ question by, ‘How many?’ No 
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such undermining is available for the case of the Aleph Null Hypothesis. 
For all hyperballs would be assigned the same quantity, ℵ0 
 Even if we ignored this problem we would still have the difficulty 
that there would have to be an infinite range of hypervolumes assigned 
to points. Otherwise œ contains only finitely many regions of non-zero 
hypervolume and so we have a discrete theory with some quite unneces-
sary parts of zero hypervolume added on. On the usual grounds of theo-
retical simplicity we should reject a theory that posits an infinite range of 
hypervolumes to its fundamental regions without further explanation.  
 The Aleph Null Hypothesis might be rescued by denying countable 
subadditivity. In that case every region that is the sum of finitely many 
points has zero hypervolume but the sum of countably many of them 
might have a non-zero hypervolume sum. The problem with this is that 
there is then no satisfactory way in which the shape and size of the re-
gion fixes its hypervolume. The countably many points should have rep-
resentatives that form a dense set, for instance, those with rational coor-
dinates. Hence we would expect the hypervolume of a region to equal 
the Lebesgue measure of the topological closure of the representing set. 
But that permits in a cheap version of the Banach Tarski Paradox. We 
can find disjoint regions u and v both parts of œ such that u, v and œ 
have the same finite non-zero hypervolume. And as usual we can ensure 
connectedness by allowing, in place of their being disjoint, the regions u 
and v to overlap in a region of very small hypervolume.  
 To meet this, the hypothesis would have to be modified further so 
that not only countable subadditivity is restricted but so is countable 
summation. The most straightforward response to this is to note that it is 
worse to abandon two intuitions than just one, unless there is some way 
of undermining them. So a hypothesis in which both countable subaddi-
tivity and countable summation are rejected is less likely than the four 
exemplars.  
 I also note the variant on Extended Simples, in which the granules 
differ in size, and a region of finite hypervolume may therefore contain 
countably many of them. As far as I can se this variant has no a priori 
advantage over Extended Simples itself that would compensate for the 
extra complexity.  
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8. Infinite dimensional variants 
We may consider infinite dimensional aether, with regions represented 
by sets of infinite sequences of real numbers. Then, the distance between 
<x1, x2, . . . > and <y1, y2, . . . > is √(( x1 - y1)2 + (x2 – y2)2 +. . . ). If 
we concentrate on a region œ of finite extent, represented by a set of in-
finite sequences Œ, then by taking the sequence of zeros <0, 0, . . . > to 
be a member of Œ, it follows that for every sequence <x1, x2, . . . > in 
Œ the sum x12 + x22 +. . . is finite. In particular if we took all the xn to 
be integers then all but finitely many of them must be zero. In any case 
the sequence <x1, x2, . . . > converges to 0 as n increases. To be sure, I 
have been considering diameters but the same consideration holds if 
there is a ‘metric' on the aether that is approximately Minkowskian.  In 
that case, the ‘distance’ between <s, x1, x2, . . . > and <t, y1, y2, . . . > = 
√(s - t) 2 - (x1 - y1)2 - (x2 – y2)2 - . . . ). 
 Infinite dimensional aether is, I claim, improbable. For the measure 
of extent (or its relativistic analog) coheres poorly with the measure of 
quantity. Consider a hypercube one corner of which is represented by a 
sequence of 0s, with the opposite corner represented by the sequence, 
<x1, x2, . . . >. In order that the distance between them to be finite we 
require that the sequence, <x1, x2, . . . > converges to 0 as n increases. 
But the hypervolume is the infinite product of all the real numbers 
x1, x2, . . . and for that to be non-zero we require that the sequence con-
verges to 1 as n increases.  
 If we had some empirical evidence for infinite dimensionality then 
it might be worth some ad hoc way of resolving the problem that the se-
quence, <x1, x2, . . . > converges to both 0 and 1 as n increases. Now we 
know what the empirical evidence would be like: a succession of physi-
cal theories each an improvement on the previous one that require at 
smaller and smaller scales the resort to more and more dimensions. To 
be sure even then we might debate whether to draw the conclusion that 
there are infinitely many dimensions. In any case, all we have so far are 
the rather speculative String and other Supergravity theories, taking the 
first step. ‘One swallow does not make a summer.’ 
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9. Aiming for completion 
Ideally I would have provided a systematic way of surveying all the hy-
potheses that are not wildly implausible, but I do not know how to start. 
I do know that I have not listed all such hypotheses that I can think of. 
Notably absent are those in which regions are represented by the non-
empty topologically closed sets, or by countable unions of such sets. The 
best I can do is to go through the four basic kinds of hypothesis, point-
based discrete, point-free discrete, point-based continuous and point-free 
continuous and consider why I can reasonably hope that the best hypoth-
esis is either the exemplar  or some variant that I have considered. I 
should preface this exercise by reminding readers of my stipulation that 
fine structure is being ignored, by noting that just possibly we might 
have some good reason to give a different hypothesis for Space and for 
Time, and by asserting that, other things being equal, hybrid theories are 
less plausible than their parents. 
  
Point-based discrete aether 
Qualitative differences between points are conceivable, because of fine 
structure, but positing them is extravagant. So I assume all points are ex-
actly similar. If there are finitely many in a given region of finite diame-
ter the resulting hypothesis is Point Discretion. Otherwise point-based 
discrete aether hypotheses require an infinite number of points in a unit 
hypervolume of continuous Space-time. Unless we represent the points 
by a set of coordinate quadruples œ dense in Œ (i.e. Œ is the closure of 
the set of coordinates representing œ.) there is a further problem that œ 
has holes, represented by the quadruples in Œ but not in the closure of 
œ. Unless required by physics it is extravagant to countenance such 
holes. This leaves as a not too implausible the hypothesis in which 
points are represented by a dense set of quadruples, say using rational 
coordinates only. Strictly speaking this is a continuous hypothesis. The 
problem with it is in assigning a measure of quantity. The natural sug-
gestion is that the hypervolume of a region should in this case be the 
Lebesgue measure of the closure of the representing set of coordinate 
quadruples. But, as already noted, that leads to a Banach Tarski type ab-
surdity. Given a countable sum of points in a region œ of hypervolume 1 
unit, represented by coordinate quadruples whose closure is Œ, œ is the 
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sum of two disjoint parts u and v represented by sets U and V where U, 
V and the closure of Œ all have the same Lebesgue measure. So hvol(u), 
hvol(v) and hvol(œ) are approximately the same, which is absurd. 
Hence, the only plausible point-based discrete hypothesis is Point Dis-
cretion itself. 
  
Point-free discrete aether 
Any macroscopic region of finite hypervolume is approximately divisi-
ble into two. By that I mean that u = v + w where hvol(v) ≈ hvol(w) and 
either v and w are disjoint or hvol(v∧w) = 0, or, if we are being scrupu-
lous, hvol(v∧w) is very small compared to hvol(v). In the point-free dis-
crete case, such division eventually fails. Because we are ignoring hy-
brid hypotheses we shall reach such failure regardless of the hyperplane 
of approximate division and so we may assume that the aether is the sum 
of regions that which cannot be further divided into two, in the above 
fashion. Call these regions granuloids. Theoretical simplicity favours 
uniformity, so we may take the granuloids to be the same shape and size. 
They may overlap, in which case we can note in passing the suggestion 
that the hypervolumes of the overlaps is positive but much smaller than 
the overlapping granuloids Rejecting that extravagance, the granuloids 
are granules and we are left with the range of hypotheses considered 
previously. 
  
Point-Based Continuous Hypotheses 
There are very many hypotheses we could consider based on the choice 
of representing sets. Here there are two choices: that of the representa-
tions of points; and that of which sets of points have sums, which will 
then be represented by the corresponding sets. Regarding the first 
choice, I have already considered, and rejected, hypotheses according to 
which the number of aether points in a region of finite diameter is count-
able. This leaves very many hypotheses with uncountably many points. 
But there are two considerations in favour of representing a local region 
œ by a set Œ of coordinate quadruples that is, say, a convex set – unless, 
that is, we posit higher dimensions for the sake of the physics, in which 
case n-tuples replace quadruples for some n > 4. One is an appeal to top-
ological simplicity: excising some quadruples from the representing set 
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Œ results in more complicated structure. The other is a characterisation 
problem. It will be hard enough to characterise the structure of the aether 
in some way that does not rely upon the representation, but I cannot even 
see how to begin that task in the point-based case unless Œ is a suitable 
set of coordinate quadruples, such as a convex one.  
  Granted that Œ is a suitable set of coordinate quadruples, Universal 
Summation then implies the Orthodoxy, which is only tenable if we re-
ject the Axiom of Choice, as discussed previously. Curmudgeons  have a 
principled way of restricting Universal Summation, but the problems 
with the Orthodoxy are not solved by the curmudgeon variant that re-
quires regions to be connected. Another principled restriction is to ex-
clude precisely the summations that result in regions to which no hyper-
volume can be assigned. This would lead to Lebesgue Continuum, but it 
should be noted that if we combine Lebesgue Continuum with the ini-
tially plausible thesis that all regions depend ontologically on points, 
then the principle of Dependent Quantity is violated, just as it was by the 
Orthodoxy combined with Solovay's Axiom . 
 I conclude that continuous point-based hypotheses are not point-
based in the strict sense, because not all regions depend ontologically  
on points. That raises the question of just what the fundamental regions 
are, if they are not just the points. The most plausible answer is that they 
are the globules instead of, or as well as, the points. But in that case we 
no longer require uncountable summation and so may rely upon the 
principled restriction of Universal Summation to the countable case. In 
that case, the chief difference between hypotheses concerns the ways in 
which more complicated regions are grounded in the less complicated, 
and ultimately in globules. Countable summation is highly plausible. But 
if the sum of countably many regions is represented by something larger 
in Lebesgue measure than the union, then countable subadditivity will be 
violated. Hence we may assume that the countable sum of regions repre-
sented by sets Uj of coordinate quadruples is represented either by their 
union or a set differing by zero measure from their union. If the only 
way in which less complicated regions ground more complicated ones is 
(finite or countably infinite) summation then every region would be rep-
resented by one differing from an open one by a set of measure zero. 
This will be subject to the same objection as raised to Open Gunk .  
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 We require, then, that there be an additional way of grounding the 
more in the less complicated. The only two that come to mind are (1) 
countable meets and (2) taking of complements. (1) would give us Gδ 
Continuum, with regions represented by the non-empty countable inter-
section of open sets. In Chapter One, I argued that Gδ Continuum was 
inferior to Borel Continuum, because there was no motivation for the 
thesis that the meet of regions depends ontologically on the regions in 
question, but, relying on realism about absences, the dependence of the  
differences x - y on x and y can be motivated.   
 
Point-free Continuous Aether. 
If the aether is point-free we may construct the point(-locations) of 
Space-time as ultrafilters with respect to the topological relation of inte-
rior parthood. Hence we may compare point-free theories by represent-
ing regions as sets of points in Space-time. If we ignore fine structure, 
no two regions are represented by the same points, so the point-free the-
ories may be surveyed by first asking, ‘What sort of non-empty sets do 
the representing?’ and then ‘When are two representing sets equivalent 
in that they represent the same regions?’ Some answers to the first ques-
tion might be: (1) regular open sets, (2) maximal open sets (X is maxi-
mal open if it is not a proper subset of an open set of the same Lebesgue 
measure), (3) all open sets, (4) countable intersections of open sets, (5) 
Borel sets, (6) Lebesgue measurable sets. One obvious answer to the se-
cond question is (a) that equivalence is identity. Other answers are that 
equivalent sets differ by: (b) at most finitely many points; (c) at most a 
countable infinity of points; (d) a set of at most 3 dimensions (with vari-
ants in which the number of dimensions is 1 or 2 not 3); (e) a set whose 
closure has empty interior; (f) a meagre set (that is a countable union of 
sets whose closures have empty interior; or (g) a set of zero Lebesgue 
measure. Not all the combinations of answers give different results. In 
particular if we consider Arntzenius Continuum and its variants based on 
answer (g), then (2) and (3) coincide as do (4), (5) and (6).  
 This still leaves a great variety, but Arntzenius Continuum leads all 
the rest. First note that representations by open sets are confounded in 
one way or another by the occurrence of open dense sets in Œ with 
Lebesgue measure less than that of Œ itself. Such a set is a countable 
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union of open balls, which must represent globules. So either these balls 
fail to satisfy the subadditivity of hypervolume or their sum is a part of 
œ of less hypervolume than œ, which fails to satisfy Premise Eight*.  
 The next consideration is that if we abandon points we should re-
tain the feature that the measure of quantity is faithful  in the sense that if 
x is a proper part of y and hvol(y) is not infinite then hvol(x) < hvol(y). 
Such fidelity is directly intuitive only if we allow for infinitesimal dif-
ferences, but a straightforward appeal to conceptual economy should 
make us prefer hypotheses without these infinitesimal differences. In 
that case fidelity follows from the intuitive idea that the part has less 
stuff making it up than the whole. Only answer (g) ensures that such fi-
delity. But given that we have excluded representations by open sets, 
answer (g) ensures that all the suggestions coincide with Arntzenius 
Continuum.  
  
Provisional Conclusions  
I have listed four hypotheses, the exemplars,  together with variants, that 
are worth further investigation. They are: my a priori preferred hypothe-
sis, Point Discretion, then Extended Simples and Arntzenius Continuum, 
followed by Borel Continuum. Pseudo-set Granules will, however, turn 
out to have some advantages compared to Extended Simples, of which it 
is a variant. 
 We might perhaps distinguish the spatial from the temporal aspects 
of the aether, giving one theory for the spatial and one for the temporal. 
Thus the aether might conceivably be temporally discrete but spatially 
continuous. I shall consider and reject this proposal in Chapter Six.  
 What other hypotheses have I ignored? Plenty but as far as I know 
none of them are a priori as likely as the exemplars. Now, in the context 
of further theory some of my exemplars might be rejected and some that 
had been dismissed might be reconsidered, especially those rejected only 
on grounds of simplicity. If further theory exhibits additional problems 
with all the hypotheses considered, then a more thorough survey of hy-
potheses would be required. 
 I have reached two provisional conclusions concerning the mereol-
ogy, namely that all the theories worth considering are Boolean once the 
fictitious empty region is adjoined, but that we have no strong reason to 
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assume classical mereology. Borel Continuum for instance is not con-
sistent with Universal Summation.  
 I have also made two provisional comparisons. 

(1) Point Discretion is the provisional winner. (It will, however, be 
rejected later.) 

(2) Of the other three hypotheses it is hard to rank Extended Sim-
ples against Arntzenius Continuum, which, however, is superi-
or to Borel Continuum. 
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4. Hypervolume and Topology 
 
The previous chapters were incomplete in two ways. The first, which is 
the chief topic for the rest of this book, is that the ease or difficulty of 
adjoining extra structure might affect the ranking of the hypotheses. I 
begin that investigation in this chapter by considering topological struc-
ture. Because it is easier to characterise, this provides a foil for the prob-
lem of characterising differentiable structure, discussed in the next chap-
ter. 
 I also discuss another respect in which the first three chapters were 
incomplete: although I was considering 4-dimensional aether the intui-
tions relied upon were based on those about objects extended in 3 di-
mensions. Yet Special and General Relativity are widely, and I think 
correctly, taken to imply that there is no such property as the diameter of 
something extended in Space and Time, for diameters are frame-
relative.77 Because I have relied upon intuitions about diameter I need to 
show that those intuitions survive transition to frame-relativity.  
 First, though, I reply to the objection that hypervolume and diame-
ter are not fundamental quantities. That is, they depend ontologically on 
something else. I shall concentrate on hypervolume. Similar considera-
tions apply to diameter. 
  
1. Hypervolume and Ockham's Razor  
One of the advantages of Point Discretion was that we replace hypervol-
ume by another measure of quantity, the number of points, which is un-
problematic. On the other hypotheses about the structure of the aether, it 
is tempting to posit a relation between two regions u and v and a number 
x, namely that the u and v have hypervolumes in the proportion whose 
value is x. This requires relations between things of different categories, 
namely regions and numbers, and such cross category relations should, I 
                                                 

77 Although we can define a frame-independent measure of extent it is not a 
diameter, because it is not an analog of the familiar, but frame-relative, 3 di-
mensional diameter. For it fails to satisfy the principle that if two regions 
overlap, then the diameter of their sum is no greater than the sum of their di-
ameters.  
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say, be avoided if we can.78 Moreover, I follow Newton in holding that 
numbers just are proportions, in which case the phrase ‘whose value is’ 
is redundant.79 So I say that hypervolumes are properties of regions and 
that these properties themselves stand in various relations of proportion, 
which we then identify with non-negative numbers.80 Considering vol-
umes in three dimensions in place of hypervolume for simplicity of ex-
position, we may say that the volume 1 cubic metre and the volume 1 
cubic foot stand in a proportion relation which is identical to some num-
ber (approximately 35.3). 
 Ockham’s Razor is sharp when it comes to fundamental properties 
and relations, and I think we should posit a fairly small number of these. 
On my preferred account of hypervolumes a trans-categorical triadic re-
lation is replaced by an infinity of distinct properties. So by Ockham's 
Razor these should not be fundamental. Yet, the objection would go, I 
have not explained what hypervolume depends on. Moreover, because 
hypervolume is not fundamental our intuitions about it are vulnerable to 
defeat by explication. That is, we should investigate to what extent our 
intuitions depend on ones concerning the more fundamental structure, 
and if they do, check that our intuitions survive this explication.  

Except in the case of Point Discretion, hypervolume depends on the 
single dyadic less-than-or-equal quantity relation, x ≤ q y. There is a de-
rived equal quantity relation, x =q y, which holds if x ≤ q y and y ≤ q x, 
and a derived less quantity relation, x <q y, which holds if x ≤ q y but not 
x ≤ q y. The theory becomes more complicated if, contrary to our intui-
tions, there are some regions to which no hypervolume is assigned. In 
                                                 

78  One reason is that if the Xs are related to the Ys, then in addition to the cate-
gories of relations between Xs and relations between Ys, there must be an 
additional category of relations between Xs and Ys, which is uneconomic.  

79  ‘By number we understand not so much a multitude of unities, as the ab-
stracted ratio of any quantity to another quantity of the same kind, which we 
take for unity’ (Newton, 1728:2). See also (Forrest and Armstrong 1987). 

80  To be sure, we may sometimes say that the hypervolume of u and the hyper-
volume of v stand in the ratio ∞ to 1, but I paraphrase this as saying that the 
hypervolume of v and the hypervolume of u stand in the ratio 0 to 1. 
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that case having hypervolume would have to be taken as a primitive 
property of regions.  
 For regions that have hypervolume – hopefully all regions – the ≤ q 
relation is transitive reflexive and linear. Linearity is here the principle 
that for any regions x and y that have hypervolume either x ≤ q y or 
y ≤ q x.  
 First let is consider the discrete case. If Point Discretion is correct, 
then, as already mentioned, we do not need the ≤ q relation. For the 
quantity of a region is just the number of points. In the case of Extended 
Simples and its variants,  all we need is the relation of same-quantity 
which we may either take to be a fundamental equivalence relation or 
characterise it thus: x =q y if x ≤ q y and y ≤ q x. For then the plausible 
hypothesis that all extended simples have the same hypervolume enables 
us to use the number of simple parts in a region as a measure of its hy-
pervolume, showing how hypervolume depends on the ≤ q relation.81 
 In the continuous case we may use the standard methods of meas-
urement theory due to Otto Hölder to derive hypervolume from the ≤ q 
relation (See Suppes and Zinnes 1963). We start with the region œ that 
we may take to have unit hypervolume.82 We may then characterise a 
region of positive hypervolume as a region u such that for some finite 
                                                 

81  If we were to posit extended simples that are not all of equal hypervolume, 
then we could still take hypervolume as dependent on the ≤q relation. In that 
case I would assume that for any two simple regions u and v there are inte-
gers m and n and some disjoint extended simples, the Ws, all of the equal 
hypervolume, such that u is of equal hypervolume to the sum of m of W and 
v of equal hypervolume to the sum of n of them. There are, however perverse 
examples in which the purported hypervolume could not be derived from the 
≤q relation. For instance, suppose there are only finitely many regions in the 
whole universe, all of which are sums of extended simples, some of which 
have hypervolume 1 unit and some hypervolume √2 units. In such cases we 
could not ground the hypervolumes in the ≤q relation. But we have no reason 
to posit such perverse structures.  

82  To avoid ending up with a system of infinite hypervolumes or infinitesimal 
hypervolumes we need an anthropocentric scale, taking œ to be, say, the re-
gion occupied by the standard metre during the Nineteenth Century.  
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number of regions x1 to xn, xj ≤ q u, xj <q œ, and x1 +. . . + xn = œ. Re-
stricting attention to regions that have positive hypervolume, we may 
propose the following principles: 

(1) If x is a part of y then x ≤ q y. 
(2) If x ≤ q y and y ≤ q z then x ≤ q z. 
(3) Either x ≤ q y or y ≤ q x 
(4) Given any x and y there is some z such that x =q z and y and z 

are disjoint. 
(5) If x ≤ q y and z is disjoint from x and y then (x + z) ≤ q (y + z). 
(6) If x <q y then there is some z disjoint from x such that (x + z) =q 

y. 
(7) If x ≤ q y there is an integer m and pairwise disjoint regions u1 

to um such that x =q uj for all j, and y ≤ q (u1 +. . . + um). 
From these principles it follows that there is a measure of quantity, hy-
pervolume, taking values from 0 to ∞, such that (a) x ≤ q y if and only if 
hvol (x) ≤ hvol(y), and (b) if x and y are disjoint, hvol(x + y) = hvol(x) + 
hvol(y). 83  
 Premise Ten may be modified to obtain Premise Ten*:  

Consider some totally ordered regions the Xs. Suppose there is 
some region w such that, for any x that is X, x ≤ q w. Then, if 
the Xs have a v, v ≤ q w. 

Premise Ten* together with (1) to (7) show that hypervolume is counta-
bly subadditive, but in any case all we required in Chapter Two was that 
the sum of regions of zero hypervolume is of zero hypervolume, where a 
region x is of zero volume if for all y, x + y ≤ q y, for which Premise 
Ten* directly suffices.  
 Of the eleven Premises of Chapter Two those that are required in 
addition to Countable Subadditivity are already of a purely qualitative 
                                                 

83  Consider the equivalence classes u, v etc under =q. Define R by uRv iff for 
some x ∈ u, y ∈ v, x ≤q y. Define uSv as the equivalence class of any x + y 
such that x ∈ u, y ∈ v and x and y are disjoint. Then it is easy to see that the 
system consisting of the equivalence classes, and the relations R and S satis-
fy the axioms of an extensive system (Suppes and Zinnes 1963: 42). There-
fore, their representation theorem (Suppes and Zinnes 1963: 43) holds.  
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nature and can be expressed easily enough in terms of the less-than-or-
equal quantity relation. Thus we may paraphrase 'hvol(u) < 1/n' by 
'There are n regions of equal quantity x1 to xn, such that u ≤ q xj and  
such that x1 +. . . + xn = œ.'  
  
2. The threat of Relativity 
Rejecting as I do the neo-Lorentzian theories, championed by Craig 
(2001), I assume there is no necessarily privileged frame of reference. 
But diameter is frame-relative, so there is no such thing as the diameter 
for us to have intuitions about. Intuitions should, I submit, be stated in 
terms of genuine properties and relations, even if these are not funda-
mental, so this is a threat to some of premises used in Chapter Two. 
 It should be noted that a similar threat does not arise for hypervol-
ume, which is independent of the choice of frame of reference, even in 
General Relativity, where it depends on the gravitational field but not the 
choice of coordinates.  
 I begin by noting that the Premises of Chapter Two concern only 
the following properties defined in terms of diameters, and their nega-
tions: a region having zero diameter; a region having finite but non-zero 
diameter and; a sequence of regions having diameters tending to zero in 
the limit. This last occurs whenever we consider arbitrarily small diame-
ters. These properties, and the premises stated in terms of them, are 
frame-invariant. Furthermore we can explicate them using Alexandrov 
intervals, namely non-empty meets of future and past light cones. A re-
gion is of finite diameter if it is part of some Alexandrov interval. A re-
gion u is of zero diameter if: for any region z, there is an Alexandrov in-
terval y such that u ≤ y and y ≤ q z. Assuming œ has finite volume, the 
sequence of regions uj, j = 1, 2, . . . has diameters tending to zero in the 
limit if: 

For every positive integer m, there is some positive integer n, 
and an Alexandrov interval vn such that uj ≤ vn if j ≥  n, and 
there are m pairwise disjoint parts of œ, wk, k = 1, 2, . . . , m 
for which vn ≤ q wk, k = 1. . . m.  

This enables us to state the eleven Premises of Chapter Two without re-
quiring diameters.  
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3. Mereotopology 
Even if the topological structure is not fundamental, it is part of the nec-
essary structure of the aether and so it is of interest that it can be de-
scribed simply. In Mathematics, topology only applies to a point-based 
theory of the aether, but for our purpose, we need to extend the idea of 
topology to cover point-free theories. What we need is provided by the 
flourishing discipline of mereotopology.84 
 The fundamental mereotopological concept could be taken as 
touching or adjacency. It sounds a little odd, however, to say that every 
region touches itself, or even that any two overlapping regions touch. So 
instead I follow the standard usage that the dyadic relation of connection 
holds between adjacent or overlapping regions. There is then a harmless 
ambiguity between this relation and topological property of being con-
nected that holds of a region unless it is the sum of two parts that are not 
related by the connection relation.  
 Sometimes is more convenient to consider separation, the negation 
of connection, namely neither overlapping nor touching. Separation is 
definable in terms of diameters as follows. The regions u and v are sepa-
rated unless there is a sequence of regions xn overlapping both u and v 
and the diameters of the xn tend to zero. 
 Interior parthood, «, may be defined in terms of separation thus:  

x « y if x is separated from every region disjoint from y.  
Assuming Boolean mereology we expect the following to hold: 

1. If u « v then u < v.  
2. If w ≤ x « y ≤ z then w « z. 
3. If u « x and v « y then u∨v « x∨y. 
4. If u « x and v « y then u∧v « x∧y. 
5. If u« x then ¬x « ¬u. 

                                                 

84  For a comprehensive introduction to mereotopology, see (Casati and Varzi 
1999). 
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Clearly if 5 holds we need only one of 3 or 4.85 In addition, if we have a 
hypervolume measure we expect that:  

6. If x « y and x is of finite hypervolume then hvol(x) < hvol(y). 
Now we could define separation in terms of interior parthood thus: x is 
separated from y if x is an interior part of the complement of y. But that 
makes it a mystery why separation is symmetric, something that should 
be intuitively obvious. Hence I take separation or connection as more 
fundamental than interior parthood, even though the latter is more con-
venient theoretically.86  
 The mereotopology may therefore be characterised in terms of any 
of the easily inter-definable relations of connection, separation and inte-
rior parthood, and I hold that either connection or separation as funda-
mental. But there are alternative candidates for the fundamental topolog-
ical item, and I need to explain why I reject them. For instance, some or 
all regions have the special property of being open, where an open re-
gion is one that is the sum of its interior parts. If we adjoin a fictitious 
empty region, ø, that is treated as open too. In order to mimic point-set 
topology we would suppose the resulting lattice of open regions is a 
complete Heyting one, as in the theory of locales (Johnstone 1982). 
 The argument for not taking the property being open as fundamen-
tal is that I take it that, other things being equal, our conceptual analysis 
is a guide to ontological dependence. I do not think that the concept of 
being open is conceptually primitive. Instead it is understood in terms of 
some other concept such as interior parthood, whereas separation is itself 
highly intuitive. This argument may be strengthened by noting that we 
have no way of visualising or imagining in a tactile fashion the differ-
ence between open and other regions, and hence nothing for our intui-
tions to get a grip on. By contrast, we can imagine separation. To be 
sure, in a point-based theory we can imagine the difference between an 

                                                 

85  Consider the hypothesis that regions are represented by the maximal open 
sets of quadruples. This would be an example of a non-Boolean system in 
which 1, 2, 3, 4 and 6 (below) held. 

86  Because points of Space-time may be characterised as ultrafilters with re-
spect to interior parthood (Forrest 2010).  
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open region and a closed one by considering two objects moving closer 
but incapable of overlapping. If they always occupy open regions they 
can touch but if they always occupy closed regions they must remain 
separated. But this way of getting a partial intuitive grasp of open re-
gions only serves to support the claim that separation is a more funda-
mental relation.  
 But is topology fundamental? In the case of Minkowski Space-time 
and other plausible symmetric structures for the aether, such as de Sitter 
Space-time, we may derive the topological structure from the light-cone 
structure, and hence from the ordering of regions with respect to abso-
lute priority.87 (Region u is absolutely prior to region v if with respect to 
every frame of reference every part of u is earlier than every part of v.) 
On the standard, covariance interpretation of General Relativity, Space-
time is assumed to have the structure of a differentiable manifold, which, 
to be sure, entails that it has a topological structure. The differentiable 
manifold structure turns out to be problematic and it is to be hoped that 
it could be replaced by the topological structure, as it can be on the hy-
pothesis of Granulated Aether (See the next chapter). It may turn out, 
then, that topological structure is fundamental after all.  
 There is another way in which topology might turn out not to be 
fundamental. That is if the topological structure can be replaced by mer-
eological structure, as on the Pseudo-set Granules hypothesis discussed 
below, or on Sparse Continuum or any other continuous Boolean mere-
ology in which all the regions are open. For then we construct points, 
and the open sets are (in addition to Ø) the unions of sets representing 
open regions.  
 Topology, whether fundamental or not, is important for an addi-
tional reason. It provides some additional assurance that we have not 
overlooked any plausible hypothesis for the necessary structure of the 
aether. For given a suitable topology we may construct point-locations 
and hence adjoin points if necessary, obtained a point-based Space-time 
in which the aether is located. Space-time is then a point-set topology, 
which is a well-researched mathematical theory.  
                                                 

87  See (Moschella 2005) for an introduction to de Sitter and anti de-Sitter 
Space-time. 
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 There are two ways of introducing these Space-time points, here 
considered as fictitious aether-points. If the open regions plus ø form a 
complete Heyting lattice then we may consider maximal proper open 
regions as in one to one correspondence with the points, because if there 
were points then the set of all points except point p would be a maximal 
proper open region. The further principle that if u and v overlap the same 
open regions then u = v, then shows that every region is the sum of real 
or fictitious, points. If we started with a point-based aether with a topo-
logical structure, then this procedure gives us the topology we started off 
with. (See Johnstone 1982.) 
 The second method relies upon a mereotopology characterised us-
ing connection, separation or interior parthood. We characterise the 
points of Space-time so as to represent regions by sets of points. Then 
connected regions are to be represented by sets whose closures overlap88. 
The method, pioneered by Peter Roeper (1997), is to take the points to 
be ultrafilters with respect to interior parthood. This is an explication of 
Whitehead’s Russian doll construction of points as a sequence of ever 
smaller regions.89 
 A noteworthy feature of the ultrafilter construction is that in the 
case of point-based aether with points corresponding to all quadruples of 
real numbers the  ultrafilter construction would adjoin a fictitious point 
at infinity. Likewise if we started with a gunk theory in which regions 
were represented by suitable sets of quadruples the ultrafilter construc-
tion would adjoin a point at infinity. In both cases the point at infinity 
corresponds to the ultrafilter that has as its members all the complements 
of regions of finite diameter.  
                                                 

88  This is a modification of Marshall Stone's method of representing Boolean 
algebras topologically (Stone, 1936). For more details on constructing points 
as a ultrafilters with respect to interior parthood see (Forrest 2010). With care 
we may avoid assuming the Axiom of Choice.  

89  A filter is a set of regions X such that: (1) If x ∈ X and x « y, then y ∈ X; 
and (2) If x ∈ X and y ∈ X then for some w, w ∈ X, w « x and w « y. (Note: 
we do not treat ø as a region.) A proper filter is one that does not have every 
region as a member. An ultrafilter is a filter that is maximal among proper 
filters.  
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 Set-theoretic constructions are not the right sort of thing to be con-
sidered points. So if aether is point free and Space-time is dependent on 
the aether and made up of points, then I propose that the points of Space-
time are suitable properties of regions. I anticipate the retort that proper-
ties are no more suited to be points than are sets. Strictly speaking that is 
correct, and I should replace points by point locations. To a fictitious 
point p there corresponds an ultrafilter of regions X. Therefore the prop-
erty of being at p may be identified with the conjunction of the relational 
properties: overlapping u, for all regions u in X. The property being lo-
cated at the point at infinity is then just the property of being of infinite 
extent.  
  
4. Topology in the discrete case 
If Point Discretion holds, then connection collapses to overlapping, sep-
aration collapses to being disjoint, interior parthood collapses to par-
thood, and all regions are open. So the topology is trivial. Moreover it is 
compatible with any metric. This is, however, something more to be 
said. For there might well be a minimum non-zero value that diameters 
take, and in the simplest case all diameters will be a whole number times 
that minimum. Then we may describe points that are the minimum non-
zero distance apart as neighbours, and call the sum of a point p and its 
neighbours the neighbourhood of p. Many concepts such as an analog of 
the property of connectedness can be defined in terms of neighbour-
hoods. That would be great if the regions had frame-invariant diameters. 
But they do not. Instead we may posit a light cone structure analogous to 
that for Minkowski Space-time. In that case there is a relation of abso-
lute priority between any points u and v, (u p v), where point u is abso-
lutely prior to point v just in case u ≠  v and u is part of every past light 
cone containing v. Then x is the immediate predecessor of z (x p* z), if 
x p z, but there is no y such that x p y p z. We may then say that points 
x and z are neighbours if x ≠ z and either x p* z or z p* x, or if for some 
points u and v, such that u p* x p* v and u p* z p* v. We should, how-
ever, be suspicious of this topology-analog. For suppose we represent 
points as quadruples of integers. Then the points represented by <0, 0, 0, 
0> and by <m, n, p, q> can be immediate neighbours even though m, n, 
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p and q are all large positive numbers. This peculiar feature forms the 
basis of the objection to Point Discretion  presented in Chapter Seven. 
 If the aether is granulated, the characterisation of topology in terms 
of diameter fails. The reason is that Arbitrary Fine Division does not 
hold and hence the distance between extended simple regions may not 
be characterised as the greatest lower bound of the diameters of overlap-
ping regions. Fortunately in these theories the idea of two regions touch-
ing is still highly intuitive. Formally it is like the topology-analog for 
Point Discretion with adjacency replacing being neighbours. Moreover, 
the topology of extended simples is frame-invariant. For change of 
frame will change the shape of the sets representing regions, but not the 
adjacency. Likewise, the shape of the granule itself is frame-invariant, 
being characterised in terms of adjacency. 
 The Pseudo-set Granules hypothesis, although more complicated 
than Extended Simples, does have one great advantage, namely that we 
can characterise the topology in mereological terms, with connection de-
fined as overlapping. The reason is that two granules that would be non-
overlapping but adjacent on the Extended Simples hypothesis corre-
spond, on the Pseudo-set Granules hypothesis, to atoms that have a 
common part, namely a shared facet, face, edge or vertex. Because the 
mereology is non-standard we obtain a non-trivial topology by identify-
ing overlap with connection. In particular, the sum of two overlapping 
granules is a connected region (because of the failure of Weak Supple-
mentation).  
  
5. The characterisation problem 
In the previous chapters I presented a variety of hypotheses about the 
aether by means of their coordinate representations. I require, however, a 
frame-independent characterisation, and one that does not involve set-
theoretic constructions. That is straightforward in the case of Point Dis-
cretion – ignoring fine structure we may characterise that hypothesis by 
saying that a region of finite diameter is the sum of finitely many parts, 
each of which has zero (or infinitesimal) diameter.  
 The case of granulated aether is almost as straightforward. A gran-
ule may be defined as a region that cannot be decomposed as the sum of 
two regions of lesser but positive quantity. So we begin by hypothesis-
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ing that any region of finite diameter is part of a finite sum of granules. 
In the case of Extended Simples every granule is simple and any region 
of finite diameter is the sum of disjoint granules. All that remains is to 
note their shape based on the primitive relation of adjacency. Variants 
such as Pseudo-set Granules are more complicated to describe, but the 
description provided in Chapter One meets the requirements of a charac-
terisation independent of set-theoretic construction or coordinate repre-
sentation. 
 In the case of a continuous point-based hypothesis it suffices to 
characterise the topological space these points form, together with some 
way of distinguishing regions of positive measure from those of zero 
measure. For then the description of the hypotheses in these terms pro-
ceeds as in the  previous chapters. 
 Although topological spaces occur in bewildering variety those that 
current physics might take to be continuous Space-time are manifolds of 
4 (or some other specified finite number N) dimensions.90 Manifolds are 
topologically connected spaces that are locally represented by coordinate 
quadruples (or more generally N-tuples) of real numbers in the right 
way. We may think of the aether as the sum of overlapping globules, the 
J, each represented by coordinate quadruples. How the globules thus rep-
resented fit together is considered in the sub-discipline of algebraic to-
pology, where the, now proven Poincare´ Conjecture, solves the charac-
terisation problem, provided we can characterise the (mereo)topology of 
the globules.91 Here I ignore the hypervolume, not for any principled 
reason, but merely because it neither helps nor hinders the solution of 
the characterisation problem. 
 The most straightforward case, in which the manifold lacks a 
boundary, is that in which for any j in J the topological space of point 
parts of j is homeomorphic (i.e. topologically equivalent) to the set of 
                                                 

90  If the whole physical universe is the sum of disconnected universes the ae-
ther could, of course, be a topological space that is the sum of disjoint mani-
folds. I grant that possibility, but for sake of exposition I concentrate on one 
universe. 

91 Grigori Perelman proved the case of three dimensions. The cases of more 
than three, and in particular four, dimensions had already been proven. 
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quadruples of real numbers endowed with the usual topology. That is an 
extrinsic characterisation, setting up the problem of finding an intrinsic 
one, or at least one that does not resort to coordinates. The only way to 
do this that I know of is to rely on the existence of symmetries  (auto-
morphisms), in this case homeomorphisms  from the topological space 
onto itself.92 Let T be the topological space whose points are the point 
parts of j. Then I require that there be a set F of homeomorphisms of T 
onto T such that (0) to (5) hold:  

0. If f and g are in F and if, for every point part x of j, f(x) = g(x), 
then f = g. 

Because homeomorphisms are mappings and mappings are purely for-
mal relations, the condition (0) is strictly redundant. 

1. If f is in F, its inverse f-1 is also in F. 
2. If f and g are in F, then the composite f°g is in F. 

If (1) and (2) hold, then F is a group, and we may derive 
3. The identity automorphism, Id, which maps each point part of j 

to itself, is in F.  
 F is a commutative group if: 

4. For any f and g in F, f°g = g°f. 
Such a group of automorphisms F is said to be transitive if: 

5. For any point parts u and v of j, there is an f in F, such that 
f(u) = v. 

It follows from (0) to (5) that, for any point part of j, u, f(u) = u only if 
f = Id. 
 If there is a set of automorphisms, F, satisfying (0) to (5), then for 
any point part u of j there is a one to one correspondence between the 
members of F and the point parts of j, where f corresponds to f(u). We 
may therefore characterise the topological space T made up of the point-
parts of j as homeomorphic to the quadruples of real numbers by provid-
ing conditions on commutative group F that suffice to show the group is 

                                                 

92  We should also require that they preserve hypervolume, but for simplicity of 
exposition I ignore this. 
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isomorphic to the group of quadruples of reals with addition as composi-
tion.93  
 Is this a satisfactory characterisation? In the Introduction I noted 
that reliance on a group of symmetries to characterise the structure of the 
aether might be unacceptable to some nominalists. There is a further dif-
ficulty in this case, however, because there are many such groups. Un-
less the aether has additional structure we cannot talk of the group of 
symmetries. Intuitively that detracts from the suitability of this way of 
characterising a manifold. If there were not much more serious problems 
characterising differentiable structure, discussed in the next chapter, this 
would be worth arguing about. 
 The characterisation of the structure of point-free aether is similar, 
but, I regret to say, even more complicated. The automorphisms  are 
now mappings from the set of the parts of j onto itself that preserve both 
the mereology and the topology. The word ‘part’ replaces the phrase 
‘point part’ in (0), and in the derived result (3). We might try replacing 
(5) by the following transitivity analog: 

5*. For any parts u and v of j, there is some member of F, f, such 
that f(u) overlaps v. 

In the point-based case (5*) implies (5) because points are regions. But 
if there are no points then (5*) is a weaker condition. For suppose we 
construct point locations in such a way that for each region u there is a 
set U of such point locations. (We exclude the ‘point at infinity’.)  Then 
F acts as a group of homeomorphisms from U onto itself. The conditions 
                                                 

93  By requiring the one to one correspondence between T and the group F to be 
a homeomorphism we may consider F to be a topological group. That is, it is 
itself a topological space and the operations of composition and taking in-
verses are continuous. Because F is a topological group the characterisation 
problem is then easily solved. The following conditions, for instance, are 
jointly sufficient for F to be isomorphic as a topological group to the N-
tuples of real numbers with addition as the group operation. 
1. F is a commutative topological group. 
2. F is a locally compact, non-compact, connected space of topological di-

mension N, with a countable dense set. 3. Apart from the trivial subgroup {Id}, F has no subgroup with com-pact closure. 
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(0) to (4) and (5*) are not enough to ensure transitivity. For given a point 
location x, F(x) = {f(x): f is an F} is not necessarily the whole of U. In-
stead all we may assume is that F(x) is dense, that is cl(F(x)) = cl(U).  
 Because of the replacement of (5) by (5*), I shall require the aether 
to be the sum of globules, the Ks, that are interior parts of other glob-
ules, the Js. Consider k « j. Then the point locations  for j ∈ J form a set 
V, those for k ∈ K a set U and cl(U) ⊆. V. In place of (5*) I require:  

5**. For every k in K there is some compact set W of Fs, such that:  
 (a) for any parts u and v of k, there is some f in W, such that 
f(u) overlaps v, and (b) there is no proper subgroup of F that 
contains W.94  

This shows that the associated action of F on the point locations  is tran-
sitive, as required. 
  
Conclusions about hypervolume and topology 
1. Except in the case of Point Discretion where we do not need it, hy-

pervolume may be taken to depend on a linear ordering, namely being 
of no-less-quantity-than. 

2. Special and General Relativity cast doubt on the occurrence of frame-
independent diameters. This does not threaten our intuitions about di-
ameter because we may explicate the intuitions using the frame-
independent Alexandrov intervals.  

3. If topological structure is required then I note that Pseudo-set Gran-
ules have a non-standard mereology upon from which the topology 
could be derived. Absent some other structure, such as absolute prior-
ity on which topology could be grounded that is an advantage for 
those that hypothesis. 

4. If the aether has no structure in addition to the measure of quantity 
and the topology, then the characterisation problem is solved in the 

                                                 

94  Because of the conditions stated in the previous footnote, (b) is redundant. 
Also note that (a) could not hold unless the set of all point locations  for k in 
K has compact closure. By the Heine-Borel theorem the fact that we will 
eventually have a representation using coordinate N-tuples shows that this 
will be the case provided no k in K has the property of being of infinite ex-
tent. 
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case of granulated aether hypotheses. But in the continuous case, it 
lacks any entirely satisfactory solution. Ideally we would characterise 
the aether by noting characteristics of the whole group of symmetries 
(automorphisms) rather than considering some transitive commuta-
tive subgroup. But that requires more structure. In the point-free case 
the characterisation is rather more complicated. I shall later be argu-
ing that a tenable hypothesis of continuous aether requires the ‘reac-
tionary’ supposition that the aether is highly symmetric. The charac-
terisation problem for the continuous aether will not therefore have to 
be solved in the context of topology and quantity alone. Hence, the 
not entirely satisfactory solutions of the last section will no longer be 
required. 
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5. The Problem with Differentiable Manifolds 

 
The theory of differentiable manifolds has great mathematical beauty, 
but it is a metaphysical abomination. In this chapter I explain what the 
problem is, and argue that there are only two satisfactory solutions. One 
requires symmetry, the other granulated aether. In the next chapter I 
shall argue that granulation is less probable than symmetry relative to 
the current state of physics, contrary to its a priori appeal. In Chapter 
Seven I consider symmetric aether, and I shall argue the case for 
Arntzenius Continuum given symmetry. In the course of doing so, I shall 
revisit and (again) reject Point Discretion.   
  
1. The characterisation problem  
To illustrate the problem, I am supposing that Space-time has the struc-
ture of a smooth differentiable manifold, reflecting some – yet to be 
specified – structure of the aether itself.95 For ease of exposition, initially 
I suppose that the aether is point-based and continuous. So it too is sup-
posed to be a smooth manifold.  
 Smooth manifolds may be defined in either of two equivalent ways. 
The more elementary is to provide coordinates. The characterisation 
problem may be illustrated by the special case in which the smooth man-
ifold is point-based with the points in one to one correspondence with 
the quadruples of real numbers, ℜ4.96  

                                                 

95  For a smooth manifold we restrict attention to infinitely differentiable func-
tions. Considering other cases, such a functions with continuous derivatives, 
does not help solve the problem. 

96  More generally, we suppose the manifold has a point-set topology specified 
by points and a distinguished family of open sets of points, and we suppose it 
is locally compact and has a countable dense set. Then we consider a finite, 
or at most countably infinite, collection of open sets {Uj} whose union is the 
whole manifold. We also require that for each Uj there is 1 to 1 onto map fj: 
Uj → ℜ4. If two of the open sets Uj and Uk overlap consider the composite 
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 A more elegant characterisation of a 4 dimensional smooth differ-
entiable manifold is to require that there be a ring Smoo of continuous 
real-valued functions on the manifold, such that at each point the deriva-
tive operators form a 4 dimension real vector space.97 A derivative oper-
ator Xu at point u must satisfy the following: 

1. Linearity: Xu(af + bg) = aXu(f) + bXu(g), for any f and g in Smoo 
and any real numbers a and b.  

2. Leibniz Rule: Xu(f×g) = g(u)×X(f) + f(u)×X(g). 
The characterisation problem is that the smooth manifold structure of the 
aether is being described in terms of something less fundamental than 
the aether itself. A more precise formulation of the problem is obtained 
by means of a Euthphroid: are the coordinate functions differentiable 
because the manifold has a certain kind of structure or vice versa? Math-
ematicians do not have to answer but, as David Armstrong would say, it 
is a compulsory question in the metaphysics exam. The problem is a 
challenge to show how the coordinates or the scalar functions could be 
more fundamental – or at least as fundamental – as the aether. For coor-
dinates the task is hopeless, because there are infinitely many choices of 
coordinate systems. Cian Dorr has, however, suggested that the ring of 
smooth scalar functions might be metaphysically fundamental (Dorr, 
2011).  
 Before discussing some attempts at solving the characterisation 
problem for smooth manifolds, I compare it with the problem for topo-
logical manifolds, discussed in the previous chapter. In that case there 
was no difficulty in characterising what it is to be a topological space. 
So I was able to consider the group of automorphisms, that is, the map-
pings from the space onto itself that preserve the topological structure. 
The characterisation problem was then soluble provided we could char-

                                                                                                                                                    
mapping fk°fj-1: ℜ4 → ℜ4. It will be specified by 4 functions each of 4 var-
iables. Then for a smooth manifold it is required that these functions are infi-
nitely differentiable. 

97  Smoo is required to be an algebra over ℜ. Therefore, if f and g are in Smoo 
so is the product f×g and if a and b are any real numbers, the linear combina-
tion af + bg is in Smoo.  
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acterise the group of automorphisms. At that stage, in the point-based 
case, I required that there be some commutative transitive subgroup of 
automorphisms of a certain kind. Maybe that is a fudge, but I claim the 
problem is far worse for differentiable manifolds. For by analogy we 
would consider the group of automorphisms of the ring Smoo of smooth 
functions (i.e.1 to 1 onto mappings preserving addition and multiplica-
tion in Smoo.). This would be fine if the smooth scalar functions could 
be characterised independently of differentiable structure. But how?  
  
2 Exotic differential structures – a red herring 
Even in one dimension, if we are given the differentiable manifold, there 
are topological automorphisms (i.e. 1 to 1 mappings of the manifold on-
to itself such that both the mapping and its inverse preserve the topolog-
ical structure) that do not preserve differential structure. They can, none-
theless be considered diffeomorphisms that map one differentiable mani-
fold onto another, where the two manifolds are the same topological 
space but endowed with two different differential structures. 
 A simple example to illustrate the way in which a topological auto-
morphism may fail to preserve a given differentiable structure is ob-
tained by transforming the t coordinate to t´ = ⅓t3. This transformation 
is smooth with respect to the old structure but not with respect to the 
new. For dt/dt´= t-2 has a singularity at t = t´ = 0. 
 The exotic differentiable structures proven to exist by Simon Don-
aldson (1983) are also cases of the same topological manifold endowed 
with two different differentiable structures – but ones that are not dif-
feomorphic. Such exotic structures only exist in 4 or more dimensions. 
So it might seem we could solve the characterisation problem by suppos-
ing the aether is foliated and so has for each time, a 3 dimensional spa-
tial structure, avoiding the embarrassment of exotic manifolds.  
 That solution fails, regardless of whether or not there is a suitable 
foliation. For, even though General Relativity is invariant under the au-
tomophisms of the smooth manifold,, it is, I argue, not sufficient to 
characterise the manifold up to diffeomorphism, that is up to equiva-
lence of smooth manifolds. Hence we do not need exotic differentiable 
structures to make the point that the topology does not fix the differen-
tial structure.  
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 The reason it is not sufficient to characterise the manifold up to an 
equivalence is that there is a fact of the matter whether there are singu-
larities and if so where they are. Here I am considering singularities to 
be the points where the scalar field is not smooth, and in particular con-
sidering the case where the derivative is infinite. Consider again the ex-
ample of the transformation t´ = ⅓t3. Now consider a scalar field, speci-
fied by the function f(t) = t2, or by f*(t´) = (3t´)2/3. With respect to one 
of the smooth structures there is a singularity at t = t´= 0, with respect to 
the other there is no singularity  
 So even though the two differential structures on the same topologi-
cal manifold are diffeomorphic, one of them implies a spurious singular-
ity. In this case the singularity is restricted to the hyperplane, t = 0, 
which might prompt the response that we should consider the ring of 
scalar fields that are smooth except on a set of points of zero measure. 
But that escape is blocked, because we could consider a homeo-
morphism  from new to old coordinate quadruples that is nowhere dif-
ferentiable, and yet – just to be on the safe side – preserves the Lebesgue 
measure that represents hypervolume.98 
 
3.Scalar fields 
The differentiable structure of a manifold may be specified using its to-
pology together with a specification of which real-valued continuous 
functions are smooth (i.e. infinitely differentiable).99 
 The problem with this way of specifying the differentiable structure 
is that of saying just what the ring of smooth functions, Smoo, corre-
sponds to. There are two different ways of trying to solve this problem, 
the radical and moderate. First consider the radical. We may take the 
purely algebraic structure of Smoo, with their operations of addition and 
multiplication and including constants. Then Smoo is a commutative al-
gebra in the technical sense of mathematicians. The differentiation oper-

                                                 

98  This result holds for n-tuples with n ≥ 2. See (Panti 2011).  

99  See any good introduction to differentiable geometry, such as (Alekseevskij, 
D. V., Vinograd, A.M. and Lychagin, V. V. 1988). 
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ations (also known as vector fields) are characterised algebraically using 
the Leibniz Rule:100  

If X is a differentiation and f and g any members of Smoo then 
X(f×g) = f×X(g) + g×X(f).  

Then the ‘points’ may be constructed as homomorphisms from the alge-
bra to the real numbers, that is mappings such that ϕ(f + g) = ϕ(f) + ϕ(g) 
and ϕ(f×g) = ϕ(f) × ϕ(g). This interpretation is mathematically beautiful 
but undermines all our intuitions about both the aether and Space-time, 
replacing them with things-we-know-not-what, with uninterpreted op-
erations of addition and multiplication (SAD again). 
 The moderate attempt at a solution to the problem is to grant that 
the aether has a topological structure, so it is something of which we 
have an intuitive grasp, and to find an interpretation for the algebra of 
real valued functions Smoo. Are they the actual scalar fields? No, for 
there might not be enough actual fields – the universe might have 
evolved in a perfectly symmetrical fashion. Indeed the wonder is why it 
did not if it had a perfectly symmetrical initial state. Say, for instance, 
that there was a perfect rotational symmetry about some axis. Then the 
actual fields would all be symmetrical (invariant) under rotations about 
that axis and so there would not be enough actual scalar fields to be all 
the smooth real valued functions. On this approach, then, we should 
acknowledge the lack of enough actual fields and be realists about mere-
ly possible scalar fields. Either the algebra Smoo then consists of just 
some out of all possible scalar fields or all of them. Unless we have al-
ready characterised the differentiable structure of the aether and so in a 
position to characterise Smoo as the smooth scalar fields, the feature that 
distinguishes members of Smoo from other possible scalar fields would 
be quite mysterious. So we should assume that Smoo consists of all the 
possible fields. That implies that the impossibility of a scalar field hav-
ing a singularity at a point at which it is continuous but not differentia-

                                                 

100  Previously I was considering a derivative at a point u, which was a vector Xu 
'at u'. I am now considering the vector field X.  
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ble.101 Now, I say, necessities are not to be multiplied more than is nec-
essary, so we should be reluctant to restrict what is possible. A further 
difficulty is that if the occurrence of a certain ring of possible scalar 
fields is the ultimate physical explanation of the differential structure 
then there must exist some fundamental scalar fields. Now there are 
many scalar fields derived from vector and tensor fields but it is contro-
versial whether there are any fundamental ones. The scalar Higgs field is 
a famous example but it is not fundamental, because, as I understand it, 
it is the result of symmetry-breaking in the early non-scalar Higgs field.  
 None of these difficulties is conclusive but taken together they 
make the prospect of characterising the differential structure in terms of 
the ring Smoo less plausible than it might initially seem. 
 Does quantum theory help? Suppose we adopt a many worlds inter-
pretation in which the quantum state is specified by a probability distri-
bution over the many ‘worlds’. And suppose there is a scalar field, say, 
the Higgs field. Using the scalar fields in the various worlds we could 
form the ring of smooth scalar fields Smoo, without having to consider 
merely possible fields. That, however, requires us to compare the values 
of fields f and g in different worlds but at the same point. But this is per-
plexing. Not only is it counter-intuitive to think of points as individuals 
distinguished from each other independently of relations to other points, 
but it is incompatible with the thesis, defended in the Introduction, that 
the aether is the only fundamental (physical) substance (in the sense of 
property-bearer). For, if the very same points occur in different ‘worlds’, 
these ‘worlds’ are made up of the same aether having different proper-
ties. But we must be realists about these worlds if we are to use them to 
obtain the ring Smoo of smooth scalar fields. And the same stuff cannot 
have incompatible properties. It is far better to hypothesise that the ae-
ther is itself the sum of ‘fibres’ one for each ‘world.102’ In that case there 

                                                 

101  I stipulate that if the derivative is infinite then the function is not differentia-
ble at the point in question.  

102  Strictly speaking, we no more need such ‘fibres’ than we need points. The 
structure of the aether can be gunky across ‘worlds’ with fields varying 
smoothly across the worlds just as they do within worlds.  
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is no way of correlating the points in different ‘worlds’ except in terms 
of overall similarity of the distribution of properties near the points. But 
such a correlation will not distinguish the product, say, of fields g and h 
from the product of g and h°F where h°F is the composite of h with a 
diffeomorphism F.  
 The above difficulties may be avoided if the scalar fields are inter-
preted in such a way that the same region of the aether can have many 
different fields. I now turn to two such speculations, which, however, 
run into difficulties with the interpretation of multiplication.  
  
4. Two extravagant proposals and a general difficulty  
There are two somewhat uneconomic hypotheses that I would take seri-
ously but for a general problem with treating the ring Smoo as funda-
mental, namely interpreting the operation of multiplication.  
 
Proportions of aether 
One way in which the aether might turn out to be quite unlike Space-
time is if there could be half the aether in a given region, not meaning all 
the aether in half the region of Space-time, but half the aether every-
where in the region. Hence the aether would have a richer mereological 
structure than Space-time. In that case, for every part u of the aether we 
may consider the regular part u*, the sum of all parts x disjoint from 
everything disjoint from u. Then not merely are the reasons for assuming 
that the regular parts form a classical mereology every regular part may 
be assumed to consist of all of the aether co-located with u and none in 
any complement of u.  
 The proportion of aether will then be described by a function of 
points of Space-time taking values from 0 to 1. If we consider all the ae-
ther in a given region and none outside it that would be described by a 
function taking the value 1 in a given region and 0 outside, which would 
not be continuous. We may now consider a primitive property that some 
portions of aether have, namely being not merely continuous but 
smooth. Although not all smooth functions describe such portions of ae-
ther, those between 0 and 1 do, and these are enough to characterise the 
differentiable manifold.  
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 The operation of differentiation does not map a representation of a 
smooth portion of aether to a smooth portion of aether, but on a point-
based theory of the aether we can restrict attention to differentiation at a 
point, which assigns to the smooth portion of the aether a rate of increase 
of the proportion at the point and the different differentiations at a given 
point then correspond to the tangent vectors. (Such rates of increase in a 
direction specify the relativistic analog of an aether current, something 
that is not at odds with the Michelson and Morley experiment) To talk of 
the current of a portion of aether might seem odd but it is, I concede, a 
minor extension of the intuitive idea of a current of the whole of the ae-
ther. I know, however, of no other application of the idea of a proportion 
of the aether at a point so this is ad hoc. 
 
Fuzzy regions103 
Another way of characterising the differentiable structure of the aether is 
to abandon an intuition that is so basic I have not even listed it, namely 
that regions are precise. (To be sure a fuzzy region is a precise some-
thing or other so I am not positing any vagueness or indeterminacy in 
reality. ) A fuzzy region assigns to each point of Space-time a value be-
tween 0 and 1, namely the degree to which the point belongs to the loca-
tion of the region. So formally the fuzzy regions solution is like the pre-
vious one. One difference is that we might well suppose that all the 
fuzzy regions are smooth. In that case the point p of Space-time is a fic-
tion corresponding to a function ψ from fuzzy regions to real numbers 
such that ψ(x×y) = ψ(x)×p(y) and ψ(¬x)) = 1 - ψ(y).  
  
A general problem with relying on the ring of smooth scalar functions 
If we use the ring Smoo to characterise differentiable structure then we 
should be able to interpret the operations of addition and multiplication 
in some natural way. As a concession I grant that addition (and multipli-
cation by a constant) are natural operations on any quantity, but what 
about the multiplication of two scalar fields? If a scalar functions f and g 
are interpreted as the proportions of aether, what is the product f×g? 

                                                 

103  Compare Dorr (2011): 154-155.  
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There is a natural interpretation of the minimum of f and g, namely the 
function representing the intersection of the portions of aether. But that 
is not the same as the product.  
 This problem of interpretation is fairly general and given the ad hoc 
character of the two interpretations of Smoo considered in this section it 
eliminates them as serious contenders. If there is a fundamental scalar 
field required for the physics, then this problem might turn out to be par-
tially solved by the physics. For instance, if some fundamental equation 
required an f2 term for all scalar fields f,  then we may characterise mul-
tiplication thus: f×g = ½ ((f + g)2 - f2 - g2). The operation represented 
by squaring would then have some unexplained features, such as why 
the result is never negative, that would be explained if we had a more 
fundamental interpretation of multiplication. That is why I describe this 
as a partial solution. 
  
5. Smooth regions  
I have contrasted the ease of describing topological structure with the 
difficulty of describing the differentiable structure. The reason for this is 
that there are topological primitives such as separation that are intuitive, 
natural spatial concepts. The best way of describing the differentiable 
structure would be if there was some intuitive concept we could use in 
an analogous fashion. That mathematicians have not developed the theo-
ry in this way should make us pessimistic about the success of such a 
proposal. In this section I show what goes wrong.  
 We might try, then, taking the smoothness of a hypersurface, sur-
face or curve as a primitive unanalysable but intuitively graspable prop-
erty. Or, restricting attention to 4 dimensional regions we might consider 
having a smooth boundary as a primitive property. Or it might be prefer-
able to consider the relation of smoothly touching that holds sometimes 
between two non-overlapping adjoining regions. In this context, I note 
that on both Borel and Arntzenius Continuum we could take the smooth-
ly bounded regions diffeomorphic to a hyperball to be the globules on 
which all other regions depend ontologically. So they might already 
have a privileged position. I shall now argue, however, against this 
Smooth Region characterisation of the differentiable structure.  
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 If there are points then a necessary condition for function f to be 
differentiable is that: (1) for every real number k the sum of all points x 
such that f(x) < k has a smooth boundary, and (2) so does the sum of all 
the points such that f(x) > k. Let us call this the smooth boundary condi-
tion. And there is a similar condition for the point-free case. The prob-
lem with the Smooth Region characterisation is that it only establishes 
the smooth boundary condition, which is not a sufficient condition for 
differentiability. For suppose the manifold has a differentiable structure 
given by coordinates t, x, y and z, and suppose that g is strictly increas-
ing continuous but non-differentiable real valued function of real num-
bers. Consider the function h such that if point p has coordinates, t, x, y 
and z then h(p) = g(t). Then h satisfies the smooth boundary condition 
but is not smooth. 
  
6 Granulated Aether and differentiable structure 
Provided the aether has no more than 6 dimensions the granulated aether 
specifies up to diffeomorphism a differentiable manifold.104 This solves 
any problem posed by exotic differential structures, but not the charac-
terisation problem, which arises even if we have specified the manifold 
up to diffeomorphism.   
 Fortunately, granulated aether provides an alternative solution.105 If 
we suppose the aether has the structure of a simplicial complex, then we 
may exploit the analogy between the theory of simplicial complexes and 
the theory of differentiable manifolds. The scalar, vector and tensor 
fields on the manifold may be characterized as approximations to suita-
ble properties of, or relations between, granules. For this purpose I shall 
                                                 

104  More precisely, given a granule hypothesis in which, for definiteness I as-
sume the granules are simplices (analogs of tetrahedra) we may consider a 
simplicial complex N that represents the aether in the sense that each cell is 
represented by a simplex. If there is a differentiable manifold M that is 
piecewise diffeomorphic to N and if the number of dimensions does not ex-
ceed 6 then M is unique up to diffeomorphism. My source for this is (Lurie, 
2009) 

105  This is one of those pieces of mathematics that are fairly well known but not 
easy to attribute to any one mathematician.  
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assume there is fictitious manifold used to represent the granules and on 
which various smooth scalar, vector and tensor-valued functions are de-
fined. I assume that hypervolume is determined by the gravitational 
field. The granules may well be represented by regions of the same, 
small, hypervolume, but we need not assume this. 
 The granules are represented by sets of the points in a differentiable 
manifold, and each granule x has a hyper-volume equal to the hyper-
volume of X the set representing x. Then given any scalar function, f, 
there is an associated scalar field F that assigns to the granule a scalar 
property equal to the integral of f over X. Therefore, if we consider any 
sum of granules, z, the sum of the field values for all the granules in z 
equals the integral of f over Z the set of points representing z.  
 Given a (contravariant) vector function g on the representing set of 
coordinate quadruples, we can assign a scalar to any two granules x and 
y. If X and Y, which represent x and y, have a hyperface in common 
then the assigned scalar is the integral of g over that hyperface. Other-
wise it is zero. Intuitively we let the hyperface sweep out a four dimen-
sional region by moving it in the direction of the vector g by its length. If 
the vector makes a very small angle with the surface then the hypervol-
ume swept out is small, but if it is near to 90° then it is greater for the 
same magnitude of the vector. So the vector function approximates a 
scalar valued relation between non-identical granules. If the relation be-
tween granules x and y has the value G(x,y) then G(y,x) = - G(x,y). For 
a surface has an orientation and the orientation going from X to Y is the 
reverse of going from Y to X.  
 A tensor-valued function h may be taken to represent a 3-place sca-
lar relation H(x, y, z) between distinct granules x, y and z. Perhaps the 
easiest way to describe H is to note that (locally) h is the finite sum of 
tensor products of vector valued functions: h = f1⊗g1 + f2⊗g2 +. . . . 
Then H(x,y,z) =  

⅓((F1(x,y)×G1(x,z) + F1(y,z)×G1(y,x) + F1(z,x)×G1(z,y)) + 
(F2(x,y)×G2(x,z) + F2(y,z)×G2(y,x) + F2(z,x)×G2(z,y)) +. . . ). 

In this way granule hypotheses replace the puzzling vector and tensor 
properties by scalar relations. 
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7. The symmetry solution 
Consider again the way I characterized a topological manifold using a 
suitable group of automorphisms of the topological structure. The reason 
that this cannot be generalized to provide a characterization of a differ-
entiable manifold is that we must already have characterized differential 
structure in order to specify the relevant automorphisms. We may avoid 
that circularity problem by supposing some structure such that the trans-
formations that preserve it will turn out to preserve the differentiable 
structure as well. For instance if there is a metric structure in the strict 
sense of a metric (i.e. one satisfying the Triangle Inequality) then we 
may consider isometries, transformations that preserve that metric. I am, 
however, concerned with a light cone structure.106 So I consider the 
group of symmetries Symm of all 1 to 1 mappings of the set of parts of œ 
onto the set of parts of œ such that every g in Symm preserves: the mere-
ological structure (i.e. parthood), hypervolume, the topological structure 
(i.e. separation) and the light cones. 
 The group of symmetries, Symm, is a topological group, with the 
topology such that a sequence g1, g2 . . . of members of Symm converg-
es to the Identity mapping Id if:  

For any two separated regions u and v, there is some integer N 
such that, if n > N, u is disjoint from gn(v).107 

 Provided Symm is not too large, we may then characterise the dif-
ferential structure on Symm, turning it into a Lie group. For instance it 
suffices that there is some open neighbourhood of Id that has compact 
closure, is connected, and contains no subgroup of Symm. That last con-
straint (‘no small subgroups’) is plausible only if there is no fine struc-
ture, or we choose to ignore it. That there are open neighbourhoods with 
compact closure is, roughly speaking, the requirement that Symm be fi-
nite dimensional.108 The immediately relevant feature of a Lie group is 
                                                 

106  By a cone I mean a solid cone, not just its boundary. 

107  For the theory of topological groups see (Pontrjagin, 1939). 

108  That these constraints suffice to show that Symm is a Lie Group follows from 
Hidehiko Yamabe’s (1950) solution to Hilbert’s Fifth Problem, based on ear-
lier work by Andrew Gleason, and by Deane Montgomery and Leo Zippin.  



 

 

129

that it has a unique differentiable manifold structure such that both the 
composition of symmetries and the mapping of each symmetry to its in-
verse are diffeomorphisms. Provided Symm acts transitively on Space-
time this specifies its differentiable manifold structure. (To say it acts 
transitively is to say that for any points of Space-time x and y there is 
some symmetry g such that g(x) = y. This presupposes that Space-time is 
point-based even if the aether itself is not.) 
 For instance, suppose in fact Space-time has the structure of Min-
kowski Space-time. Then: (1) the group of all symmetries Symm is iso-
morphic to the Poincare´ group P; and (2) the group of those symmetries 
leaving a given point p fixed, Stab(p), is isomorphic to the Lorentz 
group L. Then Space-time may be represented by the quotient space 
P/L.109 The future light cones turn out to be in one to one correspond-
ence with the members of P/L. If the aether is itself point-based that is 
because there is just one future light cone with vertex at a given point p. 
Otherwise we may construct point locations in such a way that there is 
just one future light cone with vertex a given point location.110 In this 
case the stabiliser is a normal subgroup of Symm and so the quotient is 
itself a group and P/L is isomorphic to the additive group of quadruples 
of real numbers.111 
 In this special case we could have characterised the differentiable 
manifold structure more directly by noting that there is a unique commu-
                                                 

109  There is an equivalence relation on P, with g and k equivalent if g°k-1 ∈ L. 
Then the members of P/L are the equivalence classes.  

110  For every future light cone x there is a corresponding past light cone x-. So 
there is a property that belongs to anything whose location includes some re-
gion y such that if z is the (or more generally any) complement of y, x∧z is 
separated from x-∧z. This is the property of being located at the (fictitious) 
common vertex of x and x-.  

111  Because H is a subgroup of G, H is closed under the operations of multiplica-
tion and taking inverses. In addition because H is a normal subgroup, for 
every g ∈ G and h ∈ H, g°h°g-1 ∈ H. Therefore, g°k-1 ∈ L iff k°g-1 ∈ L and 
we may define the product of equivalence classes as the equivalence class of 
products.  
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tative transitive subgroup Comm of Symm. Then the point locations are 
in one to one correspondence with the members of Comm. In the case 
being discussed, Comm is isomorphic to the additive group of quadru-
ples of real numbers and so the differentiable structure of Space-time 
may be specified as that which Comm has as a Lie group. 
 Provided there are neither too many nor too few symmetries this 
method is quite general. The case of a general topological manifold is 
one of too many symmetries, because the group of automorphisms is in-
finite dimensional. The case of General Relativity with the gravitational 
field interpreted as due to curvature is one of too few symmetries, that is, 
not enough to ensure transitivity, because in general the only symmetry 
is the identity map. That is because the details of the gravitational field 
depend on the detailed distribution of mass/energy, and so even if the 
gravitational field around the Sun is approximately the same as that 
around some other star the precise field depends on, among other things, 
the posture and gestures of every inhabitant of Earth, and so has a negli-
gible probability of being replicated even on a star with an inhabited 
planet orbiting it.  
 I have found, then, only two ways solving the problems raised by 
the differentiable manifold structure. One requires granulated aether. 
The other requires a highly symmetric structure, for instance that of 
Minkowski Space-time. In Chapter Seven, I show how we may relax the 
symmetry requirement enough to allow for the rejection of realism about 
the future. But the symmetry constraint is still a somewhat strict one. In 
Chapter One, Section 3, I argued that granulated aether is rather unlikely 
to be highly symmetric, so the two disjuncts are excusive: granulation or 
symmetry but not both. I conclude this chapter with another argument 
for the same conclusion. It is an ad hominem in Locke's sense of being 
audience-specific. The audience in question consists of those who reject 
dynamic theories of Time. 
  
8. The Hole Problem  
The Hole Problem, which delayed General Relativity from 1913 to 
1915, was re-introduced by John Stachel  and subsequently presented as 
an argument against realism about Space-time by John Norton and John 
Earman (Norton 2008). Given my terminology it is an argument against 
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the reality of the aether, one to which I need to reply. We assume, as is 
plausible, that if the aether is real then there is a fact of the matter as to 
whether a given macroscopic object, a star say, is in a given region. We 
next note the gauge freedom of General Relativity, namely that the states 
defined by the distribution of the energy-momentum and the gravitation-
al field can neither be inferred from observation nor determined by Ein-
stein’s equations. This is quite general, but is most easily illustrated in 
the case in, which we expect Special Relativity to be an excellent ap-
proximation. This would often be described as the case of nearly empty 
Space-time with just a few small well-separated rocks in it, although of 
course I say that Space-time would not be nearly empty, but full of the 
aether. General Relativity permits a state described as just such an ap-
proximation to Special Relativity, in which the aether is almost flat eve-
rywhere. There are, however, infinitely many other state-descriptions 
permitted by the general relativistic equations, including those in which 
the aether is almost flat outside the ‘hole’ and highly curved inside it. 
(The problem arises because General Relativity implies six independent 
equations but the gravitational field requires ten scalar functions to spec-
ify it.) Other things being equal it is reasonable to conclude that two 
state-descriptions that are indistinguishable in this way are in fact two 
descriptions of the same state. But if we do draw this conclusion then it 
is said there is no fact of the matter as to whether a given event, say the 
collision of two rocks, is located in a given region, for such locational 
‘facts’ depend on which description is used. 
 The most common response to the Hole Problem, goes back to Ein-
stein, and echoes Leibniz, so I call it the Einstein-Leibniz solution. It is 
to deny that the different state-descriptions correspond to different ways 
the world could be (Norton 2008 §9). It is this solution that is incompat-
ible with the reality of the aether. It permits us to re-describe a world in 
which light goes in almost straight lines so that it curves considerably in 
the ‘hole’, but we are told not to get upset, because the one event in the 
hole, namely the collision of the two rocks, will still seem to be at a def-
inite place.  
 Now we always used to assume that light in a vacuum travelled in 
straight lines. To be sure we were later told that this was not quite right: 
light gets bent a little – and near black holes gets bent in extreme ways. 
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And I grant that we should be humble and stand corrected: our pre-
scientific world-view is in all sorts of ways open to revision. In spite of 
that concession, I reject the above Einstein-Leibniz solution.  That light 
travelled in straight lines was a presupposition of astronomy, and of op-
tics more generally, for over two thousand years (and maybe for as long 
as modern humans have been around to think about the stars.) We may 
grant that this is only approximately correct, in much the way that we 
grant that Newton’s theory of gravity is only approximately correct, but 
once we allow that describing reality with light going in curves is as val-
id as it going in almost straight lines an unacceptable scepticism follows. 
Think how it applies to the astronomy of the Solar System. Tycho Bra-
he, the story goes, was asked by young Kepler what the orbit of Mars 
was and Brahe shook him saying ‘That is the orbit of Mars’. Kepler 
went on to discover that planets moved in (near) elliptical orbits around 
the sum. But the Einstein-Leibniz solution tells us something quite dif-
ferent. Shake the orbits as violently as Brahe shook Kepler and that is as 
correct as the ellipse, being either just another hypothesis that is as likely 
or just another way of describing the same orbit.112 For on the Einstein-
Leibniz solution, it just a computational dodge to insist that light goes in 
almost straight lines.  
  A related objection to the Einstein-Leibniz solution is that Special 
Relativity is intended to approximate General Relativity locally. That 
was the motivation for giving each tangent space a metric just like that 
of Minkowski Space-time. But the Einstein-Leibniz solution tells us that 
in the case we intuitively expect to be almost flat, however small a re-
gion may be, it is as correct to say that in this region the aether deviates 
greatly from flatness as to say it is almost flat.  
  It has been suggested that the Hole Problem is just another case of 
gauge invariance like the addition of the gradient of an arbitrary scalar 
function to the 4-potential used in electromagnetic theory (See Norton 
2008, §10.3). There are, however, two differences that undermine this 
‘companions in guilt’ defence. One is that no amount of hanky panky 
with electromagnetic field theory offends common sense, which lacks 
                                                 

112  I am not saying that all continuous orbits are permissible on this account; 
merely that it permits wiggly ones.  
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opinions on that topic. The other is that the gauge invariance of electro-
magnetism is local, and, if anything, serves to support point-free theories 
rather than undermine realism about the aether. For given any open re-
gion, however small, we may consider the electromagnetic field to be 
specified by a vector-valued function on it with equivalence up to the 
addition of the gradient of a scalar field on it. So the field may be ana-
lysed in terms of the electromagnetic properties of arbitrarily small re-
gions. By contrast the gauge invarianceof Einstein’s equations is non-
local.  
 There is a pattern to the history of physics concerning relativistic 
implications. Theories are often initially formulated in a relativistic or 
perspectival way. The introduction of more sophisticated mathematics 
then removes the relativistic implication. That is what happened with 
Special Relativity and the same has happened to gauge theories such as 
electromagnetism. The Einstein-Leibniz solution to the Hole Problem 
cannot therefore find robust precedents in gauge theories. 
 A fairly straightforward solution to the Hole Problem is to restrict 
attention to solutions of Einstein's equations in which the curvature is 
spatial rather than spatio-temporal.113 But that requires a foliation of the 
aether into a succession of Space-like hypersurfaces. This would cohere 
nicely with dynamic theories of Time,  making sense of the idea that the 
rate of passage of Time is not uniformly the trivial second per second.114 
Otherwise it is open to the criticism that it is an ad hoc complication.115 
So those who reject dynamic theories should not adopt this solution. 

                                                 

113  We could take the manifold to be of the form Σ × ℜ, where Σ is 3 dimen-
sional, and ℜ is the real line. 

114  Somewhere, Greenwich presumably, time passes at a second per second, just 
as, in the old days, a standard metre bar in Paris was a metre long. But if the 
hypersurfaces of the foliation are not parallel then those that are 1 second 
apart at Greenwich could be more or less than 1 second apart elsewhere. 

115  Unless one of the Einstein Aether theories turns out to be empirically veri-
fied. (Jacobsen 2008). These are theories that attach physical significance to 
a vector field specifying the foliation. I fail to see, though, why we should 
think such complications are warranted. 
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  Granulated Aether provides an interesting variant on the foliation 
solution, and one that I judge to be less open to the criticism that it is ad 
hoc We might plausibly take the granules to be pentatopes, four-
dimensional analogs of tetrahedra, with four vertices Space-like separat-
ed and forming a tetrahedral hyperface, with the fifth point separated 
from these four vertices in a null (light-ray) way. The fifth point is thus 
either future or past of the spatial tetrahedron, with both temporal orien-
tations occurring. In that case, the metric structure of Space-time is spec-
ified by the lengths of the six sides of the tetrahedra, which are, there-
fore, not regular. When the granules are represented in a continuous 
Space-time then the tetrahedra will make up spatial hypersurfaces. The 
stretching of regular tetrahedra required to turn them into the irregular 
ones representing the spatial faces of the granules, specifies a tensor, and 
hence the metric field. Because we took four of the ten edges to be null 
there are only six degrees of freedom, solving the Hole Problem and es-
tablishing the granulated aether disjunct.  
 The other disjunct, symmetry, is based on the most straightforward 
solution to the Hole Problem. This is to hypothesise a flat, or otherwise 
highly symmetric, aether with an associated ‘empty Space’ gravitational 
field and require the deviation from this to be as little as compatible with 
General Relativity.116 The idea is that the flat case requires no explana-
tion and General Relativity explains deviations from the flat case. On 
this interpretation, the gravitational field is like any other field except 

                                                 

116  If the deviation from the special relativistic metric is given by a symmetric 
tensor field, ∆, then ∆(p) may be thought of as a linear map from the tangent 
space at p to its dual. Hence if ∆*(p) is the dual of ∆(p), the composite 
∆(p)*°∆(p) is a linear map from the tangent space at p to itself. The scalar 

field, trace(∆*°∆) is thus a scalar field measuring deviation from the special 
relativistic case. To retain General Relativity as strictly accurate we first con-
sider solutions to Einstein’s equations and then take the one that minimises 
this scalar field to be correct. A more elegant theory would be obtained by 
adding a small multiple of trace(∆*°∆) to the Lagrangian for General Rela-
tivity.  
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that it is a symmetric tensor field.117 Therefore it characterises something 
with the same mathematical properties as a metric.118 Because there is a 
background of flat Space-time, we may stipulate that the gravitational 
field differs from that background by as little as possible.  
  

                                                 

117  Symmetric in the sense that g(x,y) = g(y,x) for all points x and y. 

118  The gravitational field proper when added to the metric for ‘empty Space-
time’ provides the ‘metric’ of Einstein’s theory. 
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6. Contemporary Physics and Discrete Aether 
 
In this chapter I consider some theories that are prima facie relevant to 
the structure of the aether: String Theory, and more generally Supergrav-
ity theories; Loop Quantum Gravity; Causal Set theory; and Dynamical 
Triangulation. 
 String Theory, along with other Supergravity theories predicts par-
ticles that are yet to be discovered. Absent empirical confirmation, these 
theories, generated by the Consistent Renormalisation research program, 
as I call it, do not support a continuous aether theory. Rather they pre-
suppose such a theory. On the other hand, Causal Set theory presupposes 
discrete aether, and its significance is largely that as usually formulated 
it presupposes Point Discretion. I shall argue that it becomes more plau-
sible if adapted to Granulated Aether, and so has the same ontology as 
Dynamical Triangulation. As for Loop Quantum Gravity, the bad news 
is that in spite of appearances it offers no support for discrete theories – 
nor does it disconfirm them.  
 There is not much joy, then, regarding the empirical evidence for or 
against discrete aether. I shall, however, obtain three results. The first, 
with which I begin the chapter, is that contemporary physics undermines 
an a priori argument against discrete theories of the aether, which I call 
the Argument from Scale Invariance. The second result is that discrete 
theories of the aether are threatened with a serious non-locality problem, 
and that Granulated Aether is superior to Point Discretion because of the 
way it deals with this threat. The third result shows that discrete aether is 
a high risk, high reward hypothesis, with symmetric continuous aether 
being low risk and low reward. That is because, I argue, discrete aether 
is committed to geometrodynamics, the thesis that all four fundamental 
forces are to be understood as a consequence of the detailed shape of the 
aether.119 By contrast, symmetric continuous aether requires the treat-
ment of gravity as somewhat similar to other forces. The differences be-
tween the two ways of unifying physics are: 

                                                 

119  Maybe research on quantum gravity will lead to discrete geometrodynamics. 
An alternative approach is that of Stephen Wolfram (2002).  



 

 

138

1. The combination of Pseudo-set Granules, as the preferred ver-
sion of Granulated Aether, with geometrodynamics promises a 
theory that is fundamentally mereological, with all other struc-
ture depending upon the mereology. There is also the hope of 
simple laws expressible in terms of positive integers. The result 
would be a triumph for simplicity. (That is the high reward). It 
would require a great deal of mathematics to relate this under-
lying structure to physics as we now have it, and it would be 
rash to assume this mathematics even exists (whether or not 
mathematicians discover it). 

2. Treating gravity much like any other force is straightforward in 
principle, and there are interpretations of quantum field theory 
that ensure consistency. I anticipate that the resulting unifica-
tion will require several parameters to be adjusted to fit the 
empirical data, and so, if it is successful, it will not be as strik-
ingly confirmed as discrete geometrodynamics would be. 

 Readers may not agree with my overall assessment that discrete 
geometrodynamics is less probable precisely because it is bolder.120 So 
my chief conclusion is disjunctive: The aether is either granulated, in 
which case probably Pseudo-set Granules and geometrodynamics are 
correct and simplicity triumphs, or the aether is symmetric Arntzenius 
Continuum, the hypothesis to be developed in the next chapter.  

  
1. Undermining the Argument from Scale Invariance 
Theoretical physicists rely heavily on the metaphysical principle that ne-
cessities should be highly symmetric. Thus the thesis that the shape of 
Space-time might have asymmetric geometry – Einstein likened it to the 
surface of a potato – is tied to the thesis that the general relativistic met-
ric is (nomologically) contingent, and that the necessary structure of 
Space-time is merely its structure as a differentiable manifold, from 
which is derived the requirement that the laws of nature be covariant, 
                                                 

120  Karl Popper praised bold conjectures. He was also an avowed sceptic about 
ordinary induction. Those of us who are not sceptics could argue that bold 
conjectures are confirmed surprisingly often and so are not as improbable as 
we would judge a priori. 
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that is statable in terms of the differentiable structure. This is a strong 
symmetry condition. Alternatively, if we require a necessary geometry 
such as that of Minkowski or de Sitter Space-time, then the requirements 
of isotropy (no privileged direction) and homogeneity (no privileged po-
sition) amount to symmetry conditions on the physically necessary.  
 One candidate symmetry is scale invariance, the thesis that, if all 
spatio-temporal distances were multiplied by a scale factor, this would 
leave the necessary structure of the universe unchanged. Taking the 
gravitational constant to be fixed, the empirical equivalence of our uni-
verse to one like ours but uniformly scaled up by a factor µ may be 
achieved only if there is also an accompanying multiplication of mass by 
µ. So when I consider re-scaling I assume spatio-temporal distance and 
mass are both multiplied by some positive µ.  
 The case for such scale invariance is that asymmetries are not to be 
multiplied more than is necessary. This is not an especially strong case, 
so it is worth noting the spurious empiricist argument for scale invari-
ance that might have seemed to buttress it. If everything, including we 
ourselves, was scaled up or down, who could notice the difference?121 
This rhetorical question presupposes that the aether is not discrete. For if 
it is discrete we may use the number of aether atoms as an absolute 
measure of quantity and scaling observers down so that they are of the 
scale of an aether-atom would be noticeable if, per impossibile, such 
scaled-down observers could exist. Therefore, it should not be used to 
argue against discrete aether. 
 Granulated Aether and Point Discretion do not violate scale invari-
ance but rather make it vacuously true. For, absent unnecessary compli-
cations, they both imply an absolute measure of quantity and hence pro-
hibit any change of scale. Such trivialisation is, however, contrary to the 
a priori appeal of scale invariance. I conclude that, unless undermined, 
the Argument from Scale Invariance provides a case against discrete 
theories, although not an especially strong one. 
 The way to undermine the argument is to show that scale invari-
ance should be abandoned even on continuous aether hypotheses. For 
                                                 

121  The topic was discussed by, for instance by Schlesinger (1964) and 
Grünbaum (1964, 1967).  
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instance the cosmological constant, Λ, would be affected by a change of 
scale unless it is exactly zero, contrary to the current consensus. The 
problem with this way of undermining the Argument from Scale Invari-
ance is that Λ might be considered nomologically contingent, and the 
consequence of the conditions early on in our part of the universe. There 
are many other examples of important physical constants that would 
have been different given a change of scale. Among these are the cou-
pling constants that compare the strengths of various fields, for instance 
the fine-structure constant, α. It is to be hoped that all these will be de-
rived from a ‘theory of everything’. This forces us to speculate about 
whether an as yet undiscovered theory will be scale-invariant. What we 
should expect depends on how firm is our intuition that symmetry 
should be maximised. Given a firm intuition we should expect a scale-
invariant theory of everything, but if the intuition is less firm we should 
be agnostic on that topic. Hence the argument from scale invariance 
against discrete theories of the aether merely supports my disjunctive 
conclusion, namely that if you back symmetry over simplicity you 
should hold the aether to be continuous. Otherwise, there is no case for 
scale invariance, and hence no obstacle to discrete theories of the aether.  
  
2. The need to derive Planck scale discrete aether 
If Granulated Aether is correct we might expect the hypervolume of a 
granule to be about 1 Planck unit, in which case their density in Planck 
units will be some constant ρ, which is of the order of magnitude 1 
Planck unit, that is about 10173 granules per sec4. If Point Discretion  
holds then the aether atoms have zero hypervolume but we might again 
expect a density ρ of about 10173 per sec4.  
 We should accept this estimate for the density of aether atoms giv-
en a discrete theory. For, I say, we should minimize the number of fun-
damental, that is, non-derived, physical constants – the stuff of fine tun-
ing. To be sure, current physics is plagued with a proliferation of physi-
cal constants but the hope is that all or most of these are not genuine 
constants and vary from domain to domain of the universe. Moreover, 
humble metaphysicians that we are, we will be guided by physicists and 
take G, c and h to be non-contingent. Hence the density of aether atoms 
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ρ would be a physical constant. It is not plausible that ρ vary from do-
main to domain. In fact so intuitive is it that the hypervolume of a gran-
ule is a natural unit that if ρ’s expression in Planck units varied, then we 
would take that as implying that one of c, G or h varied, something we 
are here denying. Hence the only way to avoid ρ being an unwanted 
fundamental physical constant is to derive it from the overall theory. An 
example of such a derivation is provided by the discrete interpretation of 
Loop Quantum Gravity, discussed below which, suitably interpreted, 
implies that the minimum area of a loop is 4loge3 (approximately 4.4) 
Planck units. (Baez 2003). How we interpret that minimum area will de-
pend on both the shape of the aether granules and the local curvature of 
Space-time, but it is plausible that it is of the order of magnitude of a 
Planck unit, and, more important, determined by the structure of the ae-
ther.  
 So why should we be reluctant to admit non-derived physical con-
stants? Because theoretical understanding is a matter of explaining the 
more complicated in terms of the less complicated. The number of non-
derived constants is a partial measure of the complexity of a hypothesis 
and so, other things being equal, should be minimized.  
 Could we use the fine-tuning required for sentient life to undermine 
the case against the non-derived density of aether atoms? 122 Not if we 
reject, as I have done, the variability of ρ in a given universe. For if ρ 
has a precise value, that it has this value rather than some other, almost 
equal, value (also suited to life) should be derived from the rest of the 
theory. 
 I conclude, then, that if the aether is discrete, ρ, the density of at-
oms per Planck hypervolume, should be predicted by the theory. 
 
 
 
 

                                                 

122  There is an extensive literature on fine-tuning in the philosophy of religion. 
(See Ratzsch 2012). As a case for the existence of God I prefer Coarse Tun-
ing (Forrest 2007).  
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3. A challenge for discrete theories 
In the previous section I argued that a satisfactory quantum gravity 
based on discrete aether should be able to derive the density of atoms. 
There are two extreme cases. In the first we take a theory that does not 
support the discrete character of the aether, such as String Theory, and 
we nonetheless hypothesise that the aether is discrete. In that case, we 
are adding ρ to the list of non-derived constants, which is a disadvantage 
compared to the case of continuous aether in which: (1) the most natural 
units are Planck units, so none of G, c and h count as non-derived physi-
cal constants; and (2) the density of atoms ρ is the only value it could 
have for a continuous theory, namely infinity.  
 There would be an even more serious disadvantage if the theory 
required structure at a scale much less than the Planck units. For in-
stance, if String Theory required the strings to be of the order of a 
Planck unit in length, then to be strings and to vibrate we might hypoth-
esise sub-Planck scale structure. And that would prevent the identifica-
tion of the natural units with the Planck units. String Theory is, however, 
quite compatible with the strings typically being about 100 Planck units 
in length.123 We might then take the strings and branes to be one Planck 
unit thick.124 I conclude that if String Theory turns out to be correct the 
case against discrete aether, although of some weight, is far from con-
clusive. 
 The other extreme case is that in which taking the aether to be dis-
crete we can derive an upper bound for ρ. For in that case, the discrete 
character of the aether explains why h ≠ 0 and hence why classical theo-
ries are incorrect, something presupposed but not explained by the use of 

                                                 

123  At one stage it was assumed the strings would be of Planck scale length but 
later it was realised they would be a couple of orders of magnitude longer 
than that.  

124  Even if the strings were a Planck unit in length there might be a way out, 
namely take the strings, branes etc to be specified by patterns of aether atoms 
rather than consisting of them. Consider, for instance aether atoms laid in a 
helical pattern around an axis in Space-time. Then the axis is distinguished 
without being made up of aether.  
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Planck units. This would be a significant advantage for discrete theories 
of the aether. 
  
4. Against String Theory and Super-gravity.  
The strings and branes of String Theory are thin, but as far as I know 
there is no way of deriving their thickness or even of showing that they 
have non-zero thickness. Hence the argument of the previous section 
shows that theory to be somewhat improbable given discrete aether. The 
same holds for other Supergravity theories. So we  have a case for not 
combining these theories with discrete aether. Maybe the disjunction of 
String theory and other Supergravity theories will be confirmed by the 
discovery of the novel particles they predict, such as gravitinos. That 
would, therefore, provide a case for continuous and hence symmetric 
aether, and also for Arntzenius Continuum. I now argue, however, that 
absent such empirical confirmation, String Theory and Supergravity are 
improbable – even relative to the hypothesis of continuous aether. My 
argument is that they are based on a research program the core of which 
presupposes (1) that the aether is continuous and (2) that there are no 
particles that are extended in all dimensions (i.e. of the same number of 
spatial dimensions as Space itself) Given the complexity of String Theo-
ry and of Supergravity more generally we should, I now argue, abandon 
this core, unless some empirical predictions are confirmed. 
 String Theory and other Supergravity theories belong to what I call 
the Consistent Renormalisation research program,  which splendidly il-
lustrates Imre Lakatos’ methodology (Lakatos 1970). The core is the re-
quirement that the standard approach to quantum field theory can be de-
veloped without divergent (i.e. infinite) integrals. This is in response to 
the unsatisfactory character of arbitrary and ad hoc cut-offs by which the 
energy and momenta of particles are bounded. (For instance to avoid the 
‘ultraviolet catastrophe’ the cut-off ensures that the frequencies are less 
than some arbitrarily chosen very high value.) String Theory started with 
the brilliant idea that we might use strings to provide a theory of quarks 
and the associated strong nuclear force without cut-offs. It turned out 
that strings were not needed for that purpose, but meanwhile an anomaly 
was discovered, namely that String Theory predicted that some closed 
strings (i.e. ones closed into a loop and so without free ends) would have 
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as excitations massless spin 2 particles, something not required for quark 
theory. This anomaly was then inverted into a ‘prediction’, by noting 
that gravitons (quantized gravitational waves) would be just such mass-
less spin 2 particles. Consequently String Theory re-established itself as 
a theory of everything, that is, a unification of the theories of the elec-
tromagnetic, weak strong and gravitational forces. Another anomaly re-
sulted from the discovery that there were five different string theories 
that could be converted into each other using transformations, known as 
dualities. (This is reminiscent of the notorious wave/particle duality, said 
to have been resolved by quantum field theory.) To resolve the duality, 
that is remove the anomaly, it was proposed that there must be a more 
basic underlying theory, which is known as M-theory and which posits 
branes, higher dimensional sheets to which the open strings are attached. 
This M-theory has now produced another anomaly, namely the prolifera-
tion of landscapes, that is models for the ‘vacuum’, that is, the matter-
free universe. There are estimated to be about 10500 of these landscapes, 
in part because of the proliferation of the 6 dimensional manifolds de-
scribing the dimensions additional to the experienced 4 dimensions of 
Space-time.125 Some hope that of these landscapes only one will be suit-
ed to life.  
 As is well known, String Theory requires 6 extra dimensions. It is 
also a Super-gravity theory, requiring super-symmetry, a consequence of 
which is that the familiar particles (bosons and fermions) have super-
partners (fermions and bosons respectively). For instance not only are 
gravitons implied by the theory but also gravitinos,  fermions of spin 
3/2. Some of these super-partners are predicted to be discovered using 
the Large Hadron Accelerator. If they are not found, then this will be a 
further anomaly and it remains to see whether the research program 
could invert it into some further startling prediction. 

                                                 

125  These are vacuum solutions of the higher dimensional analog of General 
Relativity. Being massless they are ‘Ricci flat’. They must also be compact. 
This forces on them a unique (differential) topology, that of a torus in 6 di-
mensions, but there is still an enormous proliferation of general relativistic 
metrics. See (Douglas and Kachru, 2007). 
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 The obvious criticism is that String Theory and Supergravity  are 
just too complicated to be a fundamental theory, which as a ‘theory of 
everything’ it would have to be. This criticism may be developed into 
what I call the Modeling Objection, namely that a sufficiently rich and 
interesting mathematical structure has the resources to model an enor-
mous range of fairly simple theories, but its success in so doing does not 
support the hypothesis that these are more than models. For instance a 
Quinean philosopher might claim that the fundamental structure of phys-
ics is that of set theory. And to be sure we can almost certainly model 
the correct physics set-theoretically if we can model it using mathemat-
ics. But that is a cheat, precisely because set theory is an almost univer-
sal model for mathematics. Likewise my complaint that String Theory is 
complicated may be developed into the argument that ten dimensional 
geometry is just so rich we expect it to model an enormous variety of 
theories, but that this too is cheating. In Lakatosian terms, I say that the 
research program degenerated as soon as the excessively rich 10 dimen-
sional geometry was invoked, although the researchers were not aware 
of this richness at the time. 
 Here I distinguish two rather different appeals to simplicity. Even 
theories that are not fundamental should be relatively simple, that is as 
simple as we can make them given the empirical constraints, but for a 
fundamental theory we expect an absolutely simple theory. Or at least 
that is my metaphysical intuition, which I hope readers share. Chemistry 
in the year 1900, for example, seemed as simple as the evidence allowed 
but, because of the proliferation of chemical atoms, not simple enough to 
treated as fundamental, even at the time.  
 I have appealed to a metaphysical intuition concerning simplicity, 
but intuitions are defeasible and, I take it, proponents of String Theory 
consider that the intuition is defeated by the sheer difficulty of providing 
a consistent quantum field theory that would count as a ‘theory of every-
thing’. The history of the research program is one of force majeure: 
twists and turns required for consistency. When I say ‘required’ for con-
sistency, I mean ‘required to avoid other complexities’. For, as Jack 
Smart  is fond of saying, any theory can be rendered consistent with 
enough ad hoc qualifications. 
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 The underlying principle is correct: if respect for the mathematics 
and the empirical constraints force complexity upon us then we are 
wrong in assuming the theory of everything must be simple. But this 
principle requires an extraordinary thoroughness if it is to be applied 
correctly. For it may happen that because of the accumulated complexi-
ties we should reconsider one of the earlier stages in the program.  
 There is a 10-33 cm elephant in the room – or is it a 20,000 nano-
gram gorilla? Discrete theories of the aether effortlessly prevent the ul-
traviolet catastrophe by putting an upper bound on frequencies of 1045 
sec-1, the frequency of a gamma ray whose wavelength is 10-33 cm and 
whose energy is equivalent to 20,000 nanograms. Even if the aether is 
continuous, the ultraviolet catastrophe may be avoided by positing that 
the fundamental particles are extended regions of the aether with suitable 
properties – presumably their diameters will be of the order of magni-
tude of the Planck length. Their extended character forces upon us an 
upper bound to the particle density and hence the ultraviolet catastrophe 
is avoided.126 If there is an infrared catastrophe, then we can avoid that 
by resort to a spatially finite Space-time. The Consistent Renormalisa-
tion research program turns out to be based on a core of conservatism, 
with a reliance upon point particles. Initially that was sound methodolo-
gy, but the excessive richness of 10 dimensional geometry has shown it 
has degenerated.  
 Nonetheless, I wish it well as a fun-filled research program, and if 
the prediction of super-particles is confirmed then the fact that these are 
implied by String Theory and Super Gravity, but not rivals, would have 
confirmed them. A corollary is that if they turn out, improbably, to be 
thus confirmed, then we should not combine them with discrete aether 
because the implications of String Theory are based on the twists and 
turns of a research program that presupposes the aether is continuous. 

                                                 

126  Compare the ideal gas law PV = kT (Pressure times volume equals a constant 
k times temperature). Even if we ignore the forces between molecules we 
need to make a correction to allow for the molecules not being point particles 
obtaining P(V – b) = kT where b is the sum of the volumes of the molecules 
themselves.  
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For without continuity, the ultraviolet catastrophe would never have oc-
curred in the first place. 
  
5 Does Loop Quantum Gravity imply discrete aether?  
Loop Quantum Gravity is based on the hypothesis that the correct quan-
tum gravity will result from the (canonical) quantisation of General Rel-
ativity. It is cautious in that it is not intended as a ‘theory of everything’, 
and such caution increases its probability. Just how probable it is de-
pends on the plausibility of canonical quantisation. The least kind 
judgement on canonical quantisation is that it is a recipe for coming up 
with one out of, for all we know, many possible theories that have the 
required classical limit in contexts in which Planck’s constant may be 
ignored. To this can be added the admittedly weak support given by or-
dinary induction: canonical quantisation has worked fairly well in the 
cases of electrodynamics and chromodynamics (quark theory).  
 My interest in Loop Quantum Gravity derives from the way it im-
plies a discrete spectrum for area and volume, a result that suggests the 
aether is discrete, even though the theory being quantised is not discrete. 
I say ‘suggests’ for just what a spectrum of an ‘observable’ is requires 
further, and contentious, interpretation. If we follow that suggestion we 
may argue by reductio ad absurdum. Within the scope of the supposition 
that the aether is continuous, Loop Quantum Gravity would arise, it is 
said, as a quantisation, which then would imply that the aether is not, 
after all, continuous. I shall argue, however, that the suggestion should 
be ignored. 
 Loop Quantum Gravity is motivated by the difficulty in quantising 
the way the aether curves. The difficulty is that quantum theory requires 
a volume-analog assignable to sets of the states in the configuration 
space, which in this case consists of all the physically possible ways the 
aether could be curved at a given time-coordinate t. (It is to be hoped 
that resulting quantum gravity does not depend on the choice of the t co-
ordinate.)  
 In the case of a single particle the configuration space is Space it-
self and the volume-analog the volume itself. Then the pure states corre-
spond to the Hilbert space of square-integrable complex functions on the 
configuration space. It is easy to find volume-analogs for a given finite 
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number of particles and then by considering more and more particles 
consider the case of any finite number of particles. The resulting Hilbert 
space is Fock space, used for instance in quantum electrodynamics. But 
how can we find a volume-analog on the configuration space for General 
Relativity? 
 Loop Quantum Gravity derives from a way of characterising the 
gravitational field due to Abhay Ashtekar, Giorgio Immirzi and Fernan-
do Barbero, which enables us to find an appropriate volume-analog 
(Thiemann 2003: I.22). The idea is that curvature may be characterised 
by the way in which a quadruple of independent directions varies as it is 
transported around a closed loop. This is analogous to noting what hap-
pens to a pair of directions at, say, the South Pole if it is transported 
around a loop that goes up longitude zero to the equator, around to lon-
gitude 90 and then down again to the South Pole. It ends up as a differ-
ent pair of directions because of the Earth’s curvature. The transfor-
mation of the directions on the Earth’s surface is given by a rotation, In 
the case of General Relativity the transformation is specified by a Lo-
rentz transformation.  
 If we consider a family of loops joined up to form a graph with a 
finite number of vertices, the way the axes transform as we go round the 
graph gives us more information about the curvature the more loops we 
add in a given region. By considering a graph with a countable infinity 
of vertices in a given region the transformation associated with loops 
connecting any finite number of them can specify the curvature com-
pletely. Suppose we now take a set of four coordinate axes for a trip 
around the loop. Because of the curvature the overall result is that the 
axes undergo a transformation. At the cost of some arbitrariness (gauge 
freedom) we may analyse these transformations resulting from going 
around loops using Lorentz transformations as we take the axes from 
vertex to vertex. The result is that we may specify the general relativistic 
metric using a graph with countably many vertices, and hence countably 
many edges, assigning to each edge a Lorentz transformation.127 Hence 
                                                 

127  More generally, if we allow a connection with torsion – needed for taking 
intrinsic angular momentum (spin) into account – then the Lorentz group is 
replaced by the larger Poincaré group. This is important because it has SU(3) 
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the metric for General Relativity is described by assigning a Lorentz 
transformation to each of countably many edges. As I understand it, 
Loop Quantum Gravity is the result of ‘quantising’ the system by assign-
ing an irreducible representation of the Lorentz group to each edge.128 
This procedure is analogous to the quantisation of electrodynamics 
where the quantum system is described using a countable infinity of one 
particle states. The chief difference is that we replace particles by edges.  
 In the resulting theory both the area of a loop and its volume have 
discrete spectra with minimum values obtained at the Planck scale. The 
precise values depend on the details of the theory. This result is sugges-
tive of discrete aether, but merely suggestive, for the spectrum is not de-
fined as the set of possible values but rather the set of eigenvalues. To 
obtain more than a mere suggestion, we would need some extra premise, 
such as the following Definite Range principle: 

The value of an ‘observable’ is definitely in the range from the 
greatest lower bound to the least upper bound of the eigenvalues.  

Whether that principle holds depends on which quantities are given the 
status of ‘observables’. But the case of spin shows that we should not 
grant that status too readily. For consider the values Sx, Sy and Sz of the 
x, y and z component of the spin of a spin ½ particle. And suppose we 
grant observable status to their squares Sx2, Sy2, and Sz2. These quanti-
ties have only one eigenvalue, (h/4π)2, so by the definite range principle 
all would definitely have that value, showing that Sx = ± (h/4π), Sy = ± 
(h/4π), and Sz = ± (h/4π). So the spin-vector points from the centre of a 
cube of side h/2π with edges parallel to the three axes, to one of the eight 
corners. This is absurd, because the choice of x, y and z coordinates was 
arbitrary. What has gone wrong? A quibble is that the spin of a spin ½ 

                                                                                                                                                    
as a finite dimensional representation, and SU(3) is the symmetry group for 
unified strong/electro-weak theory.  

128  The representation is by means of operators on the one-dimensional subspac-
es of a Hilbert space and hence corresponds to a representation by means of 
unitary operators of the covering group SU(2). These irreducible representa-
tions correspond to the spin states of particles of spin 0 (trivial), ½, 1 etc.  
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particle is not really a vector, but we could consider instead a transverse-
ly polarised spin 1 boson with mass (i.e. not the photon) and its two 
transverse polarisations. But it is convenient to consider the more famil-
iar example of spin ½. Either we should reject the Definite Range prin-
ciple, or we should not assign observable status to components of spin, 
or we should deny that the square of an observable is always an observ-
able. A similar argument would hold if we considered instead of Sx2 
Sy2, and Sz2 the magnitudes of the spin components: |Sx|, |Sy|, and |Sz|. 
So we would also have to deny that the magnitudes are observables. 
 We may now apply these three ways of dealing with the problem 
raised by spin to the case of area and volume. First, if we just deny the 
Definite Range principle the argument that there is a minimum area (and 
volume) collapses. Next, if we deny that quantities as physically im-
portant as the components of spin are observables then what right have 
we to assume area and volume are observables? Finally, if we deny that 
squares or absolute values of observables are observables, then I note 
that the area of a small parallelogram, or the volume of a small parallel-
epiped, may sensibly be interpreted as the scalar magnitudes (i.e. 
lengths) of the exterior products of two, or three respectively, of the vec-
tors with length and direction of the sides, or edges respectively. Even if 
these exterior products (also known as antisymmetric tensors) are genu-
ine observables then we have no reason to expect their magnitudes to be 
observables also. The situation may be illustrated by case of the area of a 
surface in three dimensions, in which case the exterior product may be 
replaced by the more familiar vector product. If we take a small parallel-
ogram on the surface whose sides are the vectors ds and ds´ then their 
vector product ds×ds´ is a vector perpendicular to the surface with mag-
nitude equal to the area of the parallelogram. But ds×ds´ = - ds´×ds. 
That is, they are equal and opposite vectors. To calculate the surface area 
we do not integrate ds×ds´, which for any finite surface without an edge 
would give us zero, because the vector products in one direction are bal-
anced by those in the opposite direction. Instead, we have to integrate 
the magnitude of ds×ds´.  
 The combination of continuous aether with Loop Quantum Gravity 
can be defended, therefore, even if the failure of the Definite Range 



 

 

151

principle is restricted to the magnitudes of signed or vector quantities 
that are genuine observables.  
 Loop Quantum Gravity offers, then, little support for discrete ae-
ther. Moreover, there is an argument to show that if treated as a funda-
mental theory of the aether it requires continuity. For it tells us that if we 
go round a loop, then the effect of the curvature is specified by a Lorentz 
transformation. So there must be something with the right structure for 
the Lorentz transformation to transform. If the cells were simples, how-
ever, then the corresponding transformation would be just a permutation 
of its vertices. If the permutation preserves orientation then it would be a 
member of the group A5, with 60 members. Maybe Loop Quantum 
Gravity could be modified so that this finite group replaces the Lorentz 
group. But that would not be Loop Quantum Gravity itself. As it is, 
Loop Quantum Gravity is more appropriate for a hypothesis in which the 
aether is made up of cells, each of which is flat and has the structure of a 
convex region of Minkowski Space-time. For in that case travelling 
around a loop would result in a Lorentz transformation.  
 This flat cell interpretation would not affect the entropy calculation 
for a black hole, which is an important ‘prediction’ of Loop Quantum 
Gravity (Ashtekar, Baez, Corichi and Krasnov 1998). For the flat inter-
nal structure of the cells would contribute zero entropy. Nor, it should be 
noted, does this settle the simplicity versus symmetry issue. For if we 
treat gravity as a field on a symmetric aether such as one with the struc-
ture of Minkowski Space-time then such a cell structure corresponds to a 
field restricted to the boundaries of the cells. I doubt, though, that we 
need draw the conclusion that there really is a cell structure for we may 
well think that quantum states with precise eigenvalues are idealisations 
and that actual states are always somewhat fuzzy being superpositions of 
such states. This would blur the sharpness of the boundaries. 
 Although there is no conclusive objection to combining Loop 
Quantum Gravity with a theory of the aether as consisting of cells each 
of which has the structure of a convex portion of Minkowski Space-
time, that hypothesis is not especially simple. For like granulation it re-
quires some Planck level structure, but it does not have the advantage of 
discrete theories such as Pseudo-set Granules. So in the absence of 
greater empirical support we should reject it. 
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6. Causal Set theory  
Initially my preferred hypothesis was Point Discretion. In the previous 
chapter I noted two advantages that Granulated Aether might have over 
continuous aether in the case in which the aether is not symmetric, 
namely that of characterising a differentiable manifold. Whether Point 
Discretion shares these advantages depends on whether a certain hoped 
for result, which Sorkin calls a Hauptvermutung, can be proven. In addi-
tion there is the (temporal) Non-Locality Problem, arising from the non-
locality of the discrete analog of Minkowski Space-time. But first I shall 
sketch Causal Set theory to provide some context. 
 Causal Set theory, developed by Peter Szekeres (1995), Rafael 
Sorkin (2003) and others, presupposes Point Discretion. It is based on 
points with a single basic relation – one of the (interderivable) relations 
of absolute priority (u p v), being the immediate predecessor (u p*v), or 
their converses.129 There is a derived metathety relation of y being be-
tween two points x and z that holds if either x p y p z or z p y p x. If u p 
v then u is said to be an ancestor of v, if u p* v then u is said to be a 
parent of v. The structure is just that of a partial ordering and one im-
portant problem was that of explaining how a partial ordering can come 
to approximate a differentiable manifold with a general relativistic met-
ric. Sorkin’s solution is to note that in the context of quantum theory we 
require a probability distribution over the many ways the aether (he 
would call it that) could be. And there is a very natural way of associat-
ing a manifold equipped with a general relativistic metric with such a 
probability distribution, namely sprinkling – the result of a random se-
lection of at most countably many points from the manifold.130  
                                                 

129  In this context ‘absolute priority’ is appropriate in place of ‘frame-
independent priority’, because we are positing a fundamental relation be-
tween regions.  

130  If u p v, then the absolute temporal distance between u and v is defined as 
the length of the longest ordered chain connecting u to v, i.e. the greatest in-
teger n for which there are points u0, . . . , un, such that u = u0, uj p* uj+1 
and un = v. If the absolute temporal distance between u and v is large, then 
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 I want to emphasise that Causal Set Theory is just the sort of ac-
count of the aether that we should hope for a priori. It combines my ini-
tial favourite account of the aether with a single primitive relation. The 
title ‘Causal Set theory’ suggests that the relation is causation. But that is 
not essential. Instead I call the relation that of absolute priority.  
 Causal Set theory does not posit any group theoretic symmetry for 
the aether. One problem, therefore, is that the Einsteinian (i.e. general 
relativistic) manifold, which I think of as Space-time, must be derived 
from the structure of the aether points. Sorkin hypothesises that the 
probability distribution over the states of a causal set made up of points 
is given by sprinkling, that is a random choice of representing points 
from the general relativistic manifold (Sorkin 2003: 9-10). The problem 
is that of inverting this procedure: given a range of physically possible 
causal sets, find an Einsteinian manifold such that they are the likely re-
sult of sprinklings. Now Sorkin suggests two constraints on the dynam-
ics of causal sets (Sorkin 2003: 13). The first is ‘discrete general covari-
ance’, which in effect says that the order in which points are born, that is 
come into existence, is not relevant to the dynamics. Sorkin’s second 
constraint is ‘Bell causality’, which ‘is meant to capture the intuition that 
a birth taking place in one region of the cause cannot be influenced by 
other births that occur in regions space-like to the first region’ (Sorkin, 
2003: 13).  
 These constraints lead to a formula for the probability of the birth 
of a new point with specified numbers ϖ of ancestors and m of parents 
(Sorkin, 2003: 13-14). This probability is proportional to λ(ϖ, m) = 
∑tk×(ϖ-m)!/((k –m)!×(ϖ - k)!), where the constants tk have yet to be 
specified, and the sum is over all k from m to ϖ. 
 A different approach to the dynamics of causal sets is to specify the 
action associated with a given subset X of the causal set and rely on the 
Feynman’s sum over histories method of associating probability distri-
butions with actions. Thus in 4 dimensions, the Benincasa-Dowker ac-
tion associated with X is the quantity: S(X) = N − N1 + 9N2 − 16N3 + 
8N4. Here N is the number of elements in X, N1 is the number of chains 
                                                                                                                                                    

sum of all the points z such that u p z p v should be a very good approxima-
tion to an Alexandrov interval with vertices u and v. 
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of length 2 in X, N2 the number of chains of length 3 in X, and so on. (A 
chain of length 2 is a pair of points u and v such that u p* v, a chain of 
length n + 1 is n + 1 points u, w1, . . . ,wn such that u p* w1 and w1, . . . 
wn is a chain of length n. ) 
 Given this, or some other formula, the Feynman method for assign-
ing probabilities given an action, will then specify a probability distribu-
tion for a range of causal sets, one that will given some boundary condi-
tions hopefully specify a unique Einsteinian manifold  from which that 
distribution could be arrived at by sprinkling (Surya, 2011: 14).131  
 Thus we may hope to provide the Hauptvermutung (Sorkin, 2003: 
10), showing that sprinkling over different Einsteinian manifolds is like-
ly to give different causal sets. In that case we could say that the Ein-
steinian manifold specified is Space-time, in which the points are locat-
ed. 
 Given this Hauptvermutung, causal set theory would specify a dif-
ferentiable manifold thus replicating one of the major advantages of 
granulated aether. Moreover if the dynamics really does show that the 
Einsteinian manifold is specified by the boundary conditions then the 
Hole Problem is solved. 
 There is, however, a further problem, noted by Sumati Surya. We 
would expect the theory of gravity to be compatible with nearly empty 
Space-time equipped with almost the special relativistic metric. In that, 
and many other cases, each point is likely to have an infinity of ‘par-
ents’, in which case the formulae fail to make sense. Or so it might 
seem, but before judging this I shall state the non-locality problem for 
Point Discretion starting with the straightforward incompatibility of 
temporal locality with discrete Lorentz invariance. 
  
7. The non-locality of discrete Special Relativity  
I begin by considering the non-actual and perhaps impossible case of a 
discrete analog of Minkowski Space-time. This raises a serious problem 

                                                 

131  Boundary conditions presumably specify the whole of history prior to the 
points of interest. Contrast this with the continuous case where we only need 
specify conditions on a suitable hypersurface.  
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in the case of the possible and perhaps actual case of an approximation. 
 To obtain a discrete analog of Minkowski Space-time  we represent 
points by quadruples of integers. Likewise there is a discrete analog of 
spatial three dimensional Euclidean space with points represented by tri-
ples of integers. In the discrete Euclidean case the angle of a rotation is 
restricted to multiples of right angle, with the axes of rotation restricted 
to one of the three coordinate axes. This is a version of Weyl’s problem. 
It is noteworthy, therefore, that in the case of the 4 dimensional discrete 
(analog of) Minkowski Space-time there is a countable infinity of trans-
formations that keep fixed some past light cone u. These transformations 
form the group of all the Lorentz transformations whose matrices have 
integer values, and whose inverses also have integer values. Moreover, 
there are enough such Lorentz transformations to establish approximate 
spatial isotropy, where the approximation may be as accurate as we 
please.132 

                                                 

132  The point p represented by a quadruple of integers <t, x, y, z> may instead be 
represented by the 2 × 2 complex valued matrix M(p) = [t +z, y + ix]&[ y – 
ix, t – z]. (I shall use the convention that n by n matrix is to be specified by 
listing the rows in order joined by ampersands.) Given that representation, a 
Lorentz transformation may be assigned to any 2×2 complex matrix A of de-
terminant 1, where if the Lorentz transformation maps p to q, M(q) = 
AM(p)A*. If A is [a, b]&[ c, d] then A* is [a*, c*] &[b*,d*], where z* is the 
complex conjugate of z. Notice that A and –A correspond to the same Lo-
rentz transformation.  

  We now restrict attention to Lorentz transformations for which the all of 
a, b, c and d are Gaussian integers (i.e. complex numbers of the form m + in, 
where m and n are integers) such that ad  - bc = 1, and such that aa* + bb* + 
cc* + dd* is even. Then the corresponding Lorentz transformation maps 
quadruples of integers to quadruples of integers. The special case in which a, 
b c and d are all real numbers is noted by Schwarz (1976). A family of such 
transformations is obtained by taking any two Gaussian integers f and g and 
putting a =2f2, b =(2fg +1), c = (2fg -1), d = 2g2.  

  Now the spatial directions of the vectors represented by the quadruples 
correspond to points on the sphere, which may themselves be represented as 
ratios of complex number. The effect on the spatial directions of the trans-
formation represented by [a,b]&[b,c] is then a transformation of the sphere 
that sends the ratio u:v to (au  + bv): cu + dv. The mathematical theory of 
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 We have, therefore, an initially satisfactory discrete (analog of) 
Minkowski Space-time with points represented by quadruples of inte-
gers. But it suffers from non-locality. Consider a given reference-frame 
and a given point of discrete Minkowski Space-time. Then not only does 
it have infinitely many ‘parents’, that is immediate predecessors, but the-
se occur arbitrarily far in the past and arbitrarily far away in Space with 
respect to the frame being considered. If therefore we think of direct 
causal influences being transferred from the immediate predecessors of a 
point to that point then the direct causal influences are transferred across 
arbitrarily large gaps of Space and Time. This is not the non-locality that 
coherent quantum states display, which implies statistical correlations 
across Space, nor is it restricted to very small times and distances. It in-
volves causation operating across billions of years and light years.  
 The problem posed by such non-locality may be illustrated by con-
sidering point particles travelling at near the speed of light. Suppose m 
and n are large positive integers with no common factor other than 1. 
And suppose that m2 units of length is about a light year. So if the unit is 
the Planck length, suppose m is of the order of magnitude 1024.  Consid-
er a particle with  trajectory represented by the set of quadruples {<k(m2 
+ n2), k(m2 – n2 ), 2kmn, 0>: k ∈ Ζ}, where Ζ is the set of integers, and 
the coordinates are for the observer's frame of reference. Although this 
satisfies the criterion that the trajectory seems macroscopically connect-
ed with respect to some frame, relative to the observer’s frame the parti-
cle only exists about once a year. Or, to take a more extreme case, a par-
ticle could have only existed twice since the Big Bang. Moreover these 
                                                                                                                                                    

these Möbius transformations is well known and sometimes discussed when 
considering how the night sky would look to an astronaut passing Earth at a 
high relative speed. By taking ff* and gg* large enough there is a spatial di-
rection ζ, such that the transformation sends all directions other than those 
close to the opposite of ζ, to some direction very close to ζ. The direction ζ, 
is specified by the ratio f*: g*, and so is easily seen to be arbitrarily close to 
any specified direction. In the case in which the direction is close to the op-
posite of ζ, we may of course rotate by 180° first. This establishes approxi-
mate spatial isotropy in the sense that given any direction we may, to as good 
an approximation as we please, map it to any other direction using a Lorentz 
transformation with integer values for its matrix.  
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would be particles of familiar kinds such as photons or neutrinos. I call 
this the Problem of Occasional Occurrence. This, together with the more 
general non-locality is a serious problem for Point Discretion.  
 One conclusion we might draw is that Point Discretion coheres 
poorly with the hypothesis that the aether is symmetric. We might, in-
stead, deny that there are point particles. But the problem is quite resili-
ent. For, as I now argue, it holds provided the aether approximates dis-
crete Minkowski. Space-time locally and it holds even if there are no 
point particles. 
 The discrete structure is at the Planck scale; the events of familiar 
subatomic particle interaction and so forth interacting take much longer, 
say N Planck times. Then to say that direct causation is non-local might 
be interpreted as saying the gap between cause and effect is of the same 
order of magnitude, N Planck times. One rationale for that interpretation 
would be that such a gap allows some later event to prevent the effect in 
question, an effect that has already been guaranteed by the cause. For 
example, a gamma ray might be about to generate an electron/positron 
pair when it is hit by some other electron – out of left field, as it were, 
knocking the gamma ray sideways. It is too late for the electron/positron 
pair not to come into existence – they have been directly caused – but 
the gamma ray is now in the wrong place.133 This problem is very like 
the problem faced by proposed examples of backwards causation. If the 
cause guarantees the effect but comes after the effect, something might 
prevent the cause even after the effect has occurred.  
 For this reason, or merely because it is intuitive, I say that there is 
problematic non-locality if the direct cause precedes the effect by a gap 
of at least the time the cause (or the effect) takes, namely N Planck 
times. I now argue as follows. Suppose the cause takes N Planck times 
and then, one Planck time later, the effect begins. Now consider the 
same kind of process but occurring in a frame that is moving at near the 
speed of light relative to ours. Then the gap of 1 unit can be stretched to 
N units, although the N units will then be stretched to N2 units. With a 
                                                 

133  By making the interfering particle travel fast enough it could intervene even 
if the gap is rather less than N Planck times, but for simplicity I ignore this 
and consider a gap of N Planck times.  
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gap of N units we have the problematic non-locality. The only way this 
argument can fail is if there is no region of Space-time of the required 
extent for which the Space-time is approximately Minkowskian. A 
Planck time is of the order of magnitude of 10-44 sec. We may take the 
quark scale to be of the order of 10-18 cm, so events at that scale should 
be of order of magnitude about 10-30 second, making N of the order of 
magnitude 1014. But even if N was as great as 1025, N2 Planck times is 
about 106 sec, which is less than a year and it is plausible that there are 
regions of about a light year across lasting a year in which the General 
Relativistic Space-time is a good approximation to Minkowski Space-
time. So a process occurring in a frame of reference moving with respect 
to ours with velocity very near that of the speed of light will leave a gap 
long enough for a process taking the same proper time but in our frame 
of reference to interfere in what is being proposed as direct causation.  
 Causal set theorists such as Sorkin recognise the non-locality and 
the consequent need to introduce a cut-off. What this amounts to is the 
denial that the discrete aether is fully Lorentz invariant because frames 
of reference with velocities close to the speed of light are prohibited. 
Note that this cut-off is more severe than the plausible exclusion of 
frames of reference with respect to which the Big Bang is less than a 
Planck time ago. For it also excludes the frames with respect to which 
the Big Bang is many orders of magnitude times 10 billion years ago. 
 This problem is quite general for Point Discretion, but it is even 
worse for Causal Set theory with a dynamics that counts immediate pre-
decessors, where we obtain infinite quantities. Maybe this special prob-
lem for Causal Set theory can be solved by requiring that no point has 
infinitely many predecessors, thus excluding as impossible the case of 
almost flat discrete aether that has always existed. In that case we may 
hope that a suitable formula for the action will provide us with the 
Hauptvermutung. Nonetheless the counter-intuitive non-locality re-
mains. So some more drastic solution is required. 
 I now ask why Granulated Aether is not itself beset by the non-
locality problem, and the answer is that it would be if it were strictly 
frame-invariant. For consider a granule represented by a pentatope of 
coordinate quadruples whose base is a spatial tetrahedron. The granule’s 
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shape is purely topological in that it can as faithfully be represented by 
any pentatope, whatever the shape. Hence with respect to the ‘wrong’ 
frame of reference its immediate predecessor would be years ago. The 
solution to the problem in this case is to note that the fictitious Space-
time in which the granules are located, and whose coordinates may be 
used to represent the aether, may be taken to be one in which no granule 
is located in pentatopes that depart too far from regularity. This fictitious 
Space-time is not Lorentz invariant and has imprecise simultaneity, im-
plying an imprecise cut-off to the velocities of frames of reference. That 
is, there might be many permitted frames of reference, namely those 
with respect to which the granules are not too far from regular penta-
topes. None of the frames are ones with respect to which some immedi-
ate predecessor of a granule is a long time ago.  
 A necessary and precise absolute simultaneity is considered prob-
lematic because it makes it mysterious why the laws of nature are such 
that in the idealised case of Special Relativity they are independent of 
the choice of frame of reference. Neo-Lorentzians such as Craig (2001) 
accept this mystery as the price they think they must pay for dynamic 
theories of Time. Assuming they are wrong (Forrest 2008 ) we must 
avoid this mystery. To do so it suffices that there is a range of permissi-
ble frames of reference. If we fix one of them, F0, then the range will be 
specified by a set S of Lorentz transformations as the set of frames 
mapped from F0 by some g ∈ S. Provided S generates all Lorentz trans-
formations (i.e. provided there is no proper subgroup of the Lorentz 
transformations containing S) any law of nature that has the same state-
ment in every permissible frame must have the same statement in every 
frame, as required for Special Relativity.  
 It should be noted that because the Lorentz group is not commuta-
tive there is no principled way of picking out the centre of the range of 
permissible frames of reference. If there were it could be argued that the 
central frame was in fact that of absolute simultaneity, re-introducing the 
problem that I claim to have solved.  
 This solution to the non-locality problem arises in a natural way in 
the case of Granulated Aether, but would be the result of an arbitrary 
cut-off to frames of reference in the case of Point Discretion. This dif-
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ference is the reason why I prefer Granulated Aether (and, in particular, 
Pseudo-set Granules) to the initially more attractive Point Discretion. I 
note that Causal Set theory may easily be re-interpreted as a theory of 
granulated aether. We just replace points by extended simples and take 
the immediate ‘causal’ priority of u over v, u p* v, as one of three ways 
in which u and v can share a hyperface. A happy consequence of this re-
interpretation of Causal Set Theory is that the number of immediate pre-
decessors may be taken to be finite, as required, for instance, in the Be-
nincasa-Dowker action. 
 Alternatively, we might resort to Dynamic Triangulation theory, 
which seeks to develop quantum gravity by using the ideas of classical 
statistical mechanics but applying them to the division of the aether into 
cells, which I take to be granules (Ambjørn, Carfora and Marzuoli, 
1997). As I understand it, Dynamical Triangulation was initially stated 
in terms of the length of edges, but it is hoped that a purely topological, 
that is, qualitative, theory, can be developed. (Ambjørn, Carfora and 
Marzuoli, 1997: 297-8). The resulting theory will be similar to Causal 
Set theory. 
  
8. From discrete aether to geometrodynamics 
Geometrodynamics is the ambitious project of using quantum gravity to 
provide a ‘theory of everything’. In the continuous case it would require 
that fundamental particles (quarks and leptons) be suitable knots or other 
topological features in the aether. In the discrete case these particles 
could be patterns analysable in terms of adjacency, including its special 
case of immediate causal priority. I would like discrete geometrodynam-
ics to be correct, and it would be a triumph for ontological simplicity, 
especially on the Pseudo-set Granules version.. But I judge it to be bold 
in the Popperian sense, and so unlikely prior to testing.134 Readers may 

                                                 

134  The noteworthy feature of a Popperian bold conjecture is that prior to testing 
it is judged improbable that the test will be in conformity with the conjecture. 
From that it follows both that the conjecture is improbable prior to testing 
and that if tested and not found wanted it will be significantly confirmed. I 
noted previously that bold conjectures have been confirmed more often than 
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disagree: in the words of an excellent metaphysician, ‘I would think the 
less of reality if it were not so’.135 So I do not rely on my judgement in 
this case. What I shall argue, though, is that discrete theories of the ae-
ther are committed to geometrodynamics. 
 To argue this, consider again the topic of quantum gravity. Some 
readers may resist the need to quantise gravity.136 But in that case we 
have no reason to believe in discrete aether since, prior to quantisation, 
General Relativity and its variants are all continuous theories. So the 
thesis that aether is discrete is committed to the quantum gravity project. 
Next suppose we undertake this project by treating gravity as somewhat 
like the other forces and so to be quantised in the same way, using 
Feynman’s sum over histories method or something similar. Initially that 
would seem to require the aether to be flat or to have some other sym-
metric shape. For the interpretation of General Relativity as showing that 
the aether is itself curved in an irregular way, seems to imply that gravity 
is quite different in origin from other forces. But the initial inference 
overlooks the possibility of treating all the forces as due to the curvature 
of the aether, as in the geometrodynamic program. There are, then, two 
currently feasible methods of treating gravity as like other forces: as-
similate gravity to them or them to gravity. It is hard to assign a proba-
bility to the third way, namely something quite novel – neither curvature 
nor forces – that explains both of them. Only if neither of the currently 
feasible methods succeeds we would seek the novel third way. Given 
that, as I shall argue, it is far from bold to treat gravity as much like an-
other force, I judge it fairly unlikely that some as yet un-thought-of third 
way will be required. 
                                                                                                                                                    

we would have expected a priori, and so we should be somewhat less reluc-
tant to affirm them.  

135  Said only half in jest by Keith Campbell in conversation.  

136  Suppose, for instance, we interpret quantum theory in terms of many worlds 
in each of which there are particles interacting with each other. Then General 
Relativity without any quantisation may be interpreted as showing that the 
worlds are curved by the particles and that between interactions the particles 
follow geodesics. The case for quantising gravity has, however, been ably 
made by Thomas Thiemann (2003: 6-7).  
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 We are left, then, with geometrodynamics on the one hand and 
gravity-as-a-force on the other. It remains to sketch gravity-as-a force, 
and to explain why it is unlikely given discrete theory. The sketch will 
enable me to comment on the differences between gravity and other 
forces and so reply to the objection that these differences are best under-
stood by taking Space-time to be contingently curved.  
 Gravity is not exactly like other forces. The first, but perhaps least 
important difference is the curious combination of (1) the way gravity is 
characterised by the general relativistic ‘metric’, but (2) there is still a 
metric in the case in which we ignore gravity and Space-time is Min-
kowskian. We might perhaps take this to show that the gravitational 
field is the deviation from the ‘metric’ of Minkowski Space-time. But 
that would be to introduce a necessary structure consisting of the light 
cones or some equivalent way of characterising Minkowski Space-time, 
even though it is redundant because there is a contingent gravitational 
field that replaces the Minkowski structure in all but the matter-free 
case.  
 Instead I submit that the matter-free case is not gravity-free, and 
that the so-called absence of gravity is just the case of an especially 
straightforward ‘metric’, that of Minkowski Space-time. Additional sup-
port for this simplification may be derived from the probable need to in-
troduce a cosmological constant, which also shows that the matter-free 
case is not free of all gravity-like features.. 
 It is initially probable, therefore, that the necessary structure of the 
aether does not include the light cones or, equivalently, the partial order-
ing of absolute priority. This coheres with the case, made in the previous 
chapter for decoupling the metric and order aspects of Space-time, be-
cause neither the aether nor Space-time is ordered by anything necessary 
but rather by the contingent gravitational field. In the next chapter I shall 
assume that affine aether has no necessary light cone structure, even if 
necessarily it has some light cone structure. The alternative, in which 
light cones are necessary presents no difficulties and, in the point-free 
case, is less complicated, which should occasion some doubts as to 
whether the cone-free approach is correct. It will also turn out that in the 
case in which the structure of the aether is not affine but that of de Sitter 
Space-time the cosmological constant implies a light cone structure.  
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 The most straightforward case, however, is that in which affine ge-
ometry holds of the aether. This is the geometry in which there are hy-
perplanes and an equivalence relation on hyperplanes of being either 
identical or non-identical but parallel, where parallel implies non-
identical. This equivalence relation is such that such the analog of that 
Euclid’s Fifth Postulate holds, namely parallel hyperplanes never inter-
sect. Affine geometry may be characterised axiomatically using the 
primitive relation of metathety, namely the three-place relation between 
points p, q, and r that holds just in case p, q, and r lie on some line with q 
between p and r. (Coppel 1998). A less fundamental description is as the 
geometry in which Space-time is represented by quadruples of real num-
bers in such a way that hyperplanes correspond to linear equations, but 
without any metric structure or specification of perpendiculars. So, for 
instance, although hyper-ellipsoids may be characterised there are no 
special hyper-ellipsoids designated as hyperspheres.  
 The second difference between gravity and other forces may be il-
lustrated by considering the way a field acts on a single particle – a spe-
cial case that generalises to many particles and to the way the field acts 
on itself. The dynamics is constrained by the action, which, taking 
Planck’s constant to be 2π, is ∫pq(dq), where: (1) the integral is over the 
path of the particle, and (2) pq is a real valued linear function on the vec-
tor space T of translations of Space-time (displacement vectors) 137. The 
linear real valued functions on T form a vector space, T*, the dual of T. 
The vector pq itself depends on the position q. and because we put 
Planck’s constant equal to 2π, may be identified with the energy-
momentum vector at q.138 The energy-momentum is a property of the 

                                                 

137  This generalises: (1) we usually consider either a field or matter that is 
spread out, in both cases the energy-momentum vector is replaced by a ten-
sor; and (2) in the curved case T is the tangent space at q. 

138  Strictly speaking, the energy-momentum should be thought of as belonging 
to an affine not a vector space. The difference is that a vector space is an af-
fine space with a distinguished member, the zero vector. In the case we are 
considering the choice of a zero vector introduces gauge invariance, which 
shows we should not treat pq as a member of a vector space. The gauge in-
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particle and so not defined for all locations but merely those on the path, 
and it will vary as the particle is affected by the field. 
 The field affects the motion of the particle by specifying how the 
energy-momentum varies along the path. Such a path-dependent correla-
tion is an affine connection in the differential geometers’ sense. For eve-
ry point q of Space-time and every vector u in T the connection specifies 
a way of correlating energy-momenta at q with energy-momenta at a 
point q + u, displaced by u from q, for a particle travelling in a straight 
line. So the connection that characterises a field is a mapping assigning 
to each position q and each vector u in T a mapping F that correlates the 
energy-momenta at q with those at q + u. The mapping F preserves the 
affine structure and therefore given an arbitrary choice of zero energy-
momentum at each point it may be analysed as the composite of two 
mappings, a translation and a linear transformation that leaves the zero 
vector fixed. We may then treat the translation as the non-gravitational 
aspect of the field and the linear transformation as the gravitational field 
itself. 139 
 In a unified field theory we should expect there to be a single field 
but it could still have these two components, so in that sense gravity 
would be distinct from the rest of the field.140  

                                                                                                                                                    
variance in question is shown by considering a smooth function r assigning a 
member of T* to every location and whose exterior derivative is zero. If we 
replace pq by pq + r(q ) that has no effect on the difference between action 
integrals joining two given points and hence no effect on the dynamics.   

139  I understand that Einstein rejected this way of unifying fields. (He was con-
sidering only the electromagnetic and gravitational field.) His rejection 
seems to have been because he tried to unify the fields by generalising Gen-
eral Relativity, relying on the curvature to specify the evolution of the uni-
fied field.  

140  In a unified theory theenergy- momentum space could be a larger space and 
perhaps not even affine. (The unified theory is even more unified if the 
symmetry group of the momentum space is a ‘simple’ group, that is, one 
without a normal subgroup.) In any case, we generalise from energy-
momentum vectors to energy-momentum tensors. Then the translation adds 
to the angular momentum in a way that is said to be gravity acting on the in-
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 There is one additional feature of the dynamics that might or might 
not be fundamental, but is worth mentioning, to counter readers’ worries 
that I have not interpreted General Relativity as they know it. Energy-
momentum space is not merely affine, it has, as far as we know, a neces-
sary Minkowski-space structure, with a constant µ, characteristic of the 
kind of particle, which is usually taken to be positive and to be the 
square of the rest mass. If the energy-momentum is represented by the 
quadruple <e, p1, p2, p3 > then µ = e2 - p12 - p22 - p32. Because the 
connection preserves not merely the affine structure of the momenta but 
µ is preserved, the connection assigns a member of the Poincare´ group 
(a combination of a translation and a Lorentz transformation) to each 
point q and vector u. 141 Strictly speaking it is a Minkowski connection, 
therefore. 
 This brings me to the apparent superiority of the curved Space-time 
interpretation of General Relativity, namely the way in which curvature 
enters into the equations. My response is that curvature does not need to 
be understood in terms of a ‘metric’, which is a natural way of thinking 
only if we are already thinking of a ‘metric’ in the flat case, as with 
Minkowski Space. Instead, therefore, I note that the idea of curvature 
arises whenever we have an affine connection, and a ‘metric’, if there is 
one, defines the curvature by defining an affine connection. The transla-
tion component of the connection does not affect the curvature, hence 
the link between curvature and gravity.142  
 I anticipate the objection that the connection makes the affine or 
other symmetric structure redundant and a differential manifold would 
do instead. My response is that the affine or other symmetric structure of 
the aether enables us to preserve Newton’s First Law, with friendly 

                                                                                                                                                    
trinsic angular momentum, the spin. This appears to be the motivation for 
modification of General Relativity by Élie Cartan (1922.) 

141  Because the standard case is one in which the underlying Space-time is 
curved it would be usual to describe the connection as an assignment of a 
member of the Lie algebra of the Poincaré group to q and a tangent vector.  

142  The translation component is called the torsion because of the application to 
defects in crystals.  
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amendments. When the gravitational influence of other matter is negli-
gible and when matter and the non-gravitational forces are also negligi-
ble the trajectory of a particle differs negligibly from a straight line (or 
analog).  
 Without in any way minimising the mathematical work required, I 
judge, therefore, that there is only one potential obstacle to a unification 
of forces on the assumption of a background symmetric Space-time, 
such as affine space. This is the notorious problem of the divergences. 
When we use the Feynman sum-over-histories method of quantising a 
system we find that all the processes we expect to occur have exactly 
similar duplicates in frames travelling with high velocities relative to us. 
Unfortunately the appropriate ‘probability’ measure on the set of frames 
of reference is the unique (up to a multiplicative constant) Lorentz invar-
iant one, and this is not a probability measure, with total value 1, but has 
infinite total value. This is, I claim, the ultimate source of the divergenc-
es, which may be avoided by means of range of permissible frames of 
reference, as used in the case of Granulated Aether. That amounts to 
both an ultraviolet cut-off (excluding frames moving fast towards us) 
and an infrared cut-off (excluding frames moving fast away). We need to 
avoid ad hoc choices of the range of privileged frames, but fortunately 
there is an obvious source of cut-offs, the postulate that the some fun-
damental fermions of non-zero rest mass have extended locations. For 
the sake of being definite, suppose an electron has some (non-
infinitesimal) positive diameter when it is in a rest frame. Then if it is 
travelling very close to the speed of light with respect to us its diameter 
at right angles to its velocity will too large to avoid other electrons that 
are travelling at low speeds. The postulate of extended electrons puts 
two constraints on the dynamics, the first is to put an upper limit on the 
number of them per unit volume and the second is to put an upper limit 
on their relative velocities. This supposes that no two electrons intersect, 
but that is plausible since they are fermions.  
 This way of avoiding the divergences is not ad hoc because there 
are two reasons why point particles are improbable. The first, which is 
so elementary it makes me blush, is that point particles moving in 
straight lines have an infinitesimal probability of collision, and so the 
attractive idea that particles interact by transferring energy-momentum 
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(and spin) on contact requires them to be extended. The second is that I 
am taking the aether to be the one fundamental substance and hence par-
ticles are just regions of aether with suitable properties. Combining this 
with the superiority of point-free Arntzenius Continuum over an aether 
composed of points I conclude that there are no point particles.  
 It only remains to show that symmetric Space-time is improbable 
given granulated aether. That follows from the way the aether is more 
fundamental than Space-time. It is not as if we start with some intuition 
that Space-time is flat and then cut it up into pentatopic domains that we 
declare correspond to the granules. Instead we start with what is funda-
mental, the granules and then ask why they should fit together in just 
such away that the Space-time they are located in is flat, or otherwise 
symmetric. If we have no answer to that question then we should sup-
pose it is improbable, and that the arrangement of granules is higgledy-
piggledy but such that a fictitious Space-time in which they are located 
is flat enough at anthropocentric scales (neither too small nor too large).  
 This completes my case for the disjunction: either granulated aether 
without symmetric Space-time but with geometrodynamics, or symmet-
ric Arntzenius Continuum, with gravity being treated much like the other 
forces. I shall conclude this chapter by considering some further argu-
ments for discrete aether. Regrettably none of them succeed. 
  
9. The case for discrete time  
Why does the aether persist? Perhaps the most intuitive answer is that 
every part of the aether endures forever, that is it lacks any division into 
temporal parts. But I have two reasons for rejecting that thesis. The first 
is that it implies an aether current, something that Michelson and Morley 
looked for, and which we might expect to find some empirical evidence 
for if it occurred, but we do not. The second is Lewis’  problem of tem-
porary intrinsics (1986: 202-5): the very same portion of the aether 
would have to have different intrinsic properties at different times, con-
trary to the Indiscernibility of Identicals.143  
                                                 

143  For a survey of solutions to the problem of temporary intrinsics see (Gallois 
2011). One is to say that persisting entities have time-dependent properties, 
another that they time-dependently instantiate properties. If either of these 
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 We require a different hypothesis to explain the universe’s persis-
tence. The most straightforward is that each stage is directly caused by 
some of the earlier stages (Hans Reichenbach's genidentity, 1957: 270-
271). Here I say that u directly causes w if that causal relation does not 
depend on u’s causing v that causes w, for some v.144 If persistence is 
due to direct causation, then causation, at least as it applies to the persis-
tence of the aether, is discrete, in the sense that indirect causation always 
depends on finite causal chains. To be sure, discrete causation does not 
entail a discrete theory of the aether, but I now argue that the combina-
tion of discrete causation with a continuous theory of the aether is awk-
ward.  
 Suppose the aether is temporally discrete but spatially continuous. 
Then there cannot be any continuous processes, because the structure 
would have to change suddenly at the end of a region. So I infer that if 
the aether is spatially continuous it is also temporally continuous. Com-
bining that with discrete causation requires that a layer of aether divisi-
ble into thinner layers be caused as a whole by an earlier layer similarly 
divisible, with divisions between the layers.  
 Might not we then have 1 unit thickness followed by ½ followed by 
¼ etc Zeno-style, resulting in an explanation of persistence for only 2 
units of time in all? To exclude this, we have to posit that layers of some 
fixed thickness, say the Planck time, directly cause later layers of fixed 
thickness. The objection to this is that unless Time is discrete  the uni-
form thickness of the layers is an ad hoc hypothesis to save discrete cau-
sation, whereas discrete causation is implied by a discrete theory of the 
aether. 

                                                                                                                                                    
holds then there must be a Time distinct from the aether that fills Space-time. 
Time thus distinguished from Space-time is considered below, when discrete 
Time is discussed. Another solution is the presentist insistence that only the 
present is real. I fail to see how the persistence of the aether or any other 
physical thing can be explained by presentists without invoking either an en-
during or timeless sustaining cause, something I also consider below. 

144 In case of direct causation there can be an intermediate cause v. What is ex-
cluded is that u’s causing w depends  on the intermediate causation.  
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 That was the argument and I now consider alternative explanations 
of persistence of the aether. Some would say, ‘It just does’. I am not im-
pressed. For there are answers to the question and so not to answer it is 
to multiply mysteries.  
 Do laws of nature provide an explanation of the persistence of the 
aether? I have not, and shall not, assume that causation is primitive, so 
direct causation might well be itself explained by laws of nature – con-
servation laws maybe. But to provide an alternative we require laws that 
explain why the aether persists even if not all causation depends on di-
rect causation, or perhaps even if there is no causation at all. First sup-
pose the law states that if the aether exists at time t it exists at some later 
time. In that case, we have the Zeno-style problem that the aether per-
sists for 1 second then ½ second then ¼ second etc and we have not ex-
plained how it persists for 2 seconds. Next suppose the law states if the 
aether exists at time t then it exists at time t + ε. Then rather than being 
an alternative to discrete causation it implies discrete causation. For if 
we consider the slice of aether that has existed for the last ε it directly 
causes the slice existing for the next ε. So it is not that easy to state how 
the law works. My suggestion is that it would have two parts. The first, a 
metric completion law, stating that if there is a sequence of time coordi-
nates, t1, t2, etc at which the aether exists and this sequence converges to 
a limit, t*, then the aether exists at t*. The other would be the law that if 
the aether exists at time t it exists at some later time. Together these laws 
imply that the aether exists forever. 
 I have two objections to these or to any other laws that imply the 
continued existence of the aether. The first is that they work too well; 
implying that necessarily if the aether ever exists then it exists forever. I 
incline towards the position that the aether always has and always will 
exist but this does not seem to be necessary. For if the universe were ex-
panding somewhat less rapidly it would collapse into a final crunch. My 
other objection is audience-specific and directed at those who assume 
General Relativity in a version that requires all laws to be covariant. It is 
that unless Time is discrete, the time coordinate may be re-scaled so that 
the infinite future becomes finite. So the law in question would not satis-
fy the general relativistic requirement of covariance. By contrast, the ex-
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planation of persistence in terms of discrete causation is covariant. If we 
re-scale Time we merely change the shape and size of the layers or cells 
of aether without affecting the causal description.  
 An alternative explanation that should be taken seriously is that 
there is an enduring entity, such as the God of classical theism, that sus-
tains the aether. So the aether is not caused by earlier stages. Or, the di-
vine persistence might be due to each divine stage directly causing the 
next, but this persisting God could then sustain the aether.  
 My challenge, then, is directed at those, whether theist or atheist, 
who reject the idea that the aether is sustained by God, to explain why it 
persists without relying upon discrete aether.  
 That was the challenge. I now take it up by distinguishing between 
the Space-time in which the aether is located and the temporal order. I 
do so in the context of the Growing Block theory, with the block in 
question being the aether. That is, I suppose the grammatical present is 
pre-tensed and if we want to restrict attention to what exists now we 
have to be explicit and use the word ‘now’ or something equivalent. So, 
as a Growing Block theorist I say that the aether that exists at some time 
in the past is a proper part of the aether that now exists. I shall also as-
sume that Space-time is symmetric, because that is what I believe holds 
unless the aether is discrete, and I am here considering the case from 
discrete Time to discrete aether, so I can argue by reductio ad absurdum, 
supposing the aether is not discrete. 
 On this Growing Block theory the truth is what is now true, which 
is not the same as what was true a while ago. A. For some a and b, ‘a is 
the aether’ is now true but ‘b is the aether’ was true and b is a proper 
part of a. Space-time does not change: truths about it are true at all 
times. So the aether grows into Space-time. (I explain in the next chapter 
how the whole of Space-time can be constructed from the aether that 
does not fill it.) Space-time has a partial ordering of its points with re-
spect to frame-independent priority. So it is not just a hyperspace, but on 
the Growing Block there is an additional temporal ordering of the past 
(and present) locations of the aether, with the locations of earlier ones 
being included in those of later ones. The passage of Time concerns the 
growth of the aether with respect to that temporal ordering. Rather than 
call this temporal ordering hyper-time  it would be more appropriate, alt-
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hough pedantic, to re-name Space-time as Space-hypotime. In any case 
we may distinguish the metric aspects of Time, which are thoroughly 
unified with those of Space, from the ordinal aspects.145 This temporal 
ordering I take to be a total not merely a partial ordering. This is not the 
place to defend the resulting theory of Time. Rather I have illustrated 
how we might distinguish the two aspects of Time. Given that we do, so 
we may then solve the problem of why the universe persists without in-
voking God as sustaining cause, by taking the temporal ordering to be 
discrete in the sense that for every x and y there are only finitely many z 
after x and before y. In that case the rate of passage of Time may be 
measured in seconds, not, note, seconds per second: with the rate being 
the thickness of the layer between two successive stages of the growth of 
the aether, which is analogous to tree rings. There is no reason to expect 
this growth either to be spatially or temporally uniform. 
 I conclude that unless the aether is sustained in existence by God or 
some other sustaining cause, Time is discrete, but by distinguishing 
Time from the hypotime  that is the fourth dimension of Space-time, I 
resist the conclusion that the aether is itself discrete. 
 Supertask arguments, even if otherwise acceptable, likewise show 
that it is the temporal ordering that is discrete, rather than directly show-
ing that the aether is. These arguments proceed by showing that if Time 
is continuous then there is an infinite sequence of events such that any 
finite number are jointly possible but the whole series is so counter-
intuitive that we might judge it impossible. Then we have a contradic-
tion, because if the whole series is impossible it must cease to be possi-
ble before it is completed and hence some finite number of the events 
are not jointly possible. There are many ingenious examples but the fol-
lowing variant on the Ross-Littlewood Paradox suffices (van Bendegem, 
1994). At time 0, some kind of particle, a magnetic monopole say, is 
unique. Then some events result first in the creation of two new mono-
poles and then the destruction of the old. (By ‘then’ we mean at a later 
time with respect to some arbitrarily chosen frame of reference.) A short 
                                                 

145  More generally the ordering is that some enduring and everlasting states of 
affairs come into existence before others. I am not claiming that all states of 
affairs are everlasting only the fundamental ones on which others depend.  
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time later three new magnetic monopoles are created and then the two 
already existing are destroyed. By chance this is repeated more and more 
often so that over a second interval there are more and more, but at the 
end of the process there are none, because every monopole that came 
into existence has ceased to exist. The whole process is of infinitesimal 
probability but seems nonetheless to be possible unless Time is discrete. 
My response is, ‘So what?’ Supertask  enthusiasts might, however, con-
sider it impossible and hence they have a reductio ad absurdum of the 
supposition that Time is continuous.  
 My conclusion, then, is that arguments for the discrete character of 
Time may well succeed, but if they do the advocate of continuous aether 
should take this as showing that Time is not the same as the fourth di-
mension of the Space-time in which continuous aether is located. To 
naturalists, the idea of Time distinct from Space-time might seem a met-
aphysical extravagance, but my guess is that the naturalists in question 
will not be impressed by the argument for discrete Time in the first 
place. 
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7. Symmetric Space-time 
  
I have argued that unless the aether is discrete we should adopt a revi-
sionary interpretation of General Relativity, according to which Space-
time is not lumpy and bumpy like a potato, but is affine or de Sitterish, 
or of some other nice symmetric shape. 
 Is the aether itself symmetric? From its symmetry it would follow 
that the it pervades the whole of Space-time. On the Arntzenius Contin-
uum hypothesis, they would differ only in that Space-time is made up of 
point locations,  constructed from regions in the way described in Chap-
ter Four. This would exclude both the Growing Block and Presentism, if 
these are interpreted as denying the reality of any future aether. For if 
there is no future aether then the aether is not invariant under those 
symmetries that map the past to the future.  
 There is another complication with the use of symmetries to char-
acterize the aether. Realists about universals have at their disposal a 
group-theoretic approach based on realism about symmetries, which are 
dyadic relations between regions of aether. Nominalists might, however, 
reject symmetries, in which case they are committed to an alternative 
way of characterizing symmetric Space-time, using axioms. This is fair-
ly straightforward for affine and Minkowski Space-time, but for other 
symmetric spaces such as de Sitter Space-time I do not know of axio-
matic treatments. 
 One final issue concerns the characterization of Space-time if the 
aether is point-free. The axiomatic approach requires quite a serious 
complication; the group-theoretic one generalizes straightforwardly.  
 I shall begin by considering the axiomatic approach. I then suppose 
the aether is point-based and consider the group-theoretic approach for 
flat Space-time, before generalizing it to the point-based curved case, 
and the point-free cases.  
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1. The axiomatic approach 
  
The point-based case 
There are intuitive axioms (Coppel 1998) that ensure a point-based con-
tinuous aether is representable as flat. The primitive relation used is that 
of metathety, namely the relation that holds between points p, q and r in 
that order if they lie on a straight line and q is between p and r.  
 The requirement for a mapping F from the points to the quadruples 
to be a (faithful) representation  is that:  

F is a 1 to 1 mapping and; if q is between p and r, then F(q) is a 
convex linear combination of F(p) and F(r), that is, for some real 
number x, 0 ≤ x ≤ 1, and F(q) = xF(p) +(1 – x)F(r).  

Coppel’s axioms are sufficient to ensure that the aether is representable 
as flat. Moreover, if the convex region in question is not the set of all 
quadruples of real numbers, then we may take Space-time point loca-
tions  to correspond to all the quadruples, exhibiting the aether as occu-
pying a convex portion of Space-time, which would be sufficient to ac-
commodate the Growing Block or Presentism. (Here I am supposing the 
presentist believes in a present layer of the aether of, say, a Planck time 
thickness.) 
 Being representable as flat is not the same as being flat, however. 
So this approach, although basically sound, must be modified to include 
hypervolume (or, more austerely, the comparative quantity relation) as 
primitive in addition to metathety. Moreover, even if the aether is flat the 
representation could be misleading, because of fine structure in the form 
of extra dimensions that do not contribute to the quantity. Compare ae-
ther of three spatial and one temporal dimension, with a merely possible 
aether in which only the temporal and two of the three spatial dimen-
sions contribute to the quantity. Ignoring Time for the sake of simplicity 
this would be a two dimensional aether except that it has an extra infini-
tesimal thickness in the third dimension. In both the actual and the mere-
ly possible cases, the axioms concerning metathety would be satisfied, 
and the number of dimensions characterized as three. But I consider that 
the difference between the two cases should be reflected in the axioms, 
and this can be done, in 3 dimensions, as follows. In the actual case, but 
not the other one, if we take any 4 points none of which  
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is part of every convex region containing the other 3, then any convex 
region containing all 4 of them must have positive quantity.  
 A more serious misrepresentation of the aether would occur if in 
fact it is curved but conformal to flat. Consider Einsteinian manifolds, 
that is, 4-dimensional manifolds with a general relativistic ‘metric’. Da-
vid Malament's result (1977) shows that their structure is specified by 
the light cones and the hypervolume, but it is not specified by the light 
cones alone. In particular, there can be an Einsteinian manifold E that is 
not flat and yet there is a 1 to 1 onto mapping H from E to a Minkowski 
Space-time, M, such that H and its inverse are smooth (infinitely differ-
entiable) and that H maps light cones to light cones and geodesics to ge-
odesics. The mapping H also preserves metathety, if we define it replac-
ing ‘straight line’ by ‘geodesic’. Hence E satisfies the axioms for a flat 
Space-time. To avoid treating E as flat we need to distinguish E from M 
using the hypervolume.  
 The easiest way of introducing the hypervolume to solve this prob-
lem is requiring it to be translation-invariant, which is an immediate 
consequence of the symmetry-theoretic approach. This is not so straight-
forward using axioms, however. We may characterize parallelepipeds 
and then consider one of them, u, divided into two of equal hypervol-
ume, v and w by a hyperplane parallel to one of u’s faces, and divided 
into another two of equal hypervolume, x and y by a hyperplane parallel 
to another of u’s faces. The requirement that the four parallelepipeds 
v∧x, v∧y, w∧x, and w∧y are always of equal hypervolume should, I 
think, ensure the translation invariance of hypervolume.(See Diagram 
Two for the two dimensional analog.)  
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Diagram Two 
 
 I conclude that the axiomatic characterization of affine, or, more 
generally, flat aether succeeds in the point-based case, but at the cost of 
some complexity. In Chapter Five I explained why if we treat gravity as 
just another field we can, in the case of a flat Space-time, choose be-
tween a Minkowski  structure or the, more general, affine structure.146 
Economy supports the latter, but I note that, as Alfred Robb (1914) 
showed, we can find axioms that characterize Minkowski Space-time.147 

                                                 

146  Bearing in mind that a flat Space-time is affine only if it extends infinitely in 
all dimensions. For ease of exposition I am here ignoring spatially finite flat 
Space-times.  

147  Robb was the pioneer. His treatment is not merely rather complicated but it 
characterises as Minkowskian, Space-times that are merely conformably 
equivalent to Minkowskian. This is the problem that I considered above 
when discussing affine aether. In addition Robb assumes there are points.  

  I recommend an axiomatic system that takes the part/whole relation, 
frame-independent temporal priority, and comparative quantity as basic. Us-
ing these, we may characterise a metathety relation between past light cones 
that corresponds in the point-based case to metathety of the vertices of the 
cones. Then we use the axioms for affine spaces stated in terms of the meta-
thety and hypervolume, mentioned above. Finally we require some constraint 
on the past light cones to ensure they have the right shape to be cones. This 
last step is quite easy, because we can characterise a two dimensional slice of 
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The point-free case 
Even if the aether itself is point-free, I take Space-time to be made of 
points (point locations). A region of Space-time w is said to be convex if 
whenever two points p and r belong to w any point q between p and r 
also belongs to w. This idea of convexity is, I suggest, a natural concept 
and in the point-free case we may take it as a primitive property that 
some regions of the aether have and others lack. We may use it to pro-
vide an axiomatic characterization of point-free affine aether, without 
any mention of the constructed points.  
 We may then say that an aether region u has flat boundary if both u 
and some complement of u are convex. In the case of greatest interest, 
Arntzenius Continuum, every region has a unique complement so we 
may say a region has flat boundary if both it and its complement are 
convex. I shall restrict attention to that case.  
 The unordered pair {u,v} consisting of two convex regions each the 
complement of the other is a surrogate for a hyperplane, so in this case I 
denote {u,v} as H(u, v). We expect both u and v to be representable by 
open sets of quadruples separated by a hyperplanar set of quadruples.  
 Given two distinct hyperplane-surrogates H(x,y) and H(u,v) it 
might happen that one of u, v, x or y has another of u, v, x or y as a 
proper part. In the Arntzenius Continuum case we expect this to occur 
only if the two representing hyperplanar sets fail to intersect. We may 
therefore use this to characterize the relation of being parallel, where I 
stipulate that being parallel is anti-reflexive. It will then be an axiom that 
the relation of being either identical or parallel is transitive. From its 
definition it is symmetric so it is an equivalence relation. An axiomatic 

                                                                                                                                                    
a cone in N dimensions using the converse of Pascal’s theorem for conic sec-
tions.  

  The first step can be broken down into two stages. First we may charac-
terise metathety for ‘points’ (i.e. vertices of cones) that are neither space-like 
nor time-like separated but lie on a light ray. For a past light cone and a fu-
ture light cone that touch but have no overlap of positive volume must define 
such a line. Then we use Pappus’ Theorem to characterise other cases of 
metathety.  
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characterization of n dimensional affine aether, for n ≥ 3, may then be 
obtained by: 

1. Requiring the equivalence classes of hyperplane-surrogates to sat-
isfy the axioms for the (dual of) a projective space of n - 1 dimen-
sions over the real numbers; and 

2. Putting constraints on the hypervolume similar to those for the 
point-based case. 

If we construct the points of Space-time using the ultrafilter  construc-
tion we will thus obtain an affine structure for the Space-time in which 
the regions are located. This requires, however, the aether to occupy all 
of Space-time, whereas in the point-based case it sufficed that the aether 
occupied only a convex region. (We need all Space-time to ensure that 
the relation that we treat as being parallel is a genuine equivalence rela-
tion.) So this is not compatible with the strict presentist or Growing 
Block theories that deny the existence of future fundamental things such 
as future portions of the aether. To get around this restriction we could 
consider the one-cornered regions that are meets of 4 suitably arranged 
regions with flat boundaries. Such regions act as surrogate points, and 
we may characterize when three of them are lined up in such a way that 
the corner of one of them is between the other two corners and on a 
straight line. But that is a messy way of characterizing affine aether. 
  
 
2. The group-theoretic characterisation of affine aether 
Inspired by Felix Klein’s Erlanger program, in which different geome-
tries are characterised algebraically by their structure-preserving map-
pings, I shall show how in some cases the geometry of the aether may be 
characterised using a group of symmetries. I begin with the most 
straightforward cases, those in which the aether is point based and per-
vades the whole of Space-time, with which it may be identified. In this 
case the symmetries are global. Later I shall consider local symmetries. 
 A symmetry g is here taken to be a universal. As mentioned in the 
Introduction this supposition requires quasi-realism about universals, 
namely either realism or a nominalist theory that can mimic realism. If I 
want to stress that a symmetry g is a relation I write it as Rg. Because g 
maps regions of aether in a one to one onto fashion, if Rguv and Rgwx, 
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then u = w if and only if v = x. As a symmetry, g preserves the funda-
mental properties of and relations between points. In the affine case I 
shall characterise the aether using four primitives: the part/whole rela-
tion of mereology, the comparative quantity relation, the property of 
convexity, and the idea of a symmetry itself. So I require that the sym-
metry preserve symmetries. This follows from the assumption that for 
any symmetry g, and any region x there are regions y and z such that 
Rgxy and Rgzx. In that case, given the convention that identity is a 
symmetry, the symmetries form a group. That is, any two symmetries 
have a composite that is also a symmetry, composition is associative and 
any symmetry g has an inverse, g-1, which when composed with g re-
sults in the identity map. The symmetry g then preserves symmetry in 
the sense that if h is any symmetry g-1°h°g is also a symmetry. The to-
pology is derived from convexity and hypervolume so the relation of 
separation is also preserved.148 
 The inclusion of the concept of symmetry among the primitives is 
required, I hold, if we are to use symmetry to describe the nature of the 
aether. This is a problem because symmetry supervenes upon the other 
primitives, and so it would seem more economic to take it to depend on-
tologically on the other primitives. This is a known problem for those 
who take both universals and particulars to be fundamental. For instance, 
the existence of the universal being spherical supervenes on the spheri-
cal objects but neither the objects nor the universal are thought of as less 
fundamental than the others. One sort of nominalist seeks to solve the 
problem by taking the universal to depend for its existence on the partic-
ulars and their resemblance. On the other hand, a bundle theorist solves 
the problem by treating the particulars as just bundles of universals. My 
own preferred solution is platonist – the universals are necessary beings 
and so supervene on the particulars only in a trivial sense that does not 
                                                 

148  We may characterise the (not necessarily open) regions with flat boundary as 
those convex regions with convex complement. Two convex regions u and v 
are separated if they are parts of disjoint regions with flat boundary w and x 
such that the meet of the complements, ¬w∧¬x is of positive hypervolume. 
Then two regions y and z are separated if every convex part of y is separated 
from every convex part of z.  
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threaten their being taken as primitives. In any case, whatever solution 
we adopt generally for universals applies to the case of symmetries. 
 Initially I shall assume that no two symmetries are actually co-
extensive: that is if g(u) = h(u) for every region u then g = h. If this holds 
then I say that the group of symmetries acts faithfully. In the next section 
I relax that requirement.  
 The group of symmetries G inherits a topological structure from the 
aether. Given any regions u and v, the set U(u, v) = {g ∈ G: g(u) « v} 
must be open, although it might well be Ø, and the open sets of symme-
tries are precisely the unions of some of the U(u, v). The theory of topo-
logical groups is well developed and, as noted in Chapter Five, under 
fairly weak constraints G has a unique structure as a Lie group, that is, a 
group with a natural differentiable manifold structure. Not only does this 
solve the problem of characterising differentiable structure, but it also 
enables us to use the classification of Lie groups to describe hypothetical 
geometric structures for the aether. 
 In the point-based case, affine aether may be characterised by re-
quiring the following: 

1. The group of all symmetries G has just one transitive commutative 
sub-group of symmetries, V, which we call the vectors. (To say 
that V is transitive is to say that given any two point parts u and v 
of the aether there is some h ∈V such that h(u) = v.)149  

2. V has no compact subgroup except the trivial one {Id}. 
3. V is connected and locally compact. 150  

We may then treat V as a real vector space, writing g°k as g + k, Id as 0, 

and the inverse g-1 of g as -g. Then the number of dimensions, M, is the 
                                                 

149  (1) implies that G acts faithfully. This is relevant, because it is conceivable 
that there be vectors and schwectors that are co-extensive. In that case the 
group of vectors could not be characterised as the only transitive faithful 
subgroup of all the symmetries.  

150  Conditions (2) and (3) imply that V is a connected Lie group. All commuta-
tive connected Lie groups of dimension M have the same Lie algebra (with 
[x,y] = 0 for all x and y.) The one dimensional subgroups must be either cir-
cles or lines. Circles are excluded by (2), so V must be a real vector space of 
M dimensions.  
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smallest cardinality of any subset X of V that generates V. That is, V is 
the smallest group containing {λg: λ is a real number and g ∈V}.  
 I require the convex regions to satisfy the following:  

If regions u and g(u) are both parts of a convex region w then 
so is h(u) where h = λg and 0 < λ < 1.  

I have taken convexity as primitive and required the symmetries to pre-
serve it. I could have chosen some other shape that must be preserved by 
translation, provided it is sufficiently restrictive to ensure that there is a 
unique transitive commutative group of symmetries. If we took as fun-
damental the light cone structure or the associated ordering with respect 
to absolute, that is, frame-independent, priority, then it would suffice 
that there is a commutative group that acts faithfully, preserves cones 
and is transitive on cones, in the sense that given any two past light 
cones u and v some member of the group maps u to v. To ensure that the 
regions labelled cones are the correct shape, it suffices that the group of 
all the symmetries leaving any given cone fixed is isomorphic to the 
group of those Lorentz transformations that do not reverse temporal ori-
entation. This group may be characterised intrinsically.151  
 The requirement of a unique transitive commutative subgroup was 
relaxed in the analogous characterisation of a topological manifold, dis-
cussed previously, in which case the symmetries need only preserve the 
topological structure. The group of symmetries is then rather large but 
the requirement of being a patch for a topological manifold is that it con-
tains some commutative subgroup acting transitively – it will in fact con-
tain infinitely many.  
  
 
3. Generalising to the non-affine case 
 In the point-based case we can generalise the symmetry-theoretic 
account rather easily. For the property of convexity does not require af-

                                                 

151   It is generated by a connected group G and a symmetry j, not in G, that is its 
own inverse, i.e. j2 = Id. G must be isomorphic to the connected component 
of the Lorentz group SO+(1,3). This in turn is the unique 6 dimensional sim-
ple, connected, Lie group. 
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fine structure.152 We are to suppose G is the group of all symmetries and 
that G acts transitively on the aether. But we no longer need them to act 
faithfully. Then consider any point part o. We define an equivalence re-
lation on G by saying that g and h are equivalent if they map o to the 
same point. Then the points are in one to one correspondence with the 
equivalence classes, the set of which is called the quotient space 
G/Stabo. If two symmetries act in the same way they must be equivalent. 
The correspondence correlates any point part v of the aether with the 
equivalence class of those g sending o to v. The point o plays the role of 
the origin in the correlation of an affine Space-time with a vector space. 
To be sure, a different choice of the origin, o´, would result in different 
equivalence classes, for in the non-commutative case we can have g(o) = 
h(o) but g(o´) ≠ h(o´). Nonetheless this procedure can be used to de-
scribe symmetric structure for the aether in terms of a group of symme-
tries G and any subgroup H, which may be taken to be Stabo, for the 
origin o.153  
 Two examples illustrate this. The first is that in which the aether is 
circular in the three spatial dimensions, but still flat, in that it is locally 
indistinguishable from affine Space-time. In that case the group is com-
mutative and I shall replace multiplicative by additive notation as is 
conventional. Consider then the commutative group V of symmetries 
that we recognise as the 4 dimensional vector space. And fix some point 
as the origin o. Then if we represent V as the set of all coordinate quad-
ruples, we may take Stabo to be H, the set of all integer quadruples. H 
                                                 

152  Each member of the Lie group, other than Id, generates either a line or a cir-
cle. In the line case we require the same condition on convexity as for the af-
fine case. In the circle case we require that if u and g(u) are parts of a convex 
region w, then so is h(u) for any h on the lesser of the two arcs connecting Id 
with g. By the lesser arc I mean the one that is mapped into the other arc by 
inversion. In the special case in which both the arcs are lesser by this defini-
tion the definition of convexity requires that both be taken as the lesser arc.  

153  We define the equivalence relation by saying that g and g´ are equivalent if 
for some h ∈ H g = g´°h. Then we take the points of the symmetric space to 
be represented by the equivalence classes. H is itself an equivalence class 
and represents the origin. 
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may be characterised up to group isomorphism as the torsion-free com-
mutative group with three generators but not two.154 The torsion-
freedom is in fact redundant because H may be taken as any subgroup of 
V that has three generators but not two.  
 We would get the same result if we characterised a group of sym-
metries acting faithfully and with no fixed points (except for the identity 
symmetry which leaves every point fixed.)155 I prefer, however, to con-
sider the whole of V as the group of symmetries on the grounds that the 
very same universal, a vector with a given length and direction, relates 
pairs of points in the affine case and the case in which some of the di-
mensions are curved up in a circle.  
 Another example is de Sitter Space-time. (I shall ignore the case of 
anti de Sitter Space-time: interested readers will be able to adapt what I 
say.) It is the result of replacing affine Space-time by a hyperspherical 
Space of radius that increases with Time. It may be represented by the 
set of  quintuples {<v, w, x, y, z>: w2 + x2 + y2 + z2 = v2 +α2}, where 
α is a constant.156 We may take the group of symmetries G, in this case 
acting faithfully on de Sitter Space-time, to be SO(1, 4), that is those 5 
by 5 matrices that act on the quintuples <v, w, x, y, z> preserving the 
quadratic expression v2 - (w2 + x2 + y2 + z2) and which preserve orien-
tation. If u is a point represented by <v, w, x, y, z>, then Stabu is repre-
sented by those members of G that leave fixed <v, w, x, y, z>. This is 
isomorphic to SO(1, 3) the group of 4 by 4 matrices that preserve the 
quadratic expression v2 - (x2 + y2 + z2) and that preserve orientation. 

                                                 

154  By torsion-free we mean that for any positive integer n if nx = 0 then x = 0. 
To say H has k generators is to say that there are k members not included in 
any proper subgroup of H.  

155  The unique connected commutative Lie group of dimension 4 whose maxi-
mal compact subgroups are of dimension 3. 

156  The de Sitter cosmology has the cosmological constant Λ = 3/α2. The expan-
sion is exponential if time is measured as the proper time of a galactic clus-
ter.  
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Because there is an independent way of describing SO(1, 4) and SO(1,3) 
then we have the required characterisation of de Sitter Space-time.157  
 If we compare the group of all symmetries for Sitter Space-time 
and for affine Space-time we see that the stabiliser of a given point in de 
Sitter Space-time is a smaller group than that for an affine Space-time of 
the same number of dimensions. So we may say that affine Space-time is 
more symmetric because it has an unrestricted spatio-temporal isotropy. 
In the de Sitter case the stabiliser is a Lorentz group and so isotropy is 
restricted in that we distinguish space-like, null, and time-like separa-
tions. As a consequence, matter-free de Sitter Space-time has a unique 
light cone structure, whereas affine Space-time has infinitely many. 
 Affine aether is initially somewhat more probable. First, absent 
other considerations it was preferable not to privilege the matter-free 
case as gravity free. (See the previous Chapter.) And second, I say, not 
merely is isotropy a priori probable, but the greater the isotropy the 
greater the probability. However, current cosmology supports de Sitter 
aether. This is because of the posited inflationary expansion soon after 
the Big Bang (Schmidt 1993). Such expansion is a consequence of de 
Sitter Space-time, in which case the subsequent deceleration of the ex-
pansion is explained as the result of matter. On the other hand if we sup-
pose an affine aether we require something mysterious such as dark en-
ergy to explain the inflationary expansion.  

                                                 

157  SO(1, 4) has a connected normal subgroup SO+(1, 4), such that the quotient 
is the group with just two members. SO+(1, 4) is one of only three Lie 
groups of 10 dimensions that is connected and ‘simple’ in the group theoretic 
sense of having no normal subgroup. A normal subgroup N of a group G is 
defined as one such that for all g ∈ G and h ∈ N, g-1°h°g ∈ N. 

  These three groups, SO+(0, 5), SO+(1, 4), and SO+(2, 3) differ in the 
size of their maximal compact subgroup, being of 10 dimensions for SO+(0, 
5), which is itself compact, 6 for SO+(1, 4) but only 4 for SO+(2, 3). Once 
we have picked out SO+(1, 4) as the unique Lie group of 10 dimensions that 
is connected, simple and has a compact subgroup of 6 dimensions but no 
more than 6, we may note that stabiliser of any point u is another 6 dimen-
sional group whose maximal connected subgroup is the unique simple Lie 
group of 6 dimensions. 
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 As a consequence, the case for the symmetry-theoretic continuous 
aether over granulated aether is, I regret to say, weakened a little by 
Bayes’ Rule in probability theory, because I ‘predicted’ affine aether but 
‘discovered’ de Sitter aether.  
 There is another, happier, consequence. Because the light cone 
structure is specified in de Sitter aether, we might as well use light cones 
rather than convexity as the structure that is to be preserved by the sym-
metries and this will turn out to save the point-free de Sitter case from an 
objection to be discussed below.  

  
4. Spatio-temporally restricted aether 
Those of us who hold a dynamic theory of Time should deny the reality 
of any future aether. Nonetheless, as I shall argue, we can believe in fu-
ture Space-time. Maybe some of those who hold that the universe came 
into existence a finite time ago might likewise hold that Space-time pre-
dated the aether. Perhaps some presentists hold that the aether is nothing 
but a thin layer, a Planck time thick, say. They too might believe in 
Space-time that has an infinite past and future. 
 In all these cases we may use the group-theoretic approach to con-
struct Space-time from a partially symmetric aether if three conditions 
hold. The first is that the aether is connected. The second is that it is the 
sum of open convex regions. (This excludes the case in which the physi-
cal universe is made up of point-particles, spatially one dimensional 
strings,  or indeed branes of spatial dimension less than that of Space it-
self.)  
 The third condition is that of determinate spatial extent. Its most 
straightforward version is that in which the aether is infinite in all spatial 
dimensions. The less straightforward case is that in which there is an up-
per bound to how far the objects are away but that is because Space is 
toroidal so as we go farther away on a certain direction we eventually 
come back to where we start.158 The condition is that all such questions 
should be settled. So it excludes the case of a finite universe that could 
equally well be described as occupying part of an infinite Space or a fi-
                                                 

158  There are other, less plausible, cases, namely those in which Space is finite in 
some directions, but infinite in others, like the surface of a cylinder. 
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nite, toroidal Space. It does not, however, exclude the presentist hypoth-
esis that the aether is a slice of finite temporal thickness because I hold 
that circular Time is impossible.  
 We could try using the theory of partially symmetric stuff to pro-
vide an alternative to an aether pervading the whole universes. For sup-
pose there are extended particles composed of some sort of stuff, which I 
shall call prime matter. Then we hypothesise that the prime matter occu-
pies an open part of Space-time. And suppose the particles undergo fis-
sion and fusion. Then the prime matter constituting two particles that 
fuse makes up a connected open region. Likewise for two particles ar-
rived at by fission. Given enough fission and fusion it is plausible that 
the sum of the prime matter would be spatio-temporally connected. And 
we may assume it is the sum of open convex regions. So in this case 
Space-time may be constructed out of the prime matter rather than an 
all-pervading aether. The same would hold if there was not fission and 
fusion but particles that collided with distortion so that they came into 
contact along surface rather than just at a point or just along an edge.159 
My reason for rejecting this way of avoiding the all-pervading aether is 
that the aether's existence is non-contingent and hence no doubt is cast 
upon it by a thoroughly contingent arrangement of particles.  
 A group of partial symmetries may be defined by relaxing some of 
the conditions required for a group of symmetries, considered as dyadic 
relations. The relations still correspond to one to one functions, that is, 
they are relations Rg such that (1) if Rgxy and Rgxz then y = z, and (2) 
If Rgwy and Rgxy then w = x. But we no longer require that for every 
point x there is some y such that Rgxy. The identity relation Id relates 
every region to itself and we still require that for any g in the group there 
is an inverse g-1 its converse. (So if S is the inverse of R, Sxy if and on-
ly if Ryx.)  

                                                 

159  As far as I can see, contact in just one or two dimensions would permit con-
vexity-preserving symmetries that rotate one particle relative to another, 
which by enlarging the group of (partial) symmetries would interfere with 
the symmetry-theoretic characterisation. 
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 I note that the composition of members of the group no longer cor-
responds to the product of relations. For if Rgxy and Rhyz then, to be 
sure, Rg°hxz, but the converse need not hold. I shall also assume that the 

group acts with local fidelity. That is if for some open region u g(x) and 
h(x) are ‘defined’ and identical for every part of u, then g = h.160 Be-
cause the aether is open and connected this shows that the symmetries 
are maximal in that there are no two symmetries g and h such that h is 
the restriction of g to some proper sub-domain. That is, we cannot have 
g ≠ h such that Rgxy only if Rhxy.  
 A group G of partial symmetries can be used to construct Space-
time as follows. Given any point parts u and x we can consider those 
partial symmetries g such that g(u) = x, including the special case in 
which u = x and g = Id. In the previous section I considered the case of 
an all-pervading point-based aether. In that case we can, if we wish, 
identify Space-time with the aether. But I now consider how we may use 
the group of partial symmetries to construct the Space-time locations in 
such a way that every region of the aether has for its locations every 
member of the corresponding set of properties.  
 Given any point parts u and x we can consider those partial symme-
tries g such that g(u) = x. If g is such a partial symmetry, x has the rela-
tional property Lg;u of having a part standing in the converse of Rg to u. 
If there is no point-part of the aether x such that this holds then the rela-
tional property is uninstantiated. I shall permit this but I still require u to 
exist for there to be a genuine property Lg;u. We may define an equiva-
lence relation on the set LG of those Lg;u  for which g is in G and u is a 
point-part of the aether by: Lg;u ∼ Lk;v just in case h°g(u) = h°k(v) for 
some partial symmetry h. And we may take a location to be the conjunc-
tion of all the members of LG in a given equivalence class. So every 
point-part of the aether instantiates a location and Space-time is com-
posed of all the locations, instantiated or otherwise.  
 This way of constructing Space-time using uninstantiated proper-
ties requires that the aether characterises uniquely the group of partial 

                                                 

160  To say that g(x) is defined is to say that, for some y, Rgxy.  
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symmetries G. The theory of Lie groups shows that the way the group 
acts on any open region v already significantly constrains the group. 
Taken together with the conditions stated above, this show there is a 
unique connected Lie group that acts as partial symmetries on the aether. 
For example, in the affine case the fact that G has a subgroup H acting 
on v in a transitive commutative fashion shows that H is commutative. 
The existence of parts of the aether arbitrarily far away in each spatial 
direction together with the assumption that Time is non-circular  shows 
that H is isomorphic to the a four dimensional vector space. Every mem-
ber of LG is equivalent to some member of LH, so the set of locations 
have the required affine structure. 

  
5.  Symmetric point-free aether. 
To provide a symmetry-theoretic account of point-free aether, such as 
the favoured hypothesis of Arntzenius Continuum, I adopt the following 
procedure: (1) Modify the point-based characterisation so that it no 
longer mentions points; and (2) show how a point-based Space-time may 
be constructed from the point-free aether. First I begin with a general 
method that relies on the aether having a light cone structure, or equiva-
lently a suitable partial ordering of absolute (frame-independent) priori-
ty, that specifies gravity in the matter-free case. In the last chapter I 
submitted that it was preferable not to posit such a light cone structure, 
and in general it was fairly easy to avoid this, using convexity instead. 
However, de Sitter and anti de Sitter Space-time come equipped with 
light cones. So this method is appropriate for those structures. Currently 
it seems quite likely that mass-free Space-time is a de Sitter Space-time, 
but the a priori preferable case of affine aether should not be ignored. 
Therefore I also need to discuss an alternative characterisation for the 
flat case, including affine aether. 
 Because cones are pointy and because there is only one past light 
cone through each point, we may use the past light cones as surrogates 
for points. My reason for preferring past light cones over future ones is 
that if there is past aether but no future aether I would like the (con-
structed) locations of the most recent light cones to include the present. I 
could just as easily have considered double cones.  
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 The symmetries must preserve the mereological structure, the light 
cones, and hypervolume, as well as preserving the symmetries them-
selves. The action of a group of symmetries is faithful if no two symme-
tries act on regions in the same way and transitive  if for any two future 
light cones, u and v there is some symmetry g such that g(u) = v. So the 
first part of the procedure is easy.  
 The construction of Space-time is just as straightforward. The Ale-
xandrov intervals are defined as the non-empty intersections of past and 
future light cones. If w is any past light cone, I say an Alexandrov inter-
val x fits w if there is no Alexandrov interval y that is also part of w such 
that y is disjoint from some past light cone v that x is also part of. Then 
given any past light cone v and symmetry g we may consider the proper-
ty Mg;v of intersecting every Alexandrov interval that fits g(v). Let MG 
be the set of all such Mg;v and define an equivalence relation on MG by 
Mg;u ∼ Mk;v if h°g(u) = h°k(v) for some symmetry h. The conjunction 
of members of an equivalence class (instantiated or otherwise) is then a 
point location.  Every part of the aether may be represented as the set of 
all locations belonging to it.  
 This way of characterising the shape of the aether, and of construct-
ing points, requires that there be enough symmetries mapping past cones 
to past cones, and so is not available if there is a thin present layer of ae-
ther – or, on the, already rejected, hypothesis of extended particles made 
of prime matter. We can, however, modify the hypothesis by requiring 
not that past light cones be preserved but that Alexandrov intervals (and 
of course hypervolume) be. This will give us enough partial symmetries 
and we may then characterise transitivity by saying that given any two 
Alexandrov intervals of the same hypervolume some partial symmetry 
maps one to the other.  
 The cone-free, point-free affine case has one annoying complica-
tion, namely the difficulty of characterising a suitable analog for transi-
tivity. The problem is that in the point-free case we require that for any 
regions u and v of the same shape and with the same size and situated in 
a parallel way, some translation (vector) maps u to v. A structure of light 
cones (and hence of Alexandrov intervals) provided us with a suitable 
conception of being the same shape, and all future light cones are point-
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ing in the same direction, but things are more complicated if convex re-
gions are used in place of light cones. We can characterise a half as a 
convex region whose complement is convex. In the Arntzenius Continu-
um case all halves are the same shape but they are not all arranged in a 
parallel way. Hence we require rotations as well as translations to map 
any half to any half. We can characterise transitivity by requiring that 
given any halves u and v, if u and v have parallel boundaries, and so 
‘point’ in the same direction, some symmetry maps u to v. If the aether 
extends infinitely in all directions, including the future, this parallel 
boundary condition may itself be analysed as one half being part of the 
other.  
 A problem arises, however, for those who hold that there is no fu-
ture aether. For then two hyperplanes in Space-time that intersect in the 
future will turn out to bound halves of the aether one of which is part of 
the other. Initially, therefore, we might infer that the combination of be-
lief in affine Space-time and no future aether excludes Arntzenius Con-
tinuum. Instead of drawing this conclusion we could adapt the character-
isation of topological manifold in the point-free case, described in Chap-
ter Four. But it gets messy. It is neater to treat being parallel as primi-
tive, but that is uneconomic.  
 The point locations  may be constructed using ultrafilters.161 In the 
case in which the aether does not occupy the whole of Space-time, con-
                                                 

161  We might also construct Space-time by noting that each point p of Space-
time sets up a way of assigning subsets of the group V of vectors to regions, 
namely the vectors that map p to points in the region. In the case of all-
pervading aether, we may use this to characterise a point as a map ψ from 
non-empty convex open sets of vectors to convex open regions such that: 
1. If U is any non-empty set of non-empty open convex sets of vectors 

whose union u is convex, then ψ(u) is the least upper bound of {ψ(x): 
x ∈ U}. 

2. ψ(X∩Y) = ψ(X)∧ψ(Y) if X∩Y ≠ Ø; ψ(X) and ψ(Y) are disjoint if 
X∩Y = Ø 

3. If v is any vector, ψ({v + x: x ∈X}) = v(ψ(X)).  
 A mapping ψ may then be said to be a location of a region u if every open 

convex set of vectors that contains the identity (zero) vector is mapped by ψ 
into some region that overlaps u. This construction is, however, more com-
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sider the property Ng;v that a region of aether has/would have if inter-
sects/would intersect g(v). Let NG be the set of all such Ng;v and define 
a transitive anti-symmetric relation on NG by Ng;u « Nk;v if h°g(u) is an 
interior part of h°k(v) for some h. Then a point location  is the conjunc-
tion of all the properties in NG that belong to a given ultrafilter with re-
spect to «. This is a large conjunction of fairly straightforward relational 
properties, which I judge to be a satisfactory structure for a non-
fundamental property to have.  
  
6. Extending symmetry to many ‘worlds’ 
In the Introduction, I noted that we might hold that there are many 
worlds but that I would concentrate on just one of them. That is justified 
provided we are considering many spatio-temporally disconnected 
worlds, as in Lewis’ theory. In that case it is strictly speaking false to 
say that the aether has, for instance, affine structure. But the required 
modification of hypotheses is obvious – each connected component has, 
in this case, affine structure.  
 Instead, we might well hold that that actual Universe is composed 
of many spatio-temporally connected universes. Either they are now 
connected (with respect to any frames of reference) or, if no longer con-
nected, they form a branching structure, where in a branching Universe, 
given any two regions u and v there is some region that absolutely prior  
to them both (McCall 1994). If we hold some such ‘many worlds’ theo-
ry, perhaps as an interpretation of quantum theory, then we should ex-
amine the implications for the investigation of the structure of the aether.  
 The branching Universe is the sum of overlapping universes. Given 
any two such universes x and y their meet x∧y is a like an non-branching 
universe up to some Space-like hypersurface. If the branching is ordered 
by the integers then this may be taken as the discrete Time  mentioned in 
Chapter Six, which I argued was compatible with a continuous aether. If 
we are realists about both the future and the past aether then each of the 
universes may be characterised using symmetry. They might, for in-

                                                                                                                                                    
plicated than resort to ultrafilters when interpreted in terms of an ontology of 
properties and relations.  
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stance, all have affine structure or all have de Sitter Space-time struc-
ture. The only implication seems to be that a branching Universe sup-
ports the distinction of Time from Space-time and so offers a reply to the 
objection, that some might find initially persuasive, that this distinction 
is an ad hoc way of saving continuous theories from arguments for dis-
crete Time. 
 If the many universes are always connected, then they may be in-
terpreted as being located in 4 dimensional fibres that an N + 1 dimen-
sional Space-time is divided into, where N, the number of spatial dimen-
sions, is greater than 3. (I use the term ‘fibres’ even though they have 3 
spatial dimensions because this is standard mathematical terminology 
and the higher dimensional Space-time would be said to have a fibra-
tion. See Rowland, 2009 )  We, the observers, may then be thought of as 
having more than 3 spatial dimensions, with the apparent indeterminacy 
of the physical universe being due to the very slight differences between 
the states of the fibres we overlap. Given the case for Arntzenius Con-
tinuum the 4 dimensional universes are themselves constructs, like 
points because every region is of more than 4 dimensions. But that’s fi-
ne.  
 The N + 1 dimensional aether could have the structure of a higher 
dimensional Minkowski Space-time even though the fibres are de Sitter 
Space-times. For simplicity consider N = 4. Then for any k > 0, the 
hypersurface {<v, w, x, y, z>: w2 + x2 + y2 + z2 - v2 = k} represents a 
de Sitter Space-time. By varying the k we can stack the hypersurfaces up 
neatly to obtain a fibration of the region of a 5 dimensional Minkowski  
aether represented by {<v, w, x, y, z>: w2 + x2 + y2 + z2 - v2 > 0}.  
 The higher dimensional Minkowskian aether may easily be charac-
terised using symmetries, using the pointy nature of the light cones. But 
there is a further implication: I do not know how to characterise de Sitter 
aether axiomatically, but the Minkowskian case is amenable to an axio-
matic treatment.162 This overcomes an obstacle in the way of those nom-
                                                 

162  The difficulty with an axiomatic characterisation of de Sitter spaces is that 
spatially they are like spherical geometry but temporally they are like a hy-
perbolic geometry. So nominalist might need to distinguish Space from Time 
to overcome this difficulty. 
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inalists who would otherwise accept symmetric Arntzenius Continuum, 
but who reject the group-theoretic characterisation of symmetric aether, 
and who take de Sitter Space-time to be more probable than Minkowski 
Space-timefor the non-quantum 4 dimensional case.   
  If some or all of the ‘worlds’ are of infinite extent, either spatially 
or temporally, then we might require an infinite dimensional Minkow-
skian Space-time to contain them all. 
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Conclusions  
 
There is variety of structures that the aether might, for all we know, have 
is quite bewildering. Using a combination of a priori reasoning and con-
temporary physics I have, however, reached the following conclusions 
about its likely structure. 

1. Either the aether is granulated, and so point-free, or it is continu-
ous and, in that case, probably also point-free.  

2. Even if the aether has point parts, we should reject the thesis that 
all regions (i.e. parts of aether) are grounded in points by summa-
tion. We should also reject the Orthodoxy that the regions are in 
one to one correspondence with the sets of points and even the 
weaker position that the regions are in one to one correspondence 
with measurable sets of points.  

3. The above orthodoxies could, to be sure, be defended by rejecting 
the Axiom of Choice but even so the resulting hypotheses are not 
especially attractive.  

4. If the aether is point-free and continuous its most likely structure 
is that of Arntzenius Continuum 

5. If the aether is granulated, its most likely structure is that of 
Pseudo-set Granulation. 

6. Both Arntzenius Continuum and Pseudo-set Granulation have 
some counter-intuitive features, but there is no intuitively perfect 
hypothesis about the nature of the aether. 

7. The aether may be identified with Space-time as traditionally un-
derstood if: realism about past and future is correct, if the aether 
is continuous; and if every region is the sum of points. In all other 
cases Space-time is either a fiction or a construct. In the case of 
discrete aether, it is a fiction. In the continuous case, Space-time 
is a construct – more precisely spatio-temporal locations are gen-
uine properties analysable in terms of the aether.  

8. Probably, the aether is symmetric if and only if it is continuous, 
in which case it has the structure of affine, de Sitter Space-time or 
anti de Sitter Space-time. On a many worlds interpretation of 
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quantum theory  we may, however, take the aether to have a 
higher dimensional Minkowski Space-time structure.  

9. If the aether is continuous we should reject the interpretation of 
General Relativity according to which the geometric structure of 
Space-time is contingent and determines gravity. Gravity is not, 
on this interpretation, a force. This rejection is based upon the se-
rious difficulty of characterising a differentiable manifold without 
hypothesising further non-contingent structure.  

10. Contemporary physics undermines an objection to the discrete 
aether based on scale invariance, but does not offer much positive 
support for discrete aether. For what it is worth, the current state 
of physics still suggests that the aether is continuous, and so 
symmetric. If instead we rely only upon well-established physics 
and a priori reasoning the choice between discrete and continuous 
aether depends on how we weigh up simplicity, which favours 
discretion against symmetry, which favours continuity 

11. The hypothesis of a continuous symmetric aether might be prob-
lematic if its shape is not flat but instead (part of) de Sitter or anti 
de Sitter Space-time. For these shapes can be characterised in a 
straightforward way using a group of symmetries but I do not 
know how they can be characterised axiomatically. So those (ex-
treme) nominalists who reject quasi-realism about universals 
have a problem. They might like to invoke a higher dimensional 
Minkowski structure for the aether in which de Sitter or anti de 
Sitter Space-times are embedded, as in the many worlds interpre-
tation of quantum theory. 

12. Conversely, if the aether is flat but without an infinitely extended 
past or future there are difficulties with point-free continuous ae-
ther hypotheses such as Arntzenius Continuum. In that case we 
might prefer Borel Continuum.  
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Glossary 
 
≈. x ≈ y if x and y are approximately equal. 

¬. u = ¬v if u is the complement (q.v.) of v. 

u « v. u is an interior part (q.v.) of v. 

Absolute priority. Region u is absolutely prior to region v if with respect 
to every frame of reference every part of u is earlier than every part 
of v. 

Adjacency. Two regions are adjacent if they are not separated (q.v.) 

Œ. The set of coordinate quadruples representing œ. 

œ. A region of aether to which attention is restricted. 

Affine aether. The aether is said to be affine if it is both flat and infinite 
in all directions.  

Affine connection. An affine connection specifies a way of correlating 
energy-momenta at q with energy-momenta at a point q´, displaced 
from q by a small amount. It must preserve the affine structure for 
the space of energy-momenta. It must also preserve the Minkowski 
structure of this space, and so is, strictly speaking, a Minkowski 
connection.  

Aleph Null hypothesis. The hypothesis that œ (q.v.) is the sum of a 
countable infinity of points. 

Alexandrov interval. A non-empty meet of a past and a future light 
cone.(q.v.) 

Almost identity. X is almost identical to Y if they differ by a set of 
Lebesgue measure (q.v.) zero, that is if X – Y and Y – X are both 
of zero measure. 
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Arbitrarily Fine Covering (Premise Five of Ch. 2). The principle that if 
N is a positive integer and if u is a globule (q.v.) of finite diameter 
then u is part of the sum of at most a countable infinity of globules 
of diameter less than 1/N. 

Arbitrarily Thin Boundaries (Premise Six of Ch. 2). The principle that if 
u is a globule (q.v.) of finite diameter, and N is a positive integer, 
then there is a region v of hypervolume less than 1/N such that any 
connected (q.v.) region w that overlaps u, but is not part of u, over-
laps v.  

Arntzenius Continuum. Arntzenius Continuum is obtained from the 
Borel Continuum (q.v.) by first ignoring parts of zero hypervolume 
and then identifying those that differ by zero hypervolume. 

Atom. An atom of aether is a region u that is not the sum of the proper 
parts of u. If we assume classical mereology every atom is a simple 
(q.v.) 

Automorphism. A 1 to 1 onto homomorphism (q.v.) from a system to it-
self whose inverse is also a homomorphism. 

Ball. A closed hyperball b of radius r centre <a, b, c, d> is the set of co-
ordinate quadruples <t, x, y, z> such that: 

   (t – a)2 + (x – b) 2 + (y – c) 2 + (z – d) 2 ≤ r2.  
 An open hyperball b of radius r centre <a, b, c, d> is the set of co-

ordinate quadruples <t, x, y, z> such that: 
    (t – a)2 + (x – b) 2 + (y – c) 2 + (z – d) 2 < r2.  
 The analogs for triples are the closed and open balls.  

Banach Tarski theorem. The theorem that a ball (q.v.) of radius 1 is the 
union of five sets congruent to five other sets whose union is two 
balls of radius 1.  

Boolean algebra of sets. A set X of subsets of B form a Boolean algebra 
if the complement, B - Z of any member, Z, of X is also in X and if 
the union of any two members of X is also in X. 
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Boolean lattice. A distributive lattice (q.v.) is said to be Boolean if for 
every member x of the lattice, ¬¬x = x. (See complement.) 

Boolean mereology. A mereology that becomes a Boolean lattice if the 
fictitious empty region ø is adjoined. 

Borel Continuum. The hypothesis that the regions are faithfully repre-
sented by the non-empty Borel sets (q.v.) of coordinate quadruples.  

Borel sets. The Borel sets of coordinate quadruples form the smallest σ-
algebra (q.v.) containing all the open sets of coordinate quadruples.  

Characterization problem. The problem of describing structure without 
reversing the order of explanation. 

cl(U). The topological closure (q.v.) of a set U. 

Classical mereology. (a.k.a. general extensional mereology). The system 
obtained by adjoining to the transitivity and anti-reflexivity of par-
thood the axiom that any regions have a unique fusion (q.v.) 

Closed. A closed set is one whose complement (q.v.) is open. 

Closure. The closure of a set is the intersection of all the closed sets that 
include it. 

Comm. A (often the) maximal commutative group of symmetries. 

Compact. In point-set topology, a set X is said to be compact if every 
open covering (q.v.) Y of X has a finite subset Z that is also a cov-
ering of X. In the point-free case, a region x is said to be compact if 
every exterior covering (q.v.) Y of x has a finite subset that is also 
an exterior covering.  

Complement. The complement ¬x of a region x is the join of all the re-
gions disjoint from x. 
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Complete Heyting lattice. A distributive lattice (q.v.) in which meets dis-
tribute over arbitrary joins. 

Complete Heyting mereology. A mereology that becomes a complete 
Heyting lattice(q.v.) if the fictional empty region ø is adjoined. 

Connected Parts (Premise One of Ch. 2). The principle that every region 
has a part that is connected. 

Connected region. A region that is not the sum (q.v.) of two parts sepa-
rated from each other. 

Consistent Renormalization research program. The research pro-
grammed based on the core assumption that the standard approach 
to quantum field theory can be developed without divergent (i.e. in-
finite) integrals. 

Convex region. A region u is convex if given any two parts x and y of u 
every region between x and y is also part of u.  

Countable Subadditivity. The following principle. Consider a sequence 
of regions, u1, u2, etc such that, for all j, uj has hypervolume. Then 
the hypervolume of the sum (q.v.) is no greater than the sum of the 
hypervolumes of the uj. 

Cross Section principle. The principle that given any equivalence rela-
tion on a set Y there is a subset X of Y that contains precisely one 
member of each equivalence class.  

Curmudgeon variant. A variant on a hypothesis about aether structure 
that treats disconnected regions as fictions.  

Definite Range. The principle that the value of an ‘observable’ is defi-
nitely in the range from the great lower bound to the least upper 
bound of the eigenvalues.  
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Dependent Quantity. If something depends ontologically on some dis-
joint parts then its quantity is independent of the relations between 
those parts. 

 

diam(u). The diameter of region u.  

Diameter Hypervolume Nexus (Premise Three of Ch. 2). The principle 
that given any positive integer M there is some positive integer N 
such that any region of diameter less than 1/N is part of a region of 
hypervolume less than 1/M.  

Difference. The difference of regions x and y, x – y is the join of all the 
parts of x disjoint from y. In a lattice (q.v.) x – y = x∧¬y. 

Distributive lattice. A lattice (q.v.) of regions in which the distributive 
laws hold: x∧(y∨z) = (x∧y)∨(x∧z) and x∨(y∧z) = (x∨y)∧(x∨z).  

Distributive mereology. A mereology that becomes a distributive lattice 
if the fictitious empty region ø is adjoined. 

Einstein Aether. A physical theory with a foliation (q.v.) of Space-time 
into Space-like hypersurfaces specified as normal (i.e. ‘perpendicu-
lar’ with respect to the ‘metric’ on Minkowski Space-time) to a dis-
tinguished vector field. 

Einsteinian manifold. A differentiable manifold equipped with a general 
relativistic ‘metric’. 

Endurance. Something that persists from one time to another is said to 
endure if it lacks proper temporal parts (except in so far as it ac-
quires or loses proper spatial parts.) Contrast perdurance (q.v.) 

Exemplars. The four exemplars are the hypotheses that are judged best at 
an early stage in the inquiry.  
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Extended Simples. The hypothesis that the aether is the sum (q.v.) of dis-
joint extended granules and that these granules are not merely 
atomic but simple (q.v.) 

Exterior covering. An exterior covering Y of x, is a set of regions for 
which there is a set W of regions such that: for all w ∈ W there is 
some y ∈ Y for which w « y; and x is part of any region z of which 
every w ∈ W is part. 

Faithful representation. A 1 to 1 representation. 

Fibres. Space-time is fibrated if it is the sum (q.v.) of a set of disjoint 
parts F, the fibres, where F itself has a Space-like structure, and 
each member of F is as we ordinarily take Space-time to be, namely 
4 dimensional (or more in Supergravity theories.) 

Filter. A filter, w.r.t. a transitive anti-reflexive relation <<, is a set W 
such that:  
(1) if x ∈ W and x << y then y ∈ W; and  
(2) if x ∈ W and y ∈ W then there is some z ∈ W such that z << x 

and z << y.  

Fine Structure. Structure at the infinitesimal scale.  

Finite Globules (Premise Four of Ch. 2). The principle that there is a 
globule of finite positive diameter and finite positive hypervolume, 
namely œ (q.v.) 

Finite Subadditivity (Premise Nine of Ch 2). The principle that if x and y 
have hypervolumes, then hvol(x + y) ≤ hvol(x) + hvol(y). 

Flat aether. Flatness is an intuitive notion but may be explicated as hav-
ing a unique transitive (q.v.) commutative group of symmetries.  

Fusion (in mereology). The fusion of the Xs is some region that overlaps 
all and only the regions that overlap some X. 
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Geometric Correspondence. The principle that any extended object has 
parts corresponding to the parts of the region it occupies. 

Geometrodynamics. The project of using gravity to provide a ‘theory of 
everything’. 

Globules. Regions that are topologically equivalent to hyperballs (q.v.).  

Granulated Aether. Extended Simples (q.v.) and its variants. On these 
hypotheses there are said to be significant small (presumably 
Planck scale) regions that are the granules.  

Granules. Extended atoms (q.v.) of aether. 

Granuloid. An extended region that is not the sum (q.v.) of two or more 
regions of approximately the same quantity. 

Grounding (ontological). See ontological dependence. 

Growing Block. The hypothesis that the past and present exist in the pre-
tensed sense of ‘exists’ but not the future. 

Gunk. Something is said to be gunk if it has no parts that are atoms. 
Point-free aether may loosely be said to be gunky, but that presup-
poses that we ignore fine-structure (q.v.)  

Gδ Continuum. The hypothesis that the regions of the aether are repre-
sented faithfully (q.v.) by the non-empty Gδ sets of coordinate 
quadruples, that is the countable intersections of open sets. 

Homomorphism. A mapping from a mathematical system X to a mathe-
matical system Y that preserves whatever structure is being consid-
ered in the context.  

Hume’s Razor.  Necessities are not to be multiplied more than necessary. 

hvol(u). The hypervolume of u. 
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Hyperball. See ball. 

Hybrid Granulation. A hypothesis on which there are not just simple 
points but also simples of higher dimension such as the edges. 

Hypervolume Subadditivity. The principle that hvol(x + y) ≤ hvol(x) + 
hvol(y). 

Hypervolume Supplementation (Premise Eight of Ch. 2 ).The principle 
that if x is part of y and hvol(y) > hvol(x) > 0, then y has a part z 
disjoint from x such that hvol(z) > 0.  

Interior Part Supplementation. The principle that if x is an interior part 
of y then there is some part z of y disjoint from x. 

Interior part. Region x is an interior part of y (x « y) if x is separated 
(q.v.) from every region z disjoint from y  

Interior. The interior of a set is the union of all the open sets included in 
it. 

Join. The join of the Xs, ∨X, is least upper bound of the Xs, that is, an 
upper bound (q.v.) of the Xs, that is part of every other upper 
bound.  

Lattice mereology. A mereology in which any two regions with a lower 
bound (q.v.) has a meet (q.v.), and any two regions have a join 
(q.v.)  

Lattice of regions. The partially ordered system obtained from the mere-
ology by adjoining the fictitious empty region ø is said to be a lat-
tice if for any two regions x and y there is a join x∨y (q.v.) and a 
meet x∧y (q.v.) 

Lebesgue Continuum.  The hypothesis that all and only the non-empty 
measurable (q.v.) sets represent regions. 
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Lebesgue measure of a set of quadruples. The hypervolume of a region 
in a fictitious 4 dimensional Euclidean space whose points are rep-
resented using Cartesian coordinates t, x, y and z.  

Light cones. The past and future light cones are stipulated to be solid, 
that is their location includes all points separated from the vertex by 
either a light ray or a time-like geodesic. 

Limiting Hypervolumes (Premise Ten of Ch. 2). The following principle: 
Consider some totally ordered regions (i.e. given any two of them 
one is a part of the other) each of which has hypervolume less than 
or equal to k. Then, if the regions have a sum (q.v.) this sum has 
hypervolume less than or equal to k.  

Linear Ordering.  A relation x < y is a linear ordering if  (a) it is transi-
tive; and (b) the derived relation , neither x < y nor y < x is an 
equivalence relation. 

Locale Continuum. The hypothesis that the regions of aether are repre-
sented faithfully by the non-empty open sets of coordinate quadru-
ples. 

Lower bound. A lower bound of a set of regions X is a region u that is 
part of every member of X.  

Maximal open set. An open set U such that if V is an open set such that 
U ⊂ V then V – U is of positive Lebesgue measure (q.v.)  

Maximal point. A point that is not part of any other point. 

Measurable set. A set with a Lebesgue measure (q.v.).  

Meet. The meet ∧X of a set X of regions is the greatest lower bound, that 
is, a lower bound of which every lower bound (q.v.) is part.  

Mereology Hypervolume Nexus (Premise Seven of Ch. 2). The conjunc-
tion of the following.  
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(1)  If x is part of y, which is part of z, if x and z have hypervol-
umes, and if hvol(x) = hvol(z) then y has a hypervolume and, 
hence hvol(x) = hvol(y).  

(2)  If y is part of z and z is of zero hypervolume then y has a hy-
pervolume, so y has zero hypervolume. 

Metathety. The relation holding of x, y and z if y is between x and y.  

Norm. ℜ4 is equipped with a norm, that is, the distance from <0,0,0,0>, 
defined by ||<t,x,y,z>|| = √(t2 + x2 + y2 + z2), 

Normal subgroup of G. A subgroup N of G is said to be normal if for all 
g ∈ G and x ∈ N, x°g°x-1 ∈ N.  

Ontological dependence.  To say that the Ys depend ontologically on the 
Xs is to say that the Ys exist in virtue of the Xs, or that the Xs are 
the ontological grounds for the Ys. A necessary but insufficient 
condition for the Ys to depend ontologically on the Xs is that the 
Ys supervene on the Xs.  

Open covering. Y is an open covering of X if every member of Y is open 
and X ⊆ ∪Y. 

Orthodoxy. The hypothesis that parts of the aether are in one to one cor-
respondence with the non-empty sets of all quadruples of real num-
bers  

Pentatope (a.k.a. 5-simplex). 4 dimensional analog of a tetrahedron, i.e. 
a 4 dimensional polytopic (q.v.) region with only 5 vertices.  

Perdurance. A thing x that persists over an interval of Time is said to 
perdure if it is the sum (q.v.) of temporal parts none of which per-
sist over the interval in question. 

Pinwheel tiling. A certain tiling made up cells of the same intrinsic 
shape and size but with some the mirror images of others. (See Di-
agram One.)  
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Point. A region of zero diameter, 

Point Discretion. The hypothesis that any part of the aether of finite di-
ameter is the sum (q.v.) of finitely many points. 

Polytope. Analog of a convex polyhedron in any number of dimensions: 
a convex region with only a finite number of vertices.  

Presentism.  The thesis that neither past nor future but only the present 
exists in the pre-tensed sense of ‘exists’. 

Prime matter. The stuff of which everything is made. If prime matter 
pervades the whole universe I call it the aether. 

Pseudo-set Granules. The hypothesis in which closed polytopic sets rep-
resent aether atoms but these atoms are not simple (q.v.)  because 
the hyperfaces, faces edges and vertices of the polytopic sets also 
represent regions.(See polytope.) 

Quasi-realism about universals.  The thesis that we may talk as if there 
are universals even if this can be paraphrased by nominalists.  

Quotient space. If H is a subgroup of a group G then the quotient space 
G/H has for its ‘points’ the equivalence classes of members of G, 
where g and k are equivalent if k°g-1∈ H.  

ℜ4. The topological space of all quadruples of real numbers. 

Realism about universals.  The thesis that universals exist, not that they 
are fundamental, which I call fundamentalism about universals. 

Regular open set. In a topological space an open set is said to be regular 
open (or perfectly open) if it is the interior (q.v.) of its closure 
(q.v.). 

Regular regions. if x = ¬¬x then x is said to be regular. (See comple-
ment.) 
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Resilience. A belief is resilient if it is not easily defeated. 

SAD. The hypothesis that fundamental reality can only be described 
mathematically. 

Scattered Object Argument. The argument that there are scattered ob-
jects and so not all regions are connected. 

Separation. Two regions y and z are separated if there are real numbers 
ξ and η that are possible values of the diameter function, such that 
ξ < η and any region overlapping both y and z has diameter greater 
than η. 

Sigma algebra (σ-algebra) of sets. A set X of sets such that given any 
set U in X the complement of U, X – U is also in X, and given any 
sequence of members of X, U1, U2 etc, indexed by the positive in-
tegers, the union of the Uj is also in X. 

Simple. A region x is simple  if it has no part other than x itself. 

Skeletal Granulated Aether. The hypothesis that all aether atoms (q.v.) 
are of 1 dimension. 

Smoo. The ring (better real algebra) of smooth (i.e. infinitely differentia-
ble) real functions on a differentiable manifold. 

Smooth boundary condition. A necessary condition for function f to be 
differentiable is that: (1) for every real number k the sum of all 
points x such that f(x) < k has a smooth boundary, and (2) so does 
the sum of all the points such that f(x) > k. 
 

Solovay’s Axiom.  An alternative to the Axiom of Choice in which all 
sets are measurable. 

Space. Because mathematicians use the term ‘space’ freely to refer to 
systems with properties that are reminiscent of geometry, I am 
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adopting the convention that ‘Space’ is written with an upper case 
‘S’ when used literally. 

Sparse Continuum. The hypothesis that the regions are represented faith-
fully by the non-empty members of the smallest Boolean algebra 
(q.v.) of sets of coordinate quadruples that contains all open convex 
sets.  

Stab. Stabu, the stabilizer of u is the subgroup of all the symmetries that 
leave u fixed.  

Sum. The term ‘sum’ is reserved for the non-technical idea of the com-
bination of two regions and not be used as synonymous with fusion 
(q.v.).   

Summation mereology. A lattice mereology (q.v.) in which any regions 
have a sum (q.v.). See also Universal Summation. 

Superadditivity. The principle that if regions u and v are disjoint and if u 
and v are both parts of w, then hvol(w) ≥ hvol(u) + hvol(v). 

Supersponge. A supersponge for a region u of positive hypervolume is 
some part v of u that is of positive but strictly less hypervolume 
than u, such that there is no connected part of u that is of positive 
hypervolume but disjoint from v. 

Symm. The group of symmetries of the aether with respect to some des-
ignated structure. 

Tarski Continuum. The hypothesis that the regions are represented faith-
fully by precisely those sets that are non-empty regular open (q.v.) 
sets of coordinate quadruples. 

Temporary Intrinsics, problem of. If regions endure (q.v.) then the same 
region would have to have different intrinsic properties at different 
times, contrary to the Indiscernibility of Identicals. 
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Tesseract. 4 dimensional analog of the cube. 

Torsion. Ambiguous between the torsion component of an affine con-
nection (q.v.) and the existence of a positive integer n such that for 
some non-zero member x of a designated commutative group nx = 
o. 

Transitive action. A group of symmetries G acts transitively on a set X 
if for any y ∈ X and z ∈ X, there is some g ∈ G such that g(y) = z.   

Triangle Inequality. The principle which holds for genuine metrics but 
not the ‘metric’ of Relativity, that for any points x, y and z the dis-
tance between x and z is less than the sum of the distances between 
x and y and between y and z.  

Ultrafilter. A filter (q.v.) W such that if W ⊆ V and V is also a filter then 
W = V.   

Universal Summation (Premise Two of Ch. 2). The principle that any 
regions have a sum (q.v.)  

Upper bound of the Xs. A region of which every X is a part. 

Weak Hypervolume Supplementation (Premise Eight* of Ch. 2). The 
principle that if x is part of y and hvol(y) > hvol(x) > 0, then y has a 
part z such that hvol(z) > 0, and either x and z are disjoint or 
hvol(x∧z) = 0. 

Weak Supplementation. The principle that if x is a proper part of y then 
there is some part z of y disjoint from x.  

Weyl Tile problem. The problem for discrete aether that a suitably regu-
lar arrangement of granules seems to imply a metric that is not 
even approximately that of a Euclidean space. 

Zooming-in. The principle that that we can reliably zoom-in on ever 
smaller regions treating them as if they were macroscopic. 
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