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Abstract

Mixed-effects multilevel models are often used to investigate cross-level interactions, a specific type

of context effect that may be understood as an upper-level variable moderating the association be-

tween a lower-level predictor and the outcome. We argue that multilevel models involving cross-level

interactions should always include random slopes on the lower-level components of those interac-

tions. Failure to do so will usually result in severely anti-conservative statistical inference. We illus-

trate the problem with extensive Monte Carlo simulations and examine its practical relevance by

studying 30 prototypical cross-level interactions with European Social Survey data for 28 countries. In

these empirical applications, introducing a random slope term reduces the absolute t-ratio of the

cross-level interaction term by 31 per cent or more in three quarters of cases, with an average reduc-

tion of 42 per cent. Many practitioners seem to be unaware of these issues. Roughly half of the cross-

level interaction estimates published in the European Sociological Review between 2011 and 2016 are

based on models that omit the crucial random slope term. Detailed analysis of the associated test sta-

tistics suggests that many of the estimates would not reach conventional thresholds for statistical

significance in correctly specified models that include the random slope. This raises the question

how much robust evidence of cross-level interactions sociology has actually produced over the

past decades.

Introduction

One of the enduring questions of sociology is how

human attitudes and behaviour are shaped by the social

environment and how vice versa the social environment

emerges from human action. The investigation of con-

text effects, where an environmental feature (e.g., a

characteristic of a neighbourhood or country) affects

processes at a lower level (e.g., that of the individual), is

therefore central to the discipline, and one should think

that sociologists are highly proficient in modelling them

statistically.

Quantitative sociologists typically use mixed-effects

models, which are also known as ‘hierarchical models’

or simply ‘multilevel models’, to deal with the statistical
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challenges that arise in the estimation of context effects

(see the ‘Mixed Effects Models with Cross-Level

Interactions’ section and Equations 1–4 below). A cru-

cial issue in the specification of these models is the

choice of a random-effects structure (i.e., random inter-

cept and slopes), which can have important consequen-

ces both for the precision of parameter estimates

(Heisig, Schaeffer and Giesecke, 2017) and for statistical

inference (Berkhof and Kampen, 2004; Barr et al., 2013;

Bryan and Jenkins, 2016; Schmidt-Catran and

Fairbrother, 2016; Bell, Fairbrother and Jones, 2018).

The random-effects structure is also a crucial issue in

the estimation of cross-level interactions, which are a spe-

cial type of context effect where a contextual characteristic

moderates the strength of a lower-level relationship (see

Equation 4 below). To fix ideas, consider the following ex-

ample, which also serves as one of the illustrative empirical

examples presented later on: The (individual-level) rela-

tionship between fear of crime (as the outcome) and educa-

tion (as the predictor) might be weaker in less developed

countries (as indicated by the human development index;

HDI) where the generally poor living conditions instil a

fear of crime into everyone. Or to put it another way, the

better-educated tend to benefit the most from improving

societal conditions, whereas the less educated continue to

live in fear of crime even in more developed societies.

Researchers who study cross-level interactions are

interested in variation of lower-level relationships across

contexts. One might therefore expect their models to in-

clude so-called random slope terms that capture unex-

plained contextual variation in these relationships (see

Equation 3 below for a formal representation). In our

example, one would include a random slope to account

for cross-country differences in the relationship between

education and fear of crime that are not explained by

country differences in human development.

A review of published research, however, reveals that

in many analyses of cross-level interactions the corre-

sponding random slope is missing. Between 2011 and

2016, the European Sociological Review (ESR) published

28 studies that investigated cross-level interactions using

(two-level) mixed-effects multilevel models (24 of these

studies were country comparisons). More than half of

these studies (17/28 or 61 per cent) only specified random

intercept models without any random slopes (for details,

see the ‘Cross-Level Interactions in the ESR’ section).

Given that empirical practice is so inconsistent, one

may wonder whether the inclusion of random slope

terms on the lower-level components of cross-level inter-

actions is a matter of taste or whether one approach will

usually be preferable to the other. A review of promin-

ent textbooks on multilevel modelling does not provide

a clear answer. In one widely read book, Snijders and

Bosker (2012) note that ‘tested fixed effects’ should be

accompanied by ‘an appropriate error term [. . .] For

cross-level interactions, it is the random slope of the

level-one [i.e., lower-level] variable involved in the inter-

action’ (p. 104). Other authors take a more ambiguous

position. For example, Raudenbush and Bryk’s (2002)

book includes a section on ‘A Model with Nonrandomly

Varying Slopes’ where they suggest that a model with a

cross-level interaction may omit the corresponding ran-

dom slope if ‘little or no variance in the slopes remains to

be explained’ (p. 28). They provide no precise definition

of ‘little or no variance’, however. In their chapter on

‘Random-coefficient models’, Rabe-Hesketh and

Skrondal (2012) generally include random slope terms

alongside cross-level interactions, but they also note that

the decision whether to do so often seems to be driven by

technicalities of the software used: ‘Papers using HLM

tend to include more cross-level interactions and more

random coefficients in the models (because the level-2

[i.e., upper-level] models look odd without residuals)

than papers using, for instance, Stata’ (p. 212f.). This cer-

tainly does not sound like an emphatic recommendation

to include the random slope for statistical reasons.

In this article, we argue that such a recommendation

should be given. We explain and demonstrate that the

omission of random slopes in the analysis of cross-level

interactions constitutes a specification error that will

often have severe consequences for statistical inference

about the coefficient of the cross-level interaction term

(i.e., in our running example, the interaction between

education and HDI) and about the main effect of the

lower-level predictor involved in the interaction (i.e.,

the main effect of education). Only the main effect of

the upper-level predictor remains unaffected (provided

that the model includes a random intercept, as is gener-

ally the case in applied research).

In the next section, we briefly introduce mixed-

effects models with cross-level interactions. In the ‘Why

Always a Random Slope?’ section, we then explain that

random slopes capture cluster-driven heteroskedasticity

and cluster-correlated errors. As in standard linear re-

gression, ignoring heteroskedasticity and within-cluster

error correlation by failing to specify the appropriate

random slope term will typically lead to downward bias

in standard error estimates.

The two subsequent sections present Monte Carlo

simulations and illustrative empirical analyses that sup-

port our claims. The simulations show that (correctly

specified) mixed-effects models with a random intercept

and a random slope on the lower-level component of the

cross-level interaction generally achieve accurate
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statistical inference for all coefficients of interest. By

contrast, random intercept models that omit the random

slope term produce severely anti-conservative inference

for the cross-level interaction term and the main effect of

its lower-level component. The proportion of 95 per cent

confidence intervals that do not cover the true effect size

(i.e., the actual coverage rate) is generally smaller than the

nominal rate, and often by a substantial margin. We find

that the extent of undercoverage increases with the extent

of variation in the (unmodelled) random slope, the vari-

ance of the lower-level component, and the number of

lower-level observations per cluster. Illustrative empirical

analyses of European Social Survey (ESS) data for 28

countries indicate that the consequences of omitting the

random slope on the lower-level component are severe in

real-life settings. We examine a total of 30 cross-level

interactions and find that inclusion of the random slope

term deflates the absolute t-ratio on the cross-level inter-

action term by 31 per cent or more in three quarters of

cases, with an average reduction of 42 per cent.

We then review studies of cross-level interactions pub-

lished in the ESR between 2011 and 2016.

Unsurprisingly, we find that authors were more likely to

report statistically significant cross-level interactions

when they used a misspecified model that omitted the cor-

responding random slope. Consistent with ‘P-hacking’

(Simonsohn, Nelson and Simmons, 2014), the distribu-

tion of absolute t-ratios for models estimated without a

random slope exhibits a marked peak just above the crit-

ical value of 1.96. In combination with the results of our

Monte Carlo simulations and empirical illustrations, our

review therefore suggests that many published estimates

based on models omitting the random slope would not

have reached conventional levels of statistical significance

in a correctly specified model.

The subsequent and penultimate section presents a

further result of our analysis: the omission of a relevant

random slope also leads to anti-conservative inference

for a corresponding ‘pure’ lower-level effect. That is,

even if the model does not contain any cross-level inter-

actions involving education, accurate inference for the

average effect of education on fear of crime across the

28 ESS countries would require the inclusion of a ran-

dom slope on education—provided that such a slope is

present in the process that gave rise to the data. While

this result is troubling, there are two reasons to be less

concerned than in the cross-level interaction case. First,

most sociologists who use multilevel models are primar-

ily interested in context effects rather than pure lower-

level effects, as we confirm through a systematic analysis

of the titles, abstracts, and formal hypotheses of research

published in the ESR. Second, pure lower-level effects

can typically be estimated with much greater precision

(and correspondingly higher absolute t-statistics) than

cross-level interactions. As a consequence, estimated

lower-level effects should often stay statistically highly

significant even if the associated t-ratio declines by 50

per cent or more. In the cross-level interaction case, such

a decrease will often mean the difference between mod-

erately strong and no statistically meaningful evidence

against the null hypothesis.

The concluding section discusses the primary impli-

cations of our study. Looking backward, our findings

suggest that the empirical basis for many seemingly

well-established findings in comparative research may

be much shakier than previously thought. Looking for-

ward, a minimum requirement for future studies that

examine cross-level interactions using multilevel models

is to include a random slope on the corresponding

lower-level variable. However, our findings suggest that

fully accurate statistical inference for all coefficients,

including pure lower-level effects, requires the inclusion

of additional random slopes or alternative methods of

inference, an important issue that should be addressed in

future work.

Mixed-Effects Models with Cross-Level
Interactions

In a first step, we briefly review the general logic of

mixed-effects models with cross-level interactions (for

comprehensive introductions, see, for example,

Raudenbush and Bryk, 2002; Rabe-Hesketh and

Skrondal, 2012; Snijders and Bosker, 2012). We begin

with the following lower-level equation for the (lower-

level) outcome Yij (e.g., fear of crime):

Yij ¼ bðcÞj þ bðxÞj xij þ �ij; (1)

where i indexes lower-level observations (e.g., individu-

als) and j indexes upper-level observations or clusters

(e.g., countries). bðcÞj is the constant (i.e., intercept) and

bðxÞj is the coefficient of lower-level predictor xij (e.g.,

education). The subscript j on the two parameters, bðcÞj

and bðxÞj , indicates that both are considered as potential-

ly varying across clusters. In terms of our example, the j

on bðxÞj thus means that the degree to which better-

educated people are less afraid of crime might vary

across countries. The model could be extended to in-

clude additional lower-level predictors x2ij to xkij, but

for our analysis, this is not necessary. �ij is a lower-level

error often assumed to follow �ij � Nð0; r2Þ, that is, to

be normally distributed with a mean of zero and con-

stant variance r2 (homoskedasticity).
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In a cross-level interaction model, bðxÞj is specified as de-

pendent on at least one cluster-level (i.e., contextual) vari-

able zj (e.g., the HDI). Typically, the model will (and

should) also allow for a relationship between the constant

bðcÞj and zj. One way to formalize this is to write bðcÞj and

bðxÞj as the outcome variables in two cluster-level equations:

bðcÞj ¼ cðcÞ þ cðczÞzj þ u
ðcÞ
j (2)

and

bðxÞj ¼ cðxÞ þ cðxzÞzj þ u
ðxÞ
j : (3)

Here, u
ðcÞ
j and u

ðxÞ
j are cluster-level error terms or

‘random effects’, with the former often referred to as a

‘random intercept’ and the latter as a ‘random slope’

term. It is natural to think of these terms as capturing

the effects of unmodelled cluster-level variables on bðcÞj

and bðxÞj . Typically, u
ðcÞ
j and u

ðxÞ
j are assumed to follow a

multivariate normal distribution. Equation 2 is some-

times referred to as an ‘intercept-as-outcome’ equation

and Equation 3 as a ‘slope-as-outcome’ equation.

Equations 1–3 highlight the multilevel nature of the

model. An alternative formulation can be obtained by

substituting Equations 2 and 3 into Equation 1. After

rearranging terms we end up with:

Yij ¼ cðcÞ þ cðczÞzj þ cðxÞxij þ cðxzÞzjxij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fixed part

þ u
ðcÞ
j þ u

ðxÞ
j xij þ �ij|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

random part ð¼vijÞ

:

(4)

Equation 4 shows why cðxzÞ is referred to as a ‘cross-level

interaction effect’: it is the coefficient on a multiplicative

interaction term between the lower-level predictor xij

and the cluster-level predictor zj; in our running ex-

ample, it is the interaction between the individual char-

acteristic education and the country attribute HDI. The

first part of the right-hand expression, consisting of the

linear combination of the constant and the lower- and

upper-level predictors, multiplied by their respective

coefficients (or ‘fixed effects’), is also referred to as the

fixed part of the model. Crucially, the second part shows

that the model has a complex error term vij that consists

of three components: the random intercept term u
ðcÞ
j , the

lower-level residual error �ij, and the product of the ran-

dom slope term with the lower-level predictor u
ðxÞ
j xij.

Why Always a Random Slope?

The formal exposition of the multilevel model in the pre-

vious section provides an intuitive reason why one

should always include the random slope term u
ðxÞ
j :

Equation 3 clarifies that omitting u
ðxÞ
j is equivalent to

assuming that bðxÞj is perfectly determined by zj, in other

words that R2ðbðxÞj Þ, the R2 of the (implicit) cluster-level

regression for bðxÞj , equals 1. As noted above,

Raudenbush and Bryk (2002) do indeed discuss the pos-

sibility that ‘little or no variance in the slopes remains to

be explained’ (p. 28) after accounting for the cluster-level

predictor zj. Yet we would argue that this is an unlikely

scenario in the vast majority of social science applica-

tions. This is confirmed by the empirical examples pre-

sented in the ‘Illustrative Empirical Analyses’ section and

in the Online Supplement (see, in particular, the final col-

umns of Online Supplement Tables D1–D6). More im-

portantly, our Monte Carlo simulations will show that

omitting the random slope term can have severe conse-

quences even when there is very little unexplained vari-

ation in bðxÞj . We find that inference can be substantially

overoptimistic even when R2ðbðxÞj Þ is as high as 0.95 or

when standard model selection criteria such as likelihood

ratio tests or information criteria indicate that the

remaining variation is negligible and favour the model

that drops the random slope (the results on model selec-

tion strategies can be found in Online Supplement C).

The two-stage formulation of the model in

Equations 1–3 also suggests that omission of u
ðxÞ
j should

primarily affect inference about cðxÞ and cðxzÞ because

these terms are implicitly defined in the potentially mis-

specified Equation 3. Statistical inference for estimates of

cðczÞ and cðcÞ should remain unaffected—as it should for

any other terms that do not appear in Equation 3, includ-

ing the coefficients of additional lower-level predictors.

We now further clarify the importance of including

random slope terms on the lower-level components of

cross-level interactions. Equation 4 shows that the pres-

ence of the random slope term u
ðxÞ
j in the true data-

generating process (DGP) adds the component u
ðxÞ
j xij to

the complex error term. This component has important

consequences for the conditional variance of the overall

error vij and for the covariance of the error terms for

lower-level observations belonging to the same cluster.

In particular, the variance of vij given xij will be (Snijders

and Bosker, 2012, Equation 5.5):1

VarðvijjxijÞ ¼ VarðuðcÞj Þ þ 2CovðuðcÞj ; u
ðxÞ
j Þxij

þ VarðuðxÞj Þx2
ij þ Varð�ijÞ: (5)

The covariance of the error terms for two different

individuals (say, i and i0) belonging to the same cluster

will be (Snijders and Bosker, 2012, Equation 5.6):

Covðvij; vi0jjxij;xi0 jÞ ¼ VarðuðcÞj Þ
þ CovðuðcÞj ;u

ðxÞ
j Þðxij þ xi0jÞ

þ VarðuðxÞj Þxijxi0j: (6)
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These equations highlight that vij will be heteroske-

dastic even if u
ðcÞ
j ; u

ðxÞ
j and �ij are all homoskedastic and

that errors will be correlated within clusters. More spe-

cifically, if the true model includes the random slope

term u
ðxÞ
j , but the estimated model does not, there will

be (a) unmodelled heteroskedasticity in the error term

(due to the second and third term on the right-hand side

in Equation 5) and (b) unmodelled covariation among

the errors for lower-level observations belonging to the

same cluster (due to the second and third term on the

right-hand side in Equation 6).

Figure 1 illustrates the problem graphically. To con-

struct the figure, we first simulated a data set according

to Equations 1–3, assuming substantial cross-cluster

variation in the slope of xij. We set the number of clus-

ters to 25 and the number of lower-level observations

per cluster to 100 (see the notes to Figure 1 for further

information on how the data were generated). We then

fitted a multilevel model with and a multilevel model

without a random slope on xij to the simulated data and

obtained the lower-level residuals for each. The figure

plots these residuals against xij and zjxij, after partialling

out the cluster-level predictor zj. We focus on three rep-

resentative clusters, one with a slope for bðxÞj that devi-

ates strongly positively from the average slope, one with

a slope for bðxÞj that is close to the average (i.e., near-

Figure 1. Lower-level residuals for models with and without random slope.

Notes: Residuals are from linear mixed-effects models. The data are simulated according to Equations 1–3 with 25 clusters and 100 lower-level observa-

tions per cluster. The cluster- and lower-level predictors, zj and xij, are both normally distributed with means of 0 and standard deviations of 1 and their

coefficients are being set to 1; u
ðcÞ
j and u

ðxÞ
j are multivariate normal with means of 0, standard deviations of 0.6 and 2, respectively, and with a correlation

of 0.3; the lower-level error �ij is normally distributed with a standard deviation of 2.
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zero), and one with a slope for bðxÞj that deviates strongly

negatively from the average slope. Regression lines have

been added to approximate the conditional mean of the

residuals for each of the three clusters.

The graphs in the upper row of Figure 1 show that

the lower-level residuals from the correctly specified

model conform to the assumptions of the model: the

cluster-specific means of the residuals are unrelated to

either predictor and their variance is constant. The pic-

ture looks very different for the residuals from the mis-

specified model (i.e., the one omitting the random slope)

in the bottom row. Consistent with the above discus-

sion, the variance of the residuals is markedly higher for

extreme values of xij (heteroskedasticity). Moreover, the

residuals for lower-level observations belonging to the

same cluster are highly positively correlated when they

have similar values on xij and zjxij.

Omission of a random slope that actually belongs in

the model thus leads to unmodelled heteroskedasticity

and unmodelled dependencies among the errors of units

belonging to the same cluster. This will typically lead to

the underestimation of standard errors and thereby to

anti-conservative inference. This is well known not only

from the multilevel modelling literature but also from

the literature on cluster-robust inference in econometrics

(for a recent overview, see Cameron and Miller, 2015).2

In fact, the goal to achieve accurate inference in the pres-

ence of cluster-induced heteroskedasticity and cluster-

correlated errors is a common motivation for both

multilevel modelling and cluster-robust methods. The

former approach seeks to address the interdependencies

among observations belonging to the same cluster

through the inclusion of random intercept and slope

terms (see Equations 1–6 above). The latter uses special

‘sandwich-type’ estimators of the coefficient covariance

matrix that remain consistent even in the presence of

heteroskedasticity and cluster-correlated errors.

When will omitting the random slope term be par-

ticularly consequential? Inspection of Equations 5 and 6

(as well as Figure 1) suggests two relevant factors. First,

the consequences of omitting the random slope should

become more severe as the variance of u
ðxÞ
j increases.

This is because both the conditional variance

(Equation 5) and the within-cluster covariance

(Equation 6) depend on VarðuðxÞj Þ. The second factor is

the extent of variation in the lower-level predictor, that

is, VarðxðxÞj Þ. As VarðxðxÞj Þ increases, so will the extent of

(unmodelled) variation in the conditional error variance

across observations. In terms of our running example,

failure to model cross-cluster differences in the coeffi-

cient of education will be more consequential when indi-

viduals differ a lot in terms of their level of education.

The parallels to the literature on cluster-robust infer-

ence suggest a third factor that does not immediately fol-

low from the above equations. The consequences of

erroneously omitting the random slope term should also

be related to the number of observations per cluster,

that is, to the (average) cluster size. For the case of linear

regression with clustered data, it is well known that the

conventional (uncorrected) ordinary least squares vari-

ance estimate for a regressor x understates the true vari-

ance approximately by a factor of (Cameron and Miller,

2015: p. 322):

s ’ 1þ qðxÞqðuÞð �Ng � 1Þ; (7)

where qðxÞ is the within-cluster correlation of x, qðuÞ is

the within-cluster error correlation, and �Ng is the aver-

age cluster size. Intuitively, the underlying reason is that

the actual number of cases available for estimating the

cross-level interaction is the number of clusters because

the cross-level interaction is about a cluster-level rela-

tionship. This is immediately clear from the ‘slope-

as-outcome’ formulation of the model (see Equation 3

above). By omitting the random slope term, this cluster-

level nature of the cross-level interaction is ignored and

observations from the same cluster are treated as contri-

buting independent information about the moderating

effect of zj on the slope of xij. This illusionary increase in

the number of cases available for estimating the cross-

level interaction is larger when clusters are large.

In summary, the above discussion suggests that prac-

titioners should always specify a random slope for the

lower-level variable of a cross-level interaction in

mixed-effects models. Failure to include a random slope

is to disregard cluster-driven heteroskedasticity and

within-cluster correlation among the errors, violating

fundamental model assumptions. Omitting the random

slope term associated with a cross-level interaction will

not, in general, introduce systematic bias into coefficient

estimates,3 but it will lead to overly optimistic statistical

inference for the cross-level interaction term and the co-

efficient (i.e., the ‘main effect’) of the lower-level vari-

able involved in the interaction. All other coefficient

estimates and their standard errors, including the main

effect of the contextual predictor involved in the cross-

level interaction as well as any additional lower- and

upper-level predictors, should largely remain unaffect-

ed.4 The consequences of omitting the random slope

term should become more severe (a) as the unaccounted

variation in the cluster-specific slopes grows, (b) as the

variance of the involved lower-level variable increases,

and (c) as the average cluster size becomes larger.
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Inference for ‘Pure’ Lower-Level Effects

Against the background of the preceding discussion, one

may wonder if the incorporation of random slopes is

also important for achieving correct inference on the

coefficients of lower-level variables that are not involved

in a cross-level interaction term, that is, on ‘pure’ lower-

level effects. In terms of our running example, this

means: Does it remain crucial to include the random

slope if we are interested in the overall (average) effect

of education on fear of crime rather than the interaction

between human development and education?

The likely answer to this question is yes. After all, it

is the presence of an unmodelled random slope term

u
ðxÞ
j —and not the interaction between a cluster-level and

a lower-level predictor—that introduces heteroskedas-

ticity (Equation 5) and cluster-correlated errors

(Equation 6) into the overall error term vij. To fore-

shadow our results, we do indeed find that the omission

of a relevant random slope leads to anti-conservative in-

ference also for pure lower-level effects. This is consist-

ent with a recent study by Bell, Fairbrother and Jones

(2018), who reach very similar conclusions concerning

the case of pure lower-level effects but do not consider

the case of cross-level interactions.5

This being said, we maintain and demonstrate below

that there are at least two important reasons why the

cross-level interaction case deserves special attention.

The first is that, at least in sociology, the overwhelming

majority of studies that use mixed-effects models with

multilevel data are primarily interested in context

effects, including cross-level interactions. The second

reason is that the erroneous omission of a random slope

term tends to be less consequential in the pure lower-

level effect than in the cross-level interaction case. The

reason for this is that, compared with a pure lower-level

effect, much more data will usually be needed to achieve

the same level of statistical power for identifying a

cross-level interaction (Gelman and Hill, 2007: Ch. 20).

As a consequence, the same relative increase in the

standard error (due to omitting a random slope term)

will often make the difference between moderately

strong and no meaningful evidence against the null hy-

pothesis in the cross-level interaction case (say, between

P < �0:05 and P > 0.1). In the case of pure lower-level

effects, the difference is more likely to be between differ-

ent degrees of strong evidence (say, between P< 0.001

and P< 0.01). We further explore these issues in the

‘Random Slopes and ‘Pure’ Lower-Level Effects’ section,

but in a first step we now turn to the Monte Carlo

results for the cross-level interaction case.

Simulation Evidence

Simulation Set-Up

We now present Monte Carlo simulations to illustrate

the importance of including random slopes alongside

cross-level interaction terms. In Monte Carlo analysis,

the statistical properties of competing estimators are

evaluated under controlled conditions by repeatedly

sampling data from a known DGP and applying the esti-

mators to each simulated data set. By modifying key

aspects of the DGP (e.g., the number of clusters), one

can investigate how they shape the relative performance

of the competing estimators.

The general form of the DGP for the simulations is

given in Equations 1, 2, and 3 above. That is, we con-

sider a simple case with one lower-level predictor xij and

one upper-level predictor zj, with the latter affecting

both the constant and the slope of xij. In our running ex-

ample, xij would be education, zj would be human devel-

ompment, and the dependent variably yij would be fear

of crime. We examine several variants of this DGP

which, in keeping with standard terminology, we also

refer to as ‘experimental conditions’. In particular, we

vary the number of clusters, the number of (lower-level)

observations per cluster, the standard deviation of u
ðxÞ
j

(the random slope term in Equation 3), and the extent of

variability in the lower-level predictor xij. Table 1 lists

the dimensions that we manipulate, along with the dif-

ferent values that we consider. In total, we analyse 162

(¼ 3� 3� 6� 3) experimental conditions. The coeffi-

cients on all predictors (i.e., cðczÞ; cðxÞ, and cðxzÞ) are set

to 1 and the overall constant cðcÞ is set to 0. All predic-

tors and random effects are normally distributed with

means of 0. For their standard deviations, please see

Table 1 and the replication files in the online supporting

material.

We obtain 10,000 replications (i.e., 10,000 simulated

data sets) per experimental condition and fit two mixed-

effects models to each simulated data set. Consistent

with the DGP, both models include the cluster-level

predictor zj, the lower-level predictor xij, and their

cross-level interaction zjxij. Both also include a random

intercept term corresponding to u
ðcÞ
j in Equation 2. The

only difference between the two models is that the first

further includes a random slope term corresponding to

u
ðcÞ
j in Equation 3, whereas the second model does not.

As noted above, somewhat more than half of all cross-

level interaction estimates published in the ESR between

2011 and 2016 are based on models that omit this ran-

dom slope term (see also the ‘Cross-Level Interactions in

the ESR’ section below).
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We focus on statistical inference. There is no reason

to expect that the omission versus inclusion of the ran-

dom slope term affects parameter bias.6 To assess infer-

ential accuracy, we examine the actual coverage rates of

two-sided 95 per cent confidence intervals. Accurate in-

ference (for an unbiased estimator) requires that the ac-

tual coverage rate equals the nominal rate. We therefore

examine whether two-sided 95 per cent confidence inter-

vals cover the true parameter in more or less than 95 per

cent of the 10,000 Monte Carlo replications. Let

C95ðrÞ ¼ 1 if the two-sided 95 per cent confidence inter-

val for the rth replication includes the true value of the

parameter of interest and 0 otherwise. Then coverage is

defined as

Coverage ¼ 1

R

XR

r¼1

C95ðrÞ;

where R denotes the total number of replications. If

coverage is greater than 95 per cent, confidence intervals

are too large and over-conservative; hypothesis tests will

retain the null hypothesis of no effect too often. By con-

trast, if coverage is below 95 per cent, confidence inter-

vals are too narrow and null hypotheses rejected too

frequently.

An alternative to the actual coverage rate would be

to compare the average estimated standard error with

the actual standard deviation of the corresponding point

estimates across the Monte Carlo replicates (see, e.g.,

Schmidt-Catran and Fairbrother, 2016, who refer to this

as ‘optimism of the standard errors’). The reason why

we prefer to measure accuracy in terms of the coverage

rate is that the standard error is a (downward) biased es-

timator of the sampling distribution standard deviation

in small samples. Since the work of William Gossett

(i.e., Student, 1908), the established way of correcting

for this downward bias is to base confidence intervals

and hypothesis tests on an appropriate t-distribution ra-

ther than the standard normal distribution (as detailed

below, we use the m� l � 1 rule advocated by Elff

et al., forthcoming, to select the appropriate t-distribu-

tion). We further explore these issues and present results

on standard error optimism in Online Supplement A.

In practice, Monte Carlo estimates of actual coverage

rates will typically differ from the ideal value even for

accurate estimators because we use a finite number of

Monte Carlo replications. In our case, 10,000 replica-

tions imply a simulation error of � .00218

(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95� 0:05=10000

p
) or .218 percentage points.

Thus, the actual coverage rate of an estimator (for a

given experimental condition) is significantly different

(at the five per cent level) from the nominal level of 95

per cent if it deviates from that level by more than 0.427

(¼ 1:96� :218) percentage points. The null tested here

is the hypothesis that the actual coverage rate is equal to

the nominal rate.

We conducted all simulations in R (R Core Team,

2017), using the lmer function of the lme4 package

(Bates et al., 2017) to estimate the mixed-effects models.

Following the recommendations of Elff et al. (forthcom-

ing), we use restricted maximum likelihood estimation

throughout and construct confidence intervals based on

a t-distribution with m� l � 1 degrees of freedom

(where m represents the number of clusters and l gener-

ally equals 1 because we have only one cluster-level pre-

dictor). Replication files are available as part of the

online supporting material.

Simulation Results

Table 2 shows actual coverage rates for models that

omit versus models that include a random slope term on

the lower-level component of the cross-level interaction.

Results are displayed along two dimensions: the amount

of unexplained variation in the cluster-specific slope bðxÞj

and the extent of variation in xij. The number of clusters

is 15 and the number of lower-level observations per

cluster is 500 throughout the table. We explore the im-

pact of varying these factors below.

The central result in Table 2 is that coverage rates of

confidence intervals based on models that omit the ran-

dom slope term are inaccurate. As expected, this does

Table 1. Dimensions manipulated in the Monte Carlo

experiments

Dimension Levels R2ðbðxÞj Þ

Number of clusters m 5

15

25

Number of observations

per cluster

ng 100

500

1,000

Standard deviation of random

slope term u
ðxÞ
j

SDðuðxÞj Þ 0.1005 0.99

0.1429 0.98

0.2294 0.95

0.3333 0.90

1.0000 0.50

3.0000 0.10

Standard deviation of

lower-level predictor xij

SDðxijÞ 0.50

1.00

2.00

Note: R2ðbðxÞj Þ is the implied proportion of the overall cross-cluster variation

in bðxÞj (the coefficient of the lower-level predictor xij) that is explained by the

cluster-level predictor zj.
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not apply to inference for the main effect of the con-

textual predictor zj where coverage rates fall within

the range of 9560:427 per cent for all experimental

conditions. But the coverage rates of confidence inter-

vals for the cross-level interaction term and for the

main effect of the lower-level predictor are too low

and the extent of undercoverage is generally substan-

tial. To understand the implications, note that an ac-

tual coverage rate of 90 per cent means that nominal

significance on the 5 per cent level would actually only

mean ‘marginal’ significance on the 10 per cent level.7

Yet, most actual coverage rates displayed in Table 2

are even substantially smaller than 90 per cent. Our

simulation results therefore suggest that omitting the

random slope term can easily turn coefficient esti-

mates that are actually far from any conventional level

of statistical significance into ones that seemingly sur-

pass the corresponding thresholds. Results for stand-

ard error optimism in Online Supplement A are

qualitatively similar. Estimated standard errors for the

cross-level interaction term and the main effect of the

lower-level variable exhibit substantial downward

bias when the model does not include the random

slope term: The estimated standard errors are system-

atically smaller than the true standard deviation of the

corresponding point estimates, meaning that they

overstate the precision with which these coefficients

can be estimated.

By contrast, coverage rates of confidence intervals

based on models that include the random slope term are

by and large accurate for all three coefficients and across

all displayed experimental conditions. Only when vari-

ation is low for both the lower-level predictor (i.e.,

SDðxijÞ) and the random slope term (i.e., SDðuðxÞj Þ) do

the results show a tendency for overly conservative infer-

ence, meaning that confidence intervals might be some-

what too wide (see, in particular, the results for the case

where SDðxijÞ ¼ 0:5 and SDðuðxÞj Þ ¼ 0:23 in the first row

of Table 2). We return to this unexpected result at the

end of this section.

The next important question is: What drives the ex-

tent of miscoverage? As expected, the extent of underco-

verage grows with the unaccounted cluster-specific

variation of bðxÞj in the true model (i.e., with SDðuðxÞj Þ)
and also with the extent of variation in xij (i.e., with

SDðxijÞ). Equations 5 and 6 above show why: The extent

of heteroskedasticity and within-cluster error correlation

that remains unmodelled in the specification that omits

the random slope is a function of the product of these

two factors (i.e., of SDðuðxÞj Þ and SDðxijÞ). This is also

why each dimension on its own can drive the extent of

undercoverage to completely unacceptable levels.

Table 2. Actual coverage rates of nominal 95 per cent confidence interval by variance of lower-level predictor and random

slope term

SDðxijÞ cðxÞ cðxzÞ cðczÞ
Random slope Random slope Random slope

Included Omitted Included Omitted Included Omitted

R2ðbðxÞj Þ ¼ 0:95 (i.e., SDðuðxÞj Þ � 0:23)

0.5 96.44 92.82 96.46 93.07 95.17 95.21

1.0 95.21 81.74 95.12 81.69 94.79 95.07

2.0 95.00 57.38 94.60 56.95 94.85 95.20

R2ðbðxÞj Þ ¼ 0:90 (i.e., SDðuðxÞj Þ � 0:33)

0.5 95.54 88.55 95.64 88.33 94.74 94.75

1.0 95.34 70.06 95.12 68.55 94.89 95.20

2.0 95.04 42.11 95.23 43.34 94.51 95.03

R2ðbðxÞj Þ ¼ 0:50 (i.e., SDðuðxÞj Þ ¼ 1:00)

0.5 95.14 53.94 95.32 54.28 94.74 95.10

1.0 94.90 30.55 94.84 30.51 94.80 95.19

2.0 95.00 17.14 94.74 17.15 94.95 95.03

R2ðbðxÞj Þ ¼ 0:10 (i.e., SDðuðxÞj Þ ¼ 3:00)

0.5 94.74 21.87 94.84 21.16 94.95 94.82

1.0 95.03 12.54 95.12 12.87 95.20 95.13

2.0 94.78 8.85 95.21 8.78 94.98 95.38

Notes: Results are based on 10,000 Monte Carlo replications. Because of Monte Carlo sampling error, the 95 per cent test interval is 9560:427. Values smaller or

larger than that are statistically significantly different (five per cent level) from the nominal coverage rate of 95 per cent. The number of observations per cluster is 500

with overall 15 clusters.
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We further argued that the (average) size of the

upper-level units or ‘clusters’ should exacerbate the con-

sequences of omitting a random slope term because

models without a random slope term assume too much

independence among observations (see discussion of

Equation 7 above). We explore this issue in Table 3,

which shows actual coverage rates by the number of

clusters and number of observations per cluster. SDðxijÞ
is set to 1 and the implicit cluster-level R2ðbðxÞj Þ to 0.5

(i.e., SDðuðxÞj Þ ¼ 1:00); that is, we hold both factors at

the intermediate levels considered in Table 2 above.

Table 3 confirms that inference based on models that

include a random slope is generally accurate, although

we find some very limited deviations from the ideal

value of 95 per cent when nj, the number of observations

per cluster, equals 100. As before, we also see that omit-

ting the random slope term does not, in general, com-

promise inference for cðczÞ, while confidence intervals for

cðxzÞ and cðxzÞ exhibit substantial undercoverage. As

expected, the problem gets worse as the cluster size (i.e.,

nj) increases. For every given number of clusters, under-

coverage is most severe for 1,000 observations per clus-

ter as compared with 500 and especially 100

observations per cluster.

The upshot of our Monte Carlo simulations thus is

that omitting the random slope term on the lower-level

component of a cross-level interaction can lead to dra-

matically anti-conservative statistical inference for the

interaction term and the main effect of the lower-level

variable. In line with our expectations, undercoverage

increases with the extent of variation in the lower-level

variable, the extent of variation in the unmodelled ran-

dom slope term, and the (average) size of the clusters.

Before we investigate the severity of the problem

using real-life data from the ESS, we summarize the

main results of two additional sets of simulations.

In Online Supplement B, we further investigate the

unexpected result that the (correctly specified) model

including the random slope term yields over-

conservative statistical inference in some situations. We

present additional simulations that consider even lower

values of 0.14 and 0.10 for the standard deviation of the

random slope term, implying values of 0.98 and 0.99 for

the cluster-level R2ðbðxÞj Þ. The additional simulations

confirm that very low variation in the random slope

term can lead to substantial overcoverage, especially

when the number of clusters is also very low. While

these results do warrant a note of caution, their practical

relevance is limited. In the vast majority of applications,

the number of clusters is at least in the tens, and cross-

cluster variation in random slopes is typically substan-

tial, at least in country-comparative setting. This is

confirmed by the empirical examples presented in the

next section and in the Online Supplement (see, in par-

ticular, the final columns of Online Supplement Tables

D1–D6). Moreover, practitioners can easily verify if

they are dealing with a situation where the random slope

variation is close to 0.

Table 3. Actual coverage rates (per cent) of nominal 95 per cent confidence interval by number of clusters and lower-level

observations

cðxÞ cðxzÞ cðczÞ
Random slope Random slope Random slope

nj ntotal Included Omitted Included Omitted Included Omitted

m ¼ 5 Clusters

100 500 96.20 77.16 96.18 77.45 97.35 97.82

500 2,500 95.09 43.23 95.07 43.68 93.64 95.34

1,000 5,000 95.07 31.39 94.58 31.70 93.95 95.11

m ¼ 15 Clusters

100 1,500 95.19 58.57 94.75 58.62 93.65 95.51

500 7,500 94.90 30.55 94.84 30.51 94.80 95.19

1,000 15,000 94.93 21.46 94.95 22.37 95.10 95.25

m ¼ 25 Clusters

100 2,500 94.79 56.87 95.24 56.22 93.23 95.03

500 12,500 94.93 29.71 94.98 29.29 95.13 95.14

1,000 25,000 94.85 21.43 95.23 21.32 94.90 94.74

Notes: Results are based on 10,000 Monte Carlo replications. Because of Monte Carlo sampling error, the 95 per cent test interval is 9560:427. Values smaller or

larger than that are statistically significantly different (five per cent level) from the nominal coverage rate of 95 per cent. These results are based on experimental con-

ditions for which R2ðbðxÞj Þ ¼ 0:50 (i.e., SDðuðxÞj Þ ¼ 1) and SDðxijÞ ¼ 1.
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In a second set of supplementary analyses, presented

in Online Supplement C, we investigate the performance

of a data-driven approach to model selection. As noted

in the introduction, Raudenbush and Bryk (2002: p. 28)

suggest that it might be appropriate to omit the random

slope if its variance is ‘very close to zero’. For want of an

exact definition of ‘very close’, one might turn to stand-

ard model selection criteria for determining whether a

given slope is small enough to warrant omission. Our

supplementary analyses consider four selection criteria:

Akaike’s information criterion, the Bayesian informa-

tion criterion, and two variants of a likelihood ratio test.

The main result is unambiguous: when the goal is to

achieve correct statistical inference for a cross-level

interaction effect, it is not advisable to rely on model se-

lection criteria in deciding whether to include a random

slope on the lower-level predictor. For all four selection

criteria, we find settings where reliance on the criterion

results in noteworthy levels of undercoverage.

Illustrative Empirical Analyses

The simulation results are clear cut: Omitting random

slopes on the lower-level components of cross-level

interaction terms compromises statistical inference

about those terms and about the main effects of their

lower-level components. To get a better sense of how

serious the problem is in real-world applications, we

now present a series of illustrative country-comparative

analyses based on ESS data (ESS Round 6, 2016). As

noted above, such (cross-sectional) country comparisons

are by far the most common type of multilevel analysis

published in the ESR.

We adopt Heisig, Schaeffer and Giesecke’s (2017) il-

lustrative analyses of cross-level interactions.8 The over-

all 30 empirical examples study how the relationships

between six lower-level predictors (having a high level

of education, age, gender, unemployment, being mar-

ried, and having an intermediate level of education) and

five outcome variables (generalized trust, homophobia,

xenophobia, fear of crime, and occupational status) are

moderated by the HDI.

For each of the 30 cross-level interactions (5 depend-

ent variables � 6 lower-level predictors), we estimate

two specifications, resulting in a total of 60 linear

mixed-effects models. The first specification is a random

intercept and slope model that assigns a random effect

to the coefficient of the lower-level variable involved in

the focal cross-level interaction. According to our simu-

lation evidence, this model is correctly specified. The se-

cond is a random intercept model without any random

slopes. This model is widespread in applied research,

but the above analysis shows that it is misspecified and

provides anticonservative inference for the cross-level

interaction term and the main effect of its lower-level

component. In addition to the lower-level predictor of

interest, the HDI, and their cross-level interaction, the

models always contain the other lower-level predictors

as control variables. Online Supplement D gives a brief

description of the coding of the variables and provides

exact results for the coefficients of interest in Online

Supplement Tables D1–D6. For brevity, we focus on

statistical inference for the cross-level interaction term

in the main article. In line with the simulation evidence,

results are similar for the main effect of the lower-level

predictor, while omitting the random slope term has no

consequences for statistical inference about the main ef-

fect of the upper-level moderator.

Figure 2 illustrates the main results. It shows, for

each of the 30 cross-level interactions, by how much the

absolute t-ratio changes when a random slope is

included. Changes are shown as directed arrows on a

logged scale, with the origin of the arrow denoting the t-

statistic for the model omitting and the head denoting

the t-statistic for the model including the random slope.

Nearly all arrows point downwards, indicating that

absolute t-ratios for the models including the random

slope term are lower, and often very substantially so.

Take our running example, for instance, which is

expressed by the second arrow from the right. The

model which does not contain a random slope on high

education yields an absolute t-ratio of 9.7 for the cross-

level interaction between having high education and the

HDI on fear of crime. The corresponding value for the

model including the random slope is only 5.1, a reduc-

tion of 46.8 per cent (see Online Supplement D for these

values and the associated point estimates). Figure 2

shows that reductions of such alarming magnitude are

the rule rather than the exception (because the y-scale is

logged arrows of similar length indicate similar relative

changes). Over the 30 different models, the reduction in

the absolute t-ratio for the cross-level interaction effect

due to including the random slope is 42.4 per cent on

average. The median reduction is 48.3 per cent and the

25th and 75th percentiles are 31.3 per cent and 60.9 per

cent, respectively.

The final columns of Online Supplement Tables D1–

D6 convey another important result. They display the

remaining variation of the random slope in the model

including the cross-level interaction, expressed as the

ratio of the random slope standard deviation to the cor-

responding main effect. Thus, the values are directly

comparable with the values of SDðuðxÞj Þ in our Monte

Carlo simulations. Remaining variation in the random
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Figure 2. Changes in absolute t-ratios for 30 prototypical cross-level interactions after inclusion of random slopes expressed as

directed arrows.

Notes: The triangled arrow heads show the absolute t-ratio from the specification including a random slope for the lower-level predictor of a cross-level

interaction. The point start of the arrows indicates the absolute t-ratio from the specification omitting the random slope. The labels name the outcome

(e.g., fear of crime) and lower-level predictor involved in the cross-level interaction (e.g., unemployed). The country-level moderator is always the HDI.

The overall 60 cross-level interactions are estimated by linear mixed-effects models, which are displayed in Online Supplement Tables D1–D6. The

dashed horizontal line demarcates 2.056, the threshold for statistical significance at the five per cent level (two-tailed test). The threshold is based on a

t-distribution with 26 (¼28 � 2) degrees of freedom, as suggested by Elff et al. (forthcoming).
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slope term is substantial for most of our 30 illustrative

analyses (mean ¼ 2:03; median ¼ 0:78; p25 ¼ 0:38;

p75 ¼ 1:61). Hence, the model including the random

slope is unlikely to suffer from overcoverage (see the dis-

cussion in the previous section and in Online

Supplement B).

We have discussed the results of the empirical illus-

trations primarily in terms of changes in t-statistics and

significance. However, we would like to emphasize that

the inclusion versus omission of the random slope mat-

ters for the accurate assessment of statistical uncertainty

more broadly. Even if the omission of the random slope

term does not lead to a change in statistical significance,

it will lead to standard errors that are too small and con-

fidence intervals that are too narrow.

Against these results, we conclude that not specifying

random slopes on the lower-level components leads to

invalid statistical inference about cross-level

interactions—and that the magnitude of the problem

will be considerable in many sociological applications.

Cross-Level Interactions in the ESR

Given our findings, one may wonder whether current

multilevel modelling practice meets the requirements for

correct inference by including random slopes on the

lower-level components of cross-level interactions. To

answer this question, we reviewed all articles that inves-

tigate a cross-level interaction and that were published

in the ESR between 2011 and 2016. We confined our-

selves to studies using simple two-level models where

lower-level observations are nested in exactly one type

of upper-level unit. We identified 28 studies, the vast

majority of which (24 or 86 per cent) were country com-

parisons (one of the remaining studies treated individu-

als as nested in combinations of countries and survey

years). The 28 studies reported a total of 150 estimates

of cross-level interactions. Some studies provided mul-

tiple estimates of the same cross-level interaction (i.e., of

the same combination of lower-level, cluster-level, and

outcome variable), for example, because they compared

results across different subsamples or sets of control var-

iables. We chose one estimate at random in these cases.

For brevity, we continue to restrict our attention to

cross-level interaction effects and do not consider the

estimated main effects of the cluster- and lower-level

components in this section because the cross-level inter-

action terms tend to be of primary interest to authors.

The discomforting result of our review is that not

even half of the studies (11/28 or 39 per cent) specified

random slopes on the lower-level components of the

cross-level interactions they investigate. Figure 3

displays the percentage of studies that included random

slope terms by year of publication. It provides no evi-

dence that correct specifications have become more

popular over time. As there is little reason to suspect

that these problems are confined to articles that

appeared in the ESR, we conclude that a large number

of published sociological studies fail to meet the require-

ments for correct statistical inference about cross-level

interactions.

We have shown that inclusion of random slopes on

the lower-level components of cross-level interactions

results in larger standard errors and smaller absolute t-

ratios, so studies using the correct random-effects struc-

ture should be less likely to find statistically significant

effects. To investigate this implication, we surveyed in-

ferential statistics for the 150 cross-level interactions

estimated in the 28 ESR articles. If available, we col-

lected the t-ratio and otherwise the P-value or point esti-

mate and standard error to compute the t-ratio from

these statistics.9 Unfortunately, several studies only re-

port whether the estimated cross-level interactions attain

a certain level of statistical significance, such as the 5 per

cent level of significance, as commonly indicated by a

single asterisk �.10 Another problem is the rounding of

point estimates and standard errors, especially in com-

bination with many leading zeros, which often result in

tiny coefficients and tiny standard errors which are then

rounded and reported as ‘0.00’. In such extreme cases, it

is impossible to reliably approximate the t-statistic and

we again surveyed the level of significance of the cross-

level interaction term.

Table 4 displays the percentage of estimated cross-

level interaction effects that attain a given level of statis-

tical significance according to whether the model did or

did not include a random slope on the lower-level com-

ponent. It shows a consistent pattern of more insignifi-

cant results for models that are correctly specified and

include the random slope. By contrast, marginally sig-

nificant and especially significant and highly significant

results were less likely to occur when the random slope

term was included. This is exactly what our arguments,

Monte Carlo simulations, and illustrative empirical

analyses would suggest. Nevertheless, the pattern

appears less pronounced than one might expect given

the results of our simulations and exemplary analyses.

An important factor to consider in this regard is poten-

tial publication bias against insignificant findings, which

obviously hits correctly specified cross-level interactions

more often because their standard errors are not

deflated. In other words, a larger share of correctly esti-

mated cross-level interactions most likely never made it

into the ESR, although proving this is difficult because
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about 60 per cent of null results are never written up

(Franco, Malhotra and Simonovits, 2014). Online

Supplement E uses P-curve analyses following

Simonsohn, Nelson and Simmons (2014, 2015) to more

systematically investigate the possibility of publication

bias and ‘P-hacking’ (i.e., selective reporting of subsets

of analyses that yield significant results).

Another important question is how many findings

should never have made it into the ESR, at least not as

evidence of a statistically significant cross-level inter-

action?11 We cannot give a definitive answer to this

question based on published regression output—this

would require actual reanalysis of the published studies.

But in combination with our simulation evidence and

the illustrative empirical analyses, Figure 4 allows us to

make an informed speculation. The figure shows the dis-

tribution of absolute t-ratios for the 86 cross-level inter-

action terms where this information was provided or

where we could at least obtain a good approximation.

The upper panel shows the distribution of t-ratios from

misspecified models that omit the crucial random slope

term. The lower panel shows the distribution from mod-

els that include it.

Figure 4 shows a pronounced peak near the threshold

for statistical significance at the 5 per cent level

(t¼ 1.96). This unnatural peak characterizes the distri-

bution of t-ratios especially for the incorrectly specified

models and is suggestive of P-hacking. Online

Supplement E further investigates this issue and finds

some aggregate-level evidence for P-hacking among

studies that did not specify random slopes for their

cross-level interactions but not among those that cor-

rectly included a random slope.

What matters here more immediately is another im-

plication of the clustering of t-ratios just above 1.96: In

light of the above evidence, it seems almost certain that

the line for cross-level interactions tested without a ran-

dom slope needs to be shifted substantially to the left.

That is, the true t-ratios for the cross-level interactions

that were estimated using such models will often be

much smaller. If we take the illustrative empirical

Figure 3. Proportion of articles that include a random slope on the lower-level components of cross-level interaction terms.

Note: Results are based on 28 articles reporting cross-level interaction terms from two-level mixed-effects models published in the ESR, 2011–2016.

Table 4. Percent of cross-level interaction terms by sur-

passed significance levels

Random slope

Included Omitted

Insignificant ðP � 0:1Þ 64.71 42.42

Marginally significant (P< 0.1) 1.96 2.02

Significant (P< 0.05) 13.73 22.22

Highly significant (P< 0.01) 19.61 33.33

100.00 100.00

Overall (n ¼ 150) (n ¼ 51) (n ¼ 99)

Notes: Results are based on 28 articles reporting 150 cross-level interactions

from two-level mixed-effects models published in the ESR 2011–2016. As many

articles did not report levels of significance beyond P< 0.01, we restrict our re-

view to this threshold as the highest level of significance.
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analyses at face value, the correct t-ratios will be at least

31 per cent smaller for three quarters of these estimates

(cf. the percentiles of the relative reductions in t-ratios

reported above). This suggests that many of the cross-

level interaction effects based on misspecified models

are not actually statistically significant at conventional

levels. Thus, they should probably not have made it into

the ESR or at least should have been interpreted very

cautiously.

This conclusion is further reinforced if we take into

account that critical values based on the normal distri-

bution (i.e., t¼1.96 for P< 0.05 and t¼ 2.58 for P<

0.01) are questionable when cluster-level samples are

small. Elff et al. (forthcoming) elaborate that critical val-

ues for cross-level interaction terms should instead be

derived from a t-distribution with the appropriate

degrees of freedom typically being smaller than the num-

ber of clusters. Given that many of the surveyed studies

work with cluster-level sample sizes in the 10s or 20s,

this recommendation would often result in substantially

larger critical values. As this problem also applies to the

cross-level interaction terms that were estimated includ-

ing a random slope, one has to wonder how much ro-

bust evidence of cross-level interactions European

sociology has generated at all.

Random Slopes and ‘Pure’ Lower-Level

Effects

The results so far compellingly demonstrate that inclu-

sion of a random slope term on the lower-level compo-

nent is crucial for achieving correct statistical inference

about the cross-level interaction term and the main ef-

fect of the lower-level variable. A natural follow-up

question is whether the random slope term is also im-

portant for inference on the coefficients of lower-level

variables that are not involved in a cross-level inter-

action, that is, for ‘pure’ lower-level effects. We showed

Figure 4. Distribution of absolute t-ratios of cross-level interactions.

Notes: Results are based on 86 cross-level interaction terms from two-level mixed-effects models reported in 20 articles that were published in the ESR

between 2011 and 2016. The number of interaction terms and articles is lower than that in Table 4 because we could only include articles where authors

reported t-statistics or for which we were able to approximate them reasonably well. Bin width is set to 0.25.
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above that omitting a random slope that is actually pre-

sent in the DGP introduces heteroskedasticity

(Equation 5) and within-cluster correlation (Equation 6)

into the overall error term vij, and importantly, this fact

does not hinge on the presence of a cross-level inter-

action term in the DGP.

Further Monte Carlo simulations indeed show that

the inclusion of random slope terms is also essential for

inference about pure lower-level effects. The basic DGP

and the experimental conditions considered in these fur-

ther analyses are identical to those presented in the

‘Simulation Evidence’ section above. There is only one

crucial difference, namely, that bðxÞj , the coefficient on

the lower-level variable xij, no longer depends on the

cluster-level predictor zj (in other words, the DGP no

longer includes a cross-level interaction):

bðxÞj ¼ cðxÞ þ u
ðxÞ
j : (8)

Table 5 shows results for the same experimental con-

ditions as Table 2. It yields virtually identical conclu-

sions. When the coefficient of a lower-level variable

varies across clusters, statistical inference for the (aver-

age) coefficient, i.e., for cðxÞ, will be anti-conservative

unless that variation is captured by a random slope

term. As in the cross-level interaction case, the problem

becomes worse as the extent of cross-cluster variation in

the lower-level effect increases (i.e., the higher SDðuðxÞj Þ
is). Moreover, because the source of the problem is het-

eroskedasticity that correlates with xij, more variation in

xij amplifies the inaccuracy of statistical inference with

respect to cðxÞ. Online Supplement Table F1 further reaf-

firms that the average cluster size exacerbates the prob-

lem, just as in the cross-level interaction case (see

Table 3 above). Across all experimental conditions, the

extent of statistical over-confidence, as measured by the

undercoverage of two-sided 95 per cent confidence

intervals, is generally very similar to the corresponding

results for the cross-level interaction case.

Despite these results, we maintain that the cross-level

interaction case is more problematic and deserves special

attention for at least two reasons. First, practitioners

who analyse multilevel data with mixed-effects models

are primarily interested in context effects. Second,

lower-level effects tend to be so precisely estimated that

inaccurate inference is less likely to lead to qualitatively

different conclusions. We now elaborate on both of

these issues.

Our reading of applied research using mixed-effects

multilevel models is that practitioners predominantly

use these models to test hypotheses about context

effects. Typically, lower-level variables are mainly

included to adjust for compositional differences among

clusters. So while inference for lower-level effects might

be over-confident, it rarely matters for the main research

questions. To check the accuracy of this impression, we

extended our review of ESR articles that used (two-

level) mixed-effects models and were published between

2011 and 2016. For each article, we coded whether (i)

the title, (ii) the abstract, and (if existent) (iii) explicitly

formulated hypotheses stress (a) individual-level rela-

tionships, (b) contextual relationships (direct context

effects and/or cross-level interactions), or (c) both.

Table 6 shows the results. The number of studies dif-

fers across the columns of the table because it was not

always possible to classify a given article. For example,

an article might not include any explicit hypotheses or

the title of an article might mention neither lower-level

nor contextual relationships. The first column of

Table 6 indicates that only 3 out of 56 articles (5.4 per

cent) using (two-level) mixed-effects models exclusively

posit hypotheses about lower-level effects. By contrast,

53.6 per cent formulate hypothesis about both pure

lower-level and contextual relationships and 41.1 per

cent only present hypotheses about contextual

Table 5. Actual coverage rates of nominal 95 per cent confi-

dence interval by variance of lower-level predictor and ran-

dom slope term

SDðxijÞ cðxÞ

Random slope

Included Omitted

SDðuðxÞj Þ � 0:23

0.5 96.43 93.16

1.0 95.60 81.58

2.0 95.17 56.26

SDðuðxÞj Þ � 0:33

0.5 95.50 88.82

1.0 95.47 69.53

2.0 94.79 41.94

SDðuðxÞj Þ ¼ 1:00

0.5 95.17 53.88

1.0 94.89 30.52

2.0 95.01 17.19

SDðuðxÞj Þ ¼ 3:00

0.5 95.23 21.18

1.0 95.13 12.29

2.0 95.20 8.55

Notes: Results are based on 10,000 Monte Carlo replications. Because of

Monte Carlo sampling error, the 95 per cent test interval is 9560:427. Values

smaller or larger than that are statistically significant deviations and indicate

biased inference. The number of observations per cluster is 500 with overall 15

clusters.
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relationships. A similar pattern emerges if we consider

the abstracts of the articles. In some sense, these figures

may even overstate the salience of pure lower-level

effects in the surveyed studies. Our impression from cod-

ing the articles is that hypotheses about lower-level rela-

tionships are often the ones that are least novel and that

authors take the least interest in. This is also why, as we

turn to titles, where authors are forced to stress the car-

dinal contribution of their article, the mixed category

shrinks to ca. 15 per cent—mostly because articles tend

to highlight only context effects in their title. Two thirds

of all articles fall into this category.

Table 6. Percent of articles testing context or lower-level

effects

Explicit

hypotheses

Abstract Title

Context effects 41.07 50.00 66.67

Lower-level effects 5.36 6.06 18.75

Both 53.57 43.94 14.58

n 56 66 48

Notes: Results are based on 68 articles using two-level mixed-effects models

published in the ESR 2011–2016. Because of missing values (i.e., difficulties to

decisively code), the numbers (n) of coded hypotheses, abstracts, and titles differ.

Figure 5. Distribution of absolute t-ratios.

Notes: The 60 absolute t-ratios for cross-level interactions are estimated by linear mixed-effects models, which are displayed in Online Supplement

Tables D1–D6. The 60 absolute t-ratios for lower-level effects are estimated by identical linear mixed-effects models that simply omit the cross-level inter-

action terms. Note that 2 of the 60 t-ratios for pure lower-level effects are omitted from the bottom panel. The reason is that these two cases are extreme

outliers with absolute t-ratios of approximately 142 for the model omitting and 66 for the model including the random slope. The dashed horizontal line

demarcates 2.056, the threshold for statistical significance at the five per cent level (two-tailed test). The threshold is based on a t-distribution with 26

(¼28 � 2) degrees of freedom, as suggested by Elff et al. (forthcoming).
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A second reason why omitting the random slope

tends to be much less consequential in the pure lower-

level effect case is the much higher overall precision

(expressed for instance in higher absolute t-ratios) with

which such effects tend to be estimated. Identification of

a pure lower-level effect is about estimating the average

strength of a lower-level relationship across a set of clus-

ters. Identification of cross-level interactions is about

explaining cross-cluster variation in the strength of a re-

lationship. Much more data will usually be needed to

gain the statistical power for drawing firm conclusions

concerning the second type of effect (Gelman and Hill,

2007: Ch. 20). In consequence, the specification of the

random slope term is much less likely to make a differ-

ence with respect to conventional levels of significance

in the case of pure lower-level effects than in the case of

cross-level interactions.

To illustrate this point, we return to the empirical

examples from the ‘Illustrative Empirical Analyses’ sec-

tion above. In addition to the 60 absolute t-ratios for the

cross-level interaction estimates (see Figure 2 above and

Online Supplement Tables D1–D6), we collected abso-

lute t-ratios for the corresponding pure lower-level

effects (i.e., the t-ratios pertaining to the uninteracted

coefficients of high education, intermediate education,

gender, unemployment, age, and marital status). The

models underlying these t-ratios are identical to the ones

that underlie Figure 2, with the one exception that they

do not include the interactions between the HDI and the

lower-level predictors (the additive effect of the HDI

remains in the model). As before, we consider two speci-

fications for each of the 30 combinations of lower-level

predictors and outcome variables, one that only includes

a random intercept and one that additionally includes a

random slope term on the lower-level predictor.

Figure 5 shows these absolute t-ratios, ranked by

their size and differentiated by whether the model

entailed a random slope on the respective lower-level

predictor. The top graph depicts the t-ratios for the

cross-level interaction terms, which were already shown

in Figure 2 above. The t-statistics are mostly smaller

than 5 and when a random slope was specified, the vast

majority is smaller than the critical value of 2.056

(df � 28� 2 ¼ 26, see Elff et al., forthcoming). Because

of these generally small t-ratios, the inclusion of the ran-

dom slope term would often lead to qualitatively differ-

ent conclusions concerning the strength of evidence

against the null hypothesis.

The picture looks very different for the absolute t-

ratios of the pure lower-level effects, displayed in the

bottom graph. Including the random slope reduces the

distribution of t-ratios substantially also in this case.

However, the t-ratios remain very high and far above

conventional thresholds for statistical significance in the

vast majority of cases. Of the 26 lower-level effects that

are significant at the five per cent level according to a

model that omits the respective random slope, 24

remained significant after its inclusion. In the cross-level

interaction case, by contrast, we observe a change from

statistical significance to insignificance in 7 out of ini-

tially 15 cases (see also Figure 2 above). Thus, even

though statistical inference for lower-level effects will be

over-confident when the corresponding random slope is

not included, chances are high that any given effect

would remain (highly) significant in the correctly speci-

fied model. This is the decisive difference to the cross-

level interaction case where switching to the correct spe-

cification will often wash away any robust evidence

against the null hypothesis.

Conclusions

Our study was motivated by the observation that pub-

lished research using mixed-effects multilevel models is

strikingly inconsistent when it comes to the inclusion of

random slopes on the lower-level components of cross-

level interactions. Several leading textbooks on multi-

level modelling fail to give a clear recommendation on

this issue as well.

We have argued, and demonstrated with Monte

Carlo simulations, that cross-level interactions generally

require the inclusion of the associated random slope.

Omission of the random slope term results in unmod-

elled cluster-driven heteroskedasticity and cluster-

correlated errors, thus violating fundamental model

assumptions and assuming too much independence

among observations. The most important consequence

is that statistical inference for the cross-level interaction

term and the main effect of its lower-level component

becomes overly optimistic: t-ratios will be too high, con-

fidence intervals too narrow, and standard errors as well

as P-values too low, leading to overrejection of the null

hypothesis of no effect. The problem becomes more se-

vere (a) as unmodelled variation in the cluster-specific

slopes increases, (b) as the variance of the lower-level

variable involved in the interaction increases, and (c) as

the the cluster size grows (i.e., the more lower-level

observations there are per cluster). Mixed-effects models

that include a random slope term on the lower-level

component of cross-level interaction terms generally

performed very well in our simulations. Only in a few

situations of little practical relevenace did we find them

to produce over-conservative inference.
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A total of 30 illustrative applications based on ESS

data indicate that the consequences of omitting the ran-

dom slope can be dramatic in real-life settings. In three

quarters of cases, the absolute t-statistic on the cross-

level interaction term was at least 31 per cent lower for

the model including the random slope than for the

model omitting it. These results are highly discomfort-

ing, as our review of ESR articles indicates that many

published cross-level interactions estimated without the

associated random slope are barely statistically signifi-

cant. It is quite likely that most of these estimates could

not be considered as robust evidence for the relationship

in question if they were estimated using the correct

specification.

The prototypical case that has been guiding our study

is that of a cross-sectional cross-country comparison, as

this is by far the predominant type of multilevel analysis

published in the ESR. It is clear, however, that our find-

ings have similar implications for other data structures.

An obvious case is that of repeated cross-national sur-

veys. Schmidt-Catran and Fairbrother (2016) show that

correct inference will typically require the specification

of random intercept terms at both the country and the

country-year (and, to a lesser extent, also the year) level

in this setting. Our findings indicate that it will also be

crucial to specify random slope terms at those levels,

particularly for lower-level predictors that are involved

in cross-level interactions with (contextual) variables

that vary at the country or country-year level.12

Going beyond the case of cross-national surveys,

researchers using mixed-effects models to analyse other

types of multilevel data should similarly make sure that

their conclusions about cross-level interactions and

lower-level effects do not hinge on the omission of the

corresponding random slope terms. The consequences

may be somewhat less severe when working with meso-

level contextual units such as schools or with individual-

level panel data (because average cluster size tends to be

lower). Nevertheless, failing to specify a random slope

has the potential to compromise statistical inference also

in these settings.

Looking backward, our results thus cast doubt on

many findings that are potentially considered well-

established. We encourage researchers to take our

results into account when reviewing previous studies.

Results on cross-level interactions that were estimated

without the crucial random slope term should be inter-

preted with caution and considered as preliminary.

Their validity should be checked through replication,

and the results of replication attempts should be publicly

reported to promote a balanced assessment of the empir-

ical evidence for a given cross-level relationship.

Looking forward, our findings suggest that

researchers who investigate cross-level interactions using

mixed-effects multilevel models should always include a

random slope for the lower-level component of the inter-

action. Editors and referees should insist that authors

adhere to this rule.

Last but not least, our results highlight another,

broader challenge faced by those who want to analyse

multilevel data with mixed-effects models. We found

that random slopes are similarly required for accurate

inference about ‘pure’ lower-level effects, provided—of

course—that the effect truly varies across clusters (see

also Barr et al., 2013; Bell, Fairbrother and Jones,

2018). We believe this issue to be less troubling than the

cross-level interaction case because researchers using

multilevel modelling are rarely interested in pure lower-

level effects and because many of these effects would re-

main highly statistically significant even if the associated

absolute t-statistic declined by 50 per cent or more.

Nevertheless, the idea that statistical inference on lower-

level predictors will typically be anti-conservative is un-

attractive, even if they are usually only considered as

control variables.

How, then, can this issue be resolved? Simply speci-

fying random slopes on all lower-level predictors will

rarely be a solution. Such models would typically suffer

from overspecification (Bates et al., 2015; Heisig,

Schaeffer and Giesecke, 2017; Matuschek et al., 2017).

The strategy of specifying additional random slopes in

the interest of accurate inference would quickly become

self-defeating, leading to the very problem it seeks to

solve: anti-conservative inference (Heisig, Schaeffer and

Giesecke, 2017). One viable, albeit not fully satisfac-

tory, solution will be to focus on achieving correct infer-

ence for the coefficients of interest and take inference

for other predictors with a large grain of salt. One might

also consider fitting the same fixed-effects specification

(i.e., the same model in terms of the set of predictors)

with several random-effects specifications, including the

random slope terms one at a time (i.e., first for x1, then

for x2, and so forth) to get a sense of the correct stand-

ard errors for the different lower-level predictors. A fully

convincing solution will probably require approaches

such as bootstrapping or profile likelihood methods,

however. Methods for cluster-robust inference from the

econometric literature may also be worth considering,

but they face their own set of challenges.13

Notes
1 The careful reader might notice that Equations 5

and 6 in Snijders and Bosker (2012) refer to the
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conditional variance of the outcome Yij rather than

the overall error vij. However, this is fully consist-

ent with the formulation given here because condi-

tional on xij variation in Yij can only come from the

random part of the model, that is, from vij.

2 We do not study the performance of cluster-robust

methods in this article because mixed-effects mod-

els are by far the most widely used method for

investigating context effects in sociology (Heisig,

Schaeffer and Giesecke, 2017) and because the

cluster-robust approach has its own set of pitfalls,

especially when the number of clusters is small or

when the data are characterized by multiple (non-

hierarchical) levels of clustering (for further discus-

sion, see Cameron and Miller, 2015).

3 This is not to say that point estimates will never dif-

fer according to whether a random slope is included

or not. This is easiest to see in the case of a ‘pure’

lower-level effect, that is, of a coefficient of a

lower-level variable that is not interacted with an

upper-level predictor. In the model that includes

the random slope, the coefficient estimate on the

lower-level predictor is an estimate of the

unweighted average of the cluster-specific slopes.

This follows from the fact that the random slope is

assumed to be normally distributed with a mean of

0. In the model that does not include a random

slope, the coefficient will be a weighted average of

the cluster-specific coefficients. Therefore, the dif-

ference will be particularly large when the magni-

tude of the cluster-specific coefficients is strongly

related to cluster size. It is not clear whether one

would necessarily want to describe one of these

estimates as ‘biased’, however, as the two

approaches really estimate different quantities. To

see that similar issues arise in the estimation of

cross-level interactions, one simply has to note that

the coefficient on the cross-level interaction term

can be conceptualized as the effect of the cluster-

level variable on the conditional average slope of

the lower-level variable. Equation 3 makes this

very clear.

4 We have conducted additional Monte Carlo simu-

lation results that support this claim. These results

are available upon request.

5 Barr et al. (2013) also stress the importance of ran-

dom slope terms for statistical inference, but they

focus on experimental designs with crossed random

effects that are quite different from those typically

encountered in sociology.

6 The simulation results indeed show that both types

of models produce unbiased coefficient estimates.

These results can be obtained from the replication

files that are part of the online supporting material.

As discussed in footnote 3, there may be cases

when a model with and a model without a random

slope produce systematically different estimates,

but the reason here would be that the former esti-

mates an unweighted whereas the latter estimates a

weighted average effect.

7 In other words, while the nominal probability of

committing a Type 1 error, that is, of rejecting the

null hypothesis of no effect although it is true,

would be 0.05, the true probability would be 0.10.

8 Replication code for the analyses in Heisig,

Schaeffer and Giesecke (2017) is available at http://

journals.sagepub.com/doi/suppl/10.1177/0003122

417717901. Together with the replication code for

the present article, it can be used to replicate all

analyses reported in this section.

9 When relying on the P-value, we assumed a nor-

mally distributed test statistics, consistent with the

approach taken by the majority of authors. Elff

et al. (forthcoming) show this assumption to be

problematic when the number of clusters is small,

but we nevertheless use it here to treat the different

studies consistently.

10 For a thorough review and critical discussion of

reporting practices and significance testing in the

ESR, see Bernardi, Chakhaia and Leopold (2017).

11 We focus on statistical significance because of the

important role that it continues to play in the publi-

cation process and in the evaluation of empirical

evidence. We do not mean to imply that statistical

significance is the best and/or should be the only

criterion used to assess statistical uncertainty. Our

conclusions would clearly be similar for alternative

measures of uncertainty such as standard errors or

confidence intervals.

12 One might wonder why models without a random

slope term performed well in Schmidt-Catran and

Fairbrother’s (2016) Monte Carlo simulation. The

reason is that the DGP underlying their simulations

did not involve any random slopes, so that their

omission did not result in inferential deficiencies.

13 Conventional corrections—as implemented in

Stata’s vce (cluster clustvar) option—are known to

require a substantial number of clusters (at least 40

or 50) for accurate inference (Cameron and Miller,

2015). Recent methods for the few-clusters case

show promising performance, but further research

is needed before clear recommendations can be

given (for details, see Cameron and Miller, 2015;

Esarey and Menger, 2018). In addition, cluster-
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robust methods treat the violation of classical

assumptions as a mere nuisance. There may be sub-

stantial benefits to addressing these violations

through model respecification, for example,

through the inclusion of additional predictors or

random slope terms that capture heterogeneous

effects (King and Roberts, 2015; Heisig, Schaeffer

and Giesecke, 2017).

Supplementary Data

Supplementary data are available at ESR online.
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