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COMPARING MULTIPLE IMPUTATION AND PROPENSITY-SCORE WEIGHTING IN UNIT-
NONRESPONSE ADJUSTMENTS 
A SIMULATION STUDY 

AHU ALANYA* 
CHRISTOF WOLF 
CRISTINA SOTTO 

Abstract The usual approach to unit-nonresponse bias detection and adjustment in social surveys has 
been post-stratification weights, or more recently, propensity-score weighting (PSW) based on 
auxiliary information. There exists a third approach, which is far less popular: using multiple imputed 
values for each missing unit of the survey outcome(s). We suggest multiple imputation (MI) as an 
alternative to PSW since the latter is known to increase variance substantially without reducing bias 
when auxiliary variables are not associated with the survey outcome of interest. Given that most social 
surveys have multiple target variables, creating imputed data sets may address bias in survey 
outcomes with less variance inflation. We examine the performance of PSW and MI on mean esti-
mates under various conditions using fully simulated data. To evaluate the performance of the 
methods, we report average bias, root mean squared error, and percent coverage of 95 percent 
confidence intervals. MI performs better under some of our scenarios, but PSW performs better under 
others. Even within certain scenarios, PSW performs better on coverage or root mean squared error 
while MI performs better on the other criteria. Therefore, robust methods that simultaneously model 
both the outcomes and the (non)response may be a promising alternative in the future. 
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Until now, various indicators (for a summary, see Wagner [2012]) and adjustment methods (e.g., 
Groves 2006; Stoop et al. 2010; Bethlehem, Cobben, and Schouten 2011) have been suggested to 
detect and reduce unit-nonresponse bias in sample surveys. Among these approaches, propensity-
score weighting (PSW) has become commonplace in survey research. Generally, this process 
computes propensity scores by modeling the probability/likelihood of the response indicator conditional 
on auxiliary information (e.g., sample frame information, paradata, or nonresponse surveys), then 
assigning each respondent a weight that is equal to the inverse of his/her estimated propensity score. 
Alternatively, respondents are classified into k equal-size strata based on estimated propensity scores, 
and a single nonresponse weight is computed for each stratum. Either way, PSW has the potential for 
high variance inflation and difficulty in handling item missingness in auxiliary variables effectively. 
However, it is a popular model-based technique for adjusting for unit nonresponse in survey research. 
Another missing-data method, multiple imputation (MI), has become one of the most attractive tools for 
item nonresponse adjustment (Rubin 1987). A number of previous simulation studies, particularly in 
the context of item nonresponse, have compared weighting adjustments to multiple imputation or 
robust extensions of the two (e.g., Kang and Schafer 2007; Cao, Tsiatis, and Davidian 2009), but only 
a few studies have actually applied MI to unit nonresponse. Simulations by Yuan and Little (2007) 
focused specifically on cluster samples and nonresponse mechanisms. Peytchev's (2012) study, on 
the other hand, provided practical evidence that multiple imputation for unit nonresponse can be more 
efficient compared to PSW in terms of standard errors. However, Peytchev's findings are based on a 
case study of a real-life survey with a relatively high response rate (above 70 percent), where he 
compares MI with only one kind of propensity-score-based method, namely, inverse propensity-score 
weighting. Thus, more exploration is needed on the relative efficiency of MI and PSW in unit-
nonresponse adjustment under various adjustment scenarios, using commonly available versions of 
MI and PSW methods. 
MI may offer several advantages over PSW. One advantage is related to efficiency. PSW tends to 
inflate variance estimates, particularly when auxiliary variables used in the adjustment are strongly 
associated with the response propensity and not associated with the outcome (Little 1986; Little and 
Vartivarian 2005). Although outcome-specific propensity-score models could produce some efficiency 
gains by excluding auxiliaries not related to the survey outcome of interest, this is not feasible for 
general social surveys, which target a broad range of survey variables. Similarly, trimming inverse 
propensity-score weights (Lee, Lessler, and Stuart 2011) or using stratification on propensity scores 
(Rosenbaum and Rubin 1984) can help reduce variance by avoiding large weights, but also can 
increase bias if employed rigorously. Multiple imputation, on the other hand, can be equally good at 
addressing bias
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and yielding lower standard errors even when there are a number of auxiliary variables and 
adjustment targets multiple survey outcomes. Furthermore, the new methods developed under MI 
allow for separate modeling of the response propensity and the missingness in the outcome of 
interest; consequently, auxiliary variables related to either response or outcome or both are combined 
properly under MI (Jolani, van Buuren, and Frank 2011). 
It is common to have missing values in auxiliary variables in unit-nonresponse adjustment, and this 
should be resolved before estimating propensity scores. An effective way to solve this problem is to 
use multiple imputation as an initial step before weighting to complete missing auxiliary information 
(e.g., Mattei 2009; Qu and Lipkovich 2009). However, this method needs further examination, 
particularly on the correct estimation of standard errors after using MI as an initial step and on 
modeling propensity scores across the imputed data sets. Other ways to estimate propensity scores 
with missing data, such as those offered by D'Agostino and Rubin (2000), also require some extra 
work and are not available in mainstream software. Multiple imputation, on the other hand, can handle 
item missingness in auxiliary variables and unit nonresponse in one step. In addition, with increasing 
administrative data, paradata, and other auxiliary information, the missingness patterns in unit-
nonresponse adjustments are becoming more complex (less monotone). Therefore, the ability to 
simultaneously account for item and unit nonresponse may become a more apparent advantage for MI 
over PSW (Little 2013). 
In this paper, we explore whether MI is a better alternative to PSW in unit-nonresponse bias 
adjustment in terms of providing lower root mean square errors (RMSE) and/or higher coverage of 95 
percent confidence intervals. For this purpose, we investigate how MI and PSW estimates differ in 
relation to the amount of missing data, as well as the strength of associations between auxiliary 
variables, the response propensity, and outcome variables. Furthermore, we consider how robust 
each method is against misspecifications such as omitted interactions and nonlinear terms, which can 
be especially meaningful in survey research where “main-effects” weighting models appear to be a 

common practice. Moreover, our comparison between MI and PSW considers two different versions of 
each method. For example, subclassification on propensity scores may yield variance estimates closer 
to that of MI compared to inverse propensity-score weighting. This could make switching to MI 
superfluous given the current expertise in propensity-score-based methods. Finally, we restrict 
attention to nonresponse of a missing-at-random (MAR) nature, as explained in the following section. 
It is worth noting that this study focuses on model-based approaches to unit nonresponse, leaving out 
traditional techniques such as complete case analysis, post-stratification weighting, or relatively new 
robust techniques that are not currently incorporated into mainstream software packages. That is, we 
use off-the-shelf Stata routines for PSW and MI that are widely available to analysts and data 
providers alike. As Little (1988, 288) suggests, “carefully
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constructed” nonresponse adjustments with model-based methods can improve our analysis 
compared to traditional approaches; however, practitioners should be aware of the benefits as well as 
the risks associated with alternative methods. This study specifically addresses the modeling 
questions that practitioners ask themselves when using either of these model-based approaches; it 
aims to provide insight on bias-variance trade-offs and the resulting coverage for population 
parameters under different conditions. 
Using simulated data, we compare the performance of MI and PSW under varying levels of the factors 
discussed above (response rate, strength of associations, adjustment model misspecification) to 
answer the following research questions: 

1. Can multiple imputation (MI) yield consistently lower variance estimates compared to propensity-
score weighting (PSW) while being equally effective in reducing bias? 

2. How do the bias-variance properties of MI and PSW affect 95 percent confidence interval 
coverage? 

3. How do the methods perform under different response rates, different degrees of associations with 
auxiliary variables, different sample sizes, and different specifications of the model? 

 

 

Simulation Study 

SIMULATION SETUP 
A number of simulation studies have investigated the properties of PSW methods (e.g., Brookhart et 
al. 2006; Kreuter and Olson 2011). In addition, some other studies have compared the performance of 
inverse propensity-score weighting (IPSW) to MI for item nonresponse. For example, Carpenter, 
Kenward, and Vansteelandt (2006) assessed, for continuous outcomes, a doubly robust IPSW 
estimator with standard IPSW, maximum likelihood, and MI. IPSW estimators were found to be 
inefficient and sensitive to the choice of the weight model, but the doubly robust version was as 
efficient as MI and robust against misspecification. Beunckens, Sotto, and Molenberghs (2008), on the 
other hand, considered IPSW and MI-based approaches for binary longitudinal outcomes. Their 
simulations underscored the sensitivity of IPSW to misspecification in the weight model and its 
inefficiency for modest amounts of missingness. Moreover, in all scenarios investigated, the MI-based 
approach outperformed the weighted approach despite misspecification in either the imputation model 
or the analysis model. 
Building on these studies, our simulations compare PSW and MI in the case of unit nonresponse. We 
focus on the estimation of the population mean of a continuous variable from incomplete data. 
Accordingly, hypothetical survey data sets are generated (with sample sizes n = 200, 3,000, and 
10,000), where
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the survey outcome of interest is Y and the binary unit-response indicator is R. For simplicity, we 
consider two auxiliary variables, Z1 and Z2, independently drawn from the standard normal distribution 
~ N (0, 1). R is then modeled as a function of Z1 and Z2, either as 

(1a) 

Pr  (R = 1i) =  
𝑒a0+a11+a22

1 + 𝑒a0+a11+a22
 

or 

(1b) 

Pr  (R = 1i =  
𝑒a0+a11+a22+a31

2+a412+a52
2

1 + 𝑒a0+a11+a22+a31
2+a412+a52

2 

respectively reflecting a “main-effects” or a “complex” formulation for the underlying association 

between R and Zs. In the next step, a continuous survey outcome Y is modeled as a function of Z1, Z2, 
a constant term, and a normally distributed error term e ~ N(0,1). As in the case of equations (1a) and 
(1b), we formulate either a “main-effects” or a “complex” model as well, i.e., 

(2a) 
Y = 10 + 

1
1 + 

2
2 + 

𝑒
e 

or 
(2b) 

Y = 10 +  
1
1 + 

2
2 + 

3
1

2 + 
4
12 + 

5
Z2

2 + 
𝑒
e 

To make our scenarios more realistic, we manipulate the variance explained in Y by varying the 
coefficient of the error term ¡5e in equations (2a) and (2b). These equations lead to, in total, two 
different synthetic data sets where the first models Z, R, and Y relationships using only main effects 
and the second adds quadratic and interaction terms. We do not include R as a predictor in the data-
generation model of the outcome variable Y. That is, we assume that R has no direct effect on Y (as 
shown as a dashed arrow in figure 1) independent from the auxiliary variables, implying that the 
nonresponse mechanism is MAR (Rubin 1976). Regarding other design features, we use a similar 

 
Figure 1. Data-Generation Model – Illustrated for the Main Effects Scenario. 
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simulation framework introduced in previous studies particularly by Setoguchi and his colleagues 
(2008) in the area of epidemiological research, and Kreuter and Olson (2011) as applied to survey 
methodology. We set the average of the survey variable Y to 10 and vary the strength of auxiliary-
response and auxiliary-outcome relations. To create weak, moderate, and strong associations 
between the auxiliary variables and the response propensity, we consider possible combinations of 
{0.1,2,4} for 1 and 2 in equations (1a) and (1b), whereas 0 is used to control the overall amount of 
missing data. Similarly, in equations (2a) and (2b), we use combinations of {0.1,1,3} for 1and 2 to 
represent different degrees of association between the auxiliary variables and the outcome Y. 
For conciseness, we summarize our findings by discussing the results for only three patterns (or 
combinations of s and s).1 We organize our simulations and results primarily by the patterns of 
association between R, Y, and auxiliary variables. In the first pattern, auxiliary variables are weakly 
associated with both R and Y (1 = 0.1,2 = 0.1,1 = 0.1,2 = 0.1).Therefore, bias and variance infla-
tion as well as the difference between the methods are expected to be small (see Kreuter et al. 
[2010]). For nonresponse bias adjustment to be effective, auxiliary variables need to have substantive 
association with both R and Y. However, most auxiliary data collected at the time of the survey target 
understanding the response behavior and therefore are likely to have strong correlations with R rather 
than with the Ys. Furthermore, general practice with PSW is to use variables that significantly predict 
R, since weighting is applied for multiple outcomes and includes auxiliary variables that have different 
levels of associations with the Y variables (e.g., see Matsuo et al. [2010]). In this case, the practitioner 
may end up with the second pattern, where auxiliary variables are strongly related with R, but weakly 
determine Y (1 = 2,2 = 4,1 = 0.1, 2 = 0.1) ,for which we expect PSW to inflate variance more than 
MI methods. The last pattern is the ideal adjustment case and is one where auxiliary variables have 
high levels of associations with both the response and the outcome (1 = 0.1,2 = 0.1,1 = 1,2 = 3). 
We expect higher bias and variance as we go from pattern 2 to pattern 3 since the adjustment gets 
stronger. Given that situations where auxiliary variables are strongly related to Y but weakly related to 
R are less likely to occur in surveys with multiple outcomes, we exclude this pattern in our simulations. 
Full details on data generation and the three patterns of coefficients are presented in appendix 1. 
Overall, we expect PSW and MI to perform similarly in correcting bias, with the former having higher 
variance inflation compared to the latter, particularly for patterns 2 and 3. 
To investigate how differences between PSW and MI are affected by the amount of missing data, we 
also vary the response rate. Response rates of

 
1 These three patterns of associations between response (R), outcome (Y), and auxiliary variables are crucial in 
the comparison of MI and PSW methods. In addition, these patterns are easy to examine before researchers 
decide on a certain method. 
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face-to-face general-population social surveys today can be as low as 30 percent (e.g., 34 percent for 
ALLBUS 2010, 31 percent for ESS 2010 in Germany, 29 percent in ISSP 2009 in Argentina, and so 
on). When the response rate is low, the rates of missing information and bias are expected to be larger 
and these may have an impact on how the methods perform. For example, strong auxiliary variables 
are likely to result in larger weights under lower response rates, yielding larger variance inflation for 
PSW. Also, if the rate of missing information for the parameter of interest is high, more than five 
imputed data sets may be necessary to achieve efficiency (Schafer 1999). Therefore, we generate two 
different levels of response rates that we think are relevant for survey practitioners: low (≃ 35 percent) 
and moderate (≃ 65 percent) by manipulating the constant term a0 in the true response model (see 
appendix 2 for the resulting response rates). 

Simulation Scenarios 
Simulation studies have focused on either the direction/strength of the relationship among auxiliary 
variables, response propensity, and outcome variables (e.g., Brookhart et al. 2006; Kreuter and Olsen 
2011) or the (mis)specification of propensity-score models (Drake 1993; Millimet and Tchernis 2009; 
Clarke, Kenkel, and Rueda 2011); our paper focuses on both the strength of the relationship of 
auxiliary variables with R and Y as well as the (mis)specification of propensity scores. We have 
defined three different patterns between auxiliaries and R and Y to vary these associations. To vary 
the functional form of the adjustment, we created realistic complexity in the true propensity-score 
function by adding nonadditive and nonlinear terms in the true response and outcome models. Also, 
because focusing on the main effects of auxiliary variables that are significant predictors of the 
response indicator when specifying propensity scores often results in misspecification of the possibly 
more complex true response models, we consider the effect of misspecification of adjustment models 
for each synthetic data set, as shown in table 1. 
Overall, we consider four adjustment scenarios: 

Scenario 1.1:  A main-effects model, in which the functional form of the true response model includes 
only main effects and adjustment models are correctly specified; 

Scenario 1.2:  A misspecified main-effects model, where the functional form of the true response 
model includes only main effects and adjustment models are misspecified by omitting 
one of the auxiliary variables; 

Scenario 2.1:  A complex model, where the functional form of the true R model is complex, and 
includes quadratic and interaction terms, and adjustment models are correctly specified;
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Table 1. Simulation Scenarios 

Scenario 

 True response model 

1.1,1.2 logit (Pr(R = 1)) = 0 + 11 + 12 

2.1,2.2 logit (Pr(R = 1)) = 0 + 11 + 22 + 31
2+ 4 12 + 52

2 

 True survey outcome model 

1.1,1.2 Y = 10 + 11 + 22 + ee 

2.1,2.2 Y = 10 + 11 + 22 + 3Z1
2 + 4 Z1Z2 + 52

2 + ee 

 PSW () model 

1.1 logit(R)= f(1,2) 

1.2 logit(R)= f(Z1) 

2.1 logit(R)= f(1,1,1
2,1,2,2

2) 

2.2 logit(R)= f(1,2) 

 MI (regression) model 

1.1 mi(Y)= f(1,2) 

1.2 mi(Y)= f(1) 

2.1 mi(Y)= f (1,2,1
2,1.2,2

2) 

2.2 mi(Y)= f(1,2) 

Scenario 2.2:  A misspecified complex model, in which the functional form of the true R model is 
complex and adjustment models are misspecified by omitting quadratic and interaction terms. 
Table 1 summarizes the true underlying models (data-generation models) and adjustment 
models for each scenario. 

 

 

PSW AND MI METHODS 
Stata 12 software was used for all tasks described. First, we generated the data and saved the 
complete data estimates for the mean and variance of Y. To generate incomplete data sets, Stata 
deleted Y values for nonrespondents who had a value of 0 for the response indicator (R). Next, the 
program implemented four types of unit-nonresponse adjustment: two propensity-score-based 
methods and multiple imputation with two different numbers of imputed data sets equal to 5 and 100. 
A brief description of the methods along with their abbreviations is provided below. 
IPSW, inverse propensity-score weighting, was applied using the inverse of the estimated propensity 
scores from a logistic regression of R on the auxiliary variables as weights for respondents (e.g., 
Hirano and Imbens 2001). Stata's user-written command pscore was used to estimate the response 
propensities. Inverse of response propensities (1/p) were included as (unnormalized) weights using 
the pweight command of Stata for estimating means and variances based
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on the respondents' sample. Second, we generated weights using propensity-score subclassification 
(PSS) to minimize the variance impact of PSW (Little and Rubin 2002). We followed the same rules 
described by Little (1986) and also employed by Lee and Valliant (2009). The total sample of 
respondents and non-respondents was divided into ten equal-size groups based on the estimated 
propensity scores from IPSW. Weights for respondents were calculated as the ratio of sample units 
within each strata to the total number of units in the entire sample divided by the proportion of 
respondents in each stratum to the total number of respondents in the entire sample. For example, 
weights in the ith stratum are expressed as 

(3) 

Wi
R =  

(ni
NR + ni

R) / (nNR + nR)

(ni
R/nR)

 

where i is the ith stratum, ni
R is the total number of respondents in the ith stratum, ni

NR is the total 
number of nonrespondents in the ith stratum; and nR is the total number of respondents and nNR is the 
total number of nonrespondents in the entire sample. 
The other two methods, MI with five imputed data sets and with 100 imputed data sets, were 
implemented using the chained equations approach (Raghunathan et al. 2001) as opposed to 
conventional MI. While the latter assumes a multivariate normal distribution (mvn) for the multivariate 
outcomes, the former is less stringent in the sense that only univariate normality of one outcome 
conditional on the other outcomes (in some specific order, i.e., “chained”) is required. When there are 

relatively few variables to impute and the variables to be imputed are approximately jointly normally 
distributed, it is convenient to use the mvn method. However, this is rarely the case in social surveys 
that may include a wide array of variables. The advantage of the chained equations approach is that it 
can handle various data characteristics, such as ranges or ordinal scales, using conditional models 
(White, Royston, and Wood 2011).2 We use the chained equations method even though the only 
missing data are in Y, so the result is univariate regression. 
Unlike weighting, MI models the target survey variable instead of the response propensity. Missing Y 
values are imputed m times by taking independent random draws from the posterior predictive 
distribution of the missing data (Ymiss) given the observed data (Yobs). The number of required 
imputations to adjust for bias is typically as low as five, but since we also investigate low response 
rates that reflect high rates of missingness, we considered m = 100 imputations to evaluate relative 
efficiency gains from increasing the number of imputations.  

 
2 In principle, the chained equations approach is thus more suitable for social surveys, although there are studies 
suggesting that MI assuming mvn performs well even with non-normal variables (Lee and Carlin 2010). However, 
this advantage is not evident in our simulations since we consider only a single outcome (i.e., univariate) rather 
than multiple outcomes (i.e., multivariate). 
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PERFORMANCE METRICS 
The simulation scenarios and patterns are designed to assess how methods perform in terms of bias-
variance trade-offs under different conditions. We looked at two major performance metrics: bias and 
RMSE. For a given method, we calculated these measures as 

(4) 

bias (
R

) =  ∑


iR

S
−   =  

R
− 

S

i=1

 

(5) 

var (
R

) = ∑
var (

iR
)

S
, average of variances

S

i=1

 

(6) 

𝑅𝑀𝑆𝐸  (
𝑅

) = √𝑏𝑖𝑎𝑠2(
𝑅

) + 一(܀㴀܀刀܀
𝑅

), 

where S = 500 denotes the number of samples drawn from each population, 
R
is the adjusted or 

unadjusted respondent mean of Y, and 
iR

 is the respondent mean for the ith simulated data set, with 
variance estimate var (

iR
) as provided by the software; 

R
 is the average of the adjusted or unadjusted 

respondent means across all simulated data sets. Bias is calculated for each simulation cell and 
averaged over S replications. Similarly, variance for each pattern and scenario is calculated by 
averaging variance estimates over S replications. Additionally, to evaluate whether the efficiency of MI 
results in lower coverage for the true population mean, we report the percent coverage of the 95 
percent confidence intervals. The latter is calculated as the percentage of 500 simulated data sets in 
which the adjusted or unadjusted respondent sample 95 percent confidence interval includes the 
population mean. 

 

Results 
Tables 2-4 show the performance metrics for each pattern of association by scenario under low and 
moderate response rates and for n = 200, 3,000, and 10,000, respectively. One of the questions 
posed is whether MI approach is better than PSW in reducing bias while producing lower variance 
estimates. The answer from the tables is not straightforward. MI generally yields lower RMSE when 
auxiliary variables are strongly associated with both R and Y (pattern 3). However, this does not 
always result in higher coverage, for example when the true R and Y models are complex, but this 
complexity is ignored in the adjustment model (scenario 2.2). Overall, the tables show that MI is not 
consistently better than PSW. Therefore, it seems reasonable to present the results by pattern and 
specify where each method may have strengths and the implications of this for future practice and 
research. Below, we present a more detailed discussion with reference to smaller and larger data sets, 
taking the n = 3,000 as the main reference point.
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Table 2. Performance Metrics by Pattern, Levels of Associations with Auxiliary Variables (500 simulated data sets of n =200) 
        Low response rate      

   Pattern 1  Pattern 2  Pattern 3 
Metric Scenario  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100 
Bias x213                 
 1.1  -7 -7 -17 -13  63 93 56 0  1302 1877 288 8 
 1.2  1 0 -34 -4  103 105 68 94  2980 2981 2963 2964 
 2.1  -6 -2 6 -9  3 52 105 -3  846 1586 531 -9 
 2.2  24 15 14 16  187 74 -136 -179  292 1483 -573 -790 
RMSE x213                 
 1.1  127 133 131 125  213 199 288 227  2492 2338 1935 1632 
 1.2  126 132 149 129  168 175 160 164  3166 3187 3014 3122 
 2.1  131 138 151 135  220 189 582 448  2365 2168 3724 3139 
 2.2  133 138 135 129  294 209 296 279  3720 2161 1962 1820 
95% CI cov.                 
 1.1  93 92 93 93  81 87 93 94  51 44 92 94 
 1.2  93 94 91 93  87 86 88 88  2 3 8 3 
 2.1  95 95 94 95  83 91 97 96  65 53 97 96 
 2.2  93 94 91 93  51 89 87 84  43 58 91 87 

Continued 
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Table 2. Continued 

        Moderate response rate      
   Pattern 1  Pattern 2  Pattern 3 
Metric Scenario  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100 
Bias x213                 
 1.1  -3 -2 3 -2  31 37 19 6  553 750 101 37 
 1.2  1 1 3 1  53 53 65 54  1554 1549 1611 1549 
 2.1  -4 -3 4 -2  -9 -7 10 -4  180 346 58 -11 
 2.2  13 5 17 12  169 32 -41 -52  -551 359 -95 -150 
RMSE x213                 
 1.1  91 92 100 91  140 125 113 108  1008 1028 604 583 
 1.2  90 92 104 91  106 106 114 106  1631 1628 1691 1627 
 2.1  93 94 98 94  141 126 138 130  909 839 726 687 
 2.2  94 94 106 94  286 132 115 118  1363 808 595 601 
95% CI cov.                 
 1.1  95 95 96 95  93 92 93 96  73 71 93 96 
 1.2  95 95 96 95  91 92 88 91  12 12 12 11 
 2.1  96 96 95 96  94 95 93 96  90 88 94 95 
 2.2  96 96 96 96  76 92 90 92  76 87 93 94 
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Table3. Performance Metrics by Pattern, Levels of Associations with Auxiliary Variables (500 simulated data sets of n = 3,000) 
        Low response rate      

   Pattern 1  Pattern 2  Pattern 3 
Metric Scenario  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100 
Bias x213                 
 1.1  2 3 1 2  26 45 14 2  577 970 70 12 
 1.2  9 10 7 9  101 102 102 101  3001 3002 2994 2992 
 2.1  3 8 8 2  7 15 22 4  172 499 112 21 
 2.2  35 16 34 34  1028 75 -134 -145  -28 770 -565 -620 
RMSE x213                 
 1.1  32 32 29 32  157 123 63 57  1113 1187 322 289 
 1.2  33 34 30 32  107 108 106 107  3007 3008 2998 2998 
 2.1  33 34 34 32  148 119 93 75  939 864 470 380 
 2.2  48 37 45 47  1074 123 145 154  1607 922 636 677 
95% CI cov.                 
 1.1  94 94 88 93  83 85 88 94  57 53 88 94 
 1.2  93 92 88 91  16 17 14 13  0 0 0 0 
 2.1  95 95 92 94  89 93 92 94  76 77 92 94 
 2.2  82 92 72 81  25 85 34 23  39 59 51 38 

Continued 
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Table 3. Continued 

        Moderate response rate      
   Pattern 1  Pattern 2  Pattern 3 
Metric Scenario  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100 
Bias x213                 
 1.1  0 1 0 0  21 11 3 0  221 192 14 3 
 1.2  4 4 2 4  52 53 51 51  1537 1540 1523 1523 
 2.1  0 2 1 0  -2 -4 4 0  32 74 23 2 
 2.2  17 7 16 16  574 41 -44 -46  -1001 323 -117 -124 
RMSE x213                 
 1.1  23 23 24 24  80 76 29 28  552 529 153 150 
 1.2  24 24 24 24  57 58 56 56  1543 1545 1528 1529 
 2.1  24 24 26 24  49 43 33 31  343 275 174 166 
 2.2  29 25 29 29  636 52 52 53  1548 370 192 195 
95% CI cov.                 
 1.1  94 94 93 94  92 94 93 95  69 80 94 95 
 1.2  94 94 95 94  40 36 39 40  0 0 0 0 
 2.1  94 94 94 94  95 94 91 94  91 94 92 95 
 2.2  88 93 88 88  37 74 65 64  70 55 86 87 
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Table 4. Performance Metrics by Pattern, Levels of Associations with Auxiliary Variables (500 simulated data sets of n = 10,000) 
        Low response rate      

   Pattern 1  Pattern 2  Pattern 3 
Metric Scenario  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100 
Bias x213                 
 1.1  1 1 -1 0  20 37 6 1  467 730 32 4 
 1.2  7 7 5 7  101 101 99 99  3000 3002 2984 2980 
 2.1  1 5 3 0  3 1 10 2  128 208 53 11 
 2.2  33 12 31 32  1349 74 -144 -147  181 755 -614 -632 
RMSE x213                 
 1.1  18 18 17 18  122 102 39 31  895 928 196 159 
 1.2  19 19 16 19  103 103 101 101  3002 3004 2985 2982 
 2.1  18 19 22 18  96 89 52 40  615 604 261 204 
 2.2  37 22 36 37  1384 89 148 150  1584 799 639 650 
95% CI cov.                 
 1.1  97 97 94 96  86 85 94 96  56 53 95 95 
 1.2  93 93 87 93  0 0 0 0  0 0 0 0 
 2.1  97 95 96 96  94 96 96 94  82 84 97 94 
 2.2  55 90 55 55  14 66 1 0  48 18 7 3 

Continued 
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Table 4. Continued 

        Moderate response rate      
   Pattern 1  Pattern 2  Pattern 3 
Metric Scenario  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100  IPSW PSS MI5 MI100 
Bias x213                 
 1.1  1 1 0 0  0 6 2 0  53 132 9 2 
 1.2  4 5 3 4  51 52 50 51  1533 1536 1516 1521 
 2.1  1 3 2 0  -1 -5 2 0  3 69 10 0 
 2.2  17 6 17 17  722 41 -45 -46  -1229 326 -123 -127 
RMSE x213                 
 1.1  13 13 13 13  66 44 17 15  514 320 90 81 
 1.2  14 14 13 13  53 54 51 52  1535 1537 1518 1522 
 2.1  13 13 15 13  36 23 20 17  251 157 105 90 
 2.2  22 15 21 21  773 45 48 48  1694 340 151 151 
95% CI cov.                 
 1.1  96 95 95 95  91 92 96 96  70 89 96 95 
 1.2  94 94 94 94  3 2 4 3  0 0 0 0 
 2.1  95 94 97 95  95 94 97 95  94 95 97 95 
 2.2  75 92 75 76  14 33 19 14  61 8 70 65 
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PATTERN 1: AUXILIARY VARIABLES WEAKLY ASSOCIATED WITH R AND Y 
Tables 2-4 show bias, RMSE, and 95 percent CI coverage of the estimated mean outcome Y for 
different scenarios using PSW and MI methods. As expected, when auxiliary variables are weakly 
associated with R and Y, the nonresponse adjustment is weak, and therefore the choice of adjustment 
method matters only for scenario 2.2. Even when adjustment is not strong, PSS outperforms MI in 
scenario 2.2 as the sample size gets larger; for sample size 10,000, the RMSE of PSS is about 30 
percent lower than that of MI, and its coverage is 90 percent compared to 55 percent for MI under a 
low response rate (see the upper left quadrant of table 4). 

PATTERN 2: AUXILIARY VARIABLES STRONGLY ASSOCIATED WITH R, BUT WEAKLY 
ASSOCIATED WITH Y 
The second pattern addresses a common situation among survey researchers: including variables that 
are strongly associated with the response, but not with the survey variables of interest in weighting 
adjustment, which can unduly increase the variance in weighting adjustments. We hypothesized that 
global nonresponse adjustment models in social surveys with multiple outcomes are likely to include 
auxiliary variables that are not associated with all Y variables; therefore, PSW may be unduly 
increasing variance in certain Y variables. Results from the simulations show that MI tends to result in 
smaller penalties on the variance (not shown in the tables) in pattern 2 when the adjustment model is 
correctly specified (scenarios 1.1 and 2.1) and the sample size is large (n = 3,000 or 10,000). 
However, looking at the coverage of confidence intervals, we see that MI performs only slightly better 
than PSW in the correctly specified main effects model (scenario 1.1), and it generally produces 
similar coverage rates for the correctly specified complex model (scenario 2.1). 
When adjustment models are complex and misspecified, it becomes harder to draw conclusions about 
the methods. It is clear that IPSW in the misspecified complex model (scenario 2.2) performs poorly, 
producing standard errors of up to ten times larger than those of the unadjusted estimates (compared 
to only 1.17 for MI with five imputations) and leading to lower bias reduction compared to MI methods 
for n = 3,000. That said, the other weighting method, PSS, may produce lower RMSE and better 
coverage in the misspecified complex model. For example, PSS has better coverage of confidence 
intervals compared to MI methods in both the low response (PSS = 85 percent compared to MI5 = 34 
percent and MI100 = 23 percent) and the moderate response cases (PSS = 74 percent compared to 
MI5 = 65 percent and MI100 = 64 percent). However, comparing the corresponding results from the 
small sample size (n = 200), we see that MI produces slightly higher variance estimates and similar 
coverage rates compared to PSS.
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PATTERN 3: AUXILIARY VARIABLES STRONGLY ASSOCIATED WITH BOTH R AND Y 
Having auxiliary variables that are strongly associated with both R and Y provides the ideal case for 
effective adjustment. In this case, there would be substantial bias in the unadjusted mean estimates, 
and adjustment by MI and PSW would be strong. The third pattern illustrates this particular case. The 
RMSE for this pattern favors MI over PSW except for scenario 1.2, where they perform similarly 
poorly, and except for the small sample size (n = 200), where results are rather mixed. We also find 
that MI maintains better coverage compared to PSS in pattern 3 under low response rates when the 
adjustment models are correctly specified. However, this advantage disappears or is no longer 
consistent when adjustment models are misspecified. 
Furthermore, in this pattern, misspecification of the adjustment model by omitting interactions and 
quadratic terms (scenario 2.2) may have a dramatic effect on the variance estimates from IPSW in this 
pattern. As Kang and Schafer (2007, 529) described for item nonresponse, our results suggests that 
“in practice, a good data analyst would never use a simple inverse propensity score weighted 

estimator if the weights were too extreme. Unusually large weights may be taken as a sign of model 
failure, prompting the researcher to revise the n (propensity score) model.” As such, the misspecified 

complex model produced weights of up to 900. 
Figure 2 provides a closer look at variance inflation by PSW and MI methods, and shows the relative 
standard errors of the adjusted respondent mean for different scenarios and levels of associations 
(patterns) under a low response rate and n = 3,000. Each symbol represents the ratio of the average 
standard errors for a given method divided by the standard error of the unadjusted respondent mean. 
A value of 1 implies no change in standard error after applying nonresponse adjustment, while values 
above or below 1, respectively, indicate an increase or decrease in standard error relative to that of 
the unadjusted mean estimates. For the correctly specified models (scenarios 1.1 and 2.1), variance 
inflation from adjustment with MI remains lower than that from adjustment with PSW methods. In the 
first case of misspecification where the main-effects model is misspecified by omitting one auxiliary 
variable (scenario 1.2), all adjustment methods perform similarly, and variance inflation remains low. 
Conversely, misspecification of the complex true response and outcome models by omitting complex 
terms results in extreme IPSW weights and substantial inflation in standard errors. To put variance 
inflation and bias into perspective, it is necessary to also look at the CI coverage of the methods. 
Figure 3 identifies the best MI and PSW methods with respect to CI coverage, comparing PSS and 
MI5 for the same sample size of 3,000, as shown in figure 2. Two findings are noteworthy. First, 
regardless of the method, response rate, and sample size, omitting an important auxiliary variable 
(highly associated with both R and Y, scenario 1.2 under pattern 3) results in 0 coverage.
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Figure 2. Relative Ratio of Standard Error for the Adjusted Respondent Mean to Unadjusted 
Respondent Mean, n = 3,000. 

This is due to high bias in the mean estimates caused by the omission of an auxiliary variable strongly 
associated with both R and Y. If the omitted variable is strongly related to R but not Y (scenario 1.2 
under pattern 2), coverage still suffers, but it improves with higher response rate or with smaller 
sample size (results for other sample sizes are not shown in the figure). Second, PSS produces better 
coverage than MI in scenario 2.2 under a low response rate, although the results are mixed under a 
moderate response rate. Considered together with figure 2, figure 3 indicates that while MI provides 
smaller variance estimates, it may result in lower coverage. Moreover, the trade-offs between 
variance, bias, and coverage vary substantially by sample size and response rate (see tables 2-4 and 
supplementary data online). 

IPSW VERSUS PSS 
IPSW has lower bias compared to PSS under certain conditions (e.g., scenarios 1.1 and 2.1). 
However, the variance for IPSW is higher, meaning it is better on RMSE only under specific cases. 
Furthermore, IPSW almost never has higher coverage than PSS, with the exception of pattern 3 in 
scenario 1.1, where IPSW has higher coverage for a low response rate or low sample size (n = 200). 
Also, as the sample size increases with a moderate response rate, PSS fares worse and  
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Figure 3. 95% CI Coverage of PSS (-x) and MI5 (-•), n = 3,000. 

worse in pattern 3 in scenario 2.2, allowing IPSW to have higher coverage for n = 10,000 and under 
moderate response rates for n = 3,000. 

MI5 VERSUS MI100 
RMSE for MI100 are generally lower than for MI5 when adjustment models are correctly specified 
(e.g., scenarios 1.1 and 2.1), but the gains in efficiency tend to be more modest under moderate 
response rates or larger sample sizes. When adjustment models are complex and misspecified, 
however, MI5 can sometimes be more advantageous than MI100 (e.g., lower RMSE under scenario 
2.2 and low response rate for n = 3,000 and 10,000). With regard to coverage, MI5 performs better 
under scenario 2.2, patterns 2 and 3, when the response rate is low.
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Overall, the most interesting comparisons are between PSS and MI5. While it is unlikely, if pattern 3 is 
achieved, MI5 is preferred on RMSE and coverage. None of the methods perform well under scenario 
1.2, where an auxiliary variable is omitted. For patterns 1 and 2, MI5 is preferred under scenario 1.1, 
while PSS is preferred under scenario 2.2, whereas neither is clearly better under scenario 2.1. In 
conclusion, neither of the PSW and MI methods can be consistently preferred for unit-nonresponse 
adjustment. 

 

Conclusion and Discussion 
The simulation results highlight the advantages of PSW and MI under different scenarios. However, as 
neither of these consistently outperforms the other method, we advocate the use of robust methods 
that simultaneously model both the outcomes and the (non)response. However, we recommend that 
researchers avoid IPSW, as its performance is generally poor in the misspecified complex model. On 
the other hand, while overall MI5 and MI100 perform similarly, MI100 has lower coverage in some 
cases, specifically when the response rate is low and adjustment models are complex but misspecified 
in patterns 2 and 3. This is sometimes caused by the lower variance estimates, and other times both 
higher bias and lower variance estimates for MI100 compared to MI5. 
Although MI performs better than or similar to PSW in relatively more instances, sub-classification may 
also provide lower bias and better coverage. For example, when true models are complex and 
misspecified, and auxiliary variables are strongly related to R but not Y, MI yields lower standard 
errors and higher bias compared to PSS, resulting in lower coverage of the 95 percent confidence 
intervals under n = 3,000 or 10,000. Therefore, we expect methods that combine propensity scores 
with MI (e.g., Jolani, van Buuren, and Frank 2011) or those modeling response and outcome 
simultaneously (Little and An 2004; Zhang and Little 2011) to be attractive alternatives in the future as 
they become more commonly available to practitioners. Jolani and his colleagues show that combined 
propensity score and MI methods perform well under correct model specification, but more exploration 
is needed for misspecified models. Similarly, a number of studies explore robust methods, modeling 
response and outcome simultaneously under correct and misspecified models. For example, Kang 
and Schafer (2007, 532) showed that “two wrong [misspecified] models are not necessarily better than 

one,” referring to models for the propensity score and the regression of outcome on auxiliary variables. 
Some other studies offered modifications to doubly robust methods, which seem to yield more 
favorable results even if neither model is correctly specified (e.g., Cao, Tsiatis, and Davidian 2009). 
Therefore, we are looking forward to the incorporation of these combined applications or dual 
modeling approaches to the mainstream toolbox of practitioners.
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We evaluated the relative performance of unit-nonresponse adjustment with PSW and MI methods. 
The results show that MI can be a working alternative to PSW in unit-nonresponse adjustments with its 
strengths and weaknesses, as illustrated in the simulation results. However, it is worth noting that MI 
requires meticulous modeling, and its application may raise several user-oriented practical issues. 
First of all, model misspecification, such as “uncongenial imputation,” where the imputation model is 

not as rich as the analytical model, can cause biased estimates in multivariate analysis (Meng 1994). 
Therefore, employing MI requires more caution especially while generating global nonresponse 
weights for social surveys. Another concern with MI is that it may require more effort and expertise in 
model specification. Social surveys usually include categorical, ordinal, and/or count variables, which 
do not meet the assumption of multivariate normality required in standard multiple-imputation 
procedures. In addition, for all scenarios discussed here, we assumed MAR. However, there are also 
methods that allow the missingness to be not at random (MNAR) as proposed by, for example, Diggle 
and Kenward (1994), and Molenberghs, Kenward, and Lesaffre (1997). These methods have not yet 
become common practice and are still open to debate. 
Second, even though MI could be a viable alternative to PSW, the user-oriented practical issues such 
as expertise, accessibility of auxiliary data, and timeliness remain essential for the future use of MI 
unit-nonresponse adjustments. A major problem with MI is to ensure that the imputation model is con-
genial to the analysis undertaken. So, if the information and resources available to the analysts and 
the imputer are different, imputers' input is needed at the analysis stage. As social surveys often 
involve a number of outcome variables, it may not be possible to consider all interactions, all 
subgroups, and any other aspects of interest to analysts. Then, the imputer needs to be available to 
advise analysts or make the limitations of the imputation model clear to the users. The other option is 
to provide the auxiliary data available for weighting so that analysts can build their own imputation 
models. Either way, MI seems to cost extra time since it requires the modeling of all variables related 
to the analytical model. 
Another practical concern could be the additional adjustment required for the application of MI in 
complex surveys. It may not be straightforward to determine how MI can be combined with complex 
design weights (van Buuren 2012) if design variables are not provided in the public data. However, 
there have been improvements in this field. Alternative methods are now available, including design 
variables (or weights in the worst case) in the specification of imputation models (e.g., Reiter, 
Raghunathan, and Kinney 2006) and more complex methods offering new modeling approaches and 
combining rules (Zhou, Raghunathan, and Elliott 2012). These methods, however, are designed for 
item nonresponse, and further exploration is needed for their applications in unit nonresponse. There 
are certainly other practical concerns regarding the
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use of MI in unit-nonresponse adjustments, but these are beyond the scope of this study. More advice 
on the modeling aspect of applications is provided by Little (1988). 
Regarding IPSW, some suggest that extreme weights result from logistic regression rather than being 
a problem with the method itself (Ridgeway and McCaffrey 2007). Therefore, the use of alternative 
methods such as generalized boosted models described by McCaffrey, Ridgeway, and Morral (2004) 
for propensity-score estimation may prevent probabilities close to 0 or 1, and yield lower variance and 
bias estimates for IPSW. This can be a topic for further research. However, doubly robust methods are 
still not commonplace in survey methodology, and in many applications of IPSW, weights are obtained 
by logistic regression. 
Our simulations compared MI and PSW for mean estimates of continuous outcomes. This study could 
be extended to handle binary and ordinal variables, and to evaluate other parameters such as 
regression coefficients or domain means. Also, future research could examine the relative 
performance of MI to PSW in the joint estimation of means of several outcomes. In the multivariate 
case with several outcomes, MI allows for modeling auxiliary-outcome relationships correctly. This can 
lead to an extra efficiency of MI in unit-nonresponse adjustment, which comes from the fact that 
different outcomes are related differently to the weights. For example, one Y variable in a social survey 
might be in scenario 1.1 of our simulations and another could be in scenario 2.1. In this case, to adjust 
by weighting, the same model would be fitted for all outcomes, although their respective relationships 
with unit nonresponse vary, resulting in inefficient estimates. This, however, is a mixed blessing, since 
MI requires careful modeling of all the variables. Overall, we do not definitively conclude which method 
offers a better bias-variance trade-off. More exploration is needed with complex models and real 
survey-data applications and doubly robust methods before giving concrete recommendations. 

 

 

Appendix 1. Coefficients for Data-Generation Models by Patterns 
1. WEAK WITH BOTH R AND Y 

0 = −0.9 for low, 0.5 for moderate response rate 

1 = 0.1,2 = 0.1 (3 = 0.1,4 = 0.1,5 = 0.1) 


1

= 0.1, 
2

= 0.1, 
𝑒

= 1 (
3

= 0.1, 
4

= 0.1, 
5

= 0.1) 
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2. STRONG WITH R AND WEAK WITH Y 

0 = −1.8 𝑓𝑜𝑟 ܀䠀𝑜𝑤, 2 𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑟𝑎𝑡𝑒 

1 = 2,2 = 4 (3 = 0.5,4 = 1.5,5 = 0.8) 


1

= 0.1, 
2

= 0.1, 
𝑒

= 1 (
3

= 0.1, 
4

= 0.1, 
5

= 0.1) 

3. STRONG WITH BOTH R AND Y 

0 = −1.8 𝑓𝑜𝑟 ܀䠀𝑜𝑤, 2 𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑟𝑎𝑡𝑒 

1 = 2,2 = 4 (3 = 0.5,4 = 1.5,5 = 0.8) 


1

= 1, 
2

= 3, 
𝑒

= 5 (
3

= 0.3, 
4

= 0.8, 
5

= 0.5) 

Appendix 2. Resulting Mean Response Rates from Data-Generation Models (%) 

Scenario Response rate Pattern 1 Pattern 2 Pattern 3 
1.1, 1.2     
 Low 33 35 35 
 Moderate 62 66 66 

2.1, 2.2     
 Low 33 37 37 
 Moderate 62 65 65 

Supplementary Data 
Supplementary data are freely available online at http://poq.oxfordjournals. org/. 
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