
www.ssoar.info

Once more into the breech: computer literacy and
the humanities
Roddy, Kevin P.

Veröffentlichungsversion / Published Version
Zeitschriftenartikel / journal article

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with:
GESIS - Leibniz-Institut für Sozialwissenschaften

Empfohlene Zitierung / Suggested Citation:
Roddy, K. P. (1986). Once more into the breech: computer literacy and the humanities. Historical Social Research,
11(4), 91-95. https://doi.org/10.12759/hsr.11.1986.4.91-95

Nutzungsbedingungen:
Dieser Text wird unter einer CC BY Lizenz (Namensnennung) zur
Verfügung gestellt. Nähere Auskünfte zu den CC-Lizenzen finden
Sie hier:
https://creativecommons.org/licenses/by/4.0/deed.de

Terms of use:
This document is made available under a CC BY Licence
(Attribution). For more Information see:
https://creativecommons.org/licenses/by/4.0

Diese Version ist zitierbar unter / This version is citable under:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-52030

http://www.ssoar.info
https://doi.org/10.12759/hsr.11.1986.4.91-95
https://creativecommons.org/licenses/by/4.0/deed.de
https://creativecommons.org/licenses/by/4.0
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-52030


ONCE MORE INTO THE BREECH: COMPUTER LITERACY AND THE HUMANITIES 

Kevin P. Roddy (*) 

On occasion, computer-oriented humanists and social scientists are asked 
to serve on committees setting institutional computer policy. Though many 
such committees are often neither necessary nor productive, those which 
are now studying the encouragement of "computer literacy" an exception: I 
would like to argue that they are vitally important to the future of 
social history, and to all culture studies. The decisions made now will 
have a direct bearing on the preparedness of the next generation of 
scholars, and it is very much in our interest to define those qualities 
which characterize computer literacy in our field. The following paper 
represents a contribution to this effort. 

In the past, our att i tude toward the computer literacy movement has 
largely been one of suspicion. In general, though we have attempted to 
enlighten individuals students about computers, we have been reluctant to 
impose our att i tudes on the institution. The phrase "computer literacy" 
itself is imprecise and emotionally tinged, and those promoting it 
elected officials and institutional administrators - have not usually 
been known for their experience with computers. Some three years ago, 
when the phrase became popular, my colleagues and I immediately detected 
the logical flaw in the "literacy" metaphor; and we feared that, in the 
United States at least, such literacy would necessarily be provided at 
the expense of traditional studies, notably the acquisition of foreign 
languages. These concerns are still real and justified: but, as I sugges
ted above, we also have a responsibility to participate in nurturing 
literacy, even though we might not have been present at its birth. 

I feel that our participation is all of more necessary because computer 
literacy is almost always discussed on the basis of two unexamined a s 
sumptions: that the computers are microcomputers, and that literacy means 
programming. In many American Universities, with surprising uniformity, 
the desire to foster computer literacy has translated into ambitious 
programs to place a microcomputer on the desk of every member of the 
faculty, and to arrange that every student have access to one. But from 
my perspective, however much micros are used, and however handy they may 
be, I find it difficult to consider such use "literacy." The issue is not 
one of power and sophistication; these are ephemeral technical issues 
which are being resolved elsewhere. My specific objection to micros is 
that they represent a return to isolated scholarship, just when computers 
were making it easy and profitable for us to communicate, to share infor
mation, methodology, and even programs. Furthermore, to speak on a more 
pragmatic level, one has only to say the words "Sinclair," "Osbourne," 
"DEC Rainbow," "IBM Peanut," and even "CPM" to realize how volatile the 
micro industry has been. It is an irony which might after all teach the 
best lesson of all about computers, if the micro that a f i rs t-year s t u 
dent had been forced to buy became obsolete before the third year. 
The second general assumption has been that computer literacy should be 
defined as programming, in and of itself. The point is complex, and 
requires considerable discussion, but at present it might be helpful to 

(') Address all communications to : Kevin P. Roddy, Department of 
Medieval Studies, University of California at Davis, Davis, Califor
nia, 95616, USA. 

91 



consider what programming exercises are meant to accomplish, and whether 
or not programming, in and of itself, is both more specific and more 
advanced than might reasonably be encompassed under the heading "lite
racy." The simple explanation is that programming is meant to program; 
that is, students must learn to control the computer. We are, however, 
then faced with two contrasting situations: the tendency of programmers 
to cling to the language they were taught, and the ease with which a pro
gramming language, if not used, is forgotten. In the United States, for 
example, those students entering professions which require programming -
engineering and applied science - are often taught FORTRAN in their 
first years; for the next two years, however, they do not program in 
their courses, since these are introductory in nature. In their third 
year, when they begin to research and thus need programming, the ex
perience has been that they have forgotten everything. My point is that, 
if programming in itself constituted literacy, one would not expect it to 
reside in short-term memory. If, moreover, knowing a programming language 
were really as critical a skill as many clain, then American universities 
should be teaching COBOL, which is the language of choice for our bureau
cracies and financial institutions. 

What, then, is computer literacy, if it does not need micros and will 
not, on at least an introductory level, involve programming? For my part, 
computer literacy is a clear understanding of the computer's potentials. 
I realize that this makes me, along with a number of my colleagues, 
illiterate. But if we examine that remarkable word "literacy," we find 
that it has so positive a connotation because some of the greatest minds 
of our civilization, Martin Luther and Thomas Jefferson among them, 
fostered literacy, not merely as a means of mastering letters as much as 
an access to the rich potential of written language. Teaching such l i t e 
racy has been accomplished by clearly identifying the rationale of a c 
cess, the basic principles, simultaneously with a discussion of their 
application. The literacy metaphor may then have merit, if computer 
literacy follows the same route, to an understanding of what the computer 
can now make accessible. To put it another way, the would-be computer 
literate first needs answers to three basic questions: what can a compu
ter do (and, by extension, what can't it do)? what will it cost to do 
it? what is absolute and what is flexible about computing - what, in 
other words, can be changed and what cannot? 

1 would like to suggest that any curriculum designed to foster computer 
literacy, especially for humanities students, first respond to these 
three questions. It may be that the questions themselves are trivial, and 
the answers obvious; I think not. It may well be that the questions are 
preposterous, and the answers impossible; again I think not. If the 
former is true, perhaps we should belabor the obvious in the first minute 
of the first class, before moving to important issues; if the latter is 
true, perhaps this in itself is worth nothing. If the three questions are 
neither trivial nor preposterous, then they might fruitfully be discus
sed; in the next few pages, I should like to take that opportunity. 

In my experience, the question what can a computer do raises some impor
tant issues, but only if the students are given sufficient time to consi
der it in all of its implications. Computers, we say, are capable of 
storing vast quantities of information. How, then, the students ask, does 
the user keep track of all? What is the chance that an obsolete version 
will supplant a current version? In response we are forced to admit that 
this has been a problem: far more energy hass been expended in entering 

92 



data than in making it available. Can one, students may persist in 
asking, put a book on the computer? Certainly, we answer, no longer quite 
sure of ourselves, though this is not exactly a simple matter. Can one 
then do close and rigorous analysis on such a text? Yes, though this may 
depend on factors beyond the capacity of the computer. An example might 
be the Domesday Book Project at the University of California, Santa 
Barbara, which has largely completed encoding that great and uniquely 
detailed monument to medieval record-keeping. Unfortunately, the Project 
proceeded for many years unaware of a similar program at the University 
of Hull to enter and edit the entire book. The two projects are now 
cooperating, but one can imagine how useless the Santa Barbara material 
would have been if it remained based on an obsolete text. This is a kind 
of post-facto literacy. The fundamental importance of the question, what 
can a computer do, has been emphasized over and over by such experienced 
realists as David Vance of the Museum Computer Network, and Michael 
Preston of the University of Colorado, a foremost authority on literary 
concordances. A recent editorial in the bulletin Scholarly Communication 
pointed out, to my complete surprise, what should have been perfect 
obvious: computers are better at telling differences than at identifying 
similarities. This, for example, makes the computer excellent for proof
reading and terrible at spelling. We need more such basic insight, and 
this means spending more time acquiring it. 

Within this section of my computer literacy course I would like to add a 
section on pathology. If one goes to the many relevant conferences one 
will hear little of failure, though it must exist. Usually, disasters are 
mentioned only as introductions to successes. In such cases, the cause 
seems to have been insufficient technological expertise; now that the 
project director has taught himself, there will be no more failure. I for 
my part disagree, and suspect that most failures are not technical, but 
rather arise from unrealistic (that is, illiterate) notions about what 
the computer can do. A computer will not improve a badly planned project, 
a computer will not guess the right answer, and a computer will not raise 
the dead. Perhaps from all of this the lesson will emerge that an hour's 
conference, involving every single participant, should be scheduled for 
each day, whether it 's needed or not; if so, I for one would be very 
glad to learn it. 

The second question, how much does it cost, cannot be considered trivial, 
but some might consider it irrelevant. "Cost" does not simply entail 
money, which in computing has an otherwordly aspect; rather there are the 
other, more elusive expenses: human resources, machine resources, and 
that most elusive expense of all, time. But it might still be argued that 
it is irrelevant to consider even these when using computers: the nature 
of pure research and development is such that it will never be "cost 
effective". This would unfortunately ignore the realities of computer 
projects, which do founder because a key member of the staff has left, or 
because not enough vision was used in the choice of hardware, periphe
rals, and language, or because there was simply no time to accomplish the 
objectives, or, and this happens, because the funding agency lost 
patience. That research in computing, whether in the humanities or e l se 
where, should proceed without these limitations goes without saying; but, 
since we do labor under them, it does seem more literate to take them 
into account. And I do not feel that this is altogether evil. If, for 
example, a project will take longer than anyone imagines, would it not be 
wiser to plan for several intermediate stages, each with an identifiable 
and generally useful product? Along the way, for instance, to a text 

93 



analysis program there might be a portable routine for recognizing words. 
Such a routine must necessarily be both more general and less efficient 
than that devoted to the specific purposes at hand. But it will also be 
something to salvage it fortune proves unkind. To cite a common s i tua
tion, for certain projects I have found it very easy to enlist the help 
of computer freaks, "hackers". And I have also found it easy to lose that 
help as the novelty wears off, and the project has to compete with order, 
newer demands on their expertise. It would be extremely valuable to 
future scholars in the field to described such syndromes, as remote from 
systems analysis and programming as they may be, explain them, and recom
mend appropriate solutions. 

The third question, how flexible can the computer be, is the most diffi
cult, and it may be here that the argument for programming carries the 
most weight. But I note to my sadness that many of the humanities in the 
United States who have moved deeply into programming have done so at a 
cost to their research. Manipulation of material through the computer is 
undeniably more exciting than reading three hundred articles on folk 
marriage, especially if most of the articles derive from each other. But 
how does one then maintain perspective? One of the really interesting 
results of many of the concordances produced recently is the discovery 
that most editions are not very good after all. One would think that 
attention would certainly be shifted to computer-aided editions. But 
perhaps because editions demand arduous work and comparatively little 
programming, this shift has not occurred. Concordances continue to be 
produced, and humanists continue to write concordance programs. While I 
admit that concordances are needed, and that one person's program will 
not work for another, I would still suggest that the solution does not 
lie in learning programming, but rather in finding or in encouraging 
those programs which are sufficiently protean to accomplish the task, and 
various similar general tasks as well. 

I have already described one aspect which might characterize such a 
program: a portable modularity. A second characteristic might be termed 
"malleability," the power to intrude on the raw data or redefine its 
format, without endangering the totality of the process. Specifically, I 
would like to suggest that the project director, in designing the system, 
identify those critical junctures at which the individual user is likely 
to intervene, and at such junctures allow modification in an completely 
unrestricted way. This is a different from "menu-driven", which after all 
expects the impossible, that the programmer anticipate every conceivable 
need. Rather, in my judgment, the user should be offered the ability to 
manipulate certain functions, in respect to the contents and type of 
information, as well as in respect to its format. I freely admit that the 
ability to effect these changes borders on the ability to program. But 
however much it does presume a certain level of sophistication from the 
user, the sophistication is basically editorial in nature, and therefore 
one which should be within the abilities of any humanist. More impor
tantly, the feature of malleability concerns the humanist's area of 
expertise, as humanist. That is, we are supposed to know what we want to 
put in, what we want to take out, and how we want to look at it. To cite 
an example in my experience, most bibliographic data bases are arranged 
logically, with the author in one field, the book title in another, and 
so on. Humanities software like Nota bene offer the option of reformat
ting such data according to the stylistic rules of the Modern Languages 
Association, or the American Psychological Association, and so on. It has 
not been until version 2, however, which was due to be released in May, 

94 



that the literature promises the ability to modify these routines; this 
is sixteen months after version 1 originally appeared. In view of the 
fact that no one has precisely the same format style, the reasonable 
solution was neither to teach all users the source code on one hand, nor 
keep producing more and more massive versions that respond to more and 
more specific needs; the solution was simply to allow the user to in ter
vene, without any predetermination of what that intervention might be. 
Let me cite one more example, an example which even as I speak may be 
anachronistic, but the lesson remains. Most data base management programs 
stipulate a maximum number of characters per record; given the architec
ture of memory allocation, perhaps some figure is necessary. But there is 
no reason why a user cannot personally modify that figure if necessary; 
otherwise, the criterion for inclusion or exclusion of data is the en t i 
rely arbitrary one of size. In a bibliography, this would exclude a large 
number of German works of the eighteenth and nineteenth centuries, and 
certainly a disproportionately large number of books from German univer
sities. 

Computer literacy, then, if it is to provide a sound preparation into the 
next century, must address principles which, as far as I know, have as 
yet been neglected in the classroom: what can a computer do and what can 
it do not; what will it cost to do it; and how flexible can in doing it. 
Steven Siebert, the author of Nota bene, had not at last report finished 
his dissertation in Philosophy at Yale. I hope that he has now returned 
to it, and left Version 3 to someone else. In America and elsewhere, we 
need as many philosophers as we do programmers. 

95 


