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CLIOMETRICS 

A Survey on Cycles and Chaos (part II) 

Claude Diebolt  &  Catherine Kyrtsou∗  

Abstract: This paper is an extension of a previous publica-
tion in the journal Historical Social Research (Vol. 26, No. 
4, 2001, p. 208-219). Our treatment begins with a simple 
presentation of the basic notions of chaos, and then de-
scribes the related econometric tools. 

1. Introduction 

The term complex economic dynamics is used to designate deterministic eco-
nomic models whose trajectories exhibit irregular (nonperiodic) fluctuations or 
endogenous phase switching. The first property includes chaotic trajectories 
that give bounded fluctuations which are sensitive to perturbations. The second 
means that the equations governing change in system states switch from time to 
time according to intrinsic rules. Or it means that distinct types of qualitative 
behavior, such as growth, oscillation or decay, are exhibited in different subsets 
of the state space; the system equations restricted to a given subset then appear 
to have a different nature than their restriction to other subsets, so that each 
such restriction yields an identifiable regime. 

Chaotic processes have many very interesting properties, only a few of 
which need to be mentioned here. The first is the existence of attractors. Sup-
pose that many terms of the process have been generated, so that t is large, and 
let xt,m be a vector of m adjacent values (xt, xt-1,…, xt-m+1). For a certain value of 
m, called the embedding dimension, xt,m will always lie on a particular subset 
of the m-dimensional space, called the attractor of the process. A chaotic proc-
ess is in a sense simple if its embedding dimension is low (say one to three) and 
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is complicated if it is high. For example, the logistic map (xt=µxt-1 (1-xt-1)) has a 
dimension of one whereas a white noise process have very high dimension. 

The empirical testing in economics and finance finds plenty of evidence for 
nonlinearity but none for low dimensional chaos. This suggests that there are 
stochastic shocks occurring somewhere in the economy, so one has to ask how 
this fits in with the chaos theory. Experiments have also shown that adding a 
little white noise to a low dimensional chaotic signal, makes the deterministic 
chaos extremely difficult to detect in short series. Thus emerges the interest of 
introducing the approach of stochastic chaos. As it has been underlined by 
Chan and Tong (1994), it is more realistic to model economic or financial date 
with a nonlinear deterministic process perturbed by dynamical noise. 

The purpose of the paper is to present the recent developed tests for chaos: 
the correlation dimension, the Lyapunov exponents and the surrogate date tests. 

2. The correlation dimension test 

The correlation dimension was introduced by Grassberger and Procaccia 
(1983). The correlation dimension is based on the idea that if an attractor is 
chaotic, then two points (Xi , Xj) starting at different positions will be dynami-
cally uncorrelated as a result of the property of sensitive dependence on initial 
conditions. However, since the points are on an attractor, they can approach 
each other but can never intersect. 

The correlation between points on an attractor can be defined in term of spa-
tial correlation that is formally measured by the Euclidean distance. 

Let {Xt}, t = 1,2…,T be a sample from a strictly stationary process. The 
time series {Xt} can be “embedded” in a m-space by constructing “m-
histories”. The correlation dimension can be calculated from the correlation 
integral given by: 

C(ε, m, Tm) = ( )1
1

−mm TT
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as defined in the Part I (Diebolt and Kyrtsou, 2001). 
The use of an Euclidean norm for computing the correlation dimension is 

considered not to be too restrictive. Brock (1986, theorem 2.4) has proved that 
the correlation dimension is independent of the choice of norm. 

Let the correlation integral measure the fraction of total number of pairs (xi, 
xi+1,…, xi+m-1), (xj, xj+1,…, xj+m-1), such that the distance between them is 
no more than ε. The correlation dimension can be defined as follows: 
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For the small values of ε, Grassberger and Procaccia (1983) establish that 
the spatial correlation C(ε,m) grows according to the power law: 

If dm= ( )
ε
ε

ε ln
,lnlim

0

mC
→

, then lnC(ε,m ) ≈ dm lnε ⇔ lnC(ε,m ) 

≈ ln ε dm ⇔C(ε,m ) ≈ ε dm , and C(ε,m) grows exponentially. 

It is necessary to notice that when the embedding dimension m increases, 
the dimension dm is reached, such that d*c is the estimate of the true correlation: 

d*c = m
m

d
∞→

lim      (3) 

The method of the correlation dimension represents a very important diag-
nostic procedure for distinguishing between determinism and stochasticity. If 
dm tends to be a constant as m increases, then dm yields an estimate of the corre-
lation dimension of the attractor, namely d*c. In this case, the time series are 
consistent with deterministic behavior. If dm increases without bound as m 
increases, this suggests that the underlying series are stochastic1. 

3. The Lyapunov exponent test 

The Lyapunov exponent method can be employed to determine if a process is 
chaotic. The approach is based on the idea that the distance between two points 
is described by the largest Lyapunov exponent. The Lyapunov exponents 
measure the average rate of contraction (when negative) or expansion (when 
positive) of the trajectories on the entire attractor. They can be positive or nega-
tive, but at least one exponent must be positive for an attractor to be classified 
as chaotic. If the distance between the trajectories grows exponentially, this is 
evidence of chaos since it shows that the process exhibits sensitive dependence 
to initial conditions.  

Thus, where λ  is the largest Lyapunov exponent, the criterion is: 

Noisy chaos or stochasticity   if   λ < 0, 
chaos   if   λ > 0 

In the n-dimensional case, where yt+1 = f(yt) (3) with t ∈ T, y ∈ Rn, the 
Lyapunov exponent λ is defined (Lorenz, 1989) by λ (T)=(1/T)log2( Λ (T)), 
where Λ (T) are the eigenvalues of the n-dimensional Jacobian matrix J(T). In 
                                                           
1  Ruelle (1990) argues that a chaotic series can only be distinguished if it has a correlation 

dimension well below 2log10T, where T is the size of the data set, suggesting that with eco-
nomic time series the correlation dimension can only distinguish low dimensional chaos 
from high dimensional stochastic processes. 
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general, all Lyapunov exponents can be calculated according to the following 
equation (see Wolf et al., 1985): 

λ i =
∞→T

lim  
T
1 log2( Λ i

(T))  (4) 

When applying this method to financial-price series, many authors confirme 
the difficulty of pollution from high frequency noise. The largest Lyapunov 
exponent λ  tends to be greater than the true exponent and its convergence to a 
value appears difficult or even impossible. 

3.1 Kantz algorithm (1994) 
Kantz (1994) has tried to solve this problem by constructing a new algorithm 
for the estimation of λ. Similar to Wolf et al. (1985), he makes use of the fact 
that the distance between two trajectories typically increases with a rate given 
by the maximal Lyapunov exponent. This divergence rate of trajectories natu-
rally fluctuates along the trajectory, with the fluctuations given by the spectrum 
of effective Lyapunov exponents. The maximal exponent λτ is defined to be: 
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where χ(t) is the time evolution of some initial condition χ(0) in an appropriate 
state space, t is time, and τ is relative time referring to the time index of the 
starting point, and ε =χ(0)-χε(0). χ(t)-χε(t) = εωu(t), where ωu(t) is the local 
eigenvector associated with the maximal Lyapunov exponent λmax. By defini-
tion the average of λτ(t) along the trajectory is the true Lyapunov exponent. 

The method of Kantz requires constructing the following equation to pro-
vide the curve S(τ). The maximal Lyapunov exponent is the slope of this curve 
in the scaling region. 
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where Ut is the neighborhood set and dist(χt,χi;τ) defines the distance between 
a reference trajectory χt and a neighbor χi after the relative time τ. 

When noise is present in the data, the slope of the curve S(τ) changes as fol-
lows: 
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λ is the estimate of the maximal Lyapunov exponent and σi,τ is the standard 
deviation of the noise. S(τ) does not contain the embedding dimension expli-
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citly, but nevertheless it enters. This requires that one fix a dimension m for the 
delay trajectories2. 

3.2 Gençay and Dechert algorithm (1992) 
Gençay and Dechert (1992) try to solve the problem in the Lyapunov exponent 
estimation when a high level of noise is present, by using an algorithm for the 
estimation of λ , based on feedforward neural networks. We present briefly 
their estimation procedure below. We notice that for the neural networks esti-
mation we use the method of non-linear least squares (Kuan and Liu, 1995). 

In practice it is very difficult to observe the state of the system and know the 
actual functional form f that generates the dynamics. The model that it is prin-
cipally used is the following: associated with the dynamical system in equation 
(3) there is a viewer function h : Rn →R which generates data: 

xt = h(yt)  (8) 

We suppose that all that is available to the researcher is the sequence of the 
variables {xt}. The well-known Takens’ theorem (1981) states that, when 
m ≥ 2n+1 we have: 

Jm(y) = (h(y), h(f(y)),…, h(fm-1(y)))  (9) 

which is generically an embedding, m the embedding dimension and n the 
dimension of the real system. For a function g : Rm →Rm for which Jm o f = 
g o Jm on an indecomposable attractor, Dechert and Gençay (1990) show that n 
largest Lyapunov exponents of g are the Lyapunov exponents of f. Thus, they 
estimate the function g based on the data sequence {Jm(yt)} and calculate the 
Lyapunov exponents of g. 

The mapping g, which is to be estimated may be given as follows: 
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and this reduces to estimating xt+m = u(xt+m-1, xt+m-2,…,xt). 
Finally, for a single-layer network the least-squares criterion for a data set of 

length T is: 

                                                           
2  For more details in the choice of embedding dimension, see Kantz (1994). 
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L( β ,w,b) = ∑
−−

=

1
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t
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m; β , w, b)]2   (10) 

where: xt
m = (xt+m-1, xt+m-2,…,xt) is the input, 

uN,m(xt
m; β ,w, b) is the single-layer feed forward network, 

( )
)exp(1

1
u

u
−+

=ϕ  is the activation function, 

β,w,b: parameters to be estimated, 

N is the number of hidden units. 

4. The surrogate data test 

The surrogate data test has been proposed by Theiler et al. (1992) and vastly 
applied to real data. Evidence of non-linearity was often reported while in few 
works the null hypothesis could not be rejected (Prichard and Price, 1993). 

The main idea of this test is to discriminate non-linear dynamics, if this can 
be detected from the given series. Otherwise the null hypothesis cannot be 
rejected, which does not necessarily mean that the examined process is stochas-
tic linear. This is only one possible case. There are a number of other possibili-
ties, such as the underlying dynamics is non-linear but masked by noise, or the 
dimensionality is high and the data size small, so that detection of non-linearity 
cannot be archived, or simply the data record does not represent well the under-
lying system. 

To test the null hypothesis H0 that the original signal is generated by a linear 
stochastic process undergoing a static possibly non-linear transform, an ensem-
ble of M surrogate data sets representing H0 is generated. To make this, the 
surrogate data must have the same autocorrelation and the same empirical 
amplitude distribution as the original signal. Then, a non-linear method is ap-
plied to the original and the surrogate data giving the statistics q0 for the origi-
nal and q1,…,qM for the surrogates. The H0 is rejected if q0 is statistically dif-
ferent from q1,…,qM. Typically, the confidence of rejection is given in terms of 
the significance S: 

S=
q

qq
σ
−0  

where q  is the average and σq the standard deviation of qi, i=1,…,M. 
Significance of about 2σ suggests the rejection of H0 at the 95% level of 

confidence. The computation of S quantifies better the difference between 
original and surrogate data than the simple ordering of the M+1 q-quantities 
followed in other works (Schreiber, 1999). For the generation of the surrogate 
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data the algorithm of amplitude adjusted Fourier transform (AAFT) is usually 
applied.  

The surrogate date test can be also used as a validation test. After obtaining 
the surrogate series, we can apply the correlation dimension and the Lyapunov 
exponents methods. The comparison between the resulting correlation dimen-
sions and Lyapunov exponents (original and surrogate data) can allow us to 
determine the robustness of the obtained results. For some recent applications 
of the previous nonlinear tests to financial returns series see Kyrtsou (2002), 
Kyrtsou and Terraza (2002a,b). 
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