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SUMMARY

Small sampies and sparse cell frequencies cause major problems for statistical modelling with

categorical data: Sampling zeros or small expected frequencies can lead to situations where

asymptotic approximations of test statistics will be inadequate. In such cases one resorts to the

use of exact tests or Monte-Carlo-simulations. But also in this ease, inference can yield

problematie results, as the power of tests is often extremely low and will therefore lead to the

rejection of theoretically plausible hypotheses on the base of poor empirical material.

In this paper an alternative modeHing strategy for smaH sampies using Monte-Carlo-algorithms

is presented. This strategy is extending the asymptotic power approximations presented by

Cohen (1977) or Agresti (1990).

1. SMAIL SAMPLES AND CAlEGORICAL DATA ANALYSIS

The foHowing considerations result from our work in the Special Collaborative Centre 186

Status Passages and Risks in Life Course at the University of Bremen which is sponsored by the

"Deutsche Forschungsgemeinschaft". In our department of Methodology and Statistics we are

confronted with practical problems in the statistical analysis of categorical data that arise in

some of our eleven empirical projects.

With categorical data modelling is often restricted to more or less sopbisticated contingency

table analysis. Compared with parametric test procedures, tbe power of non-parametrics is

relatively low and, proportionaIly, the probability to commit a type-ll-error is relatively high.

This problem increases with smaH sampie sizes or complex statistical models, leading sometimes

to extremely small expected frequencies. In such cases, "reaIity" may be far more complex than

a model that can be accepted in a goodness~f-fit-test. When. too many expected cell

frequencies fall below certain limits ("Cochran's conditions"), asymptotic approximations for

test statistics such as t can no langer yield valid results. Statistical software packages such as

SPSS usually warn the user if ?f-tests are used for the analysis of two-dimensional tables, but
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seem to ignore this problem in the case of multivariate modelling procedures. Many problems

relating to small sampie sizes such as sampling zeros or small expected frequencies can be

solved by statistical algorithms using Monte-Carlo- or exact inference methods - such as

StatXact or LogXact (cf. Mehta 8l. Patel 1983 and Hirji, Mehta & Patel, 1987). Although their

power seems to be greater in case of smaIl sampies than the one of asymptotics, the general

problem of type-II-error remains unsolved with these programms as weIl: interaction effects in

contingency tables which are highly plausible for theoretical reasons often can hardly survive

significance tests if sampie sizes are small or models are very complex. However we do not

want to argue against significance testing as a rational strategy for model selection but would

opt for strategies that take into acount that the power of a test can be very low if the statistical

analysis is based on smaIl samples1
•

In order to estimate the type-II-error (13) or the power of a test (1-/3) it is necessary to know (1)

the sampie size, (2) the critical a-Ievel and (3) the distribution of the relevant statistical

parameters given the alternative hypothesis. Tbe third condition poses serious problems for

ususl inference strategies: the null hypothesis is generally tested against an infmite set of

possible alternatives and not against a specific one. This overemphazises the importance of the

a-error.

Using loglinear models for the analysis of multidimensional contingency tables, one can specify a

data model under the conditions of the alternative hypothesis. If a specified model has to be

rejected although it seems to be plausible from theoretical grounds, the probability of a type-II­

error should be estimated and be presented to the reader. Thereby, the plausibility of the tested

model (Le. the alternative hypothesis) can be judged: it might differ from the null hypothesis

although same effects could be too small to justify the rejection of the null hypothesis. This

could lead tothe replication of an empirical study - or to otber attempts to find new empirical

evidence for the initial hypothesis. In any case, this strategy will prevent us from rejecting

theoreticaIly plausible hypotheses on the basis of poor empirical material.

2. AsYMPTOTIC EsTIMATIONS OF POWER FOR 'i-TEsrs

Modelling strategies for categorical data often use 'i or C;Z as test statistics. Agresti offers an

approach of power analysis based upon noncentral 'i-distributions (Agresti 1990, 241): to

approximate the power of a 'i-test for a given model M with v degrees of freedom and a

significance level a. he develops 8 four-step analysis (ibid.):

Such strategies have been proposed by Witte (1980, 86 ff). Tbe general question oi test
power analysis is discussed by Cohen (1977).
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(1) Choose a hypothetical set of true cell probabilities {n,};

(2) calculate the cell probabilities ginn model M {n, (M)};

(3) calculate the non-centrality parameter J.. (cf. formula 7.11 for Pearson and 7.12 for

likelihood statistic);

(4) determine the probability to observe a X2-value lying above the critical a-Ievel, i. e.

p[~v.).>iv(a)]. In case one can expect the test statistic to be asymptotically chi-squared

distributed, tables for this are easily available (cf. Haynam, Govindarajulu & Leone

1970).

Modelling with multi-dimensional contingency tables often requires a slightly different strategy

of test power analysis as it is often not necessary to compute power statistics for the entire

model. Most of the time one wants to test conditional independence: the probability that single

model parameters are unequal to zero. In model based testing one would test the goodness­

of-fit of a given model M2 under the conditions of another model Mt. To approximate the

power of tests for partial associations, the strategy described above has to. be modified: In this

case probabilities given the more complex model Mt {n,(MJ} would correspond to {n,} and the

probabilities given the restricted model~ {n,(MJ} correspond to {n,(M)}.

Let us take as an example a hierarchical loglinear model Mt containing three random variables

A. B, and C and implying the interaction effects {AB} and {Bq. In order to test the partial

association between A and B, one can compare this model with a model~ not including this

effect; i.e. the model {A} and {Bq.

Let the empirical distribution, represented in a contingency table, be

Cl C2 C3

Al A2 Al A2 Al A2

BI 2 3 3 2 0 0

B2 1 10 13 28 3 6

The goodness-of-fit test statistic (G2) of the restricted model ~ calculated by SPSS gives a

value of 4.66 and a corresponding p-value of 0.199. The corresponding statistic of the more

complex model Mt gives a G2-value of 2.76 and a p-value of 0.251. The partial-i for the
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{AB}-interaction2 is 3.31. With 2 degrees of freedom its asymptotic p-value is 0.069. This

value could seem to be too small and the goodness-of-fit-statistics of the two models too similar

to reject the null bypothesis tbat this interaction effect is null, and therefore could lead to the

rejection of the more complex model Mr This type of decision is always connected with the

risk: of committing a type-n-error: this would be the case, if tbe more complex model MI fits

tbe tme population parameters better than the restricted model~ (the null hypothesis) while,

due to the sampling error, the observed sampie does not support the rejection of the null

bypothesis.

FoHowing Agresti's strategy for power approximations one would bave to calculate )., using the

relative frequencies expected under MI as "tme" probabilities and the relative frequencies

expected under M2 as "probabilities under M". One then would look up the corresponding test­

power using tables for the noncentral ,r-distribution. In the example we presented here, )., was

1.84, a was 0.05 and the corresponding power value 0.18. So the risk of a type-n-error seems

too high in this case.

3. CALCULATINO TEST POWER WI1lI MON'm-CARLO-ALOORlrnMS

Tbe strategy Agresti proposes for the estimation of the power is suited ooly for relatively large

sampies as it is using asymptotic ,r-approximations. As for significance tests, this could

become a problem for sampie sizes if expected cell frequencies are getting small. Different

authors propose different limitations for the use of ,r-distributed test statistics for the analysis of

contingency tables. Tbe most common recommandation ("Cochran's conditions") is to calculate

probabilities for a specific ,r-distributed test statistic only if not more than 20 % of the cells

contain expected frequencies lower than five. If sampie sizes are smaH or the tested models are

very complex tbis is often not tbe case - like in the example we have given above.

Cooceming "ordinary" tests of significance most recent developments can help to overcome this

problem: Tbe use of complex algorithms for exact inference or tbe estimation of the parameters

of tbe test distribution by using Monte-earlo-methods would allow to calculate tbe needed

probabilities if asymptotic tests would be not appropriate because of sparse cell frequencies or

highly imbalanced contingency tables. But wben we employ such tests as modeHing strategies,

il would be completely iIlogical to use asymplotics for tbe estimation of power. While such al­

gorithms are oow easily available for ordinary significance testing (cf. Mehta, Patel 1983), there

2 calculated by SPSS by comparing model {ABHACHBC} and model {ACHBC}
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are no programmes available using exact inference or Monte-Carlo-simulation for test power

analysis.

Confronted with the necessity of constructing multi-variate models on the basis of small sampies

we decided to develop a method for the approximation of the type-n-error by combining

Agresti's method described above and algorithms using Monte-Carlo-methods. The use of exaet

methods however was abandoned instead, because the investigated sampie were still large

enough to cause unacceptable long computation times.

In order to develop a transparent procedure we linked a standard spreadsheet (Microsoft Excel

4.0 under Microsoft Windows 3.1) with a Monte-Carlo-link-library written in CH. This was

done to combine the advantages of a spreadsheet - an environment with an acceptable user

interface and the possibility of macro-programming - with those of a fast and flexible program­

ming language.3 The algorithms we are aetually using for the generation of random tables are a

C++-clone of Boyett's FORTRAN-subroutine RCONf (Boyett 1979) and a second subroutine

generating random tables with fixed margins and cell probabilities given by the alternative

hypothesis (or the more complex model). C++ provides the use of dynamic memory allocation

and, thereby, makes it possible to overcome certain limitations of RCONf • such as the

restricted number of cases. Tbe aJgorithms are published in a paper of Prein, Kluge and Kelle

(1993). For the moment the use of these algorithms restricts us to the simulation of hierarchical

loglinear models with direct estimates! We are currently working on a modified version that

permits simulation models having no direet estimates.

In order to test a multi-dimensional contingency table using this Monte-Carlo-algorithm, it has

to be divided into subtables or nested tables. For each of them the minimal sufficient statistics

have to be determined. A first C++-function is drawing a random subtable from a hyper­

geometrie distribution. This has to be repeated for eacb subtable. Tbe use of tbe spreadsbeet .

then allows to put these subtables together and consequently produce a random table with fitted

marginal distributions for the tested model. A second function then calculates OZ or i for this

table. This whole operation is repeated and so a test distribution equivalent to the non-central

i-distribution is generated. By comparing the resulting values for each random table to the

3 The generation of random tables using the Excel macro-language is possible • but
extremely slow: a Monte-Carlo simulation with 2000 tables would have taken several days on a
personal computer with an Intel 486 processor.

4 This is due to the initial conditions we were confronted with when the problem of low
test power arose: There was a smalI, hierarchicalloglinear model {AB}, {BC} containing three
variables. Furthermore, this model had direct estimates, i.e. all expected frequencies could be
calculated directly without using iterative algorithms.
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critical value t(a), the probability to get a greater value than t(a) (i.e. p[~v.).>tv(a)], the

power of the test) can be calculated.

Tbe application of this subroutine requires a minimum of programming knowledge, because it is

used througb an Excel-macro controlling the loop around these functions and passing over the

model parameters. For tbe algorithm one can refer to the paper of Prein, Kluge and Kelle which

is mentioned above. To apply it to a specific contingency table, you bave to take tbe following

steps:

(1) Put your empirical data into the spreadsbeet.

(2) Calculate the expected frequencies according to the restricted model~

(3) Determine the critical t-value for v degrees of freedom.

(4) Start a Monte-Carlo-simulation for model Mi' If you bave to divide the table inta

different subtables, define a Monte-Carlo-process for each subtable. Put the subtables

together and calculate the noncentral ~)"v for each resulting table using tbe frequencies

expected under the restricted model~ as expected frequencies.

(5) Calculate the proportion ofnon-central t-values greater than the critical value tv (a) in

order to determine tbe power of the test (l-tl). Tbe probability of a type-ll-error can

simply be calculated as l-(l-tl).

For the example we have given in the previous chapter, tbe power estimation using tbe Monte­

Carlo-algorithm was 0.32. Compared to the value 0.18 tbe test power seems to be greater than

indicated by asymptotic tests. Nevertheless, the probability to commit a type-ll-error rermains

very high with 0.68, so that a further study sbould be carried out.

4. CONSEQUENCES

A modelling strategy including the computation of type-II-error and test power can yield four

different outcomes shown in the following table:

In cases one and two consequences are evident. If the probability of committing a type-II-error

is low and therefore the power of the test we use is high, we can follow ordinary inference

strategies to decide wbether a given model must be rejected. Cases three and four refer to those

problematic outcomes we couldnot detect by using "traditional" significance tests:
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Case three eould be the result of the use of simplifying models with large data sets: the

assumption of independence can be rejected at significance level a, but the test power

remains low. Therefore, a different - perhaps more eomplex - model might be more

appropriate.

Case four eould be the result if small sampies, complex models or detrended and sparse

tables are used as empirical material: the null hypothesis - eomplete independenee or in

case of multidimensional contingency tables a model eontaining few interaetion effects ­

cannot be rejected on a given a-leveI. As the probability for committing a type-ll-error

is high, the alternative hypothesis should not be abandoned. In this case it would be

more appropriate to replicate the study using a much larger sampie. In case this cannot

be done it should be mentioned at least that the more complex model MI might be

theoretically more plausible, but has a lower goodness-of-fit-statistie.

P<X~ > critical a-Ievel P(X~~ critical a-Ievel

(1) (2)

power high

Rejeet Ho at significanee Do not rejeet Ho at sig-

type-ß-error low level a. nifieanee level a.

AeeeptH10 Do not accept H1•

(3) (4)

powerlow

Rejeet Ho at significance Do not reject Ho at sig-

type-ß-error high level a. nificanee level a.

H1 might be plausible as

H1 may not be appropriate. weIl.

The strategy we propose is meant to identify those cases (3 and 4) where the "conservative"

significance testing can have devastating impacts for modeHing: with smaH sampies it can lead

to the rejeetion of theoretically probable alternative hypotheses. On the eontrary, an alternative

strategy of inference eombining ordinary signifieance testing with test power analysis can help

the researeher to deteet those cases where the empirical material is not suited as a basis for a

rational decision for or against the tested hypotheses or models.
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