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Nonlinear and Chaotic Dynamics and its Application to
Historical Financial Markets

Hartmut  Kiehling*

Abstract: For roughly 15 years, economic research has
been involved with chaotic systems. During these years
chaos theory took a firm place in science, although the
enthusiasm of the first decade was followed by a more
subdued kind of consideration. This might be the time to
sum up some of the results and to develop some ideas
concerning possible applications of chaos theory to
economic history (and its theory). Since a good portion of
the chaos research that has been done until now deals with
financial markets, we will consider that section of
economics.

Qualities of chaotic systems and chaotic models
of financial markets

Qualities of chaotic systems: Although chaos theory has had a lot of publicity,
it seems reasonable to repeat some important qualities of such systems. Other
qualities,” although also important, are left out because of lack of space. We
may divide natural processes into strong deterministic, pure stochastic and
dynamic ones. However, dynamic systems themselves can show a certain
deterministic or stochastic behavior. Especially the creative processes within a
dynamic system are determined by random.’ In contrast to such stochastic
dynamic systems, deterministic dynamic systems can be described by nonlinear
and especially recursive differentiable functions.” Deterministic chaotic

* Address all communications to Hartmut Kiehling, Heerstrafle 9, D-81247 Miinchen,
Tel. +49-(0)89-8116379, Fax. +49-(0)89-8110189, e-mail: 101520.2007@compu-
serve.com, 0898110189@t-online.de.

" Such as self-organization of systems and reversitibilty of processes.

* See Ebeling, Werner, Zeit und Komplexitit: Die kreativen Potenzen des Chaos, in:
Meier, Klaus u. Strech, Karl-Heinz (Hg.), Tohuwabohu: Chaos und Schopfung.
Aufbau, Berlin 1991, S. 79f.

" See Steeb, Willi-Hans, A Handbook of Terms Used in Chaos and Quantum Chaos.
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processes are one class of these systems. That's why nonlinear and recursive
functions are a sufficient, but not a necessary condition for the existence of
deterministic chaotic systems. Indeed most of the functions used to model
financial markets have these forms.

Several paths that lead to chaos have been investigated up to now. The most
usual one is via bifurcations. Neighboring solution vectors of a function, called
trajectories, usually show similar behavior for a certain length of time. All of a
sudden, they move apart. In other words: If a dynamic system depends on a
parameter A. and this parameter moves through a critical value, a qualitative
change in the behavior of the system occurs. A is called the bifurcation
parameter, the critical value is called the bifurcation point." There are several
kinds of bifurcations. The simplest kind passes from an equilibrium into one or
more stable or unstable equilibria (local bifurcations, e.g. fold, pitchfork, flip,
or transcritical bifurcations).” They describe the chaotic phenomenon of period
doubling (i.e. the alternation ofthe system between two modes) in the simplest
possible way (see fig. 1). Another frequent way into chaos goes via
intermittency. It includes repeated random changes between long regular,
laminar phases (called intermissions) and relatively short irregular,
deterministic chaotic phases (‘windows to chaos').” This kind of process is
characterized by discrete chaos, which is the opposite of continuous chaos.
Among the other ways to chaos, quasi-periodic motion is of particular interest
in economics. A motion is quasi-periodic, if it is not periodic, but consists of
periodic motions. This might be the case if some of these movements are
periodic on a time scale, while other one are periodic on a distance scale.
Quasi-periodic motion appears if the periods of these motions do not have a
common multiple. Bifurcations might come over a chaotic system without
warning, but such a Blue Sky catastrophe is relatively seldom. In financial
markets, this kind of bifurcation is known as Noah effect. It takes place after
unexpected news concerning namely small caps, foreign exchange (FX) and
commodity markets. More often bifurcations are preceded by distinct changes
of the system's mode. Such phase transitions can also be found in financial
markets: Before stock market crashes the composition and behavior of
investors changes and market volatility jerks up.

Deterministic chaotic systems are dissipative ones. Unlike conservative
systems, the volume of an element of their phase space tends to zero in the

BI-Wissenschaftsverlag, Mannheim etc. 1991, p. 42. These functions usually are
sufficient for dynamic systems acting in a more formal way such as financial markets.
That's why the discussion in this article usually is done on the basis of deterministic
dynamic systems.

‘ See ibid., p. 25.

* See Lorenz, Hans-Walter;, Noxiiinear Dynamical Economics and Chaotic Motion.
{Beckmann, M. and Krelle, W. (eds.), Lecture Notes in Economics and Mathematical
Systems 334) Springer, Berlin etc. 1989, p. 65-75.

* See Steeb (1991), p. 66f.
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Fig. 1: Bifurcations Source: Seifritz (1987), p. 53.

course of time.” After this period of time, the mode of the system is
characterized by an attractor. An attractor defines the equilibrium level of a
deterministic system. It maps the degrees of freedom or orbits of a system to
their limit cycles in phase space. There are several kinds of attractors. The
simplest one is a point attractor in a system, which can be described perfectly
by the help of only two degrees of freedom. Cyclic attractors or limit cycles as
the next complicated show the above mentioned skipping of the system
between two modes. A further step is to a torus attractor. Such a system has
three or more degrees of freedom. A torus attractor is determined by coupling
several periodic systems to a system, which is periodic itself. Deterministic
chaos is expressed by a strange attractor. The degrees of freedom of such a

"In a phase space, the value of a variable is plotted against possible values of the
descriptive variables at the same time. See Pefers, Edgar E., Chaos and Order in the
Capital Markets. (Wiley finance editions) John Wiley, New York 1991, p. 230.




system no longer move cyclically, but its determinants could only move on the
attractor and graphical patterns can be seen. In other words: Deterministic
chaotic systems have their 'equilibrium'. But such an equilibrium is very
complicated and we cannot know at which point of the equilibrium the system
will be by the next moment. (For different kinds of attractors see fig. 2) Strange
attractors are important signs for the determinism of certain chaotic systems.
The form of attractors does not stay stable for each system in each mode of the
system. This form depends on the different paths that lead to chaos. In every
case first a point attractor appears and after the first bifurcation a limit cycle. At
the end, each system falls into chaos showing a strange attractor. Between the
second and the last bifurcations, there is a great variety of modes. Looking at a
pitchfork bifurcation, a limit cycle with 2' limits is followed by a limit cycle
with 2° limits. Looking at Hopf bifurcations as bifurcations more complicated
than the local type, already after the second bifurcation a torus attractor
appears, changing its form after two additional bifurcations. Systems with
intermittency are characterized by saddlepoint bifurcations. They fall into chaos
after only one limit cycle and one intermission

Two more important characteristics of chaotic systems should be mentioned.
One of the most important is sensitive dependence on initial conditions. It is
called the butterfly effect, which stands for the vague possibility that the wing
of a butterfly in Rio might cause a tornado in Texas. In a mathematical sense,
this effect is caused by the erratic behavior of neighboring trajectories. The
second quality is that characteristics of chaotic systems show similar patterns
no matter what local or temporal level is regarded. This scale invariance or
self-similarity is one of the most important signs of determinism in chaotic
systems. It is true for time series and attractors.” This short recapitulation of the
qualities of chaotic systems leads in parts to a working definition of chaos.
Such systems show

- topically transitivity (from one mode to another e.g. by bifurcations),
- sensitive dependence on initial conditions and
- density of periodic points.

These three objectives mean that chaotic systems cannot be broken down or
decomposed into two subsystems (indecomposability), they are are unpredic-
tible, but have an element of regularity.” According to another definition,
deterministic chaotic systems include

- determinism.

% See Grofimann, Siegfried, Selbstihnlichkeit: Das Strukturgesetz im und vor dem
Chaos, in: Gerok, Wolfgang et al. (Hg.), Ordnung und Chaos in der unbelebten und
belebten Natur. (Verhandlungen der Gesellschaft Deutscher Naturforscher und Arzte
115. Versammlung) Hirzel, 2. Aufl., Stuttgart 1990, S. 101-122.

'See Steeb (1991), p. 32-35.




Fig. 2: Attractors Source: Crutchfield (1989), p. 8.




- no addition of external noise to the system,

- sensitive dependence of some coefficients on initial conditions, but

- no sensitive dependence of some global characteristics on these
conditions.” For the most important qualities of natural systems see fig. 3.

Chaotic models of financial markets: Until about 1988, the purpose of chaos
research in economics was mainly to detect chaos in existing or newly
developed economic models. These included certain macroeconomic models,
capital theory, fields such as urbanism, regional agglomeration, growth
frontiers, ecological and economic interdependence.” Models of financial
markets take a prominent place among them. They mainly refer to
organizational or psychological effects. One such effect might be a simple
reaction to previous price changes.” One of the most common of organizational
or psychological effects, however, is the dichotomy between long term
investors and speculators and their different investment periods and reaction
times. Almost 25 years ago, the English mathematician E.C. Zeeman published
a model of the stock market as a cusp catastrophe consisting of exactly these
elements. The model puts emphasis to the explanation of stock market crashes
and follows the form

1 1
1 [=—J" —-FxJ-—CxJ
() 4 2

where I - price of stock index, J = change of stock index, F' = equity demand
by fundamentalists, C - share of market value held by chartists (see fig. 4)."

05ee Loistl, Otto and Betz, Iro, Chaostheorie: Zur Theorie nichtlinearer dynamischer
Systeme. Oldenbourg, Miinchen u. Wien 1993, S. 48. For other definitions see ibid.,
p- 37-49.
" See Ahmad, Syed,, Capital in Economic Theary: Neo-Classical, Cambridge and
Chaos. Edward Elgar, Aldershot 1991, p. 337-384; Deneckere, Raymond and
Pelikan, Steve, Competitive Chaos, in: Journal of Economic Theory 40 (1986), p.
13-25; Frank, Murray and Stengos, Thanasis, Chaotic Dynamics in Economic Time
Series, in: Journal of Economic Surveys Vol. 2, No. 2 (1988), p. 103-133; Goodwin,
Richard M., Chaotic Economic Dynamics. Clarendon Press, Oxford 1990; Hommes,
Carsien Harm, Chaotic Dynamics in Economic Models. Diss. Groningen,
Walters-Noordhoff, Groningen 1991; Lorenz (1989), p. 42-61, 96-174; Lorenz,
Hans-Walter, Strange Attractors in a Multisector Business Cycle Model, in: Journal
of Economic Behavior and Organization 8 (1987), p. 397-411; Rosser, J. Barkley,
From Catastrophe to Chaos: A General Theory of Economic Discontinuities. Kluwer,
Boston etc. 1991; Stutzer, Michael J., Chaotic Dynamics and Bifurcation in a Macro
Model, in: Journal of Economic Dynamics and Control 2 (1980), p. 353-376.
See Dockner, Engelbert J. u. Gaunersdorfer, Andrea, Die Bedeatung der Chaos-
theorie fur die empirische Kapitalmarktforschung, in: Bank-Archiv Jg. 43, Nr. 6
(1995), S. 428-430.
See Zeeman, E.C, On the Unstable Behaviour of Stock Execlanges. in: Journal of
Mathematical Economics 1 (1974), p. 39-49; Zeeman, E.C: Catastrophe Theory, in:
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Out of E.C. Zeeman's model, E.E. Peters developed his Fractal Market
Hypothesis. He points out that differences in investment horizons are due to
market instabilities, while during normal times fractal structure gives the
market considerable stability.” T. Vaga published his Coherent Market
Hypothesis as a nonlinear statistical model. He distinguishes four market
phases: random walk, transition, chaotic markets, and coherent markets. Each
one is characterized by different kinds of attitudes and the mutual influence of
investors. The model follows the psychological theory of social imitation, but is
formulated mathematically.” A recent attempt to determine the behavior of
financial market operators by a model was done by Lux. He called his paper
'Socio-Economic Dynamics in Speculative Markets'. Lux also distinguishes
between the two interacting groups of speculators and investors, by using the
literature of crowd psychology and synergetics. One of the main aims of his
work is to show that his model creates both leptokurtosis” and chaos."” Within
the last decade, additional attempts have been made to model financial markets
with the help of different feed back loops which imitate the behavior of certain
market participants in certain situations.” Many of these loops follow stock
exchange savings which in some cases can be traced back to the beginnings of
early stock markets. These models, although not consistent until now, might
give hints for reconstructing the behavior of historical financial markets.
Maurice R. Larrain developed one of the few chaotic models of security
markets based on fundamental determinants. His K-Z interest rate model
combines Keynesian economics with past interest rates.” Sherrill Shaffer
published a model which offered proof that apart from trading behavior simple
fundamental causes such as a fixed dividend payout ratio combined with a
declining marginal efficiency of the investment curve may suffice to produce
chaos, if some relevant parameters show certain values.”

Scientific American Vol. 234 (1976), p. 65-83. Symbols here and in the following are
adjusted. For further applications of catastrophe theory to economics see Ursprung,
Heinrich W., Die elementare Katastrophentheorie: Eine Darstellung aus Sicht der
Okonomie. (Beckmann, M. and Kiinzi, H.P. (Hg.), Lecture Notes in Economics and
Mathematical Systems 195) Springer, Berlin etc. 1982.

See Peters, Edgar E., Fractal Market Analysis: Applying Chaos Theory to Investment
and Analysis. (Wiley finance editions) John Wiley, New York 1994.

* See Vaga, Tonis, The Coherent Market Hypothesis, in: Financial Analysts Journal
Vol 46 (1990), p. 36-49.

A frequency distribution having "fat tails'.

See Lux, Thomas, The Socio-Economic Dynamics of Speculative Markets: Inter-
acting Agents, Chaos, and the Fat Tails of Return Distributions. Presentation held at
the annual meeting of "Verein fiir Socialpolitik', Sept. 21st, 1995 in Linz.

See Tvede, Lars, Psychologie des Borsenhandels. Gabler, Wiesbaden 1991, S.
130-141, 304-317.

See Peters (1991), p. 187-191.

See Shaffer, Sherrill, Structural shifts and the volatility of chaotic markets, in:
Journal of Economic Behavior and Organization 15 (1991), p. 204-209.

2
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Measures of nonlinearity and chaos

To investigate time series of historical financial markets, the usual first step is
to find out if the data are identical and independently distributed (IID).
Independent variables are required by almost all popular models of securities'
returns, and many of them also presume identical distributions.” By proving
IID, researchers try to answer the question, whether certain time series or their
changes (Markoff chains) follow a random walk or else a deterministic path.”
This research in the first step aims to answer the question if certain financial
markets are efficient. Both independence of variables and identical distributions
can be tested out by a broad variety of instruments. Among them are measures
testing the distributions for leptokurtosis or for conditional heteroskedasticity™,
e.g. skewness - qualities which are characteristic for time series of financial
markets. In this context, only widely used ARCH (autoregressive conditional
Heteroskedasticity), GARCH (generalized ARCH) and EGARCH (exponential
GARCH) models,” or the Kiefer-Salmon test for normal kurtosis and normal
skewness” should be mentioned. In some text books spectral analysis is
described as a method for identifying nonlinearities and chaos. Although this
instrument is particularly useful for distinguishing between random behavior
and periodic time series with only a few frequencies, it cannot distinguish
between chaotic and true random behavior. Nevertheless, some authors point
out that it is possible to isolate significant chaotic peaks with the help of the
spectrogram belonging to the method, because they think that a broad band
spectrum 'is, in practice, a reliable indicator of chaos'.”

See Akgiray, Vedat, Conditional Heteroscedasticity in Time Series of Stock Returns:
Evidence and Forecasts, in: Journal of Business vol. 62, no. 1 (1989), p. 60.
Theoretically there are certain other possibilities, e.g. strong deterministic or
stochastic nonlinear connections.

Uneven dispersion, having 2 important consequences for the estimation: (1) The least
squares estimators of the regression coefficients are no longer efficient or even
asymptotically efficient. (2) The estimated variances of these estimators are in
general biased.

See for ARCH models Engle, R.F., Autoregressive conditional heteroscedasticity
with estimates of the variance of U.K. inflations, in: Econometrica 59 (1982), p.
987-1007; for GARCH models Bollerslev, T., Generalized autoregressive conditional
heteroskedasticity. in: Journal of Econometrics 31 (1986), p. 307-327; for EGARCH
models Nelson, D., Conditional heteroskedasticity in asset returns: a new approach,
in: Econometrica 59 (1991), p. 347-370. For a summary of ARCH models see
Bollerslev, T., Chou, R.Y. and Kroner, K.F., ARCH modeling in finance. A review of
the theory and empirical evidence, in: Journal of Econometrics 52 (1992), p. 5-59.
* See Kiefer, N. and Salmon, M., Testing normality in econometric models, in:
Economics Letters 11 (1983), p. 123-127.

Baker, E.L. and Gollub, J. P., Chaotic Dynamics. Cambridge University Press,
Cambridge 1990, p. 61. See for spectral analysis and its application for detecting
chaos in time series: LoistlIBetz (1993), S. 50-56; Lorenz (1991), p. 176-179; Medio,
Alfredo, Chaotic Dynamics: Theory and Application to Economics. Cambridge
University Press, Cambridge 1992, p. 101-114.
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Capital market theory developed special tests for the efficiency of financial
markets, e.g. the proof of absence of excess volatility.” Some new instruments
answer the same question and usually even do a step more. One of them is the
Hurst exponent as a measure of the kind of mathematical process a time series
follows. Calculating this exponent is part of the Rescaled Range or R/S
analysis. In an otherwise quiet system the range R of a spot's motion during a
period m, rescaled by its standard deviation S, follows the equation

R
2 — = cxm i

ASI)l

for ¢ = constant. H is the Hurst exponent

log B | log(c)
3) S,

log(m)

It may take on values between 0 and 1. A value of 0.5 is typical for a random
walk. A Hurst exponent different from 0.5 means that a time series' changes
are not normally distributed. Significantly different values show evidence for
deterministic structure in the data. # > 0.5 indicates the presence of a persistent
time series. The more H approaches 1.0, the stronger the system's
trend-reinforcing behavior gets. In addition, high Hurst values show less noise
and clearer trends than lower ones.” In the case of H < 0.5 antipersistent
connections between subsequent spots are likely. As the Hurst exponent relies
on rescaled data with an average of 0 and a standard deviation of 1, the method
is scale invariant. It therefore allows one to compare data from different time
periods and different time scales.” Not only the behavior of the system can be
determined from R/S analysis, but also the length of its cycles, which is the
period of time in which a system continuously shows persistent or antiper-
sistent behavior.” This gives a possibility for determining long memory cycles.

See Joerding, Wayne, Are Stock Prices Excessively Sensitive to Camrent Information?
in: Journal of Economic Behavior and Organization 9 (1988), p. 71-85. For an
application of this method for historical financial markets see Delong, J. Bredford
and Becht, Marco, "Excess volatility" and the German stock market, 1876-1990.
(EUI working paper ECO No. 92/82) Badia Fiesolana, San Domenico (FI) 1992.
Recently, the informative value of this proof has been doubted. See Krimer, Walter,
A note on excess volatilities in empirical capital market research, in: Zeitschrift fiir
Wirtschafts- und Sozialwissenschaften 2 (1994), p. 173-183.

See Peters (1991), p. 89.

Persistent or trend-reinforcing series. See ibid., p. 65.

See ibid., p. 62-77.
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The fractal dimension D is another method for distinguishing between
stochastic and deterministic systems. D shows to what extent the attractor of a
system fills up its phase space. It can be regarded as the inverse of the Hurst
exponent D = I/H. There is a whole family of fractal dimensions to quantify
certain characteristics of attractors. Their values take on integers 0, 1, ..., n in
the case of not-chaotic attractors like points, limit cycles and n-tori. Time series
following a random walk have D - 2 in a phase space, which can be
reconstructed by the map X, = X,,;. Such a stochastic time series fills up its

phase space completely, while deterministic generated time series move
exclusively on their attractors. The fractal dimension could also be used as a
risk measure. Time series following a consistent trend have lower fractal
dimensions than time series following a random walk. Unlike measures of
dispersion such as the standard deviation, the fractal dimension shows a time
path and is an interesting alternative for measuring risk of change from an
actual mode.” The fractal dimension shows the maximum number of degrees
of freedom or of determinants of a dynamic system

To determine the fractal dimension one has to classify a phase space with an
embedding dimensional dimy into cells V, with a volume of R*™ and an edge
length of € N(g€) is the minimum number of cells necessary to cover the
attractor. If the cells V, are numbered from i = / until N(€) and the probability
of finding a point of an attractor in cell V, is called p, the fractal dimension is
defined as

( Aég) 7 3
log ;
@ .

T 5500 log(e)

with D, 2D, for ¢ £ p.”

For several ¢ one gets special measures e.g. for ¢ = 0 the Hausdorff
dimension, for ¢ = / the information dimension and for ¢ = 2 the correlation
dimension. All these dimensions are called fractal dimensions.” For
dimensions D > 2 the fractal dimension can be approximated by the Grassber-
ger-Procaccia algorithm:

AL [ogc(e) |
©) 2= ¢50 L tog(e)

" See ibid., p. 59f

” See LoistllBet; (1993), S. 80-837 Buizug, Thorsten, Analyse chaotischer Systeme.
BI-Wissenschaftsverlag, Mannheim etc. 1994, S. 56-59.

* See Steeb (1991), p. 51, 31, 55, 65f.
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where C(£) is the correlation integral. This integral measures the likelihood that
the distance between two neighboring spots on trajectories is less than £. The
exact definition of the correlation integral is

1 N [ | Il
Cle) = | « 2 ol - x|
(6) (¢) \'I.n:-,g 2 ( }\[ <l
1#
where
Y N = N g = (dim = 1)
/11
the number of points in the embedding space (N,, = number of data points of

time series; T - time of delay; 7, - observation period) and x, x, = independent
vectors in the embedding space, © stands for the Heaviside function™

1 fir x >0
8 s
o e (x) {()ﬁ,,.xy, 0

The Grassberger-Procaccia algorithm works well with long time series of good
quality. Problems may occur with noisy data™ and systems following inter-
mittency.”

There has been a broad discussion about the number of data points necessary
to calculate the correlation dimension accurately. The relatively optimistic
opinion of Eckmann and Ruelle is that with a Grassberger-Procaccia algorithm
no higher fractal dimension could be measured than

pax _ 2*'09,(,1“}2

* See Buzug (1994), S. 56-60; LoistliBetz (1993), S. 80-83.

* For the filtering of time series see Buzug (1994), S. 136-152. For the importance of
noise for trading on stock markets see Heyl, Daniel C. Freiherr v., Noise als
finanzwirtschaftliches Phinomen: Eine theoretische Untersuchung der Bedeutung
von Noise am Aktienmarkt. (Schriftenreihe des Instituts fiir Kapitalmarktforschung
an der Universitit Frankfurt/M. Bd. XVI) Diss. Frankfurt/M., Knapp, Frankfurt/M.
1995.

See Ruelle, David] . Deterministicc Chimos: The Science and Fiction. (Proceedings of the
Royal Society, London) 427 A (1990), p. 241-248; Grassberger, P. and Procaccia,
J., Measuring the strangeness of strange attractors. in: Physica D9 (1983), p. 189-208.
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According to them, for scaling intervals 0.005 €€ < 0.1 and a fractal dimension
of D, = 7 N, = 33.000 data points are needed.”

The BDS statistic, developed by Brock, Dechert and Scheinkman, tests the
null hypothesis that the data are independently and identically distributed. The
method is based on the above correlation integral (6). Let {x:t =1, ..., T } be a
sequence of IID observations. Form N-dimensional vectors x," = (x,,,, ..., wvs
X,..), called N-histories. The correlation integral becomes

Under the null hypothesis of an asymptotic standard normal deviation we get
the BDS statistics

y. m-1
e Cfa)s——— ¢ T H@(g-

b o s
1i<j<T,, k=0 i+k "tk
TA'*(TA’ - 1) J=1n

Vreey(e)-¢(a) ]

O'N(E)

@an bds = wN(g) =

A rejection of the null hypothesis points out that there is some type of
dependence in the data, resulting either from a linear or nonlinear stochastic
system, or a nonlinear detenninistic system. To identify the type of system,
further research is necessary. W. A. Brock showed that a (strong or chaotic)
deterministic time series y, has deterministic (chaotic) residuals [, which can be
calculated by the regression™

~

(12) yp = Dai* gt iy

y, and p, both have the same correlation dimension and the same Lyapunov
exponent (see later). On the basis of this theorem both linear and nonlinear
models can be adapted to the analyzed data. The resulting residuals may be
analyzed by methods of chaos theory. BDS statistics can be applied as a
measure for systematic nonlinearities in ARCH, GARCH, and EGARCH
models. Knowing this, the BDS test builds an interesting bridge between chaos
theory and economic modeling, although at this point specific research still has
to be done.”

"See Buzug (1994), S. 59.

" See LoistliBetz (1993), S. 104; Brock, William, Distinguishing random and

deterministic systems: Abridged version, in: Journal of Economic Theory 40 (1986),
p. 168ff.
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One of the most important measures for a system's current chaos is the
Lyapunov exponent L. It measures the divergence of two neighboring
trajectories after ¢ periods. L is therefore a measure for the predictability of a
system. It has to be calculated for every time < T and every dimension D. The
maximum Lyapunov exponent calculated determines the behavior of the
system. If D is not known, L has to be approximated.

From an empirical time series X =(x, x, x, ...,x,) m-dimensional phase
spaces z are formed:

(13) z4 :(x,, Xpplr Xp420 oo Xl+m+l) witht=12,....T-m+1.

Because of this, 7-m + [ plots in a wi-dimensional phase space can be found.
For all neighboring spots (a, a,), for which is true | a;, - a |<€ewith a #a. Ina
next step, for these N pairs of neighboring spots, the distance & after p periods
can be calculated as

a; =87
(14) PUOA 308 0 AL
p

aj—ak‘

Then the Lyapunov exponent follows the function

(j k)
] = * 2 (I ¢
(15) A Ty jvk(né,, )

Negative Ls show a contraction in phase space. That means that the distance
between two spots shrinks in the course of time. After disturbance such a
system will return to a stable attractor. Positive Ls describe a dispersion in
phase space. The more L grows, the more sensitively the system reacts to the
change of its starting conditions. (See fig. 5 for the growth of the Lyapunov
exponent depending on the growth of the bifurcation parameter.) Although
deterministic, the system becomes unpredictable after certain periods of time.

” For BDS statistics see Brock, William A., Dechert, W.D. and Scheinkman, José A., A
test for independence based on the correlation dimension. (SSRI working paper no.
8702, Dept. of Economics, University of Wisconsin) Madison 1987; Brock, William
A., Hsieh, David A. and LeBaron, Blake, Nonlinear Dynamics, Chaos, and Instability:
Statistical Theory and Economic Evidence. MIT Press, Cambridge, Mass., and
London 1991, p. 41-81; LoistliBet; (1993), S. 102-104. For its application in ARCH
models see Engle (1982), p. 987ff.; in GARCH models see Bollerslev (1986), p.
307ff.; in EGARCH models see Nelson (1991), p. 347ff. For the enlarged application
of the BDS test see LoistliBetz (1993), S. 102ff.
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Lyapunov exponent
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Fig. 5: Lyapunov-Exponent Source: Seifritz (1987), p. 62.
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This loss of explicable quality depending on the number of iterations is
expressed in L. After 1/L periods of time no information at all about starting
conditions can be found. That's why calculating 1/L is another way to
determine the period of a long memory cycle.

A further important measure which can characterize chaotic movement in an
n-dimensional phase space is the Kolmogorov entropy K. It is based on the
above mentioned information dimension: If the phase space is divided up into
N boxes, there is a probability

(16) ple) =

for the mean stay of a trajectory in the box with the number i. p(€) is the
number of data points in box N(€) divided by the number of boxes N(&) that are
not empty. According to the mathematical information theory" the lacking
information to locate the system's mode can be written with a given precision
by Shannon's information measure:"

N(e)

(7) 1(g) =2 ple)*logp,e).

i=1

To define Kolmogorov entropy K, the probability p, is replaced by the linked
probability p; ;. which determines that the system at time  stays in box I,, at
time t + At in box i, and at time t + mAt in box i. The information needed to
locate the system's mode can be defined in a way similar to Shannon as

(18) S~ Pigiim* log Pigredm®

igim

The additional information for predicting in which box i,,, the system can be
located after the next evolutionary step K,., can be written as K, - K. In
other words K measures the loss of information of the system developing from
m to m+l. The Kolmogorov entropy K therefore can be written as the mean
rate of information losses of a dynamic system:

1 n

(19) K= ;*m)il(K"H“l = Km)

“ See Grosche, G. et al. (Hg.): Teubner-Taschenbuch der Mathematik (Bronstein/
Semendjajew), Teil II. 7. Aufl., Teubner, Stuttgart u. Leipzig 1995, S. 51 If.
“ See LoistllBet; (1993), S. 85f.

19




Inserting Shannon's information measure and constructing limiting values, the
expanded Kolmogorov entropy of order g can be determined. It is written as

b " q
(20) [\q i EI!EQO mlgao(m* At i log C’n(g))

with the correlation integral

K is defined as 0 € K < oo, If the system is strong deterministic, K is 0 , if it
behaves in a pure stochastic manner, it is 0. If the system is chaotic, K is
positive and finite. K can be used to determine the interval 7 for which
predictions about the mode of the chaotic system are possible. T follows the
form

()
22) =g |~ .

In other words the accuracy of measure € influences the interval 7 only in a
logarithmic manner. So if the prediction interval should be doubled, the
accuracy of the measure must be squared. Chaos researchers usually suppose
that there is a relationship called Ruelle's relation between the Kolmogorov
entropy K and a positive Lyapunov exponent L:"

(23) KS%);-Withﬂi 20.

This short and necessarily incomplete description of some of the most
important measures for detecting nonlinearities and chaotic behavior is
presented as an introduction. The methods are at present under constant
discussion. Nevertheless, this should be sufficient to get an idea about the
instruments chaos researchers are using.

“ See ibid., S. 89f., 95-100; Seifritz (1987), S. 64f.
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Research on nonlinearity and chaos with empirical time series
in financial history

Within the last years the emphasis of research shifted from detecting chaos in
economic models to the investigation of empirical time series. As most
instruments of chaos theory require a very large sample size, these studies
cover at least a decade and thus have an historical aspect. Although some
examine time series of business cycle indicators, most of them deal with
financial markets. This has several reasons:

- Financial markets offer much higher numbers of data points than other
economic fields.

- The available data are often of superior quality e.g. they are more precise, at
least if they are not the result of broad aggregations as in the case of
financial indices.

- Many data of financial markets show considerable constancy during the
course of time. Time series continuously have a similar quality.

- Some research points to a low number of determinants for certain financial
markets. This would mean both a low complexity of the systems and a
relatively steady behavior.

The following chapter will give a short survey on research done on chaotic
behavior of financial markets. Most of this research concerns with the existence
of nonlinearities. This research has been published in an extraordinarily broad
range of scientific journals in very different fields such as mathematics,
physics, economics, and business administration. This is one of the reasons
why this chapter can only give hints about the development. Other reasons are
limited space in this article and the author's intention to show only the outlines
of the development

Discovering nonlinearities: 1989 Scheinkman/LeBaron analyzed 5.200 daily
stock returns of the US market. The data came from the Center for Research in
Security Prices at the University of Chicago (CRSP) and consisted of a
value-weighted, dividend adjusted index from July 1962 until December 1985.
Scheinkman/LeBaron applied several methods such as the BDS-test, the ARCH
model and the Grassberger-Procaccia algorithm. The authors discovered market
imperfections and the absence of randomness in price changes. Especially in
the weekly averages of the data nonlinearity could be proved.” At the same
time, Akgiray analyzed 6.030 daily stock returns of about the same sample
(Jan. 1963- Dec. 1986). Using several statistical instruments including the
Kiefer-Salmon test and the maximum log-likelihood function, he also found
nonlinearities such as skewness and leptokurtosis in the whole sample and in

“ See Scheinkman, José A. and LeBaron, Blake, Nonlinear Dynamics and Stock
Returns, in: Journal of Business vol. 62, no. 3 (1989), p. 311-337, esp. p. 319-334.
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each of its five-year periods. ARCH and GARCH models fitted very well to the
data giving strong evidence for the thesis of conditional heteroskedasticity.”
Brock/Hsieh/LeBaron published another analysis of CRSP data two years later.
They used the same sample as Scheinkman/LeBaron. Applying BDS statistics,
the authors rejected IID. Tsay and Engle statistics showed the nonlinear
structure in the data and (G) ARCH models again fitted exactly.” The authors
also analyzed Standard & Poor's 500 weekly return series from 1928 to 1985.".
Brock/Hsieh/LeBaron divided up their data into several subperiods, dropping
the 1940s due to World War II. Although the S&P 500 stock market index does
not include dividends, again all tests (e.g. BDS and (G)ARCH types of tests)
rejected 11D.”

An even stronger rejection of the random walk character of the data was
stated by the authors for several foreign exchange markets. They analyzed each
of the 2.510 observations of daily closing bid prices of the US § versus ¥, DM,
£, Can$ and sFr from January 2nd 1974 to December 30th, 1983. To test
whether the random walk hypothesis of price changes on efficient markets
holds, rates of change have been calculated from the data by taking the
logarithmic differences between successive trading days. Once again, the BDS
test and (G)ARCH models have been applied. They show that daily exchange
rate changes are not independent of past changes and therefore reject random
walk hypothesis.” ARCH and GARCH models have been applied to FX
markets by a number of other authors, too.” Hsieh analyzed the same series of
observations two years earlier by several measures for nonlinearity and found
leptokurtosis. BDS statistics and autocorrelation of the squared data indicated
substantial nonlinear dependence.” In recent times, a new generation of
research concerned interest rate structure, its behavior and determinants.”
Research about nonlinearities in the term structure has been done by
Pfann/Schotman/Tschemig. They compared monthly data of 3-month t-bill
rates and 10-year government rates of the US market The data showed
extremely high kurtosis of the first differences. This was partly due to

See Akgiray (1989), p. 55-80, esp. p. 58-66 and 74-79.

“ See Brock/Hsieh/LeBaron (1991) p. 95-98.

All three publications mentioned until now prefer weekly averages because the daily
ones were more noisy. This preference is based on the Scheinkmann/LeBaron
suggestion that the weekend interrupts continouity of trading. See Scheinhnanl
LeBaron (1989), p. 317.

See Brock/Hsieh/LeBaron (1991), p. 99-101.

See ibid., p. 130-145.

See ibid., p. 139f.

See Hsieh, David A., Testing for Nonlinear Dependence in Daily Foreign Exchange
Rates, in: Journal of Business vol. 62, no. 3 (1989), p. 339-368, esp. p. 345-367.
See Granger, C.WJ., Modelling Non-Linear Relationship between Long-Memory
Variables. (Working Paper, University of California) San Diego 1993; Anderson,
H.M., Transaction Costs and Nonlinear Adjustment towards Equilibrium in the US
Treasury Bill Market. (Working Paper, University of Texas) Austin 1994.
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heteroskedasticity, which itself is consistent with the fact that volatility of
interest rates is positively related to the interest rate level. Applying a modified
version of the self-existing threshold autoregressive (SETAR) model to the
data, the authors discovered two modes influencing US interest rate structure.
Until money market rates reach double digits, the data randomize. Beyond this
level, they show a mean reverting tendency showing slight nonlinear dynamics.
This means that the actual long rates are not well predicted at the extreme
values of the short rate (see fig. 6).”

Long versus short rate
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Fig. 6: Interest Rate Structure Source: Pfann/Schotman/Tsciiernig (1994), p. 21.

Detecting chaos: Discovering nonlinearities in long running time series of
financial markets could only be the first step. Discovering chaotic behavior
should follow. As a matter of fact this research was been intensified at the
beginning of the 1990s. Nevertheless some work was published previously. The
most renown and by far the earliest example is Mandelbrot's analysis of cotton
prices for scale invariance. He had a threefold data basis including daily closing

“ For the first publication of this paper see Pfann, Gerhard, Schotman, Peter and
Tschernig, Rolf, Nonlinear Interest Rate Dynamics and Implications for the Term
Structure. Q*iscussion Paper 43, Sonderforschungsbereich 373,
Humboldt-Universitit) Berlin 1994.
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prices in New York between 1900 and 1905 and at several US places between
1944 and 1958, and New York mid-month closing prices between 1880 and
1940. The results were published first in 1963.” Later on, Mandelbrot demon-
strated the scale invariance of many other commodity prices, some interest
rates and some 19th century stock and bond prices (see fig. 7). Fama and Roll
followed by analyzing more recent security prices and some other kinds of
interest rates.” The results allow several conclusions:

- There is no random walk, since all usual rules of Brown's movement
contain privileged time scales.

- A scale invariance has been found in price changes. This scaling law
determines price changes which are independent of external shocks such as
depressions etc.

- It has been proved stationary over extremely long periods.”

Relatively early, but much later than Mandelbrot's articles, research was done
by Scheinkman/LeBaron (1986). They analyzed 5.000 daily stock returns from
the 1960s up to early 1980s and found slim evidence for a nonlinear dynamic
structure, a positive Lyapunov exponent, a fractal dimension between 5 and 6,
an imbedding dimension m = 14 and thus mean orbital periods of about 4 years.
Their results are consistent with chaos.” Later on, this research was criticized
because of its inadequate data basis. Peters thinks that for the methods applied
more than 10.000 data points would have been needed.” Early works also were
published by Frank/Stengos, who examined gold and silver rates of return.
They found a dimensionality between 6 and 7 and a Kolmogorov entropy
around 0.2. This mean an imbedding dimension of roughly 25, referring to a
tent map system with 3 to 6 dimensions. Applying Brock's residual test, they
found out that residuals from a linear or smooth nonlinear transformation of the
data yielded the same correlation dimension as the original data. This means
that the series follow deterministic chaos.” In the early 1990s, a greater variety

3 See Mandelbrot, Benoit B., Variance of Certain Speculative Prices, in: Journal of
Business 36 (1963), p. 394-419.

See Mandelbrot, Benoit B., Sporadic Random Functions and Conditional Spectral
Analysis; Self-Similar Examples and Limits, in: LeCam, L. and Neyman (eds.),
Proceedings of the Fifth Berkeley Symposion on Mathematical Statistics and
Probability 3 (1967), p. 155-179.

See Fama, Eugene F., Mandelbrot and the steady Paretian hypothesis, in: Journal of
Business 38 (1963), p. 34-105; Roll, R., Behavior of Interest Rates: the Application
of the Efficient Market Model to U.S. Treasury Bills. Basic Books, New York 1970.
See Mandelbrot, Benoit B., Die fraktale Geometrie der Natur. Birkhduser, Basel etc.
1991, p. 353-356.

See an unpublished paper of Scheinkman/LeBaron, cited by Peters (1991), p. 164.
See Peters (1991), p. 164.

See Frank/Stengos (1988), p. 125ff. Some researchers are so little interested in
historical questions that they do not even give the running time of their time series in
each of their publications.

s
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of research began. In 1991 Hsieh again analyzed the CRSP US stock returns.
This time he used different samples of weekly, daily and 15-minute prices,
adjusted or nonadjusted for dividends. The author constructed different port-
folios consisting of deciles ranked by size every quarter. Several measures such
as the correlation dimension (calculated by the Grassberger-Procaccia
algorithm), the BDS test and ARCH models led the author to reject 11D, but he
found conditional heteroskedasticity in his time series rather than chaotic
behavior. With only 1.294-2.017 data points, his samples were very small.”

In the same year Peters published his book about 'Chaos and order in the
Capital Markets'. It contains the analysis of several long running time series in
financial markets. First he applied R/S analysis to the S&P 500, using monthly
data from January 1950 until July 1988, estimating cycle lengths of 48 months.
After a peak at H = 0.78, the Hurst exponent begins to fall, and soon follows
the random walk line of H = 0.50. The cycles discovered in non periodic time
series are characteristic of nonlinear dynamic systems. Peters did the same kind
of analysis with individual stocks such as IBM, Mobil Oil, Coca Cola and
Niagara Mohawk and had similar results. Tech stocks have slightly higher A
and shorter cycle lengths, utilities lower H and longer cycle length than the
index itself. This shows that risk reduction by diversification also works under
chaotic modes. Investigating international stock markets with Hurst statistics,
Peters used the Morgan Stanley Capital International (MSCI) index, ranging
from January 1959 to February 1990. According to his results, the Hurst
exponent of the UK and Japan were 0.68, Germany's H 0.72. Their cycle
lengths differed between 30, 48, and 60 months. For 30 years monthly US
T-bond yields from January 1950 until December 1989, Peters found an H 0.68
and a cycle length of 5 years, coincident with that of the US industrial
production. On the other hand, during the same period, 3-, 6-, and 12-month
T-bills showed a slightly lower H, but no cycle length was apparent in the
log-log plot. This means that there was either not enough data, or no cycle
length. With this consideration, T-bills are an extreme exception in that they
show the unique character of money markets. Beginning with the end of the
Bretton Woods system monthly currency rates of the years 1973 until 1990
have been analyzed, including FX rates of the US § vs. ¥, £, and Sing(apour)$.
While the first three rates show high levels of persistence with H = 0.60, the
Sing$ is one of the few examples of a truly randomizing financial time series.
While cycle lengths of the currency markets could not be identified exactly”,
several economic indicators of the US showed quite clear behavior. While the
unadjusted time series (industrial production, and housing starts) had cycle
lengths of about 5 years, composite index numbers (like the Department of

* See Hsieh, David A., Chaos and Nonlinear Dynamics: Application to Financial
Markets, in: Journal of Finance vol. XLVI, no. 5 (1991), p. 1.839-1.877, esp. p.
1.854-1.875.

* The $/£ and the $/DM seem to have cycle lengths of 6 years.
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Commerce Leading Economic Index or the Columbia University Leading
Economic Index) had a shorter cycle length of 4.5 years. Hurst coefficients
varied from 0.73 (housing starts) to 0.81 (new business formations) and 0.83
(Columbia Index) up to 0.91 (industrial production). This shows long memory
effects even in economic data.”

In a next step, Peters showed some extraordinary stability in stock markets
behavior over several decades. For this purpose, S&P 500 daily returns from
January 2nd, 1928 until July 5th, 1990, covering 15.504 observations, have
been investigated. The R/S analysis shows again cycle lengths between 900 and
1.000 trading days, or about 4 years. Dividing the data into 2.600 data points
each covering about 10 years showed mean returns between -5.98 and
+12.28% and standard deviations between 0.0993 and 0.3241. On the contrary,
the Hurst coefficient showed astonishingly stable behavior. It only differed
between 0.57 and 0.62, not at all mirroring the radically different environments:
the Great Depression, three wars, the riotous 1960s, two oil shocks, the
leverage boom of the 1980s, the stock market crashes of 1929, 1987 etc. This
should be an interesting result for economic history (see fig. 8). Applying R/S
analysis to stock market volatility, a very stable antipersistence with an H of
0.39 could be discovered, by analyzing monthly series of the standard deviation
of daily returns from January 1945 to July 1990. Thus volatility is one of the
very few antipersistent series found until now in economics. Peters' next step
was to investigate daily inflation detrended stock returns in several countries:
the S&P 500 from January 1950 to July 1989 and the MSCI Indices for Japan,
Germany and the UK from January 1959 to February 1990 in local currency.
He found fractal dimensions of2.33, 3.05, 2.41, and 2.94. This means that three
dynamic variables at a minimum are necessary to describe these national stock
markets. This is in a striking contrast to Scheinkman/LeBaron's results, who
found a fractal dimension of 5.7 in the US stock market” There might be
several reasons for the difference. Peters applied the Wolf algorithm, while
Scheinkman/LeBaron applied the Grassberger-Procaccia algorithm. Peters uses
inflation detrended, but not dividend adjusted S&P 500 data, Scheinkman/
LeBaron use dividend adjusted, but not inflation detrended CRSP data. Both
indices are partly composed of different stocks with different weights. Peters
additionally points to the fact that for a fractal dimension of 610.400 = 10° data
points would have been needed, whereas Scheinkman/LeBaron used only 5.000
observations. Whatever it is - the difference remains irritating and shows how
much research needs to be done in that field. As a last step Peters determined
Lyapunov exponents for monthly returns of the 4 national stock indices
mentioned above. Peters computed a Lyapunov exponent for the US of L, -
0.0241. This means that the system loses predictive power after 1/0.024 = 42
month's time. This is almost the cycle length of 4 years mentioned above. For

* See Peters (1991), p. 84, 87-98.
“ See an unpublished paper of Scheinkman/LeBaron, cited by Peters (1991), p. 164.
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Fig. 8: Stability of Hurst Exponent Source: Peters (1991), p. 111.
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the UK, L, = 0.028 and a cycle length of 36 months has been found, for Japan
L, = 0.0228 (44 months). For the German cycle length of 60 months, found via
R/S analysis, about 50 years' data would be needed, which the MSCI index
does not give.” Peters determines only the first and highest Lyapunov exponent
L, but not the following two according to the system's fractal dimension.
Loistl/Betz are right to criticize that this way Peters approximated correlation
dimension could not be proved, e.g. by the Kaplan-Yorke dimensioa®

A deep, but narrow analysis of two German stocks (Commerzbank, Daimler)
has been published by Holzer. He used daily Frankfurt closing prices from
January 4th, 1983 until February 28th, 1992, each with 2.389 data points, prices
adjusted for splits. In spite of the small data basis, the author applied a whole
range of methods to the stocks, including spectral analysis, autocorrelation
functions, the AR(2)-return maps, Poincaré sections and several residual tests.
Applying the R/S analysis Holzer determined the Hurst exponents via Tukey's
biweight estimator as H - 0.96 (Daimler) and H - 0.97 (Commerzbank). This
points to strong long memory correlation.” The correlation dimension D = D(6)
is 1.8 for Daimler and 2.2 for Commerzbank. This is extremely low, implying
that only 2-3 substantial determinants might rule the systems. According to
Brock” the double of D is a lead to distinguish the upper limit of numbers of
these determinants. The residual test and the BDS test show evidence for the
existence of deterministic chaotic dynamics in these stock prices. To determine
the maximum Lyapunov exponent Holzer applied four different estimators
(plateau, trend medium, Tukey, Huber). They give Ls between 0.00184 and
0.00301 (Daimler) and 0.00151 and 0.00300 (Commerzbank). All estimated Ls
are positive.” Holzer also published one of the very few research papers done
on commodity prices. He used 1.815 weekly weighted price averages for pig
halves at Bavarian commodity exchanges from January 1957 until December
1991. He found a clearly lower Hurst exponent of 0.8295 (Huber estimator), or
0.8204 (Tukey biweight estimator), and an Lyapunov exponent L = L, = 0.006.
His correlation dimension was D = D(8) = 3.6, meaning that 4 to 8 (n, = 8 = 2D
+ 1) determinants are ruling the system. Holzer found that the two stocks were
clearly ruled by less complicated and more steady modes. Nevertheless, both
stock and commodity prices are governed by chaotic behavior.” Rather strong
evidence of chaos was found by Alfredo Medio within a series of 4.204
observations of the DM/$ daily exchange rate from 1973 to 1989. His L
converges to 0.12 and he figured out a correlation dimension of D = 2.11."" A

* See ibid., p. 110-112, 118, 164, 168-180.

* See Loistl/Betz (1993), S. 107.

See Holzer, Christian, Analyse empirischear Dutenreifiem in der Okonomie mit
Instrumenten der nichtlinearen Dynamik. Diss. TU Miinchen, Miinchen 1992, S. 126.
" See Brock (1986), p. 176.

See Holzer (1992), S. 114-137.

“ See ibid., S. 138-152.

See Medio (1992), p. 274-282.
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year ago, Blank detected chaos in future prices. He used the standard contracts
of S&P 500 and Soya beans.”

At the end of this chapter, some particular historical work should be
mentioned, done by D.A. Peel et al. about forex markets during German
galloping and hyper-inflation. The data basis were 824 daily observations of
intra day high rates and 140 weekly observations of closing rates, both on the
London £/M spot market between January 2rd/8th 1921 until September 8th
1923. By the help of an ARCH model, BDS statistics and several other tests,
the authors rejected IID. They estimated correlation dimensions between 4 and
5, suggestive that the rates were generated by a low dimensional process. On
their very small data basis, they gave estimations of the time series' Lyapunov
exponents finding that the hypothesis could not be rejected that the regarded
forex rates exhibited chaotic behavior.”

Chaos research on financial markets until now mainly covers stock, bond and
forex markets in several important countries during periods beginning with the
1950s, but there are also papers concerning previous periods and selected
commodity prices, derivatives and money markets. This short resumeé' already
shows that this research points out the existence of nonlinearities, and in most
cases even of chaos.

*

R

" See Blank, S.C., "Chaos" in Future Markets? A Nonlinear Dynamic Analysis, in: The
Journal of Future Markets vol. 11, no. 6, p. 711-728. Out of a number of further
publications see for the stock markets: Funke, Michael, Testing for Nonlinearity in
Daily German Stock Returns. (Discussion Paper 30-93, FU Berlin and Centre for
Economic Forecasting, London Business School) Berlin and London; Philippatos,
George C, Instabilities and Chaotic Behavior of Stock Prices in International Capital
Markets, in: Managerial Finance vol. 20, no. 5/6, p. 14-42; Tata, Fidelio and
Vassilicos, Christos J., Chaos in the Stock and Forex Markets? (Discussion Paper no.
64, Forschungsgemeinschaft fiir Nationalokonomie an der Hochschule St. Gallen) St.
Gallen 1992; Willey, Thomas, Testing for Nonlinear Dependence in Daily Stock
Indices, in: Journal of Economics and Business vol. 44, no. 1 (1992), p. 63-76; for
the bond markets: Larrain, Maurice R., Testing Chaos and Nonlinearities in T-Bill
Rates, in: Financial Analysts Journal vol. 47, no. 5 (1991), p. 51-62; for the FX
markets: Aczel, Amir D. and Josephy, Norman H., The Chaotic Behavior of Foreign
Exchange Rates, in: The American Economist vol. 35, no. 2 (1991), p. 16-24; Miiller,
Ulrich A. et al., Statistical Study of Foreign Exchange Rates, Empirical Evidence of a
Price Change Scaling Law, and intraday Analysis, in: Journal of Banking and
Finance 14 (1990), p. 1.189-1.208.

" See Peel, D.A. and Yadav, P., The Time Series Behaviour of Spot Exchange Rates in
the German Hyper-Inflation Period: Was the Process Chaotic? in: Empirical
Economics 20 (1995), p. 455-471; Peel, DA. and Speight, A., Testing for Non-Linear
Dependence in Inter-war Exchange rates, in: Weltwirtschaftliches Archiv 130 (2)
(1994), S. 391-417.
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Applications of the chaos theory to economic history and to
historical financial markets

Application of nonlinear mathematics: The measures described above may be
applied to historical financial markets, but until now only a few periods of time,
countries and markets have been studied. One specific problem is the lack of
long time series collected and handled in the same way. In many countries
within the last 200 years several adjustments are required. E.g. if currency
reforms took place or quotation technics changed from percentage quotation to
unit quotation. In some cases, indices have been calculated, but with changes in
method during the course of time. The data have to be investigated and made
comparable, when for instance a stock price index was changed into a
performance index, small caps were included into a clear blue chip index, a
value weighted index replaced an unweighted index, or an index first uses spot
prices, then average prices and later closing prices. In Germany, for example,
there are five long periods of continuous monthly stock price indices: for the
years 1870-89, 1890-1913, and 1914-24, from January 1924 until June 1943,
and from January 1950 until April 1995”. Each of these periods of German
stock index include different numbers of stocks. The oldest one is not weighted
and without capital adjustments, the newer ones used different methods.
Nevertheless the Federal Statistic Bureau put the first three periods together. In
addition to these problems, there are gaps to be filled such as the one from
August 1914 until October 1917, in August and from October 1931 until March
1932, and from July 1943 until December 1949. Even a much broader and
more interesting gap in monthly data for German stock indices reaches from the
market's beginning at the end of the year 1835 and extends until December
1869.™

Equally difficult is the work to be done to get acceptable bond market data.
Until recent times, no performance indices have been calculated and published
in Germany. Only average prices, distinguished by different coupons were
available. Until World War II, the bond rate was calculated as if all the bonds
were perpetuities. To reconstruct an adjusted bond index, loan terms of each
bond have to be investigated. Similar problems are typical for money market
prices, mainly resulting from changing market segments. An ambitious DFG
project is reconstructing German stock and bond markets in imperial times.”

The Statistisches Bundesamt stopped calculating its stock market index, adjusted for
splits, but not for dividends.

The author of this articel prepares a summary of several German stock prices and
indices of the time between 1835 and 1870.

* Bond section has been published and is available for research. See Miiller, Johannes,
Der deutsche Rentenmarkt vor dem Ersten Weltkrieg - eine Indexanalyse. (Schriften-
reihe des Instituts fiir Kapitalmarktforschung an der Universitit Frankfurt/M. Bd.
XV) Diss. Frankfurt/M., Knapp, Frankfurt/M. 1992.
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For foreign exchange and currency markets a broad investigation of prices and
cross rates already has been published.” Nevertheless these few items show
how much needs to be done to get sufficient data for analyzing certain financial
markets for chaotic behavior. For only a few countries including the US and the
UK there are almost continous financial market data available.

Another problem is the pure quantity of data needed, even on financial
markets. Only a few market sections are able to generate time series with a
magnitude of data points large enough to apply methods of chaos theory to it.
Although some recent investigations for R/S analysis used data pools of only
about 500 observations to calculate Hurst coefficients and long memory cycles,
usually 2-3.000 observations are needed for these methods. Rules of thumb
developed by chaos researchers in physics state that 30° data points are
necessary for calculating a system's Lyapunov exponent In the case ofa fractal
dimension of D = 3 this would mean 27.000 data points; 810.000 observations
for D = 4 would be necessary. Recent work showed that with the help of certain
algorithms, L could be calculated on the basis of only 3.000 data points with
sufficient accuracy. Even for 2-3.000 data points periods of 5.5-10 years are
necessary, dependant on the number of trading days per year. If only monthly
data are available, for 2.000 observations a period of 166.6 years would be
needed. After 200-500 data points only a general statement about the algebraic
sign of L is possible.”. These few examples show how narrow the application
is with these methods even in the field of historical financial markets.

Nevertheless there are some possible and promising applications to historical
data sets. As a first step analyzing for nonlinearities is useful in most cases. If
this analysis results in rejecting IID, methods relying on it such as standard
deviation etc. could no longer be applied. In these cases a recently discussed
alternative is to use the fractal dimension D as a measure of volatility and risk.”
R/S analysis could be another method for investigating historical financial time
series. Calculating the Hurst coefficient would detect the kind of process which
determines a specific market at a specific time. Chaotic methods could give
hints for long memory cycles, and, if there are enough data, even of the time at
which the system's mode changes. Even if it would not be possible to identify a
market's determinants, it would be very useful to know how many of them are
working in the system. Knowing the times of mode changes could give hints

* See Spufford, P., Handbook of Medieval Exchange. London 1986; McCusker, J J.,
Money and Exchange in Europe and America, 1600-1775. A Handbook. Chapel Hill
1978; Schneider, Jiirgen et at, Wihrungen der Welt I-X. Franz Steiner, Stuttgart
1991-1994.

7 See LoistllBeli (1993), S. 56-64; Seifritz, Walter, Wachstum, Riickkoppelung und
Chaos. Hanser, Miinchen u. Wien 1987, S. 58-61; Steeb, Willi-Hans u. Kunick,
Albrecht, Chaos in dynamischen Systemen, 2. Aufl, BI Wissenschaftsverlag,
Mannheim etc. 1989, S. 41-48; Buzug (1994), S. 37-55; Steeb (1991), p. 87-88. For
several algorithms for approximating L see LoistliBetz (1993), S. 70-80.

™ See Peters (1991), p. 59f.
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for the reasons causing these changes. Information like this could even be
useful for today's discussion about the stability of financial markets. This is
especially true in the case of derivatives like options and financial futures being
repressed in the 1890s and after the stock market crash of 1929 with the
argument of destabilizing outright markets.

Causality, unpredictability and scale invariance: Until now, however, the main
importance of chaos theory does not lie in its mathematical application. The
overwhelming number of research so far done points out, that financial markets
and macroeconomic time series in several countries during several periods
show chaotic behavior. This means that they follow certain rules that could
generally be important for financial or even economic history. One of the most
important rules is the sensitive dependence on initial conditions (fig. 9 shows
the behavior of such a system). Economic and technical historians know this
effect very well in several fields. It is one of the reasons why in many cases it is
so difficult to find out why certain inventions succeed over competing ones. A
well known example out of recent times is the success story of VHS against
two competing video technics even though its technical standard was inferior.
Its advantage was a market start only a few months earlier. Another perhaps
still more famous example is the question why in late 19th and beginning 20th
century the internal combustion engine succeeded in competition with light
steam and electrical engines as the motor for automobiles. This process is still
in discussion showing that it is often very difficult to decide for what reasons a
certain process took a certain direction.” Similar situations are well known
from political history especially during pre-war crises, when psychological
effects such as group dynamics or behavior under stress do play a dominant
role. Most processes in history, however have almost an endless prehistory.
Looking at a process already in motion or even everlasting, the principle of
sensitive dependence on initial conditions has to be regarded in general as a
strong sensitivity to small changes in parameters.” The history of innovations
is only a very striking example for this kind of sensitivity. Some authors even
believe that deterministic processes are interrupted from time to time, and
history systematically creates unpredictable events which have important long
term effects.”

L Brian Arthur discussed a whole range of such situations in his article: Arthur, W.
Brian, Self-reinforcing mechanisms in economics, in: Anderson, P.W., KJ. Arrow
and D. Pines (eds.): The Economy as an Evolving Complex System.
Addison-Wesley, Redwood City, CA, 1988, p. 9-31.

% In deterministic chaotic systems this may be described as sensitivity of eigenvalues.
See Steeb (1991), p. 161.

81 Gee Ruelle, David, Chance and Chaos. Princeton University Press, Princeton, N.J.,
1991, chapter 14 (Historical Developements).
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Under such circumstances sciences have a particular problem, if they try to
be exact in a mathematical sense: Even with the help of perfect methods, only
one of a system's determinants can be measured with endless exactness. This
law, known as Heisenberg's uncertainty principle was first demanded for
quantum mechanics, but today is thought to be one of the few universal
scientific laws. This means that there is a hindrance in principle for analyzing
historical markets in a perfect manner. The uncertainty principle is so to speak
the mathematical proof that by the help of mathematics, we are not able to
analyze the economic behavior of a market as a whole. Nevertheless we are
able to calculate at least individual characteristics separately as shown above.
Both, the butterfly effect and the uncertainty principle, cause a kind of hare/
hedgehog-problem, which means that it often does not make sense to look too
exactly for concrete reasons for a certain development. It is more sensible to try
to identify the inner dynamics of the process instead. We will follow that later
on, when we look at the advantages that psychological theories might have in
the investigation of historical financial markets.

Another important consequence of chaos in financial markets comes from
their unpredictability after a certain period of time. After this period of time the
strong causality principle has no more validity.” That means arguments by
analogy are not possible. Historians know this very well saying 'history does
not repeat itself. But this is not the whole truth. During this period of time, the
strong causality principle is certainly valid. This is already a self-evident fact in
the historian's work every day, but it is worth while looking at this rule of
thumb from a more formal point of view. In addition, most chaotic markets
include deterministic structure. One of the outcomes of this determinism is
scale invariance. For one thing this means that it does not matter which time
scale is chosen for analysis. This might be of importance for economic
historians working in a quantitative way, because in certain situations scale
invariance might simplify their data problem. This is especially true for
financial markets, where it does not matter whether prices, turnover or returns
are minutely, hourly, daily, or even monthly. Scale invariance also means self
similarity: In the course of time similar patterns in similar situations could be
found.

Endogenous vs. exogenous reasons for sudden changes ofa system's behavior:
Nonlinear dynamic systems may enter chaotic phases because of exogenous or
endogenous reasons. That means that financial markets and other economic and
social systems do not need external shocks to show erratic behavior, if they are
chaotic systems. Endogenous determinants are not necessarily only those
representing market organization and psychology of market operators. They
might also be economic determinants, if they were only part of the variables
usually determining the system.” As we do not yet know for any financial

” Similar causes give similar results.
" That is variables necessary for describing the system in a mathematical sence.
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market analyzed so far which these determinants are, it is still an unanswered
question, whether economic or organizational and psychological determinants
are more important for financial markets. However, there is a slight tendency in
favor of the last ones. As we know from recent research, some chaotic
measures did not change much over several decades. This is also true for
market organization and according to contemporary market comments for the
operators' psychology, but not for a whole range of economic indicators. The
'inner surroundings' of a specific financial market,” are sufficient to explain
the system's behavior during normal times. On the other hand, these systems
refer to a certain stability even outside the core fundamental data. If they reach
specific thresholds, determinants from the market's 'outer surroundings'
become necessary to explain its movements, such as unemployment, strikes,
political elections etc. This is usually a time when financial markets show
erratic movements. This could be seen very well during the period of Weimar
Germany, when many of these determinants fluctuated much more than in the
times before and after, with the result of erratic price movements on financial
markets (see fig. 10).

The quality of chaotic systems, even if they show deterministic behavior, can
hardly be described by common closed economic models, because these
models usually assume that the system in question tends to an equilibrium that
is exactly determined. Only very few of these models suppose that such a
system tends to oscillate within a certain range. In other words: they assume
that the system has either a point attractor or a cyclical attractor. The first type
of model cannot even describe a deterministic chaotic system during the
non-chaotic mode, when a nonlinear dynamic system oscillates a certain time
within a certain range.” After the next bifurcation, the second kind of closed
economic model also loses its explaining power. As a further problem
deviations from that equilibrium in closed economic models are only possible
by external shocks, but in chaotic systems endogenous reasons might be even
more important. Nevertheless especially for analyzing macroeconomic
problems in a formal way, there is often no alternative to these models, but
when using them, their limits should be kept in mind."

One way to treat this dilemma may be to model the chaotic behavior of
financial markets.” This could include some psychological theories, since the

" See Luhmann, Niklas, Die Wirtschaft der Gesellschaft. Suhrkamp, 2. Aufl., Frank-
furt/M. 1989, S. 116-118.

* With a limit-cycle as an attractor.

Aside business cycles and financial markets, closed economic models tending to an
equilibrium in many cases at least on the short run imitates reality in a sufficient way.
See Lorenz (1987), p. 25-30. Besides these problems, these models have a severe
problem concerning the general philosophy of science, if they should be tested
empirically: They cannot be disproved because possible external shocks in most cases
cannot be named and therefore are only considered by a general ceteris paribus
proviso. That's why they do not fulfill Popper's criterion. See Raffee, Hans,
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situation during the critical phase transitions corresponds in a better way with
these theories.” As we know from historical investigations, the immediate
surroundings of market operators in extreme situations are decisive compared
to economic facts.” In critical phases investors follow strictly certain laws of
crowd or group psychology. This is especially true for professional market
operators, but under certain circumstances also for other investors. During
hectic market operations the contagiousness of crowds under stress, the
importance of group pressure or the anticipation of a supervisor's becomes
predominant. Recent research gave additional hints from individual
psychology. The theory of learned carelessness can explain actions of market
operators in critical months by confirming risky trading.” In addition, there is a
gating effect limiting reception of information under stress and thus explaining
short run behavior around market crashes. These findings go well with the
findings of chaos research that deterministic chaotic systems are especially
sensitive to shocks during phase transitions.” These theories as well as
self-similarity give hints for some validity of chart theory - not in a day to day
manner as it is used by chartists, but as a possibility in critical phases. This is
especially true during phase transitions coming before a bifurcation. Looking at
the situation before historical stock market crashes, in most cases a certain
chart formation ('head-shoulder') can be found, no matter which country,
which century or which market segment is concerned.” This is true for the
Southsea Bubble of 1720 in London as well as for the 'Griinderkrach' 1870/71

Grundprobleme der Betriebswirtschaftslehre. UTB Vandenhoeck, Géttingen 1974, S.
34; Prim, Rolf and Tilmann, Heribert, Grundlagen einer Kritisch-rationalen
Sozialwissenschaft. UTB Quelle & Meyer, 2. Aufl., Heidelberg 1975, S. 70.
" See Le Bon, Gustave, The Crowd. Macmillan, New York 1922; Seidenfus, Hellmuth
Stefan, Zur Theorie der Erwartungen, in: Schmdélders, Giinther et al. (Hg.), John
Maynard Keynes als "Psychologe". Berlin 1956, S. 97-158; Dinauer, Josef W.,
Psychologische Einfluligrofien bei der Kursbildung am Aktienmarkt, in:
DVFA-Beitrige zur Wertpapieranalyse H. 15 (1976).
See Galbraith, John Kenneth, The Great Crash 1929. 6th ed., Houghton Mifflin
Comp., Boston 1988; Aschinger, Gerhard, Borsenkrach und Spekulation: Eine
okonomische Analyse. Vahlen, Miinchen 1995; Wirth, Max, Geschichte der
Handelskrisen. Sauerlinder, 2. Aufl., Frankfurt/M. 1874; Kindleberger, Charles P.,
Manias, Panics and Crashes: A History of Financial Crises. 2nd ed., Basic Books,
New York 1989.
See Frey, Dieter, Schulz-Hardif, Stefam u. Liithgens, Carstem, Gelernte Sorglosigkeit
und Risikoakzeptanz, in: Wenninger, G. u. Hoyos, C. (Hg.), Arbeits-, Gesundheits-
und Umweltschutz. Asanger, Heidelberg 1995. The authors apply their theory to
financial markets. See Frey, Dieter, Schulz-Hardt, Stefan u. Liithgens, Carsten,
Termingeschéiifte: Das Hauptrisiko bei Finanzderivaten sind ihre Anwender, in: Zeit
40 (1994), S. 33; Frey, Dieter, Schulz-Hardt, Stefan u. Liithgens, Carsten, Barings ist
iiberall, in: Woche v. 17.3.1995, S. 20f. Until now no specific scientific paper has
been published.
See Shaffer (1991), p. 209-212.
Roughly 3/4 show socalled head-sholder formations.
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in Berlin, the 1929 stock market crash in New York, or the crashes of 1962 in
Frankfurt and of 1987 in dozens of market places around the world.

Continuity vs. singularity: In deterministic chaotic systems, there is an inner
coherence between their continuity and the singularity of certain events. On the
one hand, the butterfly effect causes unpredictability. Poincaré recurrence is not
possible, if such a system is quasi-periodic.” On the other hand, values of Hurst
coefficient for most financial markets point to a long run correlation causing
long memory cycles and the Joseph effect This expression refers to the biblical
story of Joseph who predicted seven fat years followed by seven lean years. It
characterizes the phenomenon that certain events are significantly more
frequent than they should be according to random laws, e.g. stock market
crashes, and are probably caused by a bifurcation. This leptokurtosis found in
changes of time series is regarded as a first sign of its chaos. In a system
characterized by intermittency during some phases the strong causality
principle is valid, while in other phases only the weak causality principle™ is
valid. Continuity and singularity of events are qualities of the same develop-
ments, no matter whether the systems show bifurcations or intermittency.
Existing social and economic systems usually do not follow these models
exactly. In history we rather may distinguish between phases in which analog
conclusions are possible in a more or less extended period.

As we have seen above, long-run correlations and superior control loops are
not the only elements of continuity within deterministic chaotic systems. They
also show similar behavior during critical periods such as phase transitions.
Knowing that at critical times and under comparable circumstances similar
situations in history took place again and again because of similar
psychological conditions, maybe it is even time to correct our model of history
as not repeating. Maybe the idea of 'archipelagos of recognition' giving form to
unstructured surroundings is more helpful. These critical points are often
branch points for further development and are therefore of extreme importance.
The identification and clear description of such 'archipelagos' would also be
helpful for recognizing, which kind of a system's condition is transferred from
the past to the present or to the future. This is even more true if we are able to
combine these considerations with the short run predictability of deterministic
chaotic systems. According to the above definition chaotic systems show that
some global characteristics do not react sensitively to initial conditions. These
global characteristics may be interpreted as superior control loops.” Regarding
all this, the traditional contrast between the idea of continuity in teleological
conceptions of history™ and the idea of singularity in historicism” loses its
purpose in deterministic chaotic systems.

" See Steeb (1991), p. 11 1If.

"“Equal causes bring equal results.

” It might be undecided whether such loops can be proved. To do so could be the field
of historical economists, if the reflections about closed economic models do not
oppose.

* See Spengler, Oswald, Der Untergang des Abendlandes. 6. Aufl.,, Beck, Miinchen
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To look at two specific financial markets make these thoughts more clear.
'Archipelagos of recognition' could be found around markets crashes. To find
superior control loops one has to look deeper. According to H.C. Zeeman's
model of the stock market as a cusp catastrophe, equity markets are determined
by two groups of investors, their motivation, and certain feedback mechanisms
of their action. This model is very consistent with reality over a long period of
time, that is ever since modem financial markets were formed in the 18th and
19th century.” On the other hand market qualities such as velocity of reaction,
legal framework, rules and regulations, entry conditions, international cohe-
rence, and some other criteria changed markedly. Even these criteria were
constant to some extent, but from time to time there were also considerable
changes. The actual combination of these criteria determines long memory
cycles. The changes of specific criteria usually took place very rapidly. E.g.
valuation of German stocks has been done over 120 years by comparing their
yield to that of the bond market. In the beginning of the 1960s this kind of
comparison changed within a few months for the price/earnings ratio.
Examples from the same market Sales figures grew in a step curve with steps
at the beginning of second German Empire, around 1960 and in the 1980s.
Derivatives boomed during the 1880s and again from the 1980s. Legal and
organizational framework changed dramatically with the Prussian stock
company law of 1843, the General German Commercial Code (ADHGB) at the
beginning of the 1860s, the Amendment of German Stock Market Law in 1896,
and the Second Law for the Promotion of Financial Markets in 1994.

German bond market followed a similar, but slightly different pattern. Over
long periods of time, it is characterized by relatively small price oscillations.
The ratio of highest to lowest yields was at best 3:1. Except for some short
periods, e.g. 1922/23, no or very few speculative investors could be found
between 1835 and 1980." During the last 100 years it was common to pay back
bonds at par at the end of their maturity period. In addition a small number of
determinants usually makes market forecasts easier: the spread to money
markets, between market segments and to international markets, tax reasons
etc. On the other hand, the German bond market has always been affected by
severe fractions. Unlike stock markets whole bond market segments have been
eliminated every 30 to 60 years: in the course of national bankruptcies in
Napoleonic times, the American railway crash 1872/73, and (much more

1980, S. 3. An extreme version gives Baur deviding up history into oscillations of
mentality and art history. See Baur, Karl, Zeitgeist und Geschichte: Versuch einer
Deutung. Callwey, Miinchen 1978.

See Seiffert, Helmut, Wissenschaftstheorie 2. Beck, 9. Aufl.,, Miinchen 1991, S.
63-69.

See Kiehling, Hartmut, Kursstiirze am Aktienmarkt, dtv, Miinchen 1991.

Since the beginning of the 1980s, German government bonds are one of the vehicles
for FX speculation with the D-Mark, because of the lack of heavily traded money
market papers.
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evident) after World War I and II. In addition, the rise of new types of securities
was of much greater evidence in clear German bond markets than in
complicated stock markets. Such an 'innovation' was the abundance of the
creditor's redemption in late 19th century. From time to time, the government
tends to make interventions in its own favor e.g. tax sheltered Bunds in the
1950s; the privilege of eligibility for trusts, which railway securities received
1843, and much safer mortgage bonds usually not before the 1890s.

Because of the importance of the hermeneutic method for historical research
in German speaking countries a few more words should be added concerning
this method. If it is taken seriously, there can be no laws in history.” An
opposite opinion has been shown by historians from other countries. In France,
researchers including Fernand Braudel 'a la longue durée' showed laws,
superior control loops (or whatever we should call them).” Several
Anglosaxon historians were open to long term considerations in a similar
manner. A well known example was Paul Kennedy's 'The Rise and the Fall of
Great Powers' of 1987, to which on the basis of 500 years of economic,
military and political evolution, he added a chapter predicting the likely
development in the 21th century."” Researchers using the hermeneutic method
approve of the existence of analogies, parallelisms and similarities in history,
but they emphasize that these phenomenon are not laws in the sense of bases of
extended spatial and temporal developments.” A general suspicion of these
historians against these phenomenon as well as against the generalization of
(psychological or other) types remains unchanged. This discussion today is an
open one, at least many questions cannot be decided on the help of our present
day knowledge, but the above thoughts might give ideas for discussion.

Resume: Chaotic systems like most financial markets show the paradox that
they cannot be explained or predicted in spite of the fact that they show
surprisingly constant behavior to some extent. Despite of that paradox or even
because of it, nonlinear dynamics and chaos theory might be useful for
economic historians. Some of the above conclusions and possible applications
may sound unusual to an historian, while others have been known for a long

106gee Bichler, Reinhold, Das Diktum von der historischen Singularitit und der
Anspruch des historischen Vergleichs: Bemerkungen zum Thema Individuelles
versus Allgemeines und zur langen Geschichte deutschen Historikerstreits, in:
Acham, Karl u. Schulze, Winfried QHg): Teil und Ganzes. Theorie der Geschichte:
Beitrige zur Historik, Bd. 6, dtv, Miinchen 1990, S. 169-192; Geldsetzer, Lutz, Art.
Hermeneutik, in: Seiffert, Helmut u. Radnitzky, Gerard, Handlexikon zur
Wissenschaftstheorie, dtv, 2. Aufl., Miinchen 1994, S. 127-139.

lgee Seiffert (1991), S. 176f.

19%Gee Braudel, Fernand, Sozialgeschichte des 15.-18. Jahrhunderts, Bd. 3: Aufbruch
zur Weltwirtschaft. Kindler, Miinchen 1986, S. 73-92, 327-346.

13gee Kennedy, Paul, The Rise and Fall of the Great Powers. Random House, New
York 1987.

104Gee Seiffert, 2, S. 178.
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time. Even if this is the case for most of what has been said within the last
section, chaos theory might cause a step forward ifit is able to explain common
effects in a formal way, and thus even give ideas for a formally orientated, but
flexible theory of long term development of financial markets (and maybe even
other systems in history). On the other hand, it is good to know that chaos
theory confirms some important rules of historical research such as
admissibility of analogies only within narrow temporal and functionally limits,
to give just one example. This article necessarily only gives a survey and an
incomplete one at that. This is true because of lack of space and because of the
fact that the investigation of financial markets via chaos theory still stands at its
beginning. Nevertheless a discussion of some of these questions might already
be profitable. If this articles contains something reaching beyond plain
explanation of chaos theory and research, this is maybe pleading for
methodological openness in historical research.

References

Aczel, Amir D. and Josephy, Norman H., The Chaotic Behavior of Foreign
Exchange Rates, in: The American Economist vol. 35, no. 2 (1991), p. 16-24.

Ahmad, Syed, Capital in Economic Theory: Neo-Classical, Cambridge and
Chaos. Edward Elgar, Aldershot 1991, p. 337-384.

Akgiray, Vedat, Conditional Heteroscedasticity in Time Series of Stock
Returns: Evidence and Forecasts, in: Journal of Business vol. 62, no. 1
(1989), p. 55-80.

Anderson, H.M., Transaction Costs and Nonlinear Adjustment towards
Equilibrium in the US Treasury Bill Market (Working Paper, University of
Texas), Austin 1994.

Arthur, W. Brian, Self-reinforcing mechanisms in economics, in: Anderson,
PW., KJ. Arrow and D. Pines (eds.): The Economy as an Evolving
Complex System. Addison-Wesley, Redwood City, CA, 1988, p. 9-31.

Aschinger, Gerhard, Borsenkrach und Spekulation: Eine Okonomische
Analyse. Vahlen, Miinchen 1995.

Baker, E.L. and Gollub, J. P., Chaotic Dynamics. Cambridge University Press,
Cambridge 1990.

Baur, Karl, Zeitgeist und Geschichte: Versuch einer Deutung. Callwey,
Miinchen 1978.

Bichler, Reinhold, Das Diktum von der historischen Singularitit und der
Anspruch des historischen Vergleichs: Bemerkungen zum Thema
Individuelles versus Allgemeines und zur langen Geschichte deutschen
Historikerstreits, in: Acham, Karl u. Schulze, Winfried (Hg.): Teil und
Ganzes. Theorie der Geschichte: Beitridge zur Historik, Bd. 6, dtv, Miinchen
1990, S. 169-192.

42!




Blank, S.C., 'Chaos' in Future Markets? A Nonlinear Dynamic Analysis, in:
The Journal of Future Markets vol. 11, no. 6, p. 711-728.

Bollerslev, T., Chou, R.Y. and Kroner, K.F., ARCH modeling in finance. A
review of the theory and empirical evidence, in: Journal of Econometrics 52
(1992), p. 5-59.

Bollerslev, T, Generalized autoregressive conditional heteroskedasticity. in:
Journal of Econometrics 31 (1986), p. 307-327.

Braudel, Fernand, Sozialgeschichte des 15.-18. Jahrhunderts, Bd. 3: Aufbruch
zur Weltwirtschaft Kindler, Miinchen 1986.

Brock, William A., Dechen, W.D. and Scheinkman, José A., A test for
independence based on the correlation dimension. (SSRI working paper no.
8702, Dept. of Economics, University of Wisconsin) Madison 1987.

Brock, William A., Hsieh, David A. and LeBaron, Blake, Nonlinear Dynamics,
Chaos, and Instability: Statistical Theory and Economic Evidence. MIT
Press, Cambridge, Mass., and London 1991.

Brock, William, Distinguishing random and deterministic systems: Abridged
version, in: Journal of Economic Theory 40 (1986), p. 168-195.

Buzug, Thorsten, Analyse chaotischer Systeme. BIl-Wissenschaftsverlag,
Mannheim etc. 1994.

Crutchfield, James P., Chaos, in: Spekrum der Wissenschaft: Verstindliche
Forschung 'Chaos und Fraktale', Heidelberg 1989, S. 8-20.

Delong, J. Bredford and Becht, Marco, 'Excess volatility' and the German
stock market, 1876-1990. (EUI working paper ECO No. 92/82) Badia
Fiesolana, San Domenico (FI) 1992.

Deneckere, Raymond and Pelikan, Steve, Competitive Chaos, in: Journal of
Economic Theory 40 (1986), p. 13-25.

Dinauer, Josef W., Psychologische EinfluBgroBen bei der Kursbildung am
Aktienmarkt, in: DVFA-Beitrdge zur Wertpapieranalyse H. 15 (1976).

Dockner, Engelbert J. u. Gaunersdorf er, Andrea, Die Bedeutung der
Chaostheorie fiir die empirische Kapitalmarktforschung, in: Bank-Archiv
Jg. 43, Nr. 6 (1995), S. 427-439.

Ebeling, Werner, Zeit und Komplexitdt: Die kreativen Potenzen des Chaos, in:
Meier, Klaus u. Strech, Karl-Heinz (Hg.), Tohuwabohu: Chaos und
Schépfung. Aufbau, Berlin 1991, S. 65-82.

Engte, R.F., Autoregressive conditional heteroscedasticity with estimates of the
variance of U.K. inflations, in: Econometrica 59 (1982), p. 987-1007.

Fama, Eugene F., Mandelbrot and the steady Paretian hypothesis, in: Journal
of Business 38 (1963), p. 34-105.

Frank, Murray and Stengos, Thanasis, Chaotic Dynamics in Economic Time
Series, in: Journal of Economic Surveys vol. 2, no. 2 (1988), p. 103-133.
Frey, Dieter, Schulz-Hardt, Stefan u. Liithgens, Carsten, Barings ist liberall, in:

Woche v. 17.3.1995, S. 20f.

Frey, Dieter, Schulz-Hardt, Stefan u. Liithgens, Carsten, Gelernte Sorglosigkeit
und Risikoakzeptanz, in: Wenninger, G. u. Hoyos, C. (Hg.), Arbeits-,
Gesundheits- und Umweltschutz. Asanger, Heidelberg 1995.

43




Frey, Dieter, Schulz-Hardt, Stefan u. Liithgens, Carsten, Termingeschifte: Das
Hauptrisiko bei Finanzderivaten sind ihre Anwender, in: Zeit 40 (1994), S.
33.

Funke, Michael, Testing for Nonlinearity in Daily German Stock Returns.
(Discussion Paper 30-93, FU Berlin and Centre for Economic Forecasting,
London Business School) Berlin and London.

Galbraith, John Kenneth, The Great Crash 1929. 6th ed., Houghton Mifflin
Comp., Boston 1988.

Goodwin, Richard M., Chaotic Economic Dynamics. Clarendon Press,
Oxford 1990.

Granger, C.WJ., Modelling Non-Linear Relationship between Long-Memory
Variables. (Working Paper, University of California), San Diego 1993.

Grassberger, P. and Procaccia, J., Measuring the strangeness of strange
attractors. in: Physica D9 (1983), p. 189-208.

Grosche, G. et al. (Hg.): Teubner-Taschenbuch der Mathematik (Bronstein/
Semendjajew), Teil II, 7. Aufl., Teubner, Stuttgart u. Leipzig 1995.

Grofimann, Siegfried, Selbstdhnlichkeit: Das Strukturgesetz im und vor dem
Chaos. hcGerok, Wolfgang et al. (Hg.), Ordnung und Chaos in der
unbelebten und belebten Natur. (Verhandlungen der Gesellschaft Deutscher
Naturforscher und Arzte 115. Versammlung) Hirzel, 2. Aufl., Stuttgart 1990,
S. 101-122.

Heyl, Daniel C. Freiherr v., Noise als finanzwirtschaftUches Phédnomen: Eine
theoretische Untersuchung der Bedeutung von Noise am Aktienmarkt.
(Schriftenreihe des Instituts fiir Kapitalmarktforschung an der Universitét
Frankfurt/ M. Bd. XVI), Diss., Knapp, Fraiikfurt/ M. 1995.

Holzer, Christian, Analyse empirischer Datenreihen in der Okonomie mit
Instrumenten der nichtlinearen Dynamik. Diss. TU Miinchen, Miinchen
1992.

Hommes, Carsien Harm, Chaotic Dynamics in Economic Models. Diss.
Groningen, Walters-Noordhoff, Groningen 1991.

Hsieh, David 4., Chaos and Nonlinear Dynamics: Application to Financial
Markets, in: Journal of Finance vol. XLVI, no. 5 (1991), p. 1 839-1 877,
esp. p. 1 854-1 875.

Hsieh, David A., Testing for Nonlinear Dependence in Daily Foreign Exchange
Rates, in: Journal of Business vol. 62, no. 3 (1989), p. 339-368.

Joerding, Wayne, Are Stock Prices Excessively Sensitive to Current
Information? in: Journal of Economic Behavior and Organization 9 (1988),
p. 71-85.

Kennedy, Paul, The Rise and Fall of the Great Powers. Random House, New
York 1987.

Kiefer, N. and Salmon, M.: Testing normality in econometric models, in:
Economic Letters 11 (1983), p. 123-127.

Kiehling, Hartmut, Kursstiirze am Aktienmarkt, dtv, Miinchen 1991.

44




Kindleberger, Charles P., Manias, Panics and Crashes: A history of Financial
Crises. 2nd ed., Basic Books, New York 1989.

Kopel, Michael, Chaos und Strukturbildung in einem verhaltensorientierten
6konomischen Modell, in: Bremer, Hartmut et al. (Hg.), Chaos und
Strukturbildung. (Faktum, TU Miinchen, Bd. 11) Miinchen 1994, S. 99-108.

Krdmer, Walter, A note on excess volatilities in empirical capital market
research, in: Zeitschrift fiir Wirtschafts- und Sozialwissenschaften 2 (1994),
p. 173-183.

Lorrain, Maurice R., Testing Chaos and Nonlinearities in T-Bill Rates, in:
Financial Analysts Journal vol. 47, no. 5 (1991), p. 51-62.

Le Bon, Gustave, The Crowd. Macmillan, New York 1922.

Loistl, Otto and Betz, Iro, Chaostheorie: Zur Theorie nichtlinearer dynamischer
Systeme. Oldenbourg, Munich and Vienna 1993.

Lorenz, Hans-Walter, Nonlinear Dynamical Economics and Chaotic Motion.
(Beckmann, M. and Kr elle, W. (ed.), Lecture Notes in Economics and
Mathematical Systems) Springer, Berlin etc. 1989.

Lorenz, Hans-Walter, Strange attractors in a multisector business cycle model.
in: Journal of Economic Behavior and Organization 8 (1987), p. 397-411.

Luhmann, Niklas, Die Wirtschaft der Gesellschaft. Suhrkamp, 2. Aufl,
Frankfurt/M. 1989.

Lux, Thomas, The Socio-Economic Dynamics of Speculative Markets:
Interacting Agents, Chaos, and the Fat Tails of Return Distributions.
Presentation held at the annual meeting of 'Verein fiir Socialpolitik’,
Sept. 21st, 1995 in Linz.

Mandelbrot, Benoit B., Die fraktale Geometrie der Natur. Birkhduser, Basel etc.
1991.

Mandelbrot, Benoit B., Variance of Certain Speculative Prices, in: Journal of
Business 36 (1963), p. 394-419.

McCusker, J.J., Money and Exchange in Europe and America, 1600-1775. A
Handbook. Chapel Hill 1978.

Medio, Alfredo, Chaotic Dynamics: Theory and Application to Economics.
Cambridge University Press, Cambridge 1992.

Miiller, Johannes, Der deutsche Rentenmarkt vor dem Ersten Weltkrieg - eine
Indexanalyse. (Schriftenreihe des Instituts fiir Kapitalmarktforschung an der
Universitédt Fraiikfurt/M. Bd. XV) Diss. Frankfurt/M., Knapp, Frankfurt/M.
1992.

Miiller, Ulrich A. et al., Statistical Study of Foreign Exchange Rates, Empirical
Evidence of a Price Change Scaling Law, and intraday Analysis, in: Journal
of Banking and Finance 14 (1990), p. 1189-1208.

Nelson, D,, Conditional heteroskedasticity in asset returns: a new approach, in:
Econometrica 59 (1991), p. 347-370.

Peel, D.A. and Speight, A., Testing for Non-Linear Dependence in Inter-war
Exchange rates, in: Weltwirtschaftliches Archiv 130 (2) (1994), S. 391-417.

45




Peel, DA. and Yadav, P., The Time Series Behaviour of Spot Exchange Rates
in the German Hyper-Inflation Period: Was the Process Chaotic? in:
Empirical Economics 20 (1995), p. 455-471.

Peters, Edgar E., Chaos and Order in the Capital Markets. (Wiley finance
editions) John Wiley, New York 1991.

Peters, Edgar E. Fractal Market Analysis: Applying Chaos Theory to
Investment and Analysis. (Wiley finance editions) John Wiley, New York
1994.

Pfann, Gerhard, Schotman, Peter and Tschernig, Rolf, Nonlinear Interest Rate
Dynamics and Implications for the Term Structure. (Discussion Paper 43,
Sonderforschungsbereich 373, Humboldt-Universitdt), Berlin 1994.

Philippatos, George C., Instabilities and Chaotic Behavior of Stock Prices in
International Capital Markets, in: Managerial Finance vol. 20, no. 5/6, p.
14-42.

Roll, R., Behavior of Interest Rates: the Application of the Efficient Market
Model to U.S. Treasury Bills. Basic Books, New York 1970.

Rosser, J. Barkley, From Catastrophe to Chaos: A General Theory of Economic
Discontinuities. Kluwer, Boston etc. 1991.

Ruelle, David, Chance and Chaos. Princeton University Press, Princeton, N.J.,
1991.

Ruelle, David, Deterministic Chaos: The Science and Fiction. (Proceedings of
the Royal Society, London) 427 A (1990), p. 241-248.

Scheinkman, José A. and LeBaron, Blake, Nonlinear Dynamics and Stock
Returns, in: Journal of Business vol. 62, no. 3 (1989), p. 311-337.

Schneider, Jiirgen et al.,, Wihrungen der Welt 1-X. Franz Steiner, Stuttgart
1991-1996.

Seidenfus, Hellmuth Stefan, Zur Theorie der Erwartungen, in: Schmdlders,
Giinter et al. (Hg.), John Maynard Keynes als 'Psychologe'. Berlin 1956, S.
97-158.

Seiffert, Helmut v. Radnitzky, Gerard, Handlexikon zur Wissenschaftstheorie.
dtv, 2. Aufl., Miinchen 1994.

Seiffert, Helmut, Wissenschaftstheorie 2. Beck, 9. Aufl., Miinchen 1991, S.
63-69.

Seifritz, Walter, Wachstum, Riickkoppelung und Chaos. Hanser, Miinchen u.
Wien 1987.

Shaffer, Sherrill, Structural shifts and the volatility of chaotic markets, in:
Journal of Economic Behavior and Organization 15 (1991), p. 201-214.
Spengler, Oswald, Der Untergang des Abendlandes. 6. Aufl., Beck, Miinchen

1980.

Spufford, P., Handbook of Medieval Exchange. London 1986.

Steeb, Willi-Hans u. Kunick, Albrecht, Chaos in dynamischen Systemen,
2. Aufl., BI Wissenschaftsverlag, Mannheim etc. 1989.

Steeb, Willi-Hans, A Handbook of Terms Used in Chaos and Quantum Chaos.
BI-Wissenschaftsverlag, Mannheim etc. 1991.

46




Stutzer, Michael J., Chaotic Dynamics and Bifurcation in a Macro Model, in:
Journal of Economic Dynamics and Control 2 (1980), p. 353-376.

Tata, Fidelio and Vassilicos, Christos J.,, Chaos in the Stock and Forex
Markets? (Discussion Paper mno. 64, Forschungsgemeinschaft fiir
Nationalokonomie an der Hochschule St. Gallen) St Gallen 1992.

Tvede, Lars, Psychologie des Borsenhandels. Gabler, Wiesbaden 1991.

Ursprung, Heinrich W., Die elementare Katastrophentheorie: Eine Darstellung
aus Sicht der Okonomie. (Beckmann, M. and Kiinzi, H.P. (eds.), Lecture
Notes in Economics and Mathematical Systems 195) Springer, Berlin etc.
1982.

Vaga, Tonis, The Coherent Market Hypothesis, in: Financial Analysts Journal
Vol 46 (1990), p. 36-49.

Willey, Thomas, Testing for Nonlinear Dependence in Daily Stock Indices, in:
Journal of Economics and Business vol. 44, no. 1 (1992), p. 63-76.

Wirth, Max, Geschichte der Handelskrisen. Sauerldnder, 2. Aufl., Frankfurt/ M.
1874.

Zeeman, E.C., On the Unstable Behaviour of Stock Exchanges, in: Journal of
Mathematical Economics 1 (1974), p. 39-49.

Zeeman, E.C.: Catastrophe Theory, in Scientific American vol. 234 (1976), p.
65-83.

47




