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Abstract

The Prisoner's Dilemma is a typical structure of interaction in human societies.

In spite of a long tradition dealing with the matter from di�erent perspectives,

the emergence of cooperation or defection still remains a controversial issue

from both an empirical and a theoretical point of view. In this paper we

propose a local interaction model with endogenous network formation, in the

attempt to provide a reasonable account of emerging behaviors. A population

of boundedly rational agents repeatedly chooses to cooperate or defect. Each

agent's action a�ects only her interacting mates, according to a network of re-

lationships. Agents are randomly given the possibility to substitute undesired

mates with unknown ones. Full cooperation, full defection and coexistence of

both cooperation and defection in homogeneous clusters are possible outcomes

of the model. Computer-based simulations are applied to investigate under

what circumstances either case is most likely.
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1 Introduction

The contrast between cooperation and defection is usually applied to account for
the dichotomy between a behavior that is superior from a societal point of view
and another one that is superior from an individual point of view. The Prisoner's
Dilemma game is the standard representation embedding the strategic characteris-
tics of such a dichotomy. The emergence of cooperation in the Prisoner's Dilemma
is often explained by means of the Folk theorem.1 According to it, if interaction
is in�nitely or inde�nitely repeated and rational agents use appropriate tit-for-tat
strategies, then cooperation may emerge (Fudenberg and Maskin, 1986; Kreps et al.,
1982).

In some cases such an argument provides a plausible explanation of the emer-
gence of cooperation in real world interactions. However, the application of a Folk
theorem binds any explanation to be fully rational. This has the drawback of mak-
ing the interaction setting highly in
exible. More precisely, in its basic version the
Folk theorem requires the same strategic situation to be repeated an in�nite or
inde�nite number of times and, in particular, the same players to participate in
each repetition.

Real world interactions do not always �t in such a rigid picture. For instance,
there are contexts where the set of players is modi�able by the act of will of some
individual or group. In others, an exit option or some kind of punishment are
available. There are even more complex patterns of interaction where several groups
of individuals simultaneously play a Prisoner's Dilemma game and any player can
decide, according to some rule, whether to exit or enter one or more groups. With
respect to explaining the emergence of cooperation in these cases, the Folk theorem
is of little use.

In the last two decades, there have been several attempts to extend the results
of the Folk theorem by introducing more realistic assumptions about the setup of
the game. For this purpose, distinct sets of conditions under which a Folk theorem
holds have been identi�ed (see Gintis, 2004, for a critical survey). This research
line is very fascinating from both technical and philosophical perspectives, and it
can reveal deep and subtle insights about strategic reasoning. However, we �nd the
threat of an inherent drawback in it. In more detail, we think that more realistic
assumptions about the setup of the game can make more demanding, and hence
less realistic, the requisite of full rationality. In the end, this could produce a shift
of the scarce realism of assumptions from the sphere of the game setup to that
of agents' cognitive capabilities, with no substantial improvement on a descriptive
ground.

We pursue a di�erent route. In particular, we try to analyze and understand

1The survival of cooperation has been studied from di�erent perspectives. It is not the aim
of this paper to provide a survey of such numerous attempts. However, it is worth mentioning,
besides the cited approach in repeated games with fully rational agents, the stream of biological
models where behaviors are de�ned as traits evolving through a selection process (see Trivers,
1971; Dawkins, 1976, for a broad discussion on the topic).

1



Page 3 of 22

Acc
ep

te
d 

M
an

us
cr

ip
t

cooperative behaviors in a framework where a population of self-regarding agents
interacts in a boundedly rational way (i.e. with limited cognitive capabilities) but
where agents can also modify, to some extent, the structure of local relationships
they are involved in.2

The present contribution is innovative in two respects if compared with the
existing literature on models about the emergence of cooperation. The �rst novelty
concerns the endogeneity of interactions between agents. We rely on an idea that
dates back at least to Tiebout (1956), who argued that e�cient provision of public
goods may be enhanced by exit and entry rules for determining group membership.
The intuition that endogeneous group formation can sustain cooperative behaviors
has been more recently employed by the experimental literature about the e�ects
of group formation on cooperation.3 We embed this idea in a boundedly rational
decision-making framework, and we let agents not only choose between cooperation
and defection, but also modify the composition of their neighborhood, making the
entire pattern of interactions endogenous. In particular, we model the interaction
structure (that is, who interacts with whom) through a network where agents are
nodes and links represent bilateral interactions. We assume that each agent has a
maximum number of neighbors. This is meant to take into account the physical
constraint due to the �niteness of time that can be spent interacting with other
people. Apart from that, we impose no particular restriction on the interaction
structure, and hence our representation is more general than spatial or lattice-
based ones. Locality of interaction is introduced in the usual way by assuming that
the e�ects of agents' actions spread to all and only their neighbors. Finally, in each
period of time agents are randomly given the opportunity to cease some existing
relationships4 and, if it is feasible, to form new ones.5

The second novelty concerns the aim of the paper. Instead of being only con-
cerned with sustainability of cooperation, we consider it more valuable to investi-
gate the joint emergence of cooperation and behavioral segregation. As a matter of
fact, the literature provides evidence in favor of cooperative outcomes (Boyd and

2The idea that locality of interaction and cooperative behaviors might be related is not novel.
Among others, Eshel et al. (1998) and Bergstrom and Stark (1993) consider agents arranged in a
circle, each interacting with her two immediate neighbors. Jun and Sethi (2007) adopt the same
spatial structure but let agents interact with a parameterized number of neighbors, varying that
parameter to analyze the e�ects. In Eshel et al. agents are arrayed in a plane rather than along
a line. Many of the models in this stream of literature take imitation as the driving force behind
strategy selection.

3See, for instance, Keser and van Winden (2000) on mobility and voluntary contribution in
public good games, Riedl and Ule (2002) on partner selection in two-person games, Charness and
Yang (2007) on group formation through the use of voting and Croson et al. (2006) on the exclusion
of low-contributing players.

4The possibility for a cooperator to disconnect a defector may be interpreted as a form of
targeted punishment.

5Zimmermann et al. (2001) proposed a model somewhat close to ours in representing the in-
teraction structure through an evolving network. Apart from other di�erences, it is worth noting
that in their model, unlike ours, behavior is adapted simply by imitation of the neighbor with the
highest payo� and, above all, only defecting agents are given the possibility to break a link.
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Richerson, 2004) as well as in favor of non-cooperative ones. Obviously, economists
consider the latter less remarkable since defection is not a very surprising outcome
when the one-shot version of a Prisoner's Dilemma game is considered. Therefore,
economists' focus is mainly on the emergence of cooperation, and not much at-
tention is given to whether cooperation and defection coevolve and how this may
happen. In our opinion, a better insight can be obtained by looking at cooperation
and defection as jointly emerging from the evolution of the interaction structure.
More precisely, we expect cooperation to prevail among some agents and defection
among some others, people being eventually clustered on the basis of their behav-
ior as a consequence of many uncoordinated individual decisions. Notice that this
outcome is particularly likely if relationships between cooperators tend to last more
than those involving at least one defector. Interestingly, this may provide a further
explanation of the sustainability of cooperation on a payo� basis. The coexistence
of clusters of cooperators and defectors may prevent cooperators from deviating
because defection could lead to being excluded from a cooperating cluster.

The following is a summary of the rest of the paper. Section 2 introduces the
model. A population of agents is arranged in a network describing the interaction
structure. In every period each agent is either a cooperator or a defector, takes
a bene�t for each cooperator in her neighborhood, and sustains a cost if she co-
operates. Agents are randomly selected to update their behavior. When selected
an agent decides whether to cooperate or defect according to a simple boundedly
rational optimization. In addition, agents are randomly given the possibility to
cease their existing interactions and start new ones with unknown individuals, up
to their maximum number. Section 3 provides preliminaries and de�nitions. In
particular, an intuitive measure of behavioral clustering is introduced and applied
in order to de�ne an appropriate concept of equilibrium that takes into account the
speci�c features of our framework.

The complexity of the situation we model prevents us from providing a com-
plete analytical characterization of solutions. Nevertheless, some results are derived.
First, the system always converges in probability towards an equilibrium. Second,
in any equilibrium with at least one cooperator there is a signi�cantly lower bound
for behavioral clustering. This implies that a certain degree of behavioral segrega-
tion emerges in all cases where both cooperation and defection survive. Moreover,
since there exist equilibria where groups of cooperators and groups of defectors
coexist and equilibria where only one behavior survives, we are interested in under-
standing the main determinants of either type of equilibria. For this purpose, we
use computational means to investigate their frequency of emergence. In Section
4 we report the results of thousands of simulations and provide evidence for the
emergence, persistence and coexistence of clusters of cooperators and clusters of
defectors in a signi�cant number of cases. Finally, in Section 5 we conclude with a
summary of results. Proofs are given in Appendix A.
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2 The Model

Description. Let N denote the �nite agents' set with n � jjN jj its cardinality.
Let the network of connections among agents be represented by a n�n adjacency

matrix G, with its generic element gij such that gij = 1 if agent i is linked to agent
j, gij = 0 otherwise. With the purpose of making G correctly represent reciprocal
relationships, we impose irre
exivity, gii = 0 for any i 2 N , and symmetry, gij = 1
implies gji = 1 for any i; j 2 N . Moreover, we assume a physical constraint
on the number of interactions an individual can have; we denote the maximum
neighborhood size by m.

Two individual behaviors can be adopted, namely cooperation and defection.
The vector V 2 f0; 1gn represents the collection of behaviors over the entire popu-
lation, with 1 and 0 standing for cooperation and defection respectively.

We refer to a triple (N;G; V ) as an interaction state.
Let ni �

P
j gij be the number of people interacting with i (her neighbors)

and n1i �
P

j gijVj be the number of cooperating ones. In any interaction state
(N;G; V ) every agent i 2 N gets a bene�t b from each of her cooperating neigh-
bors. Moreover any cooperator su�ers a loss of l due to the e�ort of cooperating.
The value of mb relative to that of l can be thought of as a measure of the social
value of cooperation. An agent i's payo� may be written as

�i(N;G; V ) = bn1i � Vil .

Dynamics. We assume a �xed population where individuals have the possibility
to revise both their behavior and the composition of their neighborhood.

Time is discrete. The dynamic process undergone by the system at each time
can be obtained by the sequential application of the steps illustrated in �gure 1.
Notice that we do not assume any cost for either severing or forming links.6

1. An agent is randomly selected to update her behavior.7

2. Every agent can sever each of her existing links with probability p 2 (0; 1).
All the severing decisions are taken simultaneously.

3. Once disconnections have been carried out, agents having fewer than m con-
nections decide whether to enter the market for new connections. Requests
are then randomly matched and satis�ed if possible, until no more connections
are feasible.8

6This is not an innocuous assumption. We make it in order to simplify agents' decision problem.
The inclusion of such a kind of costs would presumably reduce the e�cacy of disconnections as a
form of punishment.

7The assumption that only one agent per period can change behavior is a simpli�cation that
allows us to consider as given others' behavior in individual decision problems. Moreover, since
what turns out to be relevant is the rate of links renewal relative to behaviors renewal, this
simpli�cation also allows us to save on one variable when simulating the system.

8Notice that some requests may remain unsatis�ed when, among those willing to connect, there
are only agents who are already linked together.
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4. Payo�s are calculated and distributed to agents.
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Figure 1: Behavior update (BU), link disconnection (LD), link formation (LF) and
payo� assignment (PA) sequentially occur.

Agents are assumed to be boundedly rational in the following sense.

1. Local knowledge: besides the rules of the game, an agent knows only her
behavior and the behaviors of her neighbors at instant t.

2. Laplacian reasoning : agents adopt a Laplace decision rule that assigns equal
probability to every interaction state when no information about the relative
likelihood of interaction states is available.

3. 1-period-looking : each agent takes into consideration only the payo� paid at
instant t+ 1.9

Agents make their choices in the attempt to maximize their expected payo�,
where the latter is calculated according to the limited cognitive capabilities de-
scribed above. In addition, weakly dominated actions are always discarded, and
this is assumed to be known by all agents. Furthermore, population size is assumed
to be large enough in order to obtain the negligibility of i) the fraction of agents with
fewer than m connections after step 3, and ii) the impact of private information in
the process of forming expectations about the current interaction state.

We can now solve the decision problem an agent faces in each period of time.
By backward reasoning, let us begin with step 3. Suppose agent i is linked to fewer
than m neighbors. By Laplacian reasoning she assigns a positive probability to
the existence of cooperators. Hence, if i requests for a new connection, then there
is the possibility that a cooperator disconnects one of her neighbors, applies for a
new connection, and is paired o� with i. Therefore, for each of i's vacant slots,
requesting a new connection weakly dominates the alternative choice because it
gives a null payo� if the agent is paired with a defector or a positive payo� if paired

9This assumption plays an important role for the tractability of individual decision problems.
More precisely, it allows us to avoid any intertemporal reasoning by agents and, in particular, not
to consider tit-for-tat strategies.
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with a cooperator, contra the null payo� of being alone. As a consequence, agents
with fewer than m connections always apply for new ones.10

Next, consider step 2. Suppose agent i is selected possibly to sever a certain
link ij. If j is a defector, then severing weakly dominates not severing because
the former allows the request for a new connection (with best and worst cases as
described in step 3) contra the null payo� of being connected to a defector. For
similar reasons, if j is a cooperator, then not severing weakly dominates severing.11

Let us now examine step 1. Suppose agent i is given the possibility to modify
her behavior. By results of step 2 the pair cooperator-cooperator does not discon-
nect, the pair cooperator-defector disconnects, the pair defector-cooperator does
not disconnect and the pair defector-defector disconnects. Notice that by virtue of
Laplacian reasoning these pairs are reputed equiprobable. Therefore, the frequency
of cooperators in the market for new connections expected by agent i is 1=4 and
the bene�t of severing link ij is b=4. Hence, the payo� of agent i may be seen as
composed of two parts. The �rst does not depend on the chosen behavior and is
equal to the sum of n1i b, representing the total bene�ts accruing from cooperating
neighbors, and p(m� n1i )b, representing the expected bene�ts due to new connec-
tions coming from i's severing decisions. If i cooperates, the second part is equal
to �l, which represents the individual loss of cooperating; instead, if i defects, the
second part is equal to the sum of p(m�n1i )b=4, representing the expected value of
new connections coming from the severing decisions of i's defecting neighbors, and
�pn1i b=4, representing the expected cost of losing cooperating neighbors. Summing
up, �i(1) and �i(0) are what i expects, respectively, from cooperating and defecting,

�i(1) = n1i b+ p(m� n1i )b=4� l ,

�i(0) = n1i b+ p(m� n1i )b=4 + p(m� n1i )b=4� pn1i b .

Agent i chooses to cooperate whenever �i(1) > �i(0), that is if n
1
i > l=pb+m=4. On

the contrary, agent i chooses to defect whenever n1i < l=pb +m=4. When equality
holds, agent i is indi�erent, and as a tie-break rule defection is assumed. We
de�ne n� as the threshold number of cooperators in a neighborhood that induces
cooperation, namely the smallest integer greater than l=pb+m=4.

3 De�nitions and Analytical Results

Measures. In order to investigate the evolution of cooperation we need a measure
of its spreading. A simple and natural one is the fraction of cooperators in the
population. Let us indicate with n1 �

P
i Vi the number of cooperators in an

interaction state (N;G; V ). We refer to the ratio

10This would no longer hold if there were costs of links formation.
11As in the previous footnote, the result would cease to hold if costs for severing a link were

considered.
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C =
n1

n

as the measure of cooperation relative to a certain interaction state.
We are also interested in the degree of behavioral clustering. Intuitively, we

qualify an interaction state as highly behaviorally clustered if interactions between
agents who both cooperate or defect are sensibly more frequent than interactions
between cooperators and defectors. More precisely, we focus on the number of
interactions between individuals behaving in the same way with respect to the
number of interactions between individuals behaving di�erently. The following
measure of behavioral clustering is adopted. Let n1;1 � V 0GV be the number
of cooperator-to-cooperator links, and let n1;0 � V 0G(e � V ) be the number of
cooperator-to-defector links, where e is a vector with all elements equal to 1. Let
n0;1 and n0;0 be de�ned similarly. Finally, let n1;01 � V 0Ge and n0;01 � (e� V )0Ge
be the number of cooperator-to-anyone links and the number of defector-to-anyone
links respectively. The matrix

B =

2
4
n1;1=n1;01 n1;0=n1;01

n0;1=n0;01 n0;0=n0;01

3
5

denotes the behavioral clustering of an interaction state. The �rst row of B repre-
sents the fraction of existing links of cooperators connecting to other cooperators
(entry b11) and to defectors (entry b12). Similarly, the second row of B represents
the fraction of existing links of defectors connecting to cooperators (entry b21) and
to other defectors (entry b22). Clearly, the �rst row is undetermined when there
are no cooperators while the second row is undetermined when there are only co-
operators. Finally, notice that each row sums up to one.

Equilibrium. We proceed to de�ne an equilibrium to the dynamics.

De�nition 1 (Equilibrium)

An interaction state (N;G�t; V �t) is an equilibrium if and only if

1) 8t > �t; V t = V
�t and

2) 8t > �t; n1;1(N;Gt; V t) = n1;1(N;G
�t; V

�t) .

The �rst condition requires the constancy over time of agents' behaviors. This
implies that in equilibrium the measure of cooperation C must be constant. The
second condition is meant to capture the notion of stability for the relevant as-
pects of the interaction network G. Connections involving at least a defector will
never be stable while connections between cooperators only will never be broken.
Therefore, it seems reasonable to de�ne an equilibrium notion only with respect to
the latter, more precisely by requiring the infeasibility of new connections between
cooperators.

7
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Equilibria: existence, convergence and multiplicity. At this stage we deal
in greater detail with equilibria. First, we address the issues of both existence and
convergence. Then, we provide a further characterization of their properties. Fi-
nally, we call attention to the di�erent types of equilibria, whose relative frequencies
of occurrence are then investigated through simulations in the following section.

The existence of at least one equilibrium is easily established by considering a
limit case. Consider any interaction state where n1 = 0. Any agent i will never
change her behavior because n1i = 0 < n�. Since cooperators do not exist and will
never exist, the number of links between cooperators is trivially constant and equal
to zero in any period from now on.

Absolute convergence of the system to some equilibrium state is not ensured.
However, we can prove convergence in probability. In order to get such a result we
crucially exploit the �niteness of the state space and the positiveness of probability
associated with any �nite sequence of states. The detailed proof is given in the
appendix.

Proposition 1 (Convergence in Probability)

As time goes to in�nity, any interaction state converges in probability to an equi-

librium.

Proposition 1 tells us that sooner or later an equilibrium interaction state emerges.
By focusing on equilibria we can assess the long run behavior of the system. There-
fore, we turn to the investigation of equilibrium characteristics.

For n� > m and for n� = 0 any equilibrium interaction state (N;G; V ) must
satisfy, respectively, the condition C = 0 and C = 1.12 For 0 < n� � m we cannot
exclude any value of C for equilibria, ranging in principle from 0 to 1. In addition,
notice that the system we are dealing with is non-ergodic, meaning that initial
conditions matter for equilibrium selection and, in particular, for the value that C
will assume.

As regards behavioral clustering we have already noticed that the rows of B
sum up to one, which allows us to restrict attention to b11 and b22. However, the
same reasons behind the restriction of network stability to connections among coop-
erators suggest that we consider b11 the opportune index of behavioral clustering.
Therefore, we turn our attention to the range of values b11 can take. Trivially,
if C = 0, then b11 is indeterminate. Moreover, in equilibrium any cooperator is
satis�ed with her current choice, implying that all cooperators must have at least
n� cooperating neighbors. Hence, if C > 0, then b11 � n�=m. This bound can be
re�ned by exploiting the fact that i) the number of cooperators with fewer than m
cooperating neighbors is at most (n� � 1), because otherwise some defector could
become a cooperator, and ii) there must be at least (n�+1) cooperators since there
exists a cooperator and she must have at least n� cooperating neighbors. In the

12The case n� = 0 is considered for completeness, but it is impossible in our model of individual
decision-making since n� > l=pb+m= > 0.

8
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proof of Proposition 2 we carry out such re�nement to obtain a function of n1, n�

and m whose in�mum is easily computed.

Proposition 2

Any equilibrium interaction state with C > 0 must satisfy

b11 �
3

4
.

Notice that if there are only cooperators, b11 is trivially equal to 1.
The analytical results we have exposed do not provide a full explanation of

the subject we are addressing. The main source of indeterminacy is the existence
of a multiplicity of equilibria. Moreover, these equilibria di�er a lot one from
the other, ranging from complete cooperation to complete defection as extremes,
passing through cases where clusters of cooperators and clusters of defectors coexist.
We refer to the former type of equilibria (where only one behavior survives) as pure,
while we call mixed the alternative type (where both behaviors coexist). Our aim
is now to understand which conditions (that is, which parameter values) favor
the emergence of segregated clusters of cooperators and defectors instead of the
achievement of complete cooperation or defection.

However, because of the complexity of the dynamic system under consideration,
we found it extremely di�cult to obtain an analytical characterization of the e�ects
that parameters have on the frequency of appearance of mixed and pure equilibria.
For this reason we ran thousands of simulations in order to collect data suitable for
analysis by induction.

4 Simulation results

Our simulation-based analysis follows two steps. First, we infer from the structure
of the model which parameters play a crucial role in determining which kind of
equilibrium (fully cooperating, fully defecting or mixed) arises. Second, we run
simulations for several combinations of the supposedly crucial parameters while
setting the remaining parameters either residually or in order to save on computing
power.

Since agents choose to cooperate if n1i > n�, the threshold n� presumably af-
fects where the system tends to. Because n� = l=pb +m=4 we have that also the
parameters l, b, p and m presumably a�ect the equilibrium outcome. However,
while b and l matter only to the extent that they contribute to the determination
of n�, both p and m may have further roles. We expect p to in
uence the overall
rate of renewal of connections among agents since it represents the probability of
being given the possibility to substitute an undesired mate. Therefore, p is likely
to play a role in determining which kind of equilibrium arises beyond its impact
on n�. For what concerns m, we expect it to a�ect the shape of clusters since it
represents the maximum neighborhood size. In particular, we suspect that m=n
is the key parameter here. However, how m=n impacts the likelihood of forming

9
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a homogenous cluster remains unclear because it a�ects positively the number of
clusters that can be formed but negatively the likelihood that each of them actually
forms. In any case, because clusters are crucial for the survival of cooperators, m=n
presumably has a role in determining the kind of equilibrium outcome that goes
beyond the e�ect of m on n�.

Summing up, the structure of the model suggests that the key parameters may
be n�, p and m. We �rst investigated the role of n� and p by running simulations
for di�erent combinations of their values while keeping m �xed. Since p directly
a�ects n�, we counterbalanced the e�ect of p on n� by adequately adjusting l and
b. Notice that since l and b a�ects only n�, we could do this without compromising
the investigation of the role played by p and n�. While keeping n = 30 and m = 7,
we ran three hundreds simulations for each combination of n� 2 f2; 3; 4; 5; 6g and
p 2 f:03; :05; :09; :14; :22; :35; :60; :95g.13 The initial condition was set randomly.
Table 1 shows the number of mixed, pure cooperating and pure defecting equilibria
for each combination of p and n�. From table 1 it is evident that p is positively
correlated with the emergence of mixed equilibria. As for n�, instead, we see that
the frequency of mixed equilibria increases in n� for n� � 4 while it decreases in n�

for n� � 4.
These results can be explained as follows. Notice that the possibility to sever a

link is exploited only when that link connects to a defector. Hence, the higher is p,
the greater is the robustness of cooperator-to-cooperator links compared to other
kinds of link. Therefore, a high value of p favors the formation of self sustaining
clusters of cooperators. Moreover, by isolating cooperators, p also hinders coop-
eration from spreading over the entire population, hence making mixed equilibria
more likely. As regards n�, notice that 4 cooperators represents the middle value
in the range of variation of n�.14 Then, it seems plausible that the closer n� is to
its middle value, the higher the probability that neither cooperation nor defection
prevails because homogeneous clusters of both cooperators and defectors are more
likely to emerge.

Next, we test the statistical signi�cance of the intuitive results inferred from
table 1. We do this by carrying out some simple OLS estimates using the number
of mixed equilibria as dependent variable and p and jn��4j as basic regressors. We
also explore a few non-linear speci�cations to test whether jn� � 4j and p in
uence
the emergence of mixed equilibria in a convex (more-than-proportional) way and if
there is a joint e�ect of the two regressors. Table 2 reports the estimates. As one
can see from the last column, the explanatory power of the model, as measured by
R2, decreases when p, jn� � 4j or both enter the equation in exponential form.15

13A higher number of simulations might have been run and/or greater values for n and m might
have been used. However, we noticed that by progressively raising n andm the qualitative meaning
of results did not change while the convergence time was dramatically increasing. Moreover, after
300 runs we found that results varied very slightly.

14In fact, an agent can always cooperate (n� = 0), cooperate if she has a number of cooperating
neighbors at least equal to 1, 2, 3, 4, 5, 6, 7, or never cooperate (n� = 8). Hence, the range of
variation of n� counts 9 di�erent possibilities, and 4 is its middle value.

15Results are very similar for other type of non-linear convex speci�cations such as the quadratic
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Moreover, although the explanatory power (obviously) increases when p � jn� � 4j
is added, it does so only very slightly and the new regressor is not signi�cantly
di�erent from zero. For these reasons we conclude that the linear dependence
seems to �t the data best while a joint e�ect of n� and p is unlikely to exist.

Let us now turn our attention to the impact of m=n on the emergence of mixed
equilibria. Unfortunately, computer simulations become extremely time-demanding
when both n and m increase, posing serious constraints to the extent of our inves-
tigations. Therefore we keep m = 7 while letting n vary between 30 and 230. A
further problem is that, as n increases, the overall rate of connections renewal in-
creases relative to the velocity of behavior update. This is due to the fact that only
one agent per period is allowed to modify her behavior. Since we are interested in
the net e�ect of m=n we counterbalance the previous problem by proportionally
raising the number of agents who are allowed to change behavior.

Three hundred simulations have been run for each combination of m=n 2
f:23; :12; :08; :06; :05; :04; :03g and three selected pairs of p and n�: p = :09 and
n� = 3, p = :03 and n� = 4, and p = :22 and n� = 5. Although other pairs of values
could have been used, two considerations support our choice. First, the selected
pairs are associated with a fraction of mixed equilibria that is well in the interior of
the interval [0; 1], thus allowing variation in either direction in response to changes
in m=n. Second, they provide a not-too-narrow range of combinations of p and n�.
Also in this case, l=b is used to get the desired n� for given values of m and p, and
the initial condition is set randomly. The simulation results are reported in tables
3, 4 and 5. If anything, they suggest that an increase in population size relative to
the neighborhood size implies a slight increase in the number of mixed equilibria.
This seems especially true for the case where p = :03 and n� = 4 as the fraction
of mixed equilibria increases substantially (see table 4). Evidence is less sharp for
the case where p = :09 and n� = 3 (see table 3) and for the case where p = :22 and
n� = 5 (see table 5). In any case, intuition provides ambiguous arguments for this
result. In fact, if m=n decreases, then more clusters can form, but each possible
cluster is less likely. Subtle combinatorial mechanisms may be at work here (see
for example the drop in the fraction of mixed equilibria when m=n = :05 for the
cases reported in tables 3 and 5). We conclude that the relationship between m=n
and the emergence of mixed equilibria requires further investigation to be better
understood.

5 Conclusions

In this paper we show how clusters of cooperators and clusters of defectors can
emerge from a single population as the outcome of many uncoordinated individual
decisions. The key elements that we introduce are the locality of interactions and
the individuals' ability to a�ect the composition of their neighborhood. In partic-
ular, agents have the chance to substitute undesired neighbors. Such enrichment

one.
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of the strategic framework has important consequences. First, individuals cease
relationships with defectors and preserve those with cooperators. Therefore, the
only source of instability for interactions between cooperators is a change of behav-
ior in favor of defection. Second, individuals bene�t if disconnected by defecting
mates and lose if disconnected by cooperating mates. Hence, the value of coopera-
tion (defection) is positively (negatively) a�ected by the number of cooperators in
the neighborhood, increasing (decreasing) the likelihood that cooperators do not
change behavior. These two facts imply that cooperators are likely to aggregate
in clusters, segregating themselves from the rest of population. More precisely, we
show that the system converges in probability to an equilibrium where, if there is
at least one cooperator, then not less than 3=4 of all relationships that cooperators
have are with other cooperators.

Furthermore, we investigate the frequency of emergence of equilibria where both
cooperation and defection survive and, in particular, how their survival depends on
a few crucial parameters of the model. By means of simulations two main deter-
minants are found.16 The �rst is the rate of links renewal, whose increase has the
e�ect of raising the instability of relationships involving at least one defector, hence
decreasing the relative instability of relationships between cooperators and favoring
their isolation. The second is the minimum number of cooperating neighbors that
makes convenient to cooperate. In particular, the absolute value of the di�erence
between the latter and the middle values of its range of variation makes more likely
the survival of a single behavior. Intuitively, if either too many or too few co-
operating neighbors are required to make cooperation convenient, then it is likely
that, respectively, either everybody defects or everybody cooperates. In addition,
we found evidence of a possible role played by the ratio between neighborhood size
and population size. A smaller ratio seems to increase the emergence of behavioral
clusters and, hence, of mixed equilibria. This result however is not totally satis-
fying. In fact, although a smaller relative size of neighborhoods allows for more
clusters, each of them is less likely. We suspect that there may be combinatorial
issues behind this outcome, and in any case we conclude that for a better under-
standing of the phenomenon more simulations must be run with greater sizes of
both population and neighborhoods.

The next step along this line of research is to introduce idiosyncratic elements
into agents' decision problems and to investigate in which equilibrium states the
system is likely to spend most time. Our suggestion is to introduce random pertur-
bations of both behavior and connections, taking into account the possibility for
agents to make all kinds of mistakes and making the system ergodic. This would
allow the use of stochastic stability to select among the vast set of equilibria.

16Simulations are carried out using an ad hoc computer program developed by the authors.
Both the executable �le and C++ source codes are available on request.
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A Proofs

Proof of Proposition 1. Let QT (N;G; V ) be the probability that, starting from
an interaction state (N;G; V ), the system will be in an equilibrium state in T
periods.17

Notice that, if QT (N;G; V ) � q > 0 for any (N;G; V ), we have

8l � 1; 0 �
lY

m=1

�
1�QT

�
gT (m�1); V T (m�1)

��
� (1� q)l

where the term in the middle of the above expression is the probability the system
will not converge to a stable state in lT periods. Clearly, taking the limit for l!1
such a probability goes to 0.

We are left to show that QT (N;G; V ) � q > 0 for any (N;G; V ) and we will
do that in three steps; the �rst two steps allow us to assert that with positive
probability a state with certain properties is reached in a �nite number of periods
whatsoever the initial state, while the third step simply consists of recognizing that
the state that has been reached is indeed an equilibrium. Let us �rst introduce
some de�nitions which will be used in the following.

The set of always cooperating cooperators is C(N;G; V ) � fi 2 N : V t
i = 1; 8t �

0g, the collection of those players who are cooperating in the current state (N;G; V )
and will surely be cooperating in any future state according to the dynamics de-
scribed in the paper.

A sub-state (M;G; V ) with M � N is the restriction of a state to a certain
subset of players where only behaviors of and links between them are considered.
Finally, a sub-state of always cooperating cooperators (C(N;G; V ); G; V ) is called
unmodi�able if and only if (C(N;Gt; V t); Gt; V t) = (C(N;G; V ); G; V ) for all t � 0;
that is the set of always cooperating cooperators remains the same forever and no
connections are created or destroyed between them.

Step I. There exist t1(N;G; V ) and �1(N;G; V ) > 0 such that starting from
(N;G; V ) the probability to be after t1 periods in a state (N;G0; V 0) such that
(C(N;G0; V 0); G0; V 0) is unmodi�able is at least �1.

Let us prove the above statement. Ad absurdum, suppose that starting from
(N;G; V ) for all t the probability to be after t periods in a state (N;G0; V 0) such
that (C(N;G0; V 0); G0; V 0) is unmodi�able is 0. Therefore, the current sub-state
(C(N;G; V ); G; V ) is not unmodi�able; this means that there exists ~t such that
(C(N;G~t; V ~t); G~t; V ~t) 6= (C(N;G; V ); G; V ) with positive probability ~�. The sub-
state (C(N;G~t; V ~t); G~t; V ~t) does not have to be unmodi�able either; therefore ap-
plying the same reasoning as before another modi�able sub-state is obtained after
a certain length of time with positive probability. This sequence of modi�able

17Here and in the following (N;G; V ) has to be intended as ( �N;G; V ), where only G and V are
left to vary while N is exogenously �xed and constant over time. Moreover, (N;G; V ) without any
superscript is used as shorthand for (N;G0; V 0), that is the interaction state at time 0.
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sub-states has to be in�nitely long. However, this sequence does not admit cycles,
because any always cooperating cooperator will always be a cooperator, and any
link between always cooperating cooperators will remain forever since a link be-
tween cooperators is never destroyed and they will always remain cooperators. The
in�niteness of a sequence without cycles is in contradiction with the �niteness of
the state space.

There exist �t1 and ��1 > 0 such that starting from any (N;G; V ) the probabil-
ity to be after �t1 periods in a state (N;G0; V 0) such that (C(N;G0; V 0); G0; V 0) is
unmodi�able is at least ��1.

For the proof of this statement it is su�cient that �t1 is the maximum t1(N;G; V )
for any (N;G; V ), and ��1 is the minimum �1(N;G; V ) for any (N;G; V ), with the
existence of �t1 and �1(N;G; V ) ensured by the �niteness of the state space. In order
to be convinced, notice that, given t1(N;G; V ) and �1(N;G; V ), then trivially for
any t � t1 the probability to be after t periods in a state whose sub-state of always
cooperating cooperators is unmodi�able is at least �1.

Step II. If (C(N;G; V ); G; V ) is unmodi�able, then there exist t2(N;G; V )
and �2(N;G; V ) > 0 such that starting from (N;G; V ) the probability to be after
t2 periods in a state (N;G0; V 0) such that if i =2 C(N;G0; V 0) then Vi = 0 is at least
�2.

Suppose not and take a state which has the minimum number of cooperators
among those states reachable with positive probability. Such a state exists by the
�niteness of the state space. There will be cooperators who are not belonging to
C(N;G; V ), by the absurd hypothesis, and none of them can be willing to change
behavior, since otherwise another state with an inferior number of cooperators
would be reachable with positive probability. Any cooperator has therefore a su�-
cient number of cooperators to voluntarily cooperate. Because connections between
cooperators are never broken, those cooperators will always be cooperating and the
set C(N;G; V ) would not be unmodi�able, against the initial hypothesis.

For all (N;G; V ) if (C(N;G; V ); G; V ) is unmodi�able then there exist �t2 and
��2 > 0 such that starting from (N;G; V ) the probability to be after �t2 periods in a
state (N;G0; V 0) such that if i =2 C(N;G0; V 0) then Vi = 0 is at least ��2.

The proof of this statement consists of a simple check. Let �t2 be the maximum
t2(N;G; V ) for any (N;G; V ) such that C(N;G; V ) is unmodi�able, and let ��2 be
the minimum �2(N;G; V ) for any (N;G; V ) such that C(N;G; V ) is unmodi�able,
with the existence of �t2 and ��2 ensured by the �niteness of the state space. In order
to see why this is true, notice that given t2(N;G; V ) and �2(N;G; V ), then for any
t � t2 the probability to be after t periods in a state with all defectors except
always cooperating cooperators is at least �2, since no cooperator can emerge after
all non-always-cooperating agents have become defectors, otherwise being linked
only with always-cooperating agents and hence always cooperating herself.
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Step III. Starting from any state (N;G; V ), in �t1 � �t2 periods with at least
probability ��1 � ��2 the system will reach a state (N;G�; V �) where the sub-state
(C(N;G�; V �); G�; V �) is unmodi�able and every non-always-cooperating coopera-
tor is a defector. Such a state (N;G�; V �) is an equilibrium, according to de�nition
1. In fact, always cooperating cooperators will cooperate forever, no cooperator can
emerge among defectors, and no new connection between cooperators can be estab-
lished since (C(N;G�; V �); G�; V �) is unmodi�able. Hence, by setting T = �t1 � �t2
and q = ��1 � ��2 we get the desired result. Q:E:D:

Proof of Proposition 2. As previously de�ned, n1 denotes the number of co-
operators. Moreover, let n̂1 indicate the number of cooperators who have a full
neighborhood of cooperators, and let ~n1 indicate the remaining ones, ~n1 � n1� n̂1.

Being in equilibrium, any cooperating agent is willing to cooperate, and hence
she has at least n� cooperating neighbors. Therefore n1;1 � ~n1n� + n̂1m.

If C > 0, then n1 � 1. Moreover, since any cooperator has at least n� coop-
erating neighbors, n1 � n� + 1. In equilibrium it is also true that at most n� � 1
cooperators have a non full neighborhood, ~n1 � n� � 1, in order for any defector
not to have a chance to become a cooperator. Clearly, given n1 the higher ~n1 the
lower the bound for n1;1, so n1;1 � (n�� 1)n�+ (n1� n�+1)m. Moreover, at least
one cooperator must have a full cooperating neighborhood, implying that at least
m+ 1 cooperating agents exist, n1 � m+ 1.

The number of cooperator-to-anyone links, denoted by n1;01, is limited by the
number of cooperators multiplied by the maximum neighborhood size, n1;01 � n1m.
The following bound

b11 =
n1;1

n1;01
�

(n� � 1)n� + (n1 � n� + 1)m

n1m
(1)

is increasing in n1 and, being interested in its minimum value, we set n1 = m+1.
Therefore,

b11 �
n�(n� � 1) +m(m� n� + 2)

(m+ 1)m
. (2)

It is easy to check that the above expression, considered as a function of n�, gets
its minimum value for n� = (m+ 1)=2. By simple substitution into the expression
(2), we get that

b11 �
3m2 + 6m� 1

4(m+ 1)m
>

3

4
. (3)

Q:E:D:
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p l=b n� Mixed Eq. Coop. Eq. Def. Eq. % Mixed Eq.

0:03 0 2 3 297 0 1%

0:05 0 2 12 288 0 4%

0:09 0 2 29 271 0 10%

0:14 0 2 33 267 0 11%

0:22 0 2 29 271 0 10%

0:35 0 2 40 260 0 13%

0:60 0 2 75 225 0 25%

0:95 0 2 145 155 0 48%

0:03 0:01 3 3 295 2 1%

0:05 0:02 3 27 272 1 9%

0:09 0:03 3 109 189 2 36%

0:14 0:04 3 192 108 0 64%

0:22 0:08 3 231 68 1 77%

0:35 0:10 3 279 21 0 93%

0:60 0:15 3 291 9 0 97%

0:95 0:25 3 297 3 0 99%

0:03 0:05 4 102 94 104 34%

0:05 0:09 4 146 60 94 49%

0:09 0:12 4 226 11 63 75%

0:14 0:18 4 251 7 42 84%

0:22 0:30 4 274 0 26 91%

0:35 0:50 4 287 0 13 96%

0:60 0:80 4 299 0 1 99%

0:95 1:20 4 299 0 1 99%

0:03 0:07 5 3 3 294 1%

0:05 0:14 5 12 1 287 4%

0:09 0:23 5 18 0 282 6%

0:14 0:32 5 46 0 254 15%

0:22 0:55 5 90 0 210 30%

0:35 0:85 5 156 0 144 52%

0:60 1:50 5 229 0 71 76%

0:95 2:50 5 279 0 21 93%

0:03 0:11 6 0 0 300 0%

0:05 0:19 6 0 0 300 0%

0:09 0:31 6 0 0 300 0%

0:14 0:58 6 0 0 300 0%

0:22 0:85 6 1 0 299 0%

0:35 1:30 6 0 0 300 0%

0:60 2:00 6 41 0 259 14%

0:95 4:00 6 95 0 205 32%

Table 1: The emergence of pure and mixed equilibria for di�erent combinations of

p and n�. Columns 4-7 report, respectively, the number of mixed, fully cooperating

and fully defecting equilibria in 300 hundred simulations where n = 30 and m = 7

while p, n� and b=l are as reported in columns 1-3.

1

Table(s)
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regressors coe�. prob. R2

const. 58.99 0.00

p 67.24 0.00 0.758

jn� � 4j -34.57 0.00

const. 24.56 0.03

exp p 38.49 0.00 0.732

jn� � 4j -34.57 0.00

const. 58.01 0.00

p 67.24 0.00 0.735

exp jn� � 4j -9.55 0.00

const. 23.59 0.46

exp p 38.49 0.00 0.709

exp jn� � 4j -9.55 0.00

const. 53.48 0.00

p 85.37 0.00 0.766
jn� � 4j -29.98 0.00

p � jn� � 4j -15.11 0.27

Table 2: Six OLS regressions using data obtained from 12000 simulations (8 levels

of p, 5 levels of n�, 300 simulations for each combination). The dependent variable

is the number of observed mixed equilibria while the regressors are reported in

Column 1. Column 2 reports the estimated coe�cients, and column 3 reports their

signi�cance level. Column 4 reports the R2 value.
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m=n Mixed Eq. Coop. Eq. Def. Eq. % Mixed Eq.

0:23 116 182 2 39%

0:12 132 168 0 44%

0:08 135 165 0 45%

0:06 147 153 0 49%

0:05 129 171 0 43%

0:04 146 154 0 49%

0:03 150 150 0 50%

Table 3: The emergence of pure and mixed equilibria for di�erent values of m=n.
Columns 2-4 report, respectively, the number of mixed, fully cooperating and fully

defecting equilibria in 300 hundred simulations where m = 7, p = 0:09 and n� = 3

while n=m is as reported in column 1. The parameters l and b are set in order to

get n� = 3.
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m=n Mixed Eq. Coop. Eq. Def. Eq. % Mixed Eq.

0:23 75 120 105 25%

0:12 140 66 94 47%

0:08 173 40 87 58%

0:06 220 23 57 73%

0:05 244 18 38 81%

0:04 255 6 39 85%

0:03 261 6 33 87%

Table 4: The emergence of pure and mixed equilibria for di�erent values of m=n.
Columns 2-4 report, respectively, the number of mixed, fully cooperating and fully

defecting equilibria in 300 hundred simulations where m = 7, p = 0:03 and n� = 4

while n=m is as reported in column 1. The parameters l and b are set in order to

get n� = 5.
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m=n Mixed Eq. Coop. Eq. Def. Eq. % Mixed Eq.

0:23 104 0 196 35%

0:12 114 0 186 38%

0:08 128 0 172 43%

0:06 137 0 163 46%

0:05 115 0 185 38%

0:04 135 0 165 45%

0:03 138 0 162 46%

Table 5: The emergence of pure and mixed equilibria for di�erent values of m=n.
Columns 2-4 report, respectively, the number of mixed, fully cooperating and fully

defecting equilibria in 300 hundred simulations where m = 7, p = 0:22 and n� = 5

while n=m is as reported in column 1. The parameters l and b are set in order to

get n� = 5.
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