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Abstract

The prediction of asymmetric equilibria with Stackelberg outcomes is clearly
the most frequent result in the endogenous timing literature. Several experi-
ments have tried to validate this prediction empirically, but failed to find support
for it. In contrast, these experiments find that simultaneous-move outcomes are
modal and that behavior in endogenous timing games is quite heterogeneous.
This paper generalizes Hamilton and Slutsky’s (1990) endogenous timing games
by assuming that players are averse to inequality in payoffs. I explore the the-
oretical implications of inequity aversion and compare them to the empirical
evidence. I find that this explanation is able to organize most of the experimen-
tal evidence on endogenous timing games. However, inequity aversion is not
able to explain delay in Hamilton and Slutsky’s endogenous timing games.
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1 Introduction

The theoretical literature on endogenous timing started with Saloner (1987),
Hamilton and Slutsky (1990), and Robson (1990). This literature tries to iden-
tify factors that might lead to the endogenous emergence of sequential or simul-
taneous play in oligopolistic markets.

In Hamilton and Slutsky’s action commitment game, two firms must decide
a quantity to be produced in one of two periods before the market clears. If a
firm commits to a quantity in the first period, it acts as the leader, but it does
not know whether the other firm has chosen to commit early or not. If a firm
commits to a quantity in the second period, then it observes the first period
production of the rival (or its decision to wait). Hamilton and Slutsky show
that this game has three SPNE: both firms committing in the first period to the
simultaneous-move Cournot-Nash equilibrium quantities, while the other plays
its Stackelberg leader quantity in the first period. They also show that only the
Stackelberg equilibria survive elimination of weakly dominated strategies.1

Observed behavior in experiments on this canonical model of endogenous
timing is at odds with the theory. For example, Huck et al. (2002) test
experimentally the predictions of Hamilton and Slutsky’s action commitment
game. They find that (i) Stackelberg outcomes are rare, (ii) simultaneous-move
Cournot outcomes are modal, (iii) simultaneous-move outcomes are often played
in the second production period, and (iv) behavior is quite heterogeneous: in
some cases followers punish leaders, in other cases collusive outcomes are played,
and in other cases Stackelberg warfare is observed.2

The questions that the endogenous timing literature tries to address are
particularly relevant in terms of new markets, where two or more firms will
enter. The experimental evidence suggests that simultaneous-move play may a
better predictor of behavior in markets for new goods than sequential play.3 It
also suggests that there may be substantial heterogeneity in behavior in these
markets.4

Why does the theory perform poorly in the experiments? One possibility is
that subjects are not able iteratively to rule out dominated strategies and stop
after one or two rounds of reasoning. There is substantial experimental evi-
dence that supports this view. Even if subjects are able to eliminate dominated
strategies, the two Stackelberg equilibria involve large payoff differences, and
this creates a coordination problem. This implies that playing the Stackelberg

1A model where the price is chosen was considered by Robson, and a Stackelberg outcome
is also obtained.

2Throughout the paper we consider that collusive outcomes describe situations where both
firms produce less than their Cournot-Nash quantities. We also consider that Stackelberg
warfare describes a situation where both firms produce more than their Cournot-Nash outputs.

3As we have seen the prediction of Stackelberg equilibria rests on equilibrium selection
arguments. Simultaneous-move Cournot-Nash equilibria typically exist, however, they do not
survive the application of equilibrium refinements.

4Bagwell (1995) points out that the theoretical prediction of Stackelberg outcomes cru-
cially depends on the perfect observability of the Stackelberg leader’s action. However, the
experiments assume perfect observability, which rules out this explanation.
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leader’s quantity is risky compared with playing the Cournot-Nash quantity.5

It is possible to think of explanations for some aspects of the empirical
evidence. However, it is much harder to explain all of the experimental find-
ings. For example, the risk-payoff equilibrium selection argument may explain
why simultaneous-move outcomes are more frequently played than Stackelberg
outcomes. However, it cannot explain the emergence of collusive outcomes or
Stackelberg warfare. It is also not clear how this explanation can account for
the fact that simultaneous-move play can take place in the second production
period in Hamilton and Slutsky’s action commitment game.

The gap between the theory and the experimental evidence is the main
motivation behind this paper. To bridge this gap, I generalize Hamilton and
Slutsky’s action commitment game by assuming that players are averse to in-
equality in payoffs. An inequity averse player dislikes advantageous inequity
(i.e. feels compassion towards his rival if the rival has lower profits) and also
dislike disadvantageous inequity (i.e. feels envy towards the rival if the rival
has higher profits).6 The paper derives the predictions of this explanation for
Hamilton and Slutsky’s endogenous timing games and compares the predictions
to the empirical evidence.

Inequity aversion has been shown to explain a broad range of data for many
different games. The clearest evidence for these type of preferences comes from
bargaining and trust games. For example, in ultimatum games offers are usu-
ally much more generous than predicted by equilibrium, and low offers are often
rejected. According to the inequity aversion explanation, these offers are consis-
tent with an equilibrium in which players make offers knowing that other players
may reject allocations that appear unfair. Huck et al. (2002), Müller (2006),
and Fonseca et al. (2006) suggest that inequity aversion may also explain be-
havior in endogenous timing games. However, these papers do not formalize
this explanation.

The paper shows that relatively high levels of inequity aversion rule out
asymmetric equilibria in Hamilton and Slutsky’s action commitment game. In
other words, relatively high levels of inequity aversion favor simultaneous-move
play over sequential play. The intuition for this result is straightforward. For
relatively high levels of inequity aversion, playing leader type outcomes leads to
inequity costs that are larger than the material benefits of leadership.7

The paper also shows that inequity aversion gives rise to a continuum of sym-
metric equilibria in Hamilton and Slutsky’s action commitment game. Clearly,
if an inequity averse player knows that his rival will produce the Cournot-Nash
quantity, then his best reply is to produce the Cournot-Nash quantity since
any other output level reduces profits and increases inequity costs. Now, if an
inequity averse player knows that his rival will produce an output level that is
somewhat lower (higher) than the Cournot-Nash quantity, then his best reply

5See Harsanyi and Selten (1988) for a discussion of risk-payoff dominance considerations.
6To model inequity aversion I make use of Fehr and Schmidt’s (1999) approach.
7Relatively low levels of inequity aversion do not rule out asymmetric equilibria. In fact,

as inequity aversion vanishes, the set equilibria of each game converge to the set of equilibria
of the standard game where players are assumed to care only about material payoffs.
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is to produce exactly the same quantity as the rival since producing a higher
(lower) quantity increases profits by less than the cost from advantageous (dis-
advantageous) inequity.

The previous paragraph shows us that inequity aversion may lead both play-
ers to produce less than the Cournot-Nash quantity. This happens whenever
players have a relatively high level of compassion and are able to coordinate
on a “collusive outcome.” Similarly, inequity aversion may lead both players to
produce more than the Cournot-Nash quantity. This happens whenever players
have a relatively high level of envy that leads to Stackelberg warfare. Thus, if
a population is composed of players with heterogeneous preferences and these
individuals are matched in pairs to play endogenous timing games, then hetero-
geneity in behavior is to be expected.

The paper argues that inequity aversion is able to explain most experimental
findings on endogenous timing games. Inequity aversion can rule out sequential
play and give rise to a continuum of simultaneous-move symmetric outcomes.
Inequity aversion can explain collusive outcomes and Stackelberg warfare. Ad-
ditionally, inequity aversion also explains why followers seem to punish leaders.
If inequity aversion is relatively low and there is sequential play, then the leader
will feel compassion towards the follower and the follower will feel envious of
the leader. A compassionate leader will produce less than a selfish leader, and
an envious follower will produce more than a selfish follower. This is exactly
what the data shows in Huck et al.’s (2002) experiment.

The paper proceeds as follows. Section 2 reviews the evidence. Section 3
describes Hamilton and Slutsky’s model and its results. Section 4 extends the
model by assuming that players can be averse to inequity and studies the con-
sequences of this assumption. Section 5 summarizes the predictions of inequity
aversion and compares them to the empirical evidence. Section 6 discusses the
findings. Section 7 concludes the paper. Proofs of propositions are in the Ap-
pendix available on the JEBO website.

2 Experimental Evidence

Huck et al. (2002) test experimentally the predictions of Hamilton and Slutsky’s
action commitment game. In the experiment they use the linear inverse demand
function

P (q1 + q2) = max
{

30 − (q1 + q2), 0
}

,

and they assume that costs of production are linear and given by Ci(qi) =
6qi, i = 1, 2. According to this specification, the predictions of Hamilton and
Slutsky (1990) are as follows. The Stackelberg leader produces in period one
the quantity S = 12, and the Stackelberg follower produces in period two the
quantity R(S) = 6. The simultaneous-move Cournot-Nash quantities are played
in period one and are given by

(

N1, N2
)

= (8, 8). The collusive quantities are
(C1, C2) = (6, 6). Huck et al. (2002) ran an experiment with a large payoff
matrix where subjects could pick an integer quantity from 3 to 15 units. They
also ran an experiment with a small payoff matrix where subjects could select a

4



Page 5 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

quantity from the set {6, 8, 12}. Table I (taken from Huck et al. (2002)) displays
the experimental results on an aggregate level for both the large and the small
payoff matrices.

Table I

Explicit Both firms
In period 1 followers in period 2 Total

Large payoff matrix

Average quantity 9.15 8.93 8.40 17.70
Standard deviation 1.91 1.75 1.67 1.93
Number of observations 543 207 140 890
Small payoff matrix

Average quantity 8.65 7.89 7.60 16.05
Standard deviation 2.24 1.22 1.21 1.64
Number of observations 136 94 170 400

Table I shows us that in the experiment with the large payoff matrix, in
543 out of 890 cases (61%), subjects committed themselves in period 1. In the
remaining cases subjects decided to wait. Those who decided to produce in the
first period produced on average 9.15 units, which is less than the Stackelberg
leader’s quantity of 12 units. Those who decided to wait and produce in the
second period after having observed that the rival produced in the first period
produced an average output of 8.93 units, which is larger than the Stackelberg
follower’s output of 6 units. This seems to imply that Stackelberg followers
exhibit aversion to disadvantageous inequity since they are willing to produce
more than the material best reply to reduce the payoff of the Stackelberg leader.
When both subjects decided to wait, 140 out of 890 cases (18%), their average
output was 8.40 units, which is similar to the Cournot-Nash quantity. Table I
also shows us that in the experiment with the small payoff matrix, only in 136
out of 400 cases (34%) did subjects commit themselves in the first period. Both
subjects decided to wait in 170 out of 400 cases (42%). Average outputs are
slightly smaller than those observed with the large payoff matrix.

Huck et al. (2002) also find that explicit followers’ observed responses in the
experiment with the large payoff matrix have a curious pattern. The continuous
theoretical best reply function is given by qF = 12 − 0.5qL. On average, the
observed responses of followers have a negative slope when the leaders produce
fewer than 7 units or more than 12 units. However, when leaders produces
between 7 and 12 units the responses of followers have a positive slope.8 Table
II summarizes market outcomes in terms of absolute and relative frequencies for
the experiment with the large payoff matrix.

Table II

8See Fig. 2 in Huck et al. (2002). This finding is replicated in Huck et al. (2001) in a
game where the roles of leader and follower are exogenously assigned.
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Number Number of cases
Market outcome Type of cases incl. quant. 9 and 11
Cournot Equilibrium 64 14.4% 93 20.9%
Stackelberg Equilibrium 24 5.4% 33 7.4%
Stackelberg/Cournot Coord. failure 27 6.1% 41 9.2%
Stackelberg warfare Coord. failure 21 4.7% 30 6.7%
Stackelberg punished Other 43 9.7% 55 12.4%
Collusion (successful) Other 25 5.6% 25 5.6%
Collusion (exploited) Other 19 4.3% 19 4.3%
Collusion (failed) Coord. failure 34 7.6% 41 9.2%
Others 188 42.2% 108 24.3%
Sum 445 100% 445 100%

We see from Table II that the Cournot equilibrium is the most frequent
outcome since it represents 14.4% of all outcomes, 20.9% of all outcomes when
the quantity 9 is counted as a Cournot action. The Stackelberg equilibria occur
only rarely since they represent 5.4% of all outcomes, 7.4% of all outcomes
when the quantity 11 is counted as a Stackelberg leader action. Coordination
failure occurs in 10.8% of all outcomes, 15.9% when 9 is counted as Cournot
and 11 as Stackelberg leader actions. In the experiment with the small payoff
matrix, Cournot outcomes become much more frequent (45% vs. 20.9%). The
frequencies of successful and unsuccessful collusion are more similar than the
ones with the large payoff matrix. Coordination failure becomes less important
(4.5% vs. 15.9%). Endogenous Stackelberg equilibria occur even less frequently
(5% vs. 7.4%) than with the large matrix. The results with the small payoff
matrix rule out the possibility that complexity was responsible for the results
obtained with the large payoff matrix. Thus, the results with the small payoff
matrix reinforce the idea that subjects prefer symmetric Cournot outcomes to
asymmetric outcomes.

Fonseca et al. (2005) show that Huck et al. (2002)’s findings are robust
to cost asymmetries. They find that low cost firms are not able to use their
cost advantage to become Stackelberg leaders and that Cournot play is modal.9

Fonseca et al. (2006) test experimentally Hamilton and Slutsky’ s observable
delay game. In this game two firms bindingly announce a production period (one
out of two periods) and then produce in the announced sequence. Hamilton and
Slutsky show that this game has a unique symmetric equilibrium where firms
produce only in the first period. Fonseca et al. (2006) find that there is delay
in players’ production decisions.

9Van Damme and Hurkens (1999) analyze an endogenous timing game with cost differences
between firms. In their model a unique Stackelberg equilibrium is selected with the most
efficient firm being the Stackelberg leader.
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3 The Model

In Hamilton and Slutsky’s action commitment game, firms can only produce in
one of two production periods. In the first period firms can either produce some
quantity or decide to wait. If and only if a firm decides to wait, it is informed
about the rival’s first period action and after that can choose its second-period
production.

Following Hamilton and Slutsky, define the single-period best reply of firm
i as10

Ri(qj) = argqi max
[

P
(

qi + qj
)

− c
]

qi, i 6= j = 1, 2.

I assume that these best replies are well behaved.11 Let
(

N1, N2
)

be the unique
single-period Cournot-Nash equilibrium outcome. When firm i produces qi in
the first period, and firm j produces its best reply in the second period the
profit function of firm i is given by

πi
L =

[

P
(

qi + Rj(qi)
)

− c
]

qi, i 6= j = 1, 2.

For simplicity, I assume that only one Stackelberg point exists for each firm.
Denote these points by Si, i = 1, 2, with

Si = argqi max
[

P
(

qi + Rj(qi)
)

− c
]

qi, i 6= j = 1, 2.

Hamilton and Slutsky show that this game has three subgame perfect Nash
equilibria (SPNE): one simultaneous-move Cournot equilibrium where both
firms produce the Cournot-Nash quantities in the first production period,12

and two sequential-move Stackelberg equilibria where one firm produces the
Stackelberg leader’s quantity in the first production period and the other firm
produces the Stackelberg follower’s quantity in the second production period.13

Thus, the set of equilibria in Hamilton and Slutsky’s game is given by

EHS =
{(

q1
1 , q2

1

)

= (N, N)
}

∪
{(

q1
1 , q

2
2

)

= (S, R(S))
}

∪
{(

q1
2 , q

2
1

)

= (R(S), S)
}

.

The Stackelberg equilibria are in undominated strategies. The simultaneous-
move equilibrium uses weakly dominated strategies since playing the Cournot-
Nash quantity in the first production period is dominated by waiting to play
after one’s rival.

10The reaction function corrresponds to a standard single production period Cournot model.
11By this we mean, −1 ≤ ∂Ri(qj)/∂qi < 0. The second condition ensures the existence

of a unique single-period Cournot-Nash equilibrium. A set of sufficient conditions for Ri

functions to be “well-behaved” is that P (qi + qj) is strictly positive on some bounded interval
(0, Q̄) on which it is twice continuously differentiable, strictly decreasing, and concave, with
P (qi + qj) = 0 for qi + qj ≥ Q̄.

12Both firms producing the Cournot-Nash quantities in the second production period is
not an equilibrium since each firm would do better to deviate unilaterally and produce the
Stackelberg leader’s quantity in the first production period.

13A firm producing the Stackelberg leader’s quantity, Si, in the first production period and
the opponent producing the Stackelberg follower’s quantity, Rj(Si), in the first production
period is not an equilibrium because the leader would rather produce its best response to the
Stackelberg follower’s quantity, that is, Ri(Rj(Si)).

7
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4 Inequity Aversion

Many experiments indicate that individuals are motivated not only by material
self-interest, but also by the distribution of payoffs. I incorporate this possibility
in Hamilton and Slutsky’s game by assuming that firms are averse to inequality
in profits. To model this, I make use of Fehr and Schmidt’s approach. Thus, I
assume that firm i’s payoff is given by

U i(πi, πj) = πi −
[

αi max
(

πj − πi, 0
)

+ βi max
(

πi − πj , 0
)]

, i 6= j = 1, 2.

The terms in the square bracket are the payoff effects of disadvantageous and
advantageous inequity, respectively. When πj > πi firm i feels envy towards
firm j; this is the disadvantageous inequity term. When πj < πi firm i feels
compassion towards firm j; this is the advantageous inequity term. Fehr and
Schmidt assume that αi and βi are nonnegative, that αi > βi (the dislike of
disadvantageous inequity is stronger than that of advantageous inequity), and
that βi is smaller than 1. I assume that αi is nonnegative and that βi ∈ [0, 1/2].14

Santos-Pinto (2006) shows that the single-period best reply of firm i in the
presence of inequity aversion is defined by

Ri(qj) =







si(qj), 0 ≤ qj ≤ q(βi)
qj , q (βi) ≤ qj ≤ q(αi)
ti(qj), q(αi) ≤ qj

,

where

si(qj) = argqi max (1 − βi)
[

P
(

qi + qj
)

− ci

]

qi + βi

[

P
(

qi + qj
)

− cj

]

qj , (1)

ti(qj) = argqi max (1 + αi)
[

P
(

qi + qj
)

− ci

]

qi − αi

[

P
(

qi + qj
)

− cj

]

qj , (2)

q(βi) is the solution to (1 − βi) [P (2q) − ci] + P ′(2q)q = 0, and q(αi) is the
solution to (1 + αi) [P (2q) − ci] + P ′(2q)q = 0.

The main difference between this best reply and the standard one is that
with inequity aversion there is a range of a rival’s output levels for which the
best reply of a firm is to produce the same as the rival. That happens around the
Cournot-Nash equilibrium quantity of the standard simultaneous-move game.
In other words, the best reply has a positive slope for output levels of the rival
close to the Cournot-Nash level and a negative slope for the remaining output
levels of the rival. As we have seen, Huck et al.’s (2002) experiment on Hamilton
and Slutsky’s action commitment game finds evidence for this type of best reply.

Santos-Pinto also shows that the set of Nash equilibria of the single-period
symmetric Cournot duopoly game when firms are averse to inequity is given by

EIA =
{(

q1, q2
)

: q1 = q2, and N(β1, β2) ≤ qi ≤ N(α1, α2), i = 1, 2
}

,

14The assumption that βi is smaller than 1/2 implies that a firm never cares more about
the profit of its rival than about its own profit. This assumption also rules out equilibria of
the single period Cournot model where firms produce less than the collusive quantities.

8
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where N(β1, β2) = max [q (β1) , q(β2)] , and N(α1, α2) = min [q(α1), q(α2)] .
This result tells us that inequity aversion between firms gives rise to a con-

tinuum of symmetric equilibria in the single-period Cournot duopoly game. The
intuition for this result is as follows. Suppose that a firm knows its rival will
produce an output level that is close to the Nash equilibrium of the standard
single-period Cournot game. If that firm dislikes inequity aversion, then there
is a cost in advantageous inequity associated with producing a higher level of
output than the rival. Similarly, there is also a cost in disadvantageous inequity
associated with producing a smaller output level than the rival. For a range
of output levels close to the Nash equilibrium of the standard single-period
Cournot game, the profits lost from not matching the rival’s output are small
while the inequity costs are large. If that is the case, then the firm is better off
by producing the same level of output as the rival.

The result also shows that the smallest Nash equilibria of the single-period
Cournot game is determined by the lowest level of compassion of the two firms
and that the largest Nash equilibria is determined by the lowest level of envy of
the two firms. We see from (1) that if both firms have a level of compassion equal
to 1/2, then the lowest Nash equilibrium of the single-period Cournot duopoly
game with inequity averse firms corresponds to the best collusive outcome.

I will now show that inequity aversion between firms also gives rise to a
continuum of symmetric equilibria in Hamilton and Slutsky’s game. I assume,
without loss of generality, that there is symmetry in the inequity aversion param-
eters; that is, we take α1 = α2 = α and β1 = β2 = β.15 Given this assumption,
we let N(β) denote N(β1, β2) and N(α) denote N(α1, α2).

To characterize the set of equilibria of Hamilton and Slutsky’s game with
inequity averse firms I need to introduce some notation. Let the Stackelberg
leader’s quantity in the presence of inequity aversion be denoted by Si(α, β),
i = 1, 2, and the Stackelberg follower’s quantity by Rj(Si(α, β)), j 6= i. If firm
i is the Stackelberg leader, then it picks the point in Rj(qi) that maximizes its
payoff. The existence of inequity aversion implies that the Stackelberg leader’s
quantity is defined as

Si(α, β) =

{

N(β), if U i(Li(α, β), tj(Li(α, β))) ≤ U i(N(β), N(β))
Li(α, β), otherwise

,

(3)
and the Stackelberg follower’s quantity by

Rj
(

Si(α, β)
)

=

{

N(β), if U i(Li(α, β), tj(Li(α, β))) ≤ U i(N(β), N(β))
tj

(

Li(α, β)
)

, otherwise
,

(4)
where

Li(α, β) = argqi≥N(α) max (1 − β)
[

P
(

qi + tj(qi
)

) − ci

]

qi

+ β
[

P
(

qi + tj(qi
)

) − cj

]

tj(qi),

15If we assume that β1 6= β2 and/or α1 6= α2 the game becomes asymmetric. This compli-
cates the analysis without providing additional insights on the problem.
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j 6= i = 1, 2. We see from (3) and (4) that the presence of inequity aversion im-
plies that the Stackelberg point is either point (N(β), N(β)) , the smallest Nash
equilibrium of the simultaneous-move game, or point

(

Li(α, β), tj
(

Li(α, β)
))

.
If the payoff of the smallest Nash equilibrium of the simultaneous move game is
greater than the payoff of point

(

Li(α, β), tj
(

Li(α, β)
))

, then (N(β), N(β)) is
the Stackelberg point. If the payoff of the smallest Nash equilibrium of the simul-
taneous move game is smaller than the payoff of point

(

Li(α, β), tj
(

Li(α, β)
))

,

then
(

Li(α, β), tj
(

Li(α, β)
))

is the Stackelberg point. In this case, firm i pro-

duces more than firm j since Li(α, β) < tj
(

Li(α, β)
)

. This implies that the
profit of firm i is larger than that of firm j, and therefore firm i feels compassion
towards firm j whereas firm j feels envy towards firm i. When the Stackelberg
point is

(

Li(α, β), tj
(

Li(α, β)
))

, it is a function of α and of β. The Stackel-
berg leader’s output Li(α, β) is decreasing in α and β whereas the Stackelberg
follower’s output tj

(

Li(α, β)
)

is increasing in α and β. An increase in α, the
degree of envy, leads the follower to raise production, and this in turn implies a
lower quantity for the leader. An increase in β, the degree of compassion, leads
the leader to reduce its output, and this in turn implies a higher quantity for
the follower.

Proposition 1 characterizes the set of equilibria of Hamilton and Slutsky’s
action commitment game for relatively high levels of inequity aversion between
firms.

Proposition 1 If U i(N(β), N(β)) > U i(Si(α, β), tj(Si(α, β))), i = 1, 2, then

the set of equilibria of Hamilton and Slutsky’s action commitment game with

inequity averse firms is given by

EIA
HS =

{(

q1
1 , q

2
1

)

: q1
1 = q2

1 , and N(β) ≤ qi
1 ≤ N(α), i = 1, 2

}

∪
{(

q1
2 , q

2
2

)

= (N(β), N(β))
}

.

This result tells us that if the degree of inequity aversion between firms is
relatively high, then Hamilton and Slutsky’s action commitment game has a
continuum of symmetric SPNE. In this set of equilibria both firms produce in
the first period, and each firm produces a quantity between the smallest and the
largest Nash equilibrium quantity of the single-period Cournot duopoly game
with inequity averse firms. Thus, if the degree of inequity aversion between
firms is relatively high, then the set of SPNE of Hamilton and Slutsky’s action
commitment game coincides with the set of Nash equilibria of the single-period
Cournot duopoly game.16

The intuition for this result is as follows. Inequity aversion between firms,
whether it is high or low, gives rise to a continuum of symmetric equilibria both
in the single-period Cournot game as well as in Hamilton and Slutsky’s game.
Additionally, if inequity aversion is relatively high, that is, α and β are such that

16This is true for any symmetric equilibria in EIA
HS, except the lowest Nash equilibrium of

the simultanous-move Cournot game, (N(β), N(β)). Suppose that both firms produce N(β)
in the second production period. In this case each firm is indifferent between producing N(β)
in the second production period or in the first.

10
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each firm prefers the smallest Nash equilibrium payoff of the simultaneous move
game, U i(N(β), N(β)) to its payoff as the Stackelberg leader, then there are
no Stackelberg equilibria. Thus, the only equilibria of Hamilton and Slutsky’s
action commitment game with relatively high levels of inequity aversion between
firms are the simultaneous-move equilibria. The fact that in Hamilton and
Slutsky’s action commitment game firms can only produce in one of the two
periods implies that production in any simultaneous move-equilibria takes place
in the first period.

The next result characterizes the set of equilibria in Hamilton and Slutsky’s
action commitment game for relatively low levels of inequity aversion.

Proposition 2 If α and β are such that the Stackelberg point exists and

U i(Si(α, β), Rj(Si(α, β))) > U i(N(β), N(β)), i = 1, 2, then the set of equilibria

of Hamilton and Slutsky’s action commitment game with inequity averse firms

is given by

EIA
HS =

{(

q1
1 , q

2
1

)

: q1
1 = q2

1 , and N(β) ≤ qi
1 ≤ N(α), i = 1, 2

}

∪
{(

q1
1 , q

2
2

)

= (L1(α, β), t2(L1(α, β)))
}

∪
{(

q1
2 , q

2
1

)

= (t1(L2(α, β)), L2(α, β))
}

.

This result tells us that if the degree of inequity aversion between firms
is relatively low, then Hamilton and Slutsky’s action commitment game has a
continuum of symmetric SPNE and two asymmetric SPNE. In any symmetric
equilibria both firms produce in the first period, and each firm produces a
quantity between the smallest and the largest Nash equilibrium quantity of the
single-period Cournot duopoly game with inequity averse firms. The asymmetric
equilibria are of the leader-follower type with one firm producing the Stackelberg
leader’s quantity in the first production period and the other firm producing
the Stackelberg follower’s quantity in the second period. The difference here, in
comparison with Hamilton and Slutsky’s action commitment game with selfish
firms, is that a compassionate leader produces less than a selfish leader and a
envious follower produces more than a selfish follower.

Santos-Pinto shows that the point (N(β), N(β)) is decreasing with β; that is,
the smallest symmetric equilibrium of the single-period Cournot duopoly game
with inequity averse firms is decreasing with an increase in compassion. This
means that a decrease in compassion moves the set of symmetric equilibrium
outcomes closer to the best collusive outcome (the outcome obtained when β =
1/2). In contrast, the largest symmetric equilibrium of the single-period Cournot
duopoly game with inequity averse firms is increasing with an increase in envy.

As α and β converge to zero the impact of inequity aversion vanishes since
the set of symmetric equilibria in Hamilton and Slutsky’s game with inequity
averse players collapses to the Nash equilibria of the single-period Cournot game
and the point

(

Si(α, β), tj(Si(α, β))
)

converges to
(

Si; Rj(Si)
)

, i = 1, 2.17

17As α converges to zero the point (N(α), N(α)) converges to (N, N) , and as β converges
to zero the point (N(β), N(β)) converges to (N, N) .
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5 Summary and Comparison

In this section I summarize the predictions of the inequity aversion explanation
and compare them to the experimental evidence. Recall that the experimental
evidence on Hamilton and Slutsky’s action commitment game tells us that (i)
Stackelberg outcomes are rare, (ii) simultaneous-move Cournot outcomes are
the most frequent outcomes, (iii) simultaneous-move outcomes are often played
in the second production period, and (iv) behavior is quite heterogeneous; in
some cases followers punish leaders, in other cases collusive outcomes are played,
and in other cases Stackelberg warfare is observed.

Table III below summarizes the predictions for Hamilton and Slutsky’s action
commitment game.

Table III

Hamilton and Slutsky’s Action Commitment Game
Sym. Stack. Coll. Stack. Punish Time Cournot
eq. eq. out. warf. leader prod. in P2

Ineq. Av.
High Many - Yes Yes - P1 No
Low Many - No No - P1 No

- Two - - Yes P1&P2 -

Table III shows us that inequity aversion is able to explain most of the exper-
imental evidence on Hamilton and Slutsky’s action commitment game. First,
relatively high levels of inequity aversion imply that Hamilton and Slutsky’s ac-
tion commitment game has only simultaneous-move symmetric outcomes where
both firms produce in the first production period.18 When inequity aversion is
low there is a continuum of simultaneous-move symmetric equilibria, but there
are also two Stackelberg equilibria with sequential play.

Second, inequity aversion can explain collusive outcomes in Hamilton and
Slutsky’s action commitment game. This happens whenever both players have
a relatively high level of inequity aversion and are able to coordinate on the
collusive outcome.

Third, if inequity aversion is relatively high, there are no Stackelberg out-
comes in Hamilton and Slutsky’s action commitment game. Thus, for Stackel-
berg outcomes to be played, players must have relatively low levels of inequity
aversion.

Fourth, if inequity aversion is relatively low and players play the Stackelberg
outcome, then the model predicts that the Stackelberg leader will feel compas-
sion towards the follower and that the Stackelberg follower will feel envy towards
the leader. This implies that a compassionate leader produces less than a selfish

18Among all the symmetric equilibria in Hamilton and Slutsky’s game with inequity averse
players, the Cournot-Nash equilibrium of the game with selfish players may be the one that
is most frequently played. This happens because this equilibrium is always a subgame perfect
Nash equilibrium of the game whether players are averse to inequity or not. That is not the
case with the other symmetric equilibria.

12
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leader and that an envious follower produces more than a selfish follower. This
pattern is consistent with the evidence in Huck et al. (2002). Table III shows
that in the experiment with the large payoff matrix, explicit followers produce
on average 8.93 units. This is significantly higher than the Stackelberg follower’s
quantity of 6 units.19

Fifth, the fact that there exists a continuum of symmetric equilibria and that
firms must coordinate by moving simultaneously in the first production period
is also consistent with the empirical finding of coordination failure in Hamilton
and Slutsky’s action commitment game.

The only empirical finding in Hamilton and Slutsky’s action commitment
game that inequity aversion is unable to explain is simultaneous-move Cournot-
Nash outcomes in the second production period.20

6 Discussion

This section shows that inequity aversion is also able to explain most of the
experimental evidence on Saloner’s duopoly game. It discusses informally the
robustness of the results to alternative specification of inequity aversion. It
shows that if firms have concerns for status rather than being inequity averse,
then one cannot explain why collusive outcomes are played in experiments on
Hamilton and Slutsky’s game. Finally, it considers the implications of introduc-
ing private information about players’ types (selfish or inequity averse).

6.1 Saloner’s Duopoly Game

Saloner (1987) analyzes a duopoly with two periods where firms can produce in
both periods before the market clears. In the first period firms simultaneously
choose initial production levels. The choices of the first period are observed and
then additional non-negative second period outputs are chosen simultaneously.
Saloner shows that if production costs are the same across both periods, then

19The same thing happens in the experiment with the small payoff matrix. On average,
explicit followers in the experiment with the small payoff matrix produce 7.89. Huck et al.
(2002) do not display data for explicit leaders. However, we can use the data in the small
payoff matrix to have an idea of the average quantity of explicit leaders (in the small payoff
matrix most players who produce in the first period are explicit leaders; this is not the case
in the large payoff matrix). In the experiment with the small payoff matrix there are 136
players who produce in the first period, of whom 94 are explicit leaders and 42 are players
who produce simultaneously. If the 94 explicit leaders produced the leader’s quantity, 12
units, and the other 42 players the Cournot-Nash quantity, the average output of these 136
players should be equal to 10.76. In contrast, the data shows that the average output of these
136 players is significantly lower: 8.65 units. This tells us that, on average, explicit leaders
produce substantially less than the Stackelberg quantity.

20Fonseca et al. (2006) test experimentally Hamilton and Slutsky’ s observable delay game.
In this game two firms bindingly announce a production period (one out of two periods) and
then produce in the announced sequence. This game has a unique symmetric equilibrium
where firms produce only in the first period. Fonseca et al. (2006) find that there is a delay
in players’ production decisions. The findings in this paper show that inequity aversion is also
not able to explain delay in Fonseca et al. (2006).

13
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there is a continuum of equilibria: any point on the outer envelope of the best
replies between the firm’s Stackelberg outputs is attainable with a SPNE. Addi-
tionally, in all of these equilibria production takes place only in the first period.
However, Ellingsen (1995) shows that only the two Stackelberg equilibria in
Saloner’s game survive elimination of weakly dominated strategies.21

Müller tests the predictions of Saloner’s game extended by Ellingson. He
finds that (i) Stackelberg outcomes are extremely rare, (ii) simultaneous-move
symmetric outcomes are modal, (iii) sometimes collusive outcomes are observed,
(iv) there is production in both periods with 84% of production taking place
in the first period, (v) subjects seem to attempt to balance market shares in
the second production period, and (vi) subjects do not produce more than the
Stackelberg follower’s quantity in the first period.

It turns out that inequity aversion is also able to explain most of the exper-
imental evidence on Saloner’s game.22 First, relatively high levels of inequity
aversion imply that Saloner’s game has a continuum of simultaneous-move sym-
metric equilibria. When inequity aversion is low there is still a continuum of
simultaneous-move symmetric equilibria, but there is also a continuum of asym-
metric equilibria where play may be sequential.

Second, collusive outcomes are played whenever two subjects with a high
degree of compassion are matched to play the game and are able to coordinate
on the collusive outcome. Stackelberg warfare happens whenever two subjects
with a high degree of envy are matched to play the game and both produce
more than the Cournot-Nash quantities.

Third, relatively high levels of inequity aversion rule out Stackelberg out-
comes. However, relatively low levels of inequity aversion do not. Thus, when-
ever two subjects with a relatively low level of inequity aversion are matched to
play the game, we may have Stackelberg equilibria.

Fourth, inequity aversion is also able to explain the fact that subjects pro-
duce in both periods. If subjects are unable to coordinate in one of the multiple
symmetric equilibria in the first production period, then they have an incentive
to produce in the second production period to attain coordination before the
market clears. This explains why subjects seem to attempt to balance market
shares in the second period.

The only empirical finding in Saloner’s game that the inequity aversion ex-
planation seems unable to account for is that firms do not produce more than
the Stackelberg follower’s quantity in the first production period.

21Several papers have suggested ways to reduce the set of equilibria in Saloner’s model by
modifying the structure of the game. For example, Robson introduces discounting between
periods, Pal (1991) introduces cost asymmetries between periods, and Maggi (1996) introduces
uncertainty about demand.

22The theoretical predictions that follow from incorporating inequity aversion into Saloner’s
model are available upon request.
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6.2 Differentiable Inequity Aversion

As we have seen, Fehr and Schmidt’s (1999) model of inequity aversion is able
to explain several experimental findings in endogenous timing games. However,
Fehr and Schmidt’s specification is a particular functional form of inequity aver-
sion (it is piecewise linear and non-differentiable). Could it be that the results
obtained extend to more general preferences?

Santos-Pinto studies the impact of general specifications of inequity aversion
on Cournot competition. He shows that for differentiable forms of inequity
aversion, the best reply of a firm is always negatively sloped. However, the
best reply of an inequity averse firm is smaller (larger) than the best reply of
a selfish firm when the rival produces low (high) output levels given that the
inequity averse firm feels compassion (envy) towards the rival. This implies
that the two Stackelberg equilibria of Hamilton and Slutsky’s game with firms
with differentiable inequity aversion are much less asymmetric than the two
Stackelberg equilibria of the game with selfish firms. Thus, inequity aversion
either rules out asymmetric outcomes completely (high levels of piecewise linear
inequity aversion) or reduces the degree of asymmetry substantially (high levels
of differentiable inequity aversion).23

The main difference, by comparison with Fehr and Schmidt’s (1999) specifi-
cation, is that differentiable inequity aversion does not lead to positively sloped
best replies over some output range. This means that the continuum of equilib-
ria result is no longer valid for differentiable inequity aversion.

6.3 Preferences for Status

It could also be argued that individuals might not dislike inequity, but instead
they might enjoy it, at least as long as others are worse off than they are. This
type of preference can be interpreted as a concern for status. There is some
evidence for status seeking preferences in experimental duopoly games. Huck et
al. (2001) find that exogenous Stackelberg leaders produce less than the selfish
Stackelberg leader’s quantity but more than the Stackelberg leader’s quantity
predicted by Fehr and Schmidt model of inequity aversion.24

The model can be modified to deal with status seeking preferences by main-
taining α positive but assuming that β is negative. This means that firms are
still averse to disadvantageous inequity but like advantageous inequity. Ad-
ditionally, I assume that 0 < −β ≤ α; that is, aversion to disadvantageous
inequity is (weakly) stronger than the appeal of advantageous inequity.

If a firm cares about status its single period best reply is greater than the
single period best reply of a selfish firm. This happens because concerns for
status imply that increasing output above the selfish best reply reduces the

23The set of SPNE of Saloner’s game with differentiable inequity aversion is closer to the
45odegree line than the set of SPNE of Saloner’s game with selfish firms.

24Huck et al. (2001) show that the exogenous Stackelberg leaders’ quantities can be ex-
plained only by negative betas. This happens because the distribution of alpha types in the
exogenous follower population implies that Stackelberg leaders with positive betas should not
produce more than the Cournot quantity.
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profits of the rival more than a firm’s own profits. This has a first-order favorable
impact on the payoff derived from status, but only a second-order unfavorable
impact on profits. Thus, concerns for status increase equilibrium output levels.

When −β < α the single period best reply of a status seeking firm is similar
to the single period best reply of an inequity averse firm: it is negatively sloped
for small and large levels of output of the rival, and it consists in producing the
same output level as the rival for intermediate output levels of the rival. The
novelty here is that the range of output levels where a firm wishes to produce the
same output as the rival is strictly above the selfish Cournot-Nash quantity; that
is, Ri(qj) = qj for q(β) < qj < q(α), with qNS < q(β). Thus, if firms are status
seeking and −β < α, then Hamilton and Slutsky’s game has a continuum of
symmetric equilibria. However, in all these symmetric equilibria firms produce
more than the selfish Nash quantity.25 It follows from this analysis that if firms
care only for status, then we cannot explain why collusive outcomes are observed
in experiments on endogenous timing games.26

6.4 Incomplete Information

This paper assumes that players’ preferences are common knowledge. This may
not be a reasonable assumption. It could be more reasonable to assume that
100x percent of players in the population are selfish and 100(1− x) percent are
inequity averse, with x ∈ (0, 1), and that the distribution of types is common
knowledge.27

Introducing this possibility into Hamilton and Slutsky’s endogenous timing
game complicates the analysis substantially. Instead of a dynamic game of

25If −β = α, then the best reply of a firm with concerns for status is monotonically de-
creasing in the rival’s output just like the best reply of a selfish firm. In this case there is a
unique Cournot-Nash equilibrium of the game with status seeking firms where firms’ output
levels are higher than those in the equilibrium of the game with selfish firms.

26To characterize fully the implications of preferences for status on the set of equilibria
of Hamilton and Slutsky’s game, we also need to understand the impact of status seeking
preferences on the Stackelberg equilibria. Recall that the Stackelberg leader’s quantity is
given by (3) and the follower’s quantity by (4). If preferences for status are very strong, then
there may not exist asymmetric Stackelberg equilibria. However, if preferences for status are
moderate, there exist Stackelberg equilibria where the leader produces more than the follower.
In this last case the Stackelberg leader’s ouput Li(α, β) is decreasing in α but increasing in
β whereas the Stackelberg follower’s output tj

`

Li(α, β)
´

is increasing in α and decreasing β.
This happens because an increase in α leads the follower to raise production, and this in turn
implies a lower quantity for the leader. However, an increase in β leads the leader to increase
its output, and this in turn implies a lower quantity for the follower. However, when −β < α
a leader with status concerns produces less than a selfish leader whereas a follower with status
concerns produces more than a selfish follower. Thus, in the game with status seeking firms,
Stackelberg equilibria of the type

`

Li(α, β), tj
`

Li(α, β)
´´

are closer to the 45odegree line than
Stackelberg equilibria of the game with selfish firms.

27Levine (1998) assumes that a player wants to be kind to a kind person and uses this model
to describe experimental results. In order to do so, he assumes that players are uncertain
about their rivals’ preferences and solves for the equilibrium of incomplete information games.
Players draw inferences from the strategies of other people placing higher weight on the
material payoffs of people who play nice strategies because playing nice strategies signals that
one really is nice.
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complete information, we would have a dynamic game with two-sided incomplete
information. A player would have private information about his own type (the
player knows whether he is selfish or inequity averse) but would be uncertain
about the type of the rival.28

It is a well-known result that the basic tool for solving dynamic games of
incomplete information is the concept of Perfect Bayesian Equilibrium (PBE).
There are two basic types of PBE: separating and pooling.29 I conjecture the
existence of the following separating PBE of Hamilton and Slutsky’s game with
private information about preferences.

For some parameter values of α, β and x there may exist a separating equi-
librium where the selfish firm leads and the inequity averse firm follows, thus
providing a Stackelberg outcome. In this case the selfish leader will anticipate
a punishment by an envious follower and produce less than S. If both players
are inequity averse, they will both wait and play symmetric simultaneous move
outcome in the second production period (this may lead to Stackelberg warfare
or collusive outcomes depending on players’ levels of envy and compassion).
If both players are selfish they will both produce in date 1, yielding bilateral
leadership (the worst case of Stackelberg warfare).

For other parameter values of α, β and x there may exist a separating equi-
librium where the inequity averse firm leads and the selfish firm follows. In this
case the leader will be compassionate, producing less than S, because it cares
about the follower’s payoff. If both players are selfish, they will produce the
selfish Cournot-Nash quantities in the second production period. If both play-
ers are inequity averse they will play a symmetric simultaneous move outcome
in the first production period.

This informal discussion shows that introducing private information about
players’ types (selfish or non-selfish) in Hamilton and Slutsky’s game may ex-
plain delay in experimental endogenous timing games.

7 Conclusion

This paper formalizes the implications of inequity aversion in Hamilton and
Slutsky’s endogenous timing games. The paper shows that (1) relatively high
levels of inequity aversion rule out asymmetric equilibria, and (2) inequity aver-
sion gives rise to a continuum of simultaneous-move equilibria that include the
Cournot-Nash outcome, collusive outcomes, and Stackelberg warfare.

The paper also compares the predictions of the model to the experimental
evidence on behavior in Hamilton and Slutsky’s endogenous timing games. The
paper argues that inequity aversion is able to organize most of the experimental
evidence on these games, except for delay.

28Branco (1998) introduces private information about costs into Hamilton and Slutsky’s
action commitment game.

29In a separating equilibrium the two types of the firm that decide to produce in the first
period choose different quantities. A pooling equilibrium is an equilibrium in which the two
types of the firm that decide to produce in the first period choose the same quantity.
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8 Appendix

Proof of Proposition 1: Let
(

a1, a2
)

be any point in EIA
HS . Since a2 is a best

reply to a1, neither waiting nor any other output choice in the first production
period can raise 2’s payoff, and similarly for 1. Thus, any point

(

a1, a2
)

in EIA
HS

is an equilibrium. No other outcome can be a subgame perfect equilibrium.
Suppose that 1 plays L1(α, β) in the first production period and 2 waits and then
plays t2

(

L1(α, β)
)

in the second production period. This is not an equilibrium
since the assumption that U1(N(β), N(β)) > U1(L1(α, β), t2(L1(α, β))) implies
that 1 can do better by producing N(β) in the first production period. Similarly,
2 playing L2(α, β) in the first production period and 1 playing t1

(

L2(α, β)
)

in
the second production period is not an equilibrium. A situation where 1 and
2 play

(

b1, b2
)

in the first production period with
(

b1, b2
)

/∈ EIA
HS is not an

equilibrium since at least one of the firms is not playing her best reply to the
other firm. If 1 waits, the only possible equilibrium action is 2 playing N(β),
and similarly if 2 waits. Q.E.D.

Proof of Proposition 2: Let

EIA
HS = EIA

HS0
∪ EIA

HS1
∪ EIA

HS2
,

where

EIA
HS0

=
{(

q1
1 , q

2
1

)

: q1
1 = q2

1 , and N(β) ≤ qi
1 ≤ N(α), i = 1, 2

}

,

and
EIA

HSi
=

{(

qi
1, q

j
2

)

= (Li(α, β), tj(Li(α, β)))
}

, i = 1, 2.

Let
(

a1, a2
)

be any point in EIA
HS0

. Since a2 is a best reply to a1, neither waiting
nor any other output choice in the first production period can raise 2’s pay-
off, and similarly for 1. Thus, any point

(

a1, a2
)

in EIA
HS0

is an equilibrium.
Now consider the situation where firm 1 plays L1(α, β) in the first produc-
tion period and firm 2 waits and then plays t2(L1(α, β)) in the second produc-
tion period. This is equilibrium since the assumption that U1(N(β), N(β)) <
U1(L1(α, β), t2(L1(α, β))) implies that 1 can not gain by deviating from L1(α, β)
in the first production period. Similarly, 2 playing L2(α, β) in the first pro-
duction period and 1 playing t1

(

L2(α, β)
)

in the second production period
is an equilibrium. No other outcome can be a subgame perfect equilibrium.
A situation where 1 and 2 play

(

b1, b2
)

in the first production period with
(

b1, b2
)

/∈ EIA
HS0

is not an equilibrium since at least one of the firms is not play-
ing her best reply to the other firm. If 1 waits, the only possible equilibrium
action is 2 playing L2(α, β), and similarly if 2 waits. Q.E.D.
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