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mentalists and chartists, is studied. Fractions of trader types change over time according to
evolutionary learning, with chartists conditioning their forecasting rule upon deviations from a
benchmark fundamental. Volatility clustering arises endogenously and two generic mechanisms
are proposed as an explanation: (1) coexistence of a stable steady state and a stable limit cycle,
due to a so-called Chenciner bifurcation of the system, and (2) intermittency and associated
bifurcation routes to strange attractors. Economic intuition as to why these phenomena arise in
nonlinear multi-agent evolutionary systems is provided.

JEL classification: E32, G12, D84

Keywords: multi-agent systems, bounded rationality, evolutionary learning, bifurcations and chaos, co-
existing attractors

Acknowledgments.An earlier draft of this paper has been presented at the SCE-meeting at Yale, June
28–29, 2001, at the workshop on Economic Dynamics at the University of Amsterdam, January 4–6,
2001, and at various seminars. We would like to thank all participants for stimulating discussions. Special
thanks are due to Buz Brock for extensive discussions and detailed comments on an earlier draft. We
are also grateful to Jess Benhabib, Barkley Rosser and an anonymous referee for their encouragement
and comments. This research was supported by the Austrian Science Foundation (FWF) under grant
SFB#010 (‘Adaptive Information Systems and Modeling in Economics and Management Science.’) and
by the Netherlands Organization for Scientific Research (NWO) under a NWO-MaG Pionier grant.

Corresponding author: Cars Hommes, Center for Nonlinear Dynamics in Economics and Finance
(CeNDEF), University of Amsterdam, Roetersstraat 11, NL-1018 WB Amsterdam, The Netherlands,
Tel: ++31 20 525 4246, Fax: ++31 20 525 4349, e-mail: C.H.Hommes@uva.nl

Blinded Manuscript (NO Author Details)

Page 1 of 36 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

1 Introduction

Modern finance is based on the concept of rational expectations. As a consequence financial
markets are considered to be efficient in the sense that past prices cannot help in predicting
future prices. This view is known as the efficient market hypothesis (EMH). There has been a
long debate about the EMH. In particular, there is empirical evidence that many ‘stylized facts’
observed in financial time series cannot solely be explained by fundamentals, but that markets
have internal dynamics of their own.

One of the most important ‘stylized facts’ is volatility clustering. Whereas changes in asset
prices themselves appear to be unpredictable, the magnitudes of those changes seem to be pre-
dictable in the sense that large changes tend to be followed by large changes – either positive
or negative – and small changes tend to be followed by small changes. Asset price fluctuations
are thus characterized by episodes of high volatility, with large price changes, irregularly inter-
changed by episodes of low volatility, with small price changes. Mandelbrot (1963) first dis-
covered this phenomenon in commodity prices. Since the pioneering work of Engle (1982) and
Bollerslev (1986) on autoregressive conditional heteroskedastic (ARCH) models and their gen-
eralization to GARCH models, volatility clustering has been shown to be present in a wide va-
riety of financial assets including stocks, market indices and exchange rates. In empirical work,
volatility clustering is usually modeled by astatisticalmodel, such as the familiar (G)ARCH
model or one of its extensions. Although these models are useful as a statistical description
of the data, they do not offer a structural explanation of why volatility clustering is present in
so many financial time series. Rather the statistical models postulate that volatility clustering
has an exogenous source and is, for example, caused by the clustered arrival of random ‘news’
about economic fundamentals.

A recent branch of literature, including for example Arthur et al. (1997), Brock and Hommes
(1997, 1998), Brock et al. (2005), Farmer and Joshi (2002), Gaunersdorfer and Hommes (2007),
Kirman (1991), LeBaron (2001), LeBaron et al. (1999), Lux (1995, 1997) and Lux and March-
esi (1999, 2000), has offered astructural explanationof the phenomenon of volatility clustering
by multi-agent systems, where financial markets are viewed as complex evolutionary systems
between competing boundedly rational trading strategies; see Hommes (2006) and LeBaron
(2006) for recent surveys. In these multi-agent systems two important classes of traders can
be distinguished,fundamentalistsandtechnical analysts, having different trading strategies and
expectations about future prices of a risky asset. The fundamentalists believe that prices will
move towards their fundamental rational expectations (RE) value, as given by the expected
discounted sum of future dividends. In contrast, the technical analysts observe past prices and
try to extrapolate historical patterns. The multi-agent systems are characterized by an irregu-
lar switching between phases of low volatility, where fundamentalists dominate the market and
prices move close to the RE fundamental price, and phases of high volatility, where the market
is dominated by technical trading with prices deviating from the fundamental price. Volatility
clustering arises as anendogenousphenomenon, caused or amplified by the trading process
itself through heterogeneity, adaptive learning, and the evolutionary interaction between funda-
mentalists and technical analysts.
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Most work on heterogeneous agent modeling is computationally oriented however, and few an-
alytical results are available. In this paper we show by means of a simple, analytically tractable
behavioral multi-agent model with evolutionary learning that two generic phenomena cause en-
dogenous clustered volatility: coexistence of two attractors (a steady state and a limit cycle) and
so-called intermittency on a strange attractor. We conjecture that these phenomena also play an
important role in generating clustered volatility in the artificial stock markets in the computa-
tionally oriented literature mentioned above. Our model is an extension of theadaptive belief
systems (ABS)introduced by Brock and Hommes (1997, 1998), henceforth BH. An ABS is a
present discounted value asset pricing model with heterogeneous beliefs. There are two trader
types: fundamentalists, who believe that prices will move in the direction of the ‘fundamental
value’, and trend followers or chartists, who extrapolate the latest observed price change. The
fractions of the two different trader types change over time according to evolutionary fitness,
as measured by utility from realized profits or, equivalently (as we will show), forecasting ac-
curacy in the recent past. Chartists, however, also condition their forecasting rule upon price
deviations from the RE fundamental price; that is, they will abandon their charts and switch to
a fundamentalist market view when prices move away too far from the RE fundamental price.

The first phenomenon naturally suited to describe volatility clustering iscoexistence of attrac-
tors. In particular, our evolutionary model exhibits coexistence of a stable (fundamental) steady
state and a stable limit cycle. When buffeted with dynamic noise, irregular switching occurs
between close to RE fundamental steady state fluctuations, where the market is dominated
by fundamentalists, and large amplitude price fluctuations, where the market is dominated by
chartists. It is important to note that coexistence of attractors is agenericandstructurally stable
phenomenon.

An important question ishow a stable limit cycle around a locally stable steady state can arise.
We will show that for our evolutionary learning model there is a simple mathematical answer:
coexistence of a stable steady state and a stable limit cycle arises due to a so-calledChenciner
or degenerate Hopf bifurcation. To an economist not familiar with bifurcation theory this may
sound rather exotic, but a Chenciner bifurcation is a codimension two bifurcation, implying that
it is not due to a special specification of our model but that it is a generic feature for nonlinear
systems with two or more parameters; see Kuznetsov (1998) for a detailed and advanced mathe-
matical treatment of bifurcation theory including all possible codimension one and codimension
two bifurcations. Close to a Chenciner bifurcation point, there exists an open region in the para-
meter space for which a stable steady state and a stable limit cycle coexist. Occurrence of a local
Chenciner bifurcation of the steady state is therefore a sufficient condition for the occurrence
of certain global dynamic phenomena, in particular for the coexistence of a stable steady state
and a stable limit cycle. The Chenciner local bifurcation point acts as an ‘organizing center’ of
the dynamical behavior, implying global dynamic phenomena such as the creation or disappear-
ance of stable limit cycles as a single model parameter is varied; see, for example, Saleh (2006,
pp. 22–23) for a more detailed mathematical discussion. We will show that our heterogeneous
agent model with evolutionary learning has a Chenciner bifurcation point in a two dimensional
subspace of the parameter space. Application and detection of codimension two bifurcations in
economic modeling are relatively new. One of the first applications of a codimension two bi-
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furcation in economics is Benhabib et al. (2001), who show that a continuous time model with
active monetary policy rules exhibits a Bogdanov-Takens bifurcation.1 To our best knowledge,
the present paper contains the first economic application of the Chenciner bifurcation.

There is a strikingly simpleeconomic intuitionwhy one should in fact expect coexistence of a
stable RE fundamental steady state and a stable limit cycle in our simple evolutionary model,
when chartists extrapolate trends only weakly and fundamentalists are only weakly stabiliz-
ing. When trend extrapolation is weak, the RE fundamental steady state will be locally stable
because trend followers do not extrapolate small deviations from the RE steady state strongly
enough for prices to diverge, and the price will therefore return to the RE steady state. However,
even when trend extrapolation is weak, an upward price trend far away from the RE steady
state will be reenforced, causing prices to deviate even further from the fundamental. Such a
diverging upward price trend cannot continue forever, however, since trend followers condition
their rule upon deviations from the RE fundamental price. When prices move too far away from
the fundamental, as measured, for example, by a price-earnings ratio, technical analysts aban-
don their charts and switch to fundamentalists beliefs. The conditioning of technical trading
upon market fundamentals thus ensures that the upward price trend will stop and eventually
will reverse into a downward trend. If the fundamentalists are only weakly stabilizing, prices
move only slowly downwards into the direction of the fundamental price. The fraction of trend
followers will increase again, reenforcing the downward price trend. The downward trend will
continue and prices decrease below the fundamental RE steady state price. Since trend followers
condition their rule upon deviations from the RE fundamental price, at some point the down-
ward price trend reverses into an upward trend. The fraction of trend followers increases again,
reenforcing the upward price trend, and prices will overshoot the fundamental RE steady state.
A full cycle around the locally stable RE fundamental steady state is then complete. This intu-
ition suggests that the interaction and evolutionary switching between weak trend extrapolation
and weakly stabilizing fundamental analysis may lead to coexistence of a locally stable RE fun-
damental steady state and a locally stable limit cycle far from that steady state. The paper will
make this simple economic intuition rigorous for a simple, stylized behavioral and analytically
tractable heterogeneous agent model.

A second endogenous phenomenon suited to describe volatility clustering isintermittency. The
phenomenon of intermittency, as introduced by Pomeau and Manneville (1980), occurs when
asset price fluctuations are moving on a strange, chaotic attractor characterized by phases of
almost periodic fluctuations irregularly interrupted by sudden bursts of erratic fluctuations. In
the evolutionary learning model studied here, intermittency is characterized by close to the
(locally unstable) RE fundamental steady state fluctuations, suddenly interrupted by price de-
viations from the fundamental triggered by technical trading. Recent mathematical results on
homoclinic bifurcations have shown that for nonlinear systems strange attractors are the rule
rather than the exception. Stated more precisely, strange attractors are persistent in the sense

1A Bogdanov-Takens bifurcation for a continuous time system occurs when the Jacobian matrix at the steady
state has a double eigenvalue0 and certain higher order genericity conditions are satisfied. For a discrete time
system a Bogdanov-Takens bifurcation is characterized by a double eigenvalue+1. Close to such a Bogdanov-
Takens bifurcation point, the discrete system exhibits chaos and strange attractors.
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that they typically occur for a positive Lebesgue measure set (i.e. a set of positive probability)
of parameter values, see, for example, Palis and Takens (1993) for a mathematical treatment.
Economic applications of strange attractor theory are fairly recent and include, for example,
the overlapping generations economy in de Vilder (1996) and the ‘hog cycle’ or cobweb model
with evolutionary learning in Brock and Hommes (1997).

A similar economic intuitionas the one described above explains why one should expect inter-
mittency on a strange attractor to occur in our evolutionary model when chartists are strong trend
extrapolators and fundamentalists are strongly stabilizing. Strong trend extrapolators destabilize
the fundamental RE steady state because trend followers strongly extrapolate small deviations
from the fundamental steady state, leading to diverging prices and, say, an upward price trend.
When prices diverge and move away far above the RE fundamental value, technical traders con-
ditioning their charts upon market fundamentals will abandon their rule and the upward price
trend will stop and reverse into a downward price trend. When fundamentalists are strongly
stabilizing, prices will then quickly move into a small neighborhood of the RE fundamental
steady state. Since the RE steady state is locally unstable in the presence of strong extrapo-
lators, the story then repeats. This mechanism suggests that the interaction and evolutionary
switching between strongly extrapolating technical trading and strongly stabilizing fundamen-
tal strategies causes the RE fundamental steady state to have a saddle-point structure, with a
locally destabilizing force due to strong trend extrapolation and a globally stabilizing force due
to fundamentalists. In fact, the evolutionary learning system with strong trend extrapolation
and strongly stabilizing fundamentalists is close to having a homoclinic orbit and its associated
complicated dynamical behavior.

An important critique from ‘rational expectations finance’ upon heterogeneous agent models
using simple habitual rule of thumb forecasting rules is that ‘irrational’ traders willnot survive
in the market. For example, Friedman (1953) argues that irrational speculative traders would
be driven out of the market by rational traders, who would trade against them by taking infi-
nitely long opposite positions, thus driving prices back to fundamentals. In an efficient market,
‘irrational’ speculators would simply lose money and disappear from the market. However,
for example, De Long et al. (1990) have shown that a constant fraction of noise traders may
on average earn higher expected returns than rational or smart money traders and may sur-
vive in the market with positive probability.2 BH (1997, 1998) have also discussed this point
extensively and stress the fact that in an evolutionary framework technical analysts are not ‘ir-
rational’, but they are in factboundedly rational, since in periods when prices deviate from the
RE fundamental price, chartists make better forecasts and earn higher profits than fundamen-
talists. Speculative deviations from the fundamental price may in fact be triggered by short run
profit opportunities for chartists. On average, technical analysts and fundamentalists may earn
approximately equal profits, so that in general fundamentalists cannot drive chartists out of the
market. See also the survey in Hommes (2006) for an extensive discussion of these points. Our
evolutionary approach is also related to reinforcement learning in evolutionary game theory as,
for example, in B̈orgers and Sarin (1997); Samuelson (1997) contains a nice survey of related

2An early example of a heterogeneous agent model is Zeeman (1974); other more recent examples include
Frankel and Froot (1988), Kirman (1991), Chiarella (1992) and Brock (1993).
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evolutionary models in game theory. For related work on adaptive learning and motivation of
bounded rationality, see, for example, Grandmont (1998), Sargent (1993, 1999) and Evans and
Honkapohja (2001). Bullard (1994) and Schönhofer (1999) show how adaptive learning based
upon ordinary least squares can lead to local instability, cycles and even chaos. In related em-
pirical work Brock et al. (1992) have shown that simple technical trading rules applied to the
Dow Jones Index may yield positive returns, suggesting extra structure above and beyond the
EMH fundamental.

The paper is organized as follows. Section 2 describes the asset pricing model with fundamen-
talists and chartists. Section 3 presents a local stability analysis of the fundamental steady state
and bifurcations of codimension one. Section 4 discusses the complete 2-D (two dimensional)
bifurcation diagram of the Chenciner bifurcation, whereas section 5 presents the bifurcation
diagram in our adaptive learning model. Section 6 investigates chaotic dynamics in our model,
and finally, section 7 concludes.

2 The model

The model introduced here deviates from the asset pricing model with heterogeneous beliefs in
BH (1998) in two ways. Firstly, we use a different evolutionary fitness measure, namely utility
from realized profits or equivalently risk adjusted realized profits (instead of non-risk adjusted
realized profits). Secondly, technical traders condition their charts upon price deviations from
the RE fundamental benchmark price; that is, the fraction of technical traders will decrease
when prices move far away from the fundamental price. Both deviations will be discussed in
more detail below.

Agents trade in a market with one risky and one risk-free asset. The risk-free asset is completely
elastically supplied at a gross returnR > 1. pt denotes the price (ex-dividend) of the risky
asset and{yt} the (stochastic) dividend process. The dynamics of wealth of investor typeh is
described by

W̃h,t+1 = RWht + R̃t+1zht,

wherezht is the number of shares of the risky asset purchased at timet and R̃t+1 = p̃t+1 +
ỹt+1 − Rpt is the excess return per share. Variables carrying tildes denote random variables.
Let Et andVt denote conditional expectation and conditional variance based on a publically
available information setFt, such as past prices and dividends, and letEht andVht denote the
‘beliefs’ or forecasts of investor typeh about conditional expectation and variance.

Equilibrium
Assuming that investors are myopic mean-variance maximizers, the demand for shareszht by

typeh solves

max{EhtW̃h,t+1 − a

2
VhtW̃t+1}, i.e. zht =

EhtR̃t+1

aVhtR̃t+1

. (1)

5
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Here the nonnegative parametera characterizes risk aversion. Letzst andnht denote the supply
of shares per investor and the fraction of investors of typeh at timet, respectively. Equilibrium
of supply and demand implies ∑

h

nhtzht = zst. (2)

Assuming constant supply of outside shares over time we may stick to the (equivalent) special
casezst ≡ 0.3 Further, we assume that dividends are independently and identically distributed
(iid), in particular,Etỹt+1 ≡ y∗.

Beliefs
In the case where there is only one type of trader the equilibrium equation(2) reduces to

Rpt = Etp̃t+1 + y∗.

In the standard caseR > 1 there is only one solutionp∗t ≡ p∗ = y∗/(R−1) that satisfies the ‘no
bubbles’ conditionlimt→∞ Ep̃∗t /R

t = 0. This price, given as the discounted sum of expected
future dividends, would prevail in a perfectly rational world and will be called thefundamental
price.

We make some simplifying assumptions concerning the beliefs:

A1 The beliefs about future prices and dividends are assumed to be of the form

Eht(p̃t+1 + ỹt+1) = Et(p̃
∗
t+1) + y∗ + fh(pt−1, . . . , pt−L) = Rp∗t + fh(pt−1, . . . , pt−L),

wherefh is somedeterministicfunction of past prices describing the beliefs of trader type
h about price deviations from the fundamental value. Further, this assumption implies that
investors have homogeneous beliefs about future dividendsEht(ỹt+1) = Et(ỹt+1) = y∗.
Hence all traders are able to derive the fundamental pricep∗t .

A2 The beliefs about conditional variances of the excess returns are assumed to be of the
form

VhtR̃t+1 = VtR̃t+1 ≡ σ2, ∀h, t.

That is, beliefs about conditional variances are the same for all types and constant over
time.4

We consider a model with two simple belief types,

E1,t+1 ≡ pe
1,t+1 = p∗ + v(pt−1 − p∗), 0 ≤ v ≤ 1 (3)

E2,t+1 ≡ pe
2,t+1 = pt−1 + g(pt−1 − pt−2), g ∈ R. (4)

3In the casezst = constant, one can introduce a risk adjusted dividendy#
t+1 = yt+1 − aσ2zs and proceed in

the same way; see Brock (1997).
4Gaunersdorfer (2000) studies the case of time varying (homogeneous) beliefs about conditional variances.

She obtains similar bifurcation routes to complicated asset price fluctuations as in the case with constant beliefs.
We therefore restrict ourselves here to this more simple case. Chiarella and He (2002) introduce heterogeneity in
beliefs about variances.

6
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Traders of type1 are ‘fundamentalists’, believing that tomorrow’s price will move in the direc-
tion of the fundamental pricep∗ by a factorv. Whenv is close to0 (1) fundamentalists believe
prices to move quickly (slowly) towards its fundamental valuep∗. Traders of type2 are techni-
cal traders or chartists, deriving their beliefs from price histories. Our specification (4) is only a
simple example of a technical trading rule using only the latest observed price and the latest ob-
served price change. Ifg > 0 these traders are trend followers, extrapolating the latest observed
price change; ifg < 0 they are contrarians expecting a reversal of the latest price change. Given
our assumptions, the equilibrium dynamics (2) reads as

Rpt =
2∑

h=1

nhtp
e
h,t+1 + y∗. (5)

Fractions
Fractionsnht are updated according to past performance, conditioned upon the deviation of

actual prices from the fundamental value. The evolutionary competition part of the updating
rules closely follows BH (1997, 1998). The additional conditioning upon deviations from the
fundamental is, for example, similar to and motivated by the Santa Fe computational artificial
stock market in Arthur et al. (1997) and LeBaron et al. (1999).

In a first, evolutionary step, fractions are determined as discrete choice probabilities

n̂ht = exp[βUh,t−1]/Zt, Zt =
∑

h

exp[βUh,t−1], (6)

whereUht is some ‘fitness function’ or ‘performance measure’. Note that the fractions are inde-
pendent of the fitness level; they do not change if the same term is added to the exponents. The
parameterβ is called the intensity of choice. It measures how sensitive traders are to differences
in performance of trading strategies. Forβ = 0 fractions are fixed over time and are (in the case
of only two different types) equal to1/2. In the limit of β →∞ all traders choose immediately
the predictor with the best performance in the recent past. Thus, for finite, positiveβ, agents
are boundedly rational in the sense that fractions of the predictors are ranked according to their
fitness.

BH (1998) take (accumulated) realized net profits as the evolutionary fitness measure. Realized
profit in periodt, given byπht = Rtzh,t−1, does not take into account, however, the risk taken
to achieve this profit. Here we take accumulatedrisk adjustedrealized profits as the fitness
measure. Risk adjusted realized profit in periodt is given by

πht = Rtzh,t−1 − a

2
σ2z2

h,t−1, (7)

wherezh,t−1 is the demand for the risky asset by trader typeh as before. Notice that maximiz-
ing expected wealth in (1) is equivalent to maximizing expected utility from profits in (7). Risk
adjusted realized profits as the fitness measure is thus consistent with the investors’ demand

7
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function derived from myopic mean-variance maximization of expected wealth. A straightfor-
ward computation shows that the risk adjusted profits fitness measure is equivalent to a constant
times minus squared prediction errors, so that the evolutionary fitness simplifies to

Uht = − 1

2aσ2
(pt − pe

ht)
2 + ηUh,t−1, (8)

where the parameter0 ≤ η ≤ 1 represents ‘memory strength’ of the fitness measure.5

In the second step of the updating of fractions conditioning on deviations from the fundamental
by the technical traders is modeled as

n2t = n̂2t exp[−(pt−1 − p∗)2/α], α > 0
n1t = 1− n2t.

(9)

According to (9) the fraction of technical traders decreases more as prices deviate further
from their fundamental valuep∗. This is motivated by the fact that technical traders are con-
ditioning their charts upon price deviations from the fundamental. One may interpret the term
−(pt−1− p∗)2/α as a penalty term in the fitness measure of technical traders. This penalty term
ensures that speculative bubbles cannot last forever and explode to infinity, but that at some
point when prices have moved far away from the fundamental value the fraction of fundamen-
talists will increase and stabilize prices. The penalty term ensures that price deviations from the
fundamental remain bounded.6

Notice that fractions in periodt depend onobservedprices up to the end of periodt− 1 (begin-
ning of periodt), pt−1, pt−2, . . .

5See Gaunersdorfer (2001) and Hommes (2001) for a detailed computation showing this equivalence. Numeri-
cal simulations in Gaunersdorfer and Hommes (2007) suggest that the dynamics of the model with realized profits
as the fitness measure is very similar to the analysis presented below.

6Hommes (2001) gives an interpretation of this ‘penalty term’ as a transversality condition in a heteroge-
neous world, where temporary speculative bubbles are allowed but price deviations from the fundamental remain
bounded.

8
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Dynamical system
SettingÛht = Uh,t−1, we obtain the following dynamical system:

pt =
1

R
(pe

1,t+1 + n2t(p
e
2,t+1 − pe

1,t+1) + y∗) (10)

Ûht = − 1

2aσ2
(pt−1 − pe

h,t−1)
2 + ηÛh,t−1, h = 1, 2. (11)

Introducing new variablespi(t − 1) = pt−i, uh(t − 1) = Ûh,t−1, (10)–(11) is written as a 6-D
system inp := (p1, p2, p3, p4, u1, u2). In the following we denote this system byΦ, where

p(t) = Φ(p(t− 1)).

Also, when working in a neighborhood ofp∗, it will be convenient if local coordinatesx :=
(x1, · · · , x4, u1, u2) are introduced by

xi(t) = pi(t)− p∗,

wherexi denotes the deviation from the fundamental pricep∗. The system then takes the form

Φ(x) =

[
1

R

(
(1− n2)vx1 + n2(x1 + g(x1 − x2))

)
, x1, x2, x3, (12)

− 1

2aσ2
(x1 − vx3)

2 + ηu1,− 1

2aσ2
(x1 − x3 − g(x3 − x4))

2 + ηu2

]
,

wheren2 is given by

n2 = e−x2
1/α eβu2

eβu1 + eβu2
.

3 Stability analysis of the fundamental steady state

This section gives a local analysis of the dynamics around the fundamental steady state. In the
first part it is shown thatx∗ = 0 is the only steady state of (12). In the following, this will be
called thefundamental steady stateor thefundamentalfor short. The remainder of this section
analyzes the stability of this fundamental steady state. It is stable if the trend parameterg is
close to0, and it loses its stability in two different ways: period doubling bifurcations occur for
certain negative values ofg, while Hopf bifurcations occur for some positiveg.

9
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3.1 Uniqueness and stability of the steady state

The first lemma shows that the fundamental steady state withp = p∗, or equivalentlyx∗ = 0, is
the unique steady state.

Lemma 1
LetΦ(x) be given by (12). Let moreoverR > 1, 0 ≤ v ≤ 1 and0 ≤ η < 1. Thenx∗ = 0 is the
unique steady state ofΦ.

Proof
Let x∗ be any steady state ofΦ; that is, letx∗ satisfy

x∗ = Φ(x∗). (13)

Notice first thatx∗ = 0 is indeed a steady state. From the second, third and fourth component
of equation (13), it follows thatx1 = x2 = x3 = x4. Settingx1 = x, the first component then
reads as

Rx = (1− n2)vx + n2x.

Assuming thatx 6= 0, we may divide both sides of this equation byx, but then we have

R = (1− n2)v + n2 ≤ 1 < R,

which is a contradiction, hencex = 0. Now the last two components of equation (13) yield

u1 = ηu1, u2 = ηu2.

Sinceη 6= 1,7 the lemma follows.

Stability
In order to determine the stability of the fixed point, the characteristic polynomial of the Jaco-
bianDΦ(0) at the steady state is computed. It is given by

p(λ) = λ2(η − λ)2

(
λ2 − 1 + g + v

2R
λ +

g

2R

)
. (14)

Thus, the eigenvalues of the Jacobian are0, η (both of multiplicity 2) and the rootsλ1, λ2 of the
quadratic polynomial in the last bracket. Note that these roots satisfy the relations

λ1 + λ2 =
1 + g + v

2R
and λ1λ2 =

g

2R
. (15)

Also note that the eigenvalues 0 andη always lie inside the unit circle. Thus, the stability of the
steady state is determined by the absolute values ofλ1 andλ2.

7For η = 1 the dynamical system has adoubleeigenvalue 1 (see equation (14)) and hence is non-generic in
a two parameter system. Though this is an interesting case, it is (because of additional mathematical difficulties)
beyond the scope of this paper to analyze it.

10
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3.2 Codimension one bifurcations

As parameters are varied, bifurcations, that is, qualitative changes of the dynamical behavior,
will arise. In particular, bifurcations changing the (local) stability of the fundamental steady
state may occur. At such a bifurcation value, the steady state must be non-hyperbolic having (at
least) one eigenvalue ofDΦ(0) with absolute value one; that is, one of the eigenvalues is equal
to 1, −1, or there is a pair of complex eigenvalues on the unit circle. We first discuss thecodi-
mension onebifurcations, which are those bifurcations that are expected to occur (generically)
when only a single parameter is varied.

Eigenvalue equal to1
Assume that one of the eigenvaluesλj is equal to1, sayλ2 = 1. Then it follows from (15) that

λ1 =
g

2R
and 1 + λ1 =

1 + g + v

2R
.

Eliminatingλ1 from these equations leads to the condition

1 + v = 2R.

However, sincev ≤ 1 < R, this condition can never be satisfied. Hence eigenvalues equal to1
cannot occur.

Eigenvalue equal to−1
Under the assumption thatλ2 = −1, equations (15) lead to the relations

λ1 = − g

2R
and − 1 + λ1 =

1 + g + v

2R
.

Eliminatingλ1 leads to
2g + v = −1− 2R.

For parameters satisfying this equation, aperiod-doubling(also calledflip) bifurcation of the
steady state is found (if a certain non-degeneracy condition is satisfied).

Two complex conjugate eigenvalues of modulus1
The rootsλ1, λ2 of the characteristic equation are complex conjugate and of modulus one

if λ1λ2 = 1 and|λ1 + λ2| < 2. Using (15), this leads to the conditions

g

2R
= 1 and

∣∣∣∣
1 + g + v

2R

∣∣∣∣ < 2.

Substituting the first condition into the second yields
∣∣∣∣1 +

1 + v

2R

∣∣∣∣ < 2.

For0 ≤ v ≤ 1, this condition is always satisfied, sinceR > 1. Hence, for parameters satisfying
the equation

g = 2R,

11
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aHopf (also calledNeimark-Sacker) bifurcation occurs (again if certain non-degeneracy condi-
tions are satisfied).

Conclusion
Introduce the functionsgPD(β, v, R) andgH(β, v, R) by

gPD(β, v, R) = −1

2
(v + 2R + 1) (16)

gH(β, v, R) = 2R. (17)

The following lemma summarizes the above discussion.

Lemma 2
The steady statex∗ = 0 is hyperbolic forg 6= gPD andg 6= gH (gPD andgH defined by(16)

resp.(17)). It is asymptotically stable forgPD < g < gH , and unstable forg > gH andg < gPD.

For g = gPD or g = gH , the fundamental steady state fails to be hyperbolic. In the first
caseDΦ(0) has an eigenvalue−1, in second case two complex conjugate eigenvalues of ab-
solute value1 occur.

If moreover in these latter cases certain non-degeneracy conditions are satisfied, then forg =
gPD the system undergoes aperiod doubling (flip)bifurcation, and forg = gH a Hopf
(Neimark-Sacker)bifurcation.

Notice that the period doubling bifurcation valuegPD < 0, so that a period doubling bifurcation
only occurs in the presence of contrarians who expect a reversal of the latest price change.
Sincev ≥ 0 andR > 1 it follows that gPD < −1.5 so that only strong contrarian behavior
can destabilize the fundamental steady state. The Hopf bifurcation valuegH > 0 and is thus
caused by trend extrapolating behavior. SinceR > 1 it follows thatgH > 2, implying that only
strong trend extrapolators can destabilize the fundamental steady state.8 In the next section we
show however that even for intermediate trend following parameters1 < g < 2, although the
fundamental steady state is locally stable, our evolutionary system can have a coexisting stable
limit cycle or even a coexisting strange attractor.

4 A Chenciner bifurcation

In the last two decades, economists have become familiar with period doubling and Hopf bifur-
cations. These are examples of codimension one bifurcations; that is, these bifurcations occur
generically when a single system parameter is varied. Economic applications of bifurcations of
codimension two or higher are rare however, probably because they are more difficult to handle.

8Gaunersdorfer (2001) introduces positive per period costs for information gathering by fundamentalists. When
fundamentalists’ beliefs are costly compared to simple technical trading rules, the period doubling and Hopf bi-
furcation values move closer to0, and a period doubling bifurcation may already occur forgPD ≈ −1 and a Hopf
bifurcation already forgH ≈ 1.

12
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An exception is in Benhabib et al. (2001) who find a Bogdanov-Takens bifurcation point, that
is a bifurcation with a double eigenvalue0, in a continuous time model with active monetary
policy rules.

In this section we discuss an important codimension two bifurcation, the so-called Chenciner
bifurcation (also called degenerate Hopf bifurcation), that occurs in our heterogeneous agent
model with evolutionary learning. A codimension two bifurcation is a non-generic phenom-
enon when only one parameter is varied, but it is a generic phenomenon when two parameters
are varied simultaneously. The importance of the Chenciner bifurcation for our evolutionary
learning model is the fact that close to a Chenciner bifurcation point there is an open region in
the parameter space where a stable steady state and a stable limit cycle coexist. We will identify
such a region (which we call a ‘volatility clustering region’) in theg-v-parameter space in our
model (see section 5, figure 3).

This section presents a general discussion of the Chenciner bifurcation by means of the 2-D
bifurcation diagram of itsnormal form(see figure 1). The normal form of a bifurcation may be
thought of as the simplest model in which the bifurcation occurs. Section 5 then shows that the
Chenciner bifurcation occurs in our evolutionary learning model and discusses the bifurcation
diagram for our adaptive belief system.

As discussed in section 3, a steady state loses stability through a Hopf bifurcation when its
Jacobian matrix has two eigenvalues on the unit circle with all other eigenvalues inside the unit
circle. There are two types of Hopf bifurcation:

(i) a supercriticalHopf bifurcation where the stable steady state becomes unstable, and the
unstable steady state is surrounded by anattracting invariant circlewith periodic or quasi-
periodic dynamics; and

(ii) a subcritical Hopf bifurcation where the stable steady state becomes unstable, and the
stable steady state is surrounded by arepelling invariant circlewith periodic or quasi-
periodic dynamics.

The normal form of the Hopf bifurcation determines whether it is super- or subcritical. Such a
normal form can be obtained by a (sequence of) suitable coordinate transformation(s) around
the steady state, restricted to thecenter manifold, which is an invariant manifold through the
steady state tangent to the eigenspace spanned by the eigenvectors associated to the complex
eigenvaluesλ and λ̄. The normal form of a Hopf bifurcation is a 2-D map describing the dy-
namics on the center manifold. Although such normal form computations are straightforward,
in practical applications they can be quite complicated. For general mathematical references on
bifurcations theory and details on how to compute center manifolds and normal forms see, for
example, Guckenheimer and Holmes (1986) and Kuznetsov (1998).

The normal form of the Hopf bifurcation with complex eigenvaluesλ = (1 + µ)eiω, written in
polar coordinates, has the following general form:

ϕ(r, ϑ) = (r + µr + νr3, ϑ + ω + γr2) + . . . . (18)

13

Page 14 of 36 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Here the dots denote terms of higher order inr andϑ. Polar coordinates(r, ϑ) are used to de-
scribe points on the 2-D real center manifoldW c. They are chosen such thatr = 0 corresponds
to the steady state of the system. The Hopf bifurcation occurs atµ = 0, for which the complex
eigenvalues lie on the unit circle andω denotes the angle of the complex eigenvalues. For a
generic Hopf bifurcation, the coefficientsν andγ must satisfy the non-degeneracy condition
ν 6= 0 6= γ. The non-degeneracy conditionγ 6= 0 ensures that the rotational part of the normal
form is not linear. Forν < 0 the Hopf bifurcation is supercritical, whereas forν > 0 the Hopf
bifurcation is subcritical. In applications, the coefficientν depends upon system parameters,
and its computation can be quite complicated.

Forν = 0 the Hopf bifurcation becomes degenerate, and higher order terms have to be taken into
account in the analysis. This bifurcation is called adegenerate Hopfor Chencinerbifurcation,
and has been analyzed originally by Chenciner (1985a, 1985b, 1988); see also Kuznetsov (1998)
for a textbook treatment. The Chenciner bifurcation is a codimension two bifurcation, implying
that it is a generic phenomenon in systems with two or more parameters.

The normal form of the Chenciner bifurcation with complex eigenvaluesλ = (1 + µ)eiω and
written in polar coordinates is given by

ϕ(r, ϑ) =
(
r + µr + νr3 + γ1r

5 + . . . , ϑ + ω + γ2r
2 + . . .

)
. (19)

Here the dots again denote terms of higher order inr andϑ. The Chenciner bifurcation occurs
at (µ, ν) = (0, 0) for which the complex eigenvalues lie on the unit circle and the third order
term in the normal form vanishes. The non-degeneracy conditions for the Chenciner bifurcation
are in these coordinatesγ1 6= 0 6= γ2. We discuss the caseγ1 < 0 (which occurs in our
application in section 5) and, without loss of generality, we assume thatγ1(0) = −1. See
Kuznetsov for more information. The normal form then simplifies to

ϕ(r, ϑ) =
(
r + µr + νr3 − r5, ϑ + ω + γ2r

2
)
, (20)

where the higher order terms are set to zero.

We discuss the structure of the local bifurcation diagram of the Chenciner bifurcation, illustrated
in figure 1, using the normal form (20). Note that any positive solutionr∗ to the equation

µ + νr2 − r4 = 0,

or, equivalently, to (
r2 − ν

2

)2

=
ν

4

2

+ µ, (21)

corresponds to aninvariant circle in phase space.

[Figure 1 about here.]

For µ > 0, equation (21) has exactly one positive solution. Forµ = 0 equation (21) has a
solutionr∗ = 0. Thus,µ = 0 is a line of Hopf bifurcations, whose type is determined by the
sign ofν: for ν < 0, the Hopf bifurcation is supercritical, forν > 0 it is subcritical.
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The number of positive solutions forµ < 0 is determined by the sign ofν2/4+µ: there are two
if it is positive, none if it is negative. Finally, for parameters on the curve

SN :
ν

4

2

+ µ = 0, (22)

two positive roots of equation (21) coincide. The curveSN in (22) thus corresponds to parame-
ter values for which asaddle-node bifurcation of invariant circlesoccurs.

A sketch of the complete bifurcation diagram is given in figure 1. Consider a point in parameter
space{(µ, ν)}, with µ < 0 andν < 0. For these parameter values the steady state is locally
stable. Now fixν and increaseµ. When crossing the negativeν-axis, forµ = 0, asupercritical
Hopf bifurcation occurs; that is, a stable invariant circle is created and the steady state becomes
unstable. Thus, in the region{µ > 0} a stable limit cycle around an unstable steady state exists.
Now fix a parameter valueν > 0 and decreaseµ from some positive value. When crossing the
positiveν-axis atµ = 0, asubcriticalHopf bifurcation occurs in which the steady state becomes
stable, an unstable invariant circle emerges out of the steady state, and the stable invariant
circle still exists. Decreasingµ further, the unstable and stable circles approach each other and
dissappear in asaddle-node bifurcation of invariant circleswhenµ crosses the curveSN . Thus,
in the region between the positiveν-axes and the curveSN the system has two attractors, a
stable steady state and an attracting (large) invariant circle, separated by an unstable invariant
circle that forms the boundary between these two attractors. We will call this region a‘volatility
clustering region’, since adding some noise to the system, the dynamics is characterized by
an irregular switching between phases of small amplitude fluctuations close to the steady state
with small changes and phases of large amplitude fluctuations with large changes along the limit
cycle. The boundary of the volatility clustering region is formed by the curve of supercritical
Hopf bifurcations of the steady state (the positiveν-axis) and the curveSN of saddle-node
bifurcations of an invariant circle, and these boundary curves all end at the Chenciner bifurcation
point in the origin.

Finally, we note that the dynamics on the invariant circles may undergo bifurcations as well.
For these dynamics there are two possibilities. The first possibility is that the dynamics on
these circles consist of a sequence of attracting and repelling hyperbolic periodic points. This
type of dynamics is calledresonating, phase lockedor Morse-Smale; for an example see figure 4
(middle plot). There is usually an open set of parameters for which the invariant circle has phase
locked dynamics. The boundaries of this set are formed by saddle-node bifurcation curves of
the attracting and repelling points on the invariant circle.9 While the total set of parameters with
phase locked dynamics is open and dense, its complement has positive measure. Parameters
in the complement correspond to the case that the dynamics on the invariant circle arequasi-
periodic; an example is shown in the left plot of figure 4. There is a large literature on quasi-
periodic dynamics, to which the interested reader is referred (see Moser 1973, Herman 1979,
Arnol’d 1983, Broer et al. 1990, and references there).

9Pintus et al. (2000) present an infinite horizon intertemporal equilibrium model exhibiting these types of local
bifurcations after a Hopf bifurcation of the steady state, finally leading to strange attractors.
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The local, codimension two Chenciner bifurcation point acts as an‘organizing center’for the
dynamical behaviour for nearby parameter values. In particular, existence of a local, codimen-
sion two Chenciner bifurcation of the steady state, with the sign restrictionγ1 < 0 in the normal
form (19), implies a global, codimension one saddle-node bifurcation of invariant circles and
the existence of a ‘volatility clustering’ region, where a stable steady state and a stable limit cy-
cle coexist in the parameter space. Close to the Chenciner bifurcation point the dynamics on the
stable invariant circle is either periodic or quasi-periodic. When parameters move away from
the Chenciner bifurcation point subsequent bifurcations may lead to more complicated, chaotic
dynamics. As we will see in section 6 (see e.g. the right plot in figure 4), this may happen even
when the steady state remains locally stable.

5 The onset of instability

This section investigates the onset of instability in our simple behavioral model with evolution-
ary learning. In particular, we investigate the following question:what is the set of parameter
values for which prices in our heterogeneous agent model with evolutionary learning donot
necessarily converge to the fundamental steady state?It turns out that, even when the funda-
mental steady state is locally stable, prices need not converge to their fundamental value, but
may settle down to a stable limit cycle. In particular, a Chenciner bifurcation with a bifurcation
diagram similar to figure 1 plays an important role in our model with evolutionary learning.

Our adaptive learning model is determined by the mappingΦ in (12). To simplify the compu-
tations we restrict our analysis to the case of no memory in the performance measure (η = 0),
so that the dimension of the state space of the system reduces from six to four. The parameter
spaceP is equal to10

P = {(β, v, g, R) : β > 0, 0 ≤ v ≤ 1, R > 1} .

Recall from lemma 2 in section 3 that a Hopf bifurcation occurs forg = 2R. TheHopf bifurca-
tion manifoldfor our system (12) is therefore given by

H = {(β, v, g, R) ∈ P : g = 2R}.

Within the codimension one Hopf bifurcation manifoldH, one can find Chenciner bifurcation
points by changing a second parameter, different fromg, until the Hopf bifurcation becomes
degenerate, that is, until the coefficientν in the normal form (18) of the Hopf bifurcation
becomes0. For our evolutionary adaptive learning model, the locus of Chenciner bifurcation
points in the 2-Dβ-v-parameter plane, within the Hopf bifurcation manifoldH = {g = 2R},

10Changing the values of parametersa andσ is equivalent to choosing a different value forβ, see equations (6)
and (8). Further, by changing to new coordinatesx =

√
α x̃, the iteration equation (12) changes to

√
α x̃t+1 =

Φ (
√

α x̃t) and it follows, by some algebra, thatx̃t+1 = Φ (x̃t), where the parameterβ is replaced bỹβ = αβ.
Thus, attention may be reduced to the caseα = 1. Hence we can restrict the parameter space of our model toP .
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is plotted in figure 2.11 Figure 2 shows that for0.3 ≤ β < 3.3 two Chenciner bifurcation points
exist, with the largestv-value approaching1 asβ approaches3.3. For largerβ-values,β > 3.3,
a Chenciner bifurcation point occurs forv-values around0.35.

[Figure 2 about here.]

[Figure 3 about here.]

Figure 3 (left panel) shows the bifurcation diagram around the Chenciner bifurcation point
in the 2-Dg-v-parameter plane of our adaptive learning system, forR = 1.01 andβ = 100;
the reader should compare this figure to theµ-ν-bifurcation diagram of the normal form of the
Chenciner bifurcation in figure 1. The Chenciner bifurcation point, lying on the Hopf bifurcation
manifold H, is labelledDH, whereas the curve labelledSN is the saddle-node bifurcation
curve of the invariant circles. The volatility clustering region lies between the curveSN and
the Hopf bifurcation manifoldH. In this region a second attractor (a stable limit cycle, or
possibly a more complicated, chaotic attractor) coexists with the stable fundamental steady
state. Below the Chenciner bifurcation point the Hopf bifurcation is supercritical; above the
Chenciner bifurcation point the Hopf bifurcation is subcritical. Numerical simulations suggest
that on the left hand side of or below the curveSN , the fundamental steady state is globally
stable. When crossing the curveSN from left to right, a pair of invariant circles, one stable
and one unstable, are created. The unstable invariant circle separates the stable fundamental
steady state from the stable invariant circle. The curveSN thus marks theonset of instability.
To the right of this curve, prices do not necessarily converge to their fundamental value but may
converge to a stable limit cycle or to a more complicated, chaotic attractor. The enlargement in
the right panel of figure 3 shows that, as the intensity of choiceβ to switch strategies increases,
the curveSN moves to the left and approaches the vertical lineg = 1. This implies that although
the fundamental steady state remains locally stable, for higher values of the intensity of choice
β, (global) instability sets in already for a trend parameterg close to1.

The saddle-node bifurcation of the invariant circle is a ‘global’ phenomenon, in the sense that
invariant circles are ‘global’ objects, and it typically occurs ‘far away’ from the steady state.
Except in small neighborhoods of Chenciner bifurcation points, no analytic information can be
obtained about the location of the manifoldSN . The sketch of the location ofSN in figure 3
has been obtained as follows. For fixed values ofβ andv, plots of the phase space have been
inspected numerically for a range ofg-values. The lowest value ofg (to a precision of0.001)
for which an attractor other than the fundamental steady state existed has been termed the (ap-
proximate) saddle-node bifurcation valueg∗(β, v) of the invariant circle. The enlargement in the
right panel of figure 3 shows that the curveSN of g∗ moves to the left and approachesg = 1
as the intensity of choiceβ increases (see also Gaunersdorfer et al. 2005 for a plot in the 3-D
parameter space{(g, v, β)}).

11This is a nontrivial figure, based upon more than 10 pages of algebraic computations of the normal form of the
Hopf and the Chenciner bifurcations for our 4-D adaptive learning system; see appendix A in an earlier working
paper Gaunersdorfer et al. (2000).

17

Page 18 of 36 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

The main economic consequence from this analysis is that if traders’ sensitivity to differences
in fitness is high (i.e. the intensity of choiceβ is high) then the interaction between weakly
extrapolating trend followers (i.e. for trend parametersg close to1) and weakly stabilizing
fundamentalists (i.e. with0.6 ≤ v ≤ 0.9, say) leads to coexistence of attractors and agents may
coordinate on a stable limit cycle around the locally stable fundamental steady state.12 In the
presence of noise, the evolutionary dynamics then switches irregularly between a stable phase
with close to the fundamental steady state small amplitude price fluctuations and an unstable
phase with large price fluctuations along a (noisy) limit cycle. Our simple evolutionary learning
model thus exhibits volatility clustering.

6 The amount of chaos

In section 3 it has been shown that in the case ofg > 0, the fixed pointx∗ = 0 is stable for
small g, and it loses its stability in a Hopf bifurcation forg = 2R. In section 5 we have seen
that a stable limit cycle may already exist forg < 2R (in fact wheng is close to1) when the
fundamental steady state is still locally stable. In this section we focus on more complicated,
chaotic dynamical behavior in the model and investigate for which parameter constellations
chaos arises. In particular, we find another mechanism for clustered volatility in our adaptive
belief system, namely intermittent chaos.

[Figure 4 about here.]

[Figure 5 about here.]

Figure 4 shows typical examples of attractors in thept-pt+1-plane, for three differentg-values
with all other parameters fixed. Sinceg < 2R these attractors coexist with a locally stable
fundamental steady state. For g = 1.6 an attracting quasi-periodic circle occurs, whereas for
g = 1.7 a stable limit cycle of period 16 occurs. Forg = 2, after a complicated sequence of
bifurcations, the invariant circle has turned into a strange attractor. The numerical simulations
in figure 4 thus suggest that in our adaptive learning model, a strange attractor with chaotic
dynamical behavior may coexist with a locally stable fundamental steady state. In figure 4
(right plot), the unstable invariant circle created at the Chenciner bifurcation can be seen as the
inner boundary between the strange attractor and the locally stable fundamental steady state.

Figure 5 illustrates what happens after the supercritical Hopf bifurcation in the model. An im-
portant difference between the figures is that the parameterv, that is, the factor with which
fundamentalists expect prices to move towards the fundamental value, has been decreased from
v = 0.6 in figure 4 tov = 0.3 in figure 5. Numerical simulations suggest that forg = 2 the

12Hommes et al. (2005) have recently carried out laboratory forecasting experiments using a similar asset pric-
ing framework. In these experiments both possibilities, with human subjects either learning to coordinate on the
fundamental price or learning to coordinate on an oscillatory pattern, have been observed.
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fundamental steady state is globally stable, whereas forg = 2.09 an invariant attracting circle,
quasi-periodic (or periodic with high period), has appeared. Forg = 2.4, the invariant circle has
developed into a strange attractor. Notice that the strange attractor in figure 5 (right plot) seems
to contain the (unstable) fundamental steady state, suggesting that price fluctuations get close to
the fundamental steady state occasionally. The corresponding chaotic time series suggests some
form of volatility clustering caused by intermittent chaos, characterized by phases of growing
prices and phases of fluctuations close to the fundamental price.

There is a strikingly simple economic intuition why such intermittent chaos may in fact be
expected when chartists are strong trend extrapolators (i.e. the trend parameterg is large) and
fundamentalists are strongly stabilizing (i.e. the parameterv is close to zero). In the presence
of strong trend extrapolators the fundamental steady state is locally unstable because trend
followers strongly extrapolate small deviations from the fundamental steady state, leading to
oscillatory, diverging prices. When prices diverge and move away far above or below the funda-
mental value, technical traders conditioning their charts upon market fundamentals will abandon
their rule, the upward or downward price trend will stop, and most technical analysts will start
following the fundamental rule. When fundamentalists are strongly stabilizing, prices will then
quickly move into a small neighborhood of the fundamental steady state. Due to the strong trend
extrapolators, the fundamental steady state is locally unstable, prices start oscillating again, and
the story then repeats. This mechanism suggests that the evolutionary interaction causes the
fundamental steady state to have a saddle-point structure with a locally destabilizing force due
to strong trend extrapolation and a globally stabilizing force due to strong stabilization by fun-
damentalists.

This economic intuition suggests that the evolutionary learning system is in fact close to having
a homoclinic orbitand its associated complicated dynamical behavior. The economic intuition
also suggests reasons why the dynamics might be chaotic. A set of initial states of the system
close to the fundamental will bestretched outduring the phase when technical traders dominate
and extrapolate a trend. At the point where the fundamentalists start to become the dominating
fraction in the market, the set will befolded backonto itself. The action of the fundamentalists
transports this folded set back close to the fundamental. It is precisely this stretching and folding
that lies at the root of the occurrence of chaos in dynamical systems in general. Technical trading
causes stretching, whereas the conditioning of technical trading rules upon fundamentals causes
folding, and the interaction between these competing strategies create intermittent chaos in the
adaptive belief system.

To get a global impression of the ‘amount of chaos’ to be expected in the system,Lyapunov
exponentsare computed for a range of parameter values.

Definition
If {xt}∞t=0 is an orbit on an attractor, then thefirst (or largest) Lyapunov exponentλ is defined
as

λ = lim
t→∞

1

n

n−1∑

k=0

log ‖DΦ(xt)‖.
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The (largest) Lyapunov exponent measures the average rate of divergence (or convergence) of
nearby trajectories. A system is commonly considered to be chaotic if it has an attractor such
that orbits on the attractor have positive largest Lyapunov exponent.

For the present system, Lyapunov exponents have been computed for 10 different initial con-
ditions, in order to account for the possibility of coexisting attractors. The largest value of the
exponent obtained has been taken. These plots have been made both in theg-v- and theβ-g-
diagrams (figures 6 and 7), given as a contour plot (right plots: region with positive Lyapunov
exponents are indicated) and a 3-D-plot (left plots:z-coordinate indicates magnitude of the Lya-
punov exponent). Forg > 2R chaos seems to be the rule rather than the exception, but even for
the locally stable region of the fundamental steady state,g < 2R, for parameters in the ‘volatil-
ity clustering region’ a coexisting chaotic attractor may exist (an example was shown already in
the right plot of figure 4). In particular, chaos may arise for relatively small values of the trend
parameterg when the intensity of choiceβ is large, that is, when traders are sensitive to small
differences in fitness and quickly adapt their trading strategies.

[Figure 6 about here.]

[Figure 7 about here.]
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7 Concluding Remarks

In this paper we present a simple, nonlinear structural model for volatility clustering, based on
the concept of evolutionary adaptive belief systems introduced by Brock and Hommes (1997).
Volatility clustering arises endogenously due to the interaction between fundamentalists and
technical analysts driven by adaptive learning. Two mechanisms are proposed as an explanation:
intermittency and coexistence of attractors. Chaos arises from the combination of stretching due
to strong trend extrapolation by chartists, folding due to conditioning of the chartists’ forecast-
ing rules upon market fundamentals, and contraction due to strong fundamentalists pushing
prices quickly back close to the (unstable) fundamental steady state. Coexistence of attractors
arises due to a codimension two Chenciner bifurcation. Close to the Chenciner bifurcation there
is a ‘volatility clustering region’, that is, an open set in parameter space where a locally stable
fundamental steady state and a stable invariant circle coexist. Both mechanisms proposed are
generic phenomena and thus may serve as endogenous explanations of volatility clustering in
more complicated computational multi-agent systems. The local, codimension two Chenciner
bifurcation point acts as an ‘organizing center’ of the bifurcation structure and implies global,
codimension one bifurcation phenomena such as a saddle-node bifurcation of invariant circles.

We have presented a strikingly simpleeconomic intuitionwhy in our heterogeneous agent adap-
tive learning model one should in fact expect both coexistence of a locally stable fundamental
steady state and a stable limit cycle and intermittent chaos to occur, depending upon the strength
of trend extrapolation (as measured by the trend parameterg) and the strength of fundamental
stabilization (as measured by the factorv with which fundamentalists expect prices to move
towards the fundamental value).

In the presence of strongly extrapolating chartists small price deviations from the fundamental
will be reenforced by trend extrapolation. The fundamental steady state will therefore be locally
unstable and prices move away from their fundamental value. When the price deviation from the
fundamental becomes too large however, chartists will abandon their rules since they condition
their charts on market fundamentals. Most technical traders will thus start following a funda-
mental rule and, when fundamentalists are strongly stabilizing, prices will quickly move back
close to the fundamental value, and the story repeats. Evolutionary interaction between strongly
extrapolating chartists and strongly stabilizing fundamentalists leads to a strange attractor with
intermittent chaos and irregular price fluctuations switching between phases of low and high
volatility, as illustrated in figure 5.

When the chartists are only weak trend extrapolators, the fundamental steady state is locally
stable. The trend extrapolators may be strong enough however to reenforce a price trend far
away from the fundamental steady state. This upward trend, say, cannot continue forever, since
chartists condition their rule upon market fundamentals and at some point will switch to be-
come fundamentalists. Prices will then return in the direction of the fundamental value, and a
downward trend will start. If fundamentalists are only weakly stabilizing, prices will only move
slowly downwards and will not get close enough to the (locally stable) fundamental steady state.
Trend followers will extrapolate the downward trend, until the point when prices move too far
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away from their fundamental value and the downward trend will be reversed into an upward
trend, and the story repeats. This mechanism leads to a market in which a locally stable fun-
damental steady state coexists with a stable limit cycle. When the intensity of choice to switch
strategies is high, coordination on a stable limit cycle around a locally stable fundamental steady
state may arise even when trend followers are only weakly extrapolating (i.e. forg-values close
to 1). When traders are highly sensitive to differences in fitness, the evolutionary interaction be-
tween weak trend extrapolators and weakly stabilizing fundamentalists may thus lead to a stable
limit cycle (or a more complicated attractor) around a (locally) stable fundamental steady state.
In the presence of noise, the market then switches irregularly between phases of low volatility
and phases of high volatility, as illustrated in figure 8. A noise term (normal distribution, with
standard deviationσ = 0.5) has been added to the equilibrium pricing equation (10). Notice that
this is equivalent to adding a small fraction of noise traders, who trade randomly, to the market
clearing equation (2). Due to the presence of the noise traders, the market switches irregularly
between a low volatility phase, dominated by fundamentalists with prices close to the funda-
mental value, and a high volatility phase, dominated by trend followers with prices exhibiting
temporary bubbles. Temporary bubbles are triggered by noise traders and reenforced by trend
followers.

[Figure 8 about here.]

The model studied here is admittedly simple and should only be viewed as a stylized, ana-
lytically tractable behavioral model. Volatility clustering arises, at least in a qualitative sense.
We have proposed intermittency and the coexistence of attractors (e.g. arising from a Chenciner
bifurcation) as an endogenous explanation of clustered volatility. Both intermittency and the co-
existence of attractors are ‘generic’ phenomena, and similar phenomena are expected to occur
in more complicated, nonlinear dynamic models.

A convenient feature of our simple adaptive belief system is that the model has been formulated
around a benchmark fundamental. In this paper we have focused exclusively on the case of a
constant fundamental, derived from an underlying iid dividend process. A natural extension is
to investigate the evolutionary adaptive system in the case of a more realistic stochastic divi-
dend process and its corresponding time varying stochastic fundamental processes, for example
a geometric random walk, to see whether simple stochastic models can match the observed
volatility clustering in real financial data more closely.
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tites” périodes etélimination ŕesonnante des couples de courbes invariantes. IHES-Publications
math́ematiques 66, 5–91.

Chiarella, C., 1992. The dynamics of speculative behaviour. Annals of operations research 37, 101–123.

23

Page 24 of 36 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Chiarella C., He X.-Z., 2002. Heterogeneous beliefs, risk and learning in a simple asset pricing model.
Computational Economics, 19, 95–132.

De Long, J.B., Shleifer, A., Summers, L.H., Waldmann, R.J., 1990. Noise trader risk in financial markets.
Journal of Political Economy 98, 703–738.

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United
Kingdom inflation. Econometrica 50, 987–1007.

Evans, G.W., Honkapohja, S., 2001. Learning in macroeconomics. Princeton University Press, Princeton.

Farmer, J.D., Joshi, S., 2002. The price dynamics of common trading strategies. Journal of Economic
Behavior and Organization 49, 149–171.

Frankel, J.A., Froot, K.A., 1988. Chartists, fundamentalists and the demand for dollars. Greek Economic
Review 10, 49–102.

Friedman, M., 1953. The case of flexible exchange rates. In: Essays in positive economics. University of
Chicago Press: Chicago, 157–203.

Gaunersdorfer A., 2000. Endogenous fluctuations in a simple asset pricing model with heterogeneous
beliefs. Journal of Economic Dynamics and Control 24, 799–831.

Gaunersdorfer A., 2001. Adaptive belief systems and the volatility of asset prices, Central European
Journal of Operations Research 9, 5–30.

Gaunersdorfer A., Hommes C.H., 2007. A nonlinear structural model for volatility clustering. In:
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Figure 1:Bifurcation diagram of the Chenciner bifurcation in theµ-ν-plane. The codimension
two bifurcation pointDH is in the origin of the coordinate system. The vertical dashed line
H = {µ = 0} is a curve of Hopf bifurcation values, supercritical on one side of the Chenciner
point (ν < 0), subcritical on the other (ν > 0). The solid curveSN denotes a curve of saddle-
node bifurcations of invariant circles. The ‘volatility clustering region’, where a stable steady
state and a stable limit cycle coexist, is the region between the curveSN and the positiveν-axes.
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Figure 2:Plot of the curveDH of Chenciner bifurcation points lying within the Hopf bifurcation
setH = {g = 2R} in theβ-v-diagram, forβ ∈ [0, 10], v ∈ [0, 1] andR = 1.01 andα = 1
fixed.
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(a) Bifurcation diagram
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(b) Detail of the bifurcation diagram for various values
of β

Figure 3:Left panel: Bifurcation diagram of the Chenciner bifurcation in theg-v-plane forβ =
1000, R = 1.01 and α = 10. At the point labelled DH (g = 2R = 2.02 and v ≈ 0.45)
a degenerate Hopf or Chenciner bifurcation occurs. This point lies on the Hopf bifurcation
line {g = 2R}, labeledH, and from this point a curveSN emanates corresponding to the
saddle-node bifurcation curve of invariant circles. The area between the curvesSN andH is
the ‘volatility clustering region’ with a second attractor coexisting with the stable fundamental
steady state. Right panel: The curveSN , corresponding to the saddle-node bifurcation of the
invariant circle, for different values of the intensity of choiceβ = 10i/2, i = 2, . . . , 8. The curve
SN moves to the left and approaches the vertical lineg = 1, as the intensity of choice increases
fromβ = 10 to β = 10, 000.
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Figure 4:Projections of a quasi-periodic, a periodic and a chaotic attractor on thept-pt+1-
plane. Not drawn is the stable fundamental steady state atp∗ = 100. Parameters areβ = 4,
v = 0.6, R = 1.01, α = 10, and, from left to right,g = 1.60, g = 1.71, andg = 2.00. These
parameter values lie in the ‘volatility clustering region’ where two attractors coexist. The fixed
point undergoes a subcritical Hopf bifurcation atg = 2.02. In the right figure the unstable
invariant circle can be seen as the inner boundary of the strange attractor.
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Figure 5:Projection of the attractors on thept-pt+1-plane. Parameters areβ = 4, v = 0.3,
R = 1.01, α = 10 andg = 2 (a), g = 2.09 (b) andg = 2.4 (c). The fixed point is attracting
in the top left picture: points spiraling towards it are shown. It undergoes a supercritical Hopf
bifurcation atg = 2.02, has a quasiperiodic attractor forg = 2.09 and a strange attractor
for g = 2.4, with corresponding time series for the strange attractor in the plot (d) showing
intermittent chaos.
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Figure 6:Lyapunov exponents forg ∈ [1, 5], v ∈ [0, 1], β = 3, R = 1.01, α = 10: on the left,
the magnitude of the largest Lyapunov exponent is plotted along thez-axis. In the right picture,
for points in the grey area, largest Lyapunov exponents are positive; for those parameters, there
is a chaotic attractor.
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Figure 7:Lyapunov exponents forβ ∈ [0, 10], g ∈ [1, 3], v = 0.6, R = 1.01, α = 10. Legend as
in figure 6.
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Figure 8:Time series of prices for the model with fundamentalists and chartists together with a
small fraction of noise traders. Parameters are such that a stable fundamental steady state and
a strange attractor coexist (see figure 4c). Due to the noise traders, price fluctuations switch
irregularly between a low volatility phase, with prices close to the fundamental value, and a
high volatility phase, with prices exhibiting temporary bubbles.
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