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Technical Efficiency of Australian Dairy Farms: A Comparison of 

Alternative Frontier Methodologies 
 
 Abstract  
 
 In this paper we estimate and examine technical efficiency for a cross-section of 

Australian dairy farms using various frontier methodologies; Bayesian and Classical 
stochastic frontiers, and Data Envelopment Analysis. Our results indicate technical 
inefficiency is present in the sample data.  We also identify statistical differences 
between the point estimates of technical efficiency generated by the various 
methodologies. However, the rank of farm level technical efficiency is statistically 
invariant to the estimation technique employed. Finally, when we compare 
confidence/credible intervals of technical efficiency we find significant overlap for many 
of the farms� intervals for all frontier methods employed. Our results indicate that the 
choice of estimation methodology may matter, but the explanatory power of all frontier 
methods is significantly weaker when we examine interval estimate of technical 
efficiency.  

   
 Key words: Technical efficiency, point estimates, interval estimates, dairy farms.
 JEL: C21, C40 and Q12 

 

1. Introduction 

 

When estimating efficiency frontiers there are an array of techniques available, including 

Classical Stochastic Frontiers Analysis (CSFA), Bayesian Stochastic Frontier Analysis (BSFA) 

and Data Envelopment Analysis (DEA).  CSFA and BSFA are ostensibly differentiated from 

each other by statistical paradigms which lead not only to differences in interpretation, but also 

the ease of which important theoretical properties can be enforced (O�Donnell and Coelli, 2004). 

However, DEA, while within the classical paradigm, is differentiated from the first two by 

assumptions about the underlying data generating process (DGP). The fact that there are so 

many alternative methods has meant that applied researchers across a vast range of different 

problem settings have sought guidance from the literature as to the appropriate methodology to 

employ.  In turn there are numerous papers in the frontier literature that compare the results 

generated by various methods (e.g., Hjalmarsson et al., 1996, Ahmad and Bravo-Ureta, 1996, 

Sharma et al., 1997, Cummins and Zi, 1998, and Kim and Schmidt, 2000) as well as several 

papers (e.g., De Borger and Kerstens, 1996, and Bauer et al., 1998) that provide guidance on 

how to assess the choice of estimation method for particular applied problems.  
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In this paper we add to this literature in two important ways.  First, we provide a comparison of 

CSFA, BSFA and DEA methods applied to a sample of Australian dairy farms.  BSFA is a 

relatively recent methodological development (i.e., van den Broeck et al. 1994) with a limited 

number of applications in the literature to date (e.g., Koop et al. 1994, 1995, 1997, Kim and 

Schmidt, 2000, Fernández et al. 2000, 2002 and Kleit and Terrell, 2001, Kurkalova and 

Carriquiry, 2003, and Huang, 2004).  Our comparison adds to the extensive literature that has 

compared the relative strengths and weaknesses of DEA and CSFA. We compare the results 

derived using the various methodologies and consider whether those differences identified are of 

fundamental importance.  

 

Second, unlike most of the existing literature that has compared alternative frontier methods we 

extend the analysis to include interval (confidence and credible) estimates of technical 

efficiency.  Recent methodological developments to compute interval estimates means that we 

need to reassess how we think about selecting any particular method when undertaking applied 

research. Also, the comparison of interval estimates considered in this paper differs from those 

reported in the literature to date (e.g., Kim and Schmidt, 2000 and Brümmer, 2001) in that we 

examine cross-sectional data that limits the CSFA specifications and possible inference 

techniques.  

 

Another contribution of the paper is that we provide a BSFA of dairy farming. There exist 

numerous examples in the literature of CSFA and DEA analysis of the dairy sector. Examples of 

CSFA studies of the dairy farming include Battese and Coelli (1988), Ahmad and Bravo-Ureta 

(1996), Cuesta (2000) and Karagiannis et al. (2002).  DEA studies of dairy farms include, 

Weersink et al. (1990), Cloutier and Rowley (1993), Jaforullah and Whiteman (1999), and 

Fraser and Cordina (1999). In terms of Bayesian studies of dairying there is only one in the 

literature. Fernandez et al. (2002) use a panel data set of Dutch dairy farms to examine technical 

and environmental efficiency. They report that farms tend to be more efficient technically than 

environmentally, and there is a positive, but moderate, correlation between these measures.  

 

The rationale for examining dairy farming in Australia is that in July 2000 the industry was 

deregulated with the removal of State level milk marketing arrangements. As a results there is 

now far more pressure on dairy farmers to be efficient (Edwards, 2003). Research by the 

Australian Competition and Consumer Commission (ACCC) (2001) on the effects of 

deregulation indicates that many dairy farmers will be severely affected by these changes. 
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Therefore, there is a need to identify best and worst practice in an effort to help with the 

transition of the industry and frontier methods provide a suitable methodology. But, as is 

frequently the case in applied frontier research, how should we conduct the analysis so as to 

generate the appropriate information for the dairy industry, needs to be considered. 

 

Some qualifying statements regarding our comparison of parametric frontier methods with DEA 

are worth making. It could be argued that comparisons, when the DGP is unknown, are 

uninteresting because parametric stochastic frontiers and DEA simply incorporate different 

assumptions regarding the underlying DGP. By contrast, Monte Carlo studies such as Gong and 

Sickles (1992) and Sickles (2004) can cast light on the performance of different methods under 

alternative DGPs. Research aimed at identifying the correct DGP and, therefore, the correct 

choice of method is obviously valuable. However, our research, along with other empirical 

studies that have made comparisons between methods, performs a different role. In our view the 

purpose of a comparison such as is conducted in this paper is not to seek the elevation of one 

methodology above the rest, or to recommend the choice of a particular methodology. Instead, 

albeit subject to different assumptions regarding the DGP, we would argue that if results from 

different methods concur, this can only add to the confidence with which applied researchers 

report and interpret their results. By contrast, disagreement across methods must lead to more 

tentative conclusions. This point still stands, should better methods be developed to discern 

between competing characterisations of the DGP, particularly when none of them may 

accurately reflect the true one. We believe that comparisons between Bayesian and Classical 

methods also serve this purpose. Therefore, our position on the purpose of comparing 

alternative frontier methods is in many ways the same as the advice offered by De Borger and 

Kerstens (1996) and Bauer et al. (1998). Finally, Sickles (2004) suggestion of that a form of 

model averaging can be also used to assess and interpret efficiency estimates generated by 

several methods is a natural extension to the view that multiple methods should be employed. 

 

The structure of this paper is as follows.  In Section 2 we describe the various estimation 

methodologies and how inference is conducted within each of them. We then review the 

literature that has compared and contrasted the frontier methodologies employed in this paper. In 

Section 4 we describe the data set used and provide details about the methods used for 

estimation. Next, we present and discuss the results of our study.  Finally, in Section 6, we 

discuss our findings and consider implications for applied frontier research. 
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2. Frontier Estimation 

 

In this section we briefly outline each of the estimation techniques. We also detail how the 

various inference results we examine are generated. These pertain to the analysis of cross-

section data only. 

 

2.1. CSFA 

 

CSFA is based on Aigner et al. (1977) and Meeusen and van den Broeck (1977).  It is assumed 

that a stochastic frontier contains an error term that is composed of two elements: a random error 

capturing statistical noise (v) and a one-sided non-negative error (u).  By decomposing the error 

term into these two components the frontier production function can be expressed as follows,  

(1)  iiii uvxy −+= β'  

where ui≥0,  i=1�.N (i indexes farms), yi is the logarithm of farm level output, xi is a vector of 

the logarithm of inputs including an intercept and cross products and β is a vector of 

coefficients, vi is an iid error term with mean zero and constant variance (hv) assumed to be 

independent of ui. As yi is the log of output, technical efficiency r, of the i-th farm is ri =exp(-ui). 

 

Typical distributional assumptions that are made for ui are exponential (with parameter λ), half-

normal or truncated normal with variance hu. Following Jondrow et al. (1982) we estimate farm 

specific technical efficiency assuming that ui is both exponential and half-normal. The choice of 

the exponential distribution is to allow comparison with BSFA for which there is a well-

developed analytical framework for estimation. The results for the half-normal distribution are 

also reported as they allow us to compare the influence of choice of distribution on the CSFA 

results generated. 

 

For CSFA we estimate confidence intervals following Horrace and Schmidt (1996). The 

confidence intervals for the exponential and normal distributions follow from Theorems 1 and 2 

of Jondrow et al. (1982). Jondrow et al. showed that the distribution of ui|εi, where εi is the 

observed difference between vi and ui, is that of a N(µi*,σ2
*) random variable truncated at zero 

where 1* )( −+= vuiui hhh εµ  and 12
* )( −+= vuvu hhhhσ . It is assumed that E(ui|εi) is a point 
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estimate of ui. To construct confidence intervals from the point estimates is relatively straight 

forward as demonstrated by Horrace and Schmidt (1996). Critical values can be obtained from a 

standard normal distribution which allow us to place upper and lower confidence intervals on 

ui|εi. Specifically, for the normal distribution a (1-δ)100% confidence interval (Li,Ui) for ri|εi is 

given by: 

(2a) )exp( *
* σµ lii zL −−=   

(2b) )exp( *
* σµ uii zU −−=  

with z distributed as N(0,1): so 

(3a) )]}/(1)[2/(1{ *
*1 σµδ ilz −Φ−−Φ= −  

(3b) )]}/(1)[2/1(1{ *
*1 σµδ iuz −Φ−−−Φ= −  

 

To estimate the confidence intervals for the exponential distribution it is simply a matter of 

implementing Theorem 2 in Jondrow et al. (1982) in a similar manner to the normal distribution. 

As noted by Horrace and Schmidt (1996) with this approach to confidence interval estimation it 

is assumed that β, hu and hv are known.  That means that the confidence intervals do not reflect 

parameter uncertainty. If N is large this is probably of little importance as this source of 

variability is small relative to the variability inherent in the distribution ui|εi.  

 

2.2. BSFA 

 

BSFA also adopts the model in Equation (1). However, estimation and inference is undertaken 

by formulating a prior probability density function (pdf) f(θ) where θ are unobserved parameters 

(in Equation (1) of dimension k) and combining the prior with the likelihood function f(y|θ), 

where y is a set of observable data, using Bayes� theorem to form a posterior pdf f(θ|y). The 

interpretation of the prior and the posterior is that they both reflect subjective probability 

distributions of θ, prior to observing y and after. We use the posterior distribution to form 

credible intervals for the parameters of interest. With BSFA θ is multidimensional so there are 

difficulties in finding the marginal posterior distribution for a single parameter θi. The marginal 

posterior distribution of θi is defined by integrating the joint posterior density of θ with respect 

to all elements of θ other than θi, but this may not be analytically tractable.  
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An alternative approach to conducting Bayesian inference on our model when we do not need to 

know the analytical form of the unconditional posterior distributions, and the approach used 

here, is the Markov Chain Monte Carlo (MCMC) method of Gibbs sampling (Casella and 

George, 1992) and Metropolis-Hastings (M-H) algorithms (Chib and Greenberg, 1995).  The 

Gibbs sampler allows us to approximate the marginal posterior distribution of a parameter of 

interest by generating a sample drawn from the marginal posterior distribution. The sample is 

derived by making random draws from the full conditional distributions of all parameters in a 

model. In the case of Bayesian frontier estimation when employing the Gibbs sampler the ui�s 

(in Equation (1)) are part of the set of random quantities from which the joint posterior 

distribution is derived. 

 

Following Koop, Osiewalski and Steel (1997) and Koop and Steel (2001), as in the Classical 

exponential case, it is assumed that v is normally distributed with mean zero and constant 

variance (hv), and u is Gamma distributed with a shape parameter j and an unknown scale 

parameter λ. When j=1 this yields an exponential probability distribution i.e., 

)exp(),1,(~ 111 −−− −∝ λλλ iiGi uufu where λ is an unknown parameter. Van den Broeck et al. 

(1994) found the exponential probability distribution to be the most robust model with respect to 

assumptions on the prior median efficiency.  

 

In the case of BSFA with cross-sectional data Fernández et al. (1997) note that most non-

informative or reference priors used in Bayesian analysis are improper (as is the case with Van 

den Broeck et al., 1994). Importantly, Fernández et al. have shown that when dealing with 

cross-sectional data where every firm has its own efficiency, a flat prior on p(hv)∝ hv
-1 such as 

)()(),,( λβλβ pphhp vv ∝ does not yield a posterior distribution (see Theorem 1). However, in 

Proposition 2 they define appropriate prior conditions for hv that yield a well-defined statistical 

procedure. We employ these conditions here to ensure that a posterior is defined. 

 

In our analysis we assume the following prior for β 

(4) )()( Λ∈∝ ββ Ip  

where I(.) is an indicator function that takes the value one if the argument is true and zero 

otherwise. In this context Λ is the region of the parameter space where the constraints implied 

by economic theory (i.e., monotonicity and curvature) are satisfied. 
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It is common practice in Bayesian applications in the frontier literature (e.g., Koop et al., 1994, 

Kleit and Terrell, 2001, Fernández et al., 2002 and O�Donnell and Coelli, 2004) to impose 

regularity conditions drawn from economic theory. This is because the imposition of regularity 

conditions is relatively simple when employing Bayesian techniques compared to Classical 

estimation.  To date many of the Bayesian papers have employed the Cobb-Douglas functional 

form, and as a result, have only been concerned with monotonicity. There are a few papers that 

have estimated more flexible functional forms (e.g., translog) and in these cases curvature is also 

imposed.  In this paper we estimate a translog production function and impose monotonicity and 

quasi-concavity via the indicator function in Equation (4).  

 

To show the impact of imposing the regularity conditions upon our results we estimate four 

Bayesian specification; (i) without regularity conditions imposed; (ii) with regularity conditions 

imposed at sample means; and (iii) with regularity conditions imposed at all data points. Like 

O�Donnell and Coelli (2004) we employ a random-walk Metropolis-Hastings (MH) step in our 

Gibbs sampling algorithm to estimate the model when imposing the regularity conditions at all 

data points. In this case we conducted 500,000 MH iterations with 100,000 �burn-in�, with 

every tenth draw being recorded. Where the Gibbs sampler was feasible the introduction of the 

MH step gave equivalent results, but convergence was significantly slower. 

 

The choice of prior for λ is taken from Fernández et al. (1997) and it is of the following form 

(5) ))ln(,1()( *1 rfp G −=−λ  

where r* is the prior median of the efficiency distribution. The results for the informative prior 

(r*) of 0.875 are presented. In terms of existing Bayesian applications the choice of value for the 

prior median of efficiency has varied, with Koop et al. (1997) employing 0.85, Kim and 

Schmidt (2000) employing 0.8 and Kleit and Terrell (2001) employing 0.875. The choice of 

informative prior used here is therefore consistent with the literature. In addition our results 

were found to be robust to the choice of informative prior for the type of values typically 

employed in the literature. 

 

Finally, the choice of prior for hv (also from Fernández et al. (1997)) is  

(6) )exp()( 02
20

ahhhp v

n

vv −=
−

 

with n0 ≥ 0 and a0 >0. We set n0 = 0 and a0  equal to a very small numbers. We found that setting 

n0 equal to zero or a small number, and doing an equivalent examination of a0, yielded very 
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robust results for n0 , whereas the results were fairly invariant for a0  for values less than 10-2 but 

induced a stall in the sampler when set above this level.   

 

To conduct Bayesian inference on our model using Gibbs sampling we make sequential draws 

from the following conditional posteriors. 

(7) *))ln(|(),,,|( 111 ruNfuhyp Gv −= −−− λλβλ  

(8) 













 −+=−

0
01

2
',

22
),,,|( avvnNfuyhp Gv λβ  

(9) )())(,(),,,|( 1'1 Λ∈×∝ −− ∑ βλβ Ixxhbfuhyp iivNv  

(10) 

∏
=

−−

−
−

−

=

>×







−−∝

n

i
viv

iviiNvi

hyuphyup

uIh
h

xyfhyup

1

11

1
1

'1

),,(),,,(

),0(,),,,|(

λβλβ

λβλβ
 

In terms of the results of interest our focus will be the marginal density functions of β and the 

measure of technical inefficiency. We derive our results by taking MCMC draws from the joint 

posterior density. 

  

To assess the convergence of our model we estimated each specification several times to ensure 

that the results were consistent. The 50,000 (every tenth draw of 500,000) draws that were 

collected from the MCMC algorithm after the �burn-in� phase, were split into two equal 

samples and the parameter estimates (means of the posteriors) were compared. Over a number 

of runs of the data we found all our parameter estimates to be consistent to at least three decimal 

places.   

 

2.3. DEA 

 

The DEA methodology used in this paper is based on linear programming. Like Simar and 

Wilson (1998) we estimate an input-orientated model. The input-orientated DEA efficiency 

estimator 0
�θ for any data point (x0,y0),is derived by solving the following linear program: 

(11) ∑ ∑ ∑
= = =

=≥=>≥≤=
n

i

n

i

n

i
iiiiii nixxyy

1 1 1
000 },......1,0;1;0;;|min{� γγθγθγθθ  

where y and x are observed outputs and inputs, and γ is a non-negative intensity variable used to 

scale individual observed activities for constructing the piecewise linear technology. There are 
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two points to note about Equation (11). First, we can impose CRS by removing the constraint 

∑
=

=
n

i
i

1
1γ from the DEA program. Second, Simar and Wilson (1998, 2000) observe that 0

�θ is an 

upward biased estimator of 0θ . The importance of this observation will become apparent when 

we examine the DEA interval estimates.  

 

To derive interval estimate for our DEA efficiency estimates 0
�θ we follow Simar and Wilson 

(1998 and 2000) by using bootstrapping. We employ their Homogeneous bootstrap approach 

that means we are assuming that the inputs are given by random radial deviations from the 

isoquant of the input set. In other words, conditioned on the outputs and the input proportions, 

the stochastic component of production is represented by random input efficiency measures. By 

employing the homogenous bootstrap we are implicitly assuming that inefficiency does not vary 

with farm size, which is somewhat analogous to assuming homoskedasticity in linear regression. 

 

The reason why bootstrap procedures have been adopted in this context is because very few 

results exist for the sampling distributions of interest (see Simar and Wilson, 2000, for 

details).  The idea behind bootstrapping is simple. We simulate the sampling distribution of 

interest by mimicking the DGP. The DGP here is the DEA program described by Equation 

(11). To implement the bootstrap procedure we assume that the original sample data is 

generated by the DGP and that we are able to simulate the DGP by taking a �new� or pseudo 

data set that is drawn from the original data set. We then re-estimate the DEA model with this 

�new� data. By repeating this process many times we are able to derive an empirical 

distribution of these bootstrap values that gives a Monte Carlo approximation of the sampling 

distribution that facilitate inference procedures. The performance of the bootstrapping 

methodology and the reliability of the statistical inference crucially depends on how well the 

DGP characterises the true data generation and the accuracy of the re-sampling simulation to 

copy the DGP. 

 

The Monte-Carlo algorithm we employ is that of Simar and Wilson (1998). The steps 

involved are follows:  

1. Estimate for all firms in the sample data iθ� for i=1,��,n. 
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2. Employ the smoothed bootstrap procedure to generate a random sample of 

size n from iθ� i=1,�..,n which provides **
1 ,....... nbb θθ . The smoothed bootstrap 

approach overcomes problems identified with other bootstrap DEA estimates 

(Simar and Wilson, 2000). Using the smoothed bootstrap requires we choose a 

smoothing parameter (ς) as part of the algorithm. 

3. The pseudo data, },......1),{( ** niyx iibb =χ  is now computed where *
ibx is 

estimated as iibiib xx )/�( ** θθ= , i=1,��n.  

4. Compute the bootstrap estimate *
,

�
biθ of iθ�  by solving for each 

(x0,y)

∑ ∑ ∑
= = =

=≥=>≥≤=
n

i

n

i

n

i
iibiiii nixxyy

1 1 1

*
,000 },......1,0;1;0;;|min{� γγθγθγθθ  

5. Repeat steps 2-4 B times to yield for i=1,�.n a set of estimates 

},........,1,�{ *
, Bbbi =θ . 

 

Having completed the bootstrap procedure we are in a position to derive interval estimates. 

At this point we depart from the approach described in Simar and Wilson (1998) and instead 

follow their revised approach described in Simar and Wilson (2000). 

 

Specifically, we can use the empirical distribution of the pseudo estimates *�
bθ to find 

estimates of δa and δb . To find δa� and δb� requires sorting )),(�),(�( 0000
* yxyxb θθ − for 

b=1,��,B in increasing order and then deleting (δ/2*100) percent of the elements from 

either end such that δa� and δb� are equal to the endpoint values, such that δa� ≤ δb� . Simar and 

Wilson (2000) note that it is tempting to construct a bias corrected estimator of θ . However, 

this can introduce additional noise to the bootstrap procedure. They provide a rule for when 

bias correction can be employed. For the data considered here it was found that bias-

correction was unnecessary. Thus, the 100(1-δ)% confidence interval is then 

δδ θθθ byxyxayx �),(�),(�),(� 000000 +≤≤+ . 

 

3. Existing Findings from Methodological Comparisons 

 

3.1. Points Estimates of Technical Efficiency 
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There are many applied studies in the literature that compare point estimates of technical 

efficiency for DEA and CSFA. Most studies report a difference between average estimates of 

technical efficiency derived using the alternative methodologies e.g., Bravo-Ureta and Rieger 

(1990), De Borger and Kerstens (1996), Sharma et al. (1997), Bauer et al. (1998), Cummins and 

Zi (1998), Wadud and White (2000) and Brümmer (2001).  Frequently, CSFA yields a higher 

average estimate of technical efficiency than DEA.  However, most studies then report relatively 

high rank correlation coefficient estimates of technical efficiency between methods.  

 

When lower rank correlation coefficient estimates between alternative methodologies are 

reported these results can typically be explained by fundamental differences in methodology. 

For example, De Borger and Kerstens (1996) found differences between parametric and non-

parametric approaches. Similarly Cummins and Zi (1998) found when comparing a variety of 

CSFA and mathematical programming techniques that the rank of efficiency estimates was 

stable for all CSFA approaches but less so when compared with DEA and Free Disposal Hull 

(FDH).  Hence, they concluded that the choice of frontier method significantly effects the 

conclusions of an efficiency study. 

 

A useful way to place the above finding in context is to consider findings of Gong and Sickles 

(1992). They used Monte Carlo techniques to compare CSFA and DEA. They found that the 

relative performance of CSFA is greater than DEA if the choice of functional form is close to 

the underlying technology i.e., DGP. But, as the degree of misspecification between the 

underlying technology and functional form increases DEA becomes more attractive. What this 

implies is that differences identified between alternative methods may well result from one 

method or another more closely capturing the DGP. However, as the DGP is unknown to 

applied researchers it is difficult (if not generally impossible) to necessarily advocate one 

method over another. Sickles (2004) also presents the findings of a Monte Carlo study that 

examines not only CSFA and DEA estimators but also some semiparametric estimators. The 

thrust of the results reported are in keeping with the earlier findings of Gong and Sickles. 

 

Finally, several papers in the literature attempt to provide guidance for applied researchers 

regarding the appropriate choice of frontier method or methods to employ. These papers, such as 

De Borger and Kerstens (1996) and Bauer et al. (1998), provide sets of conditions with which to 

evaluate efficiency estimates.  De Borger and Kerstens concluded that given the various 
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measures (e.g., point estimates and correlation coefficients) they advocate using to assess 

different frontier methods that it is sensible to analyse efficiency using a variety of methods as a 

check on the robustness of the results generated by any single method.  Bauer et al. extend this 

approach by also including conditions that require the researcher to undertake qualitative reality 

check of the results generated. Common to both is the observation that researchers can be more 

confident in their findings if different methods yield consistent results. An interesting and 

natural extension to the ideas in De Borger and Kerstens and Bauer et al. is the model averaging 

approach proposed by Sickles (2004). Sickles illustrates results for a simple weighting of 

efficiency estimates of all methods he employs. Model averaging of efficiency results, because 

of uncertainty over model specification, has previously been successful employed in the frontier 

literature by van den Broeck et al. (1994).   

 

3.2. Interval Estimates of Technical Efficiency 

 

To date there have been very few studies that have compared interval estimates of technical 

efficiency derived from alternative frontier estimation methodologies. However, in the Bayesian 

literature much has been made of the strength of BSFA relative to CSFA in that inference of the 

efficiency estimates follows directly from estimation. As Koop et al. (1997) observe the,  

"adoption of a Bayesian perspective for making inferences from such models, since such 

an approach yields exact finite sample results, allows us to mix over models, to conduct 

inference on the actual efficiencies, and surmounts some difficult statistical issues which 

arise in classical analysis." (p. 79). 

But, Kim and Schmidt (2000) argue that the classical approach to confidence interval 

construction based on Jondrow et al. (1982) has a Bayesian flavour. As Kim and Schmidt 

note;  

�The main difference between this distribution and a Bayesian posterior distribution 

is that it relies on asymptotics to ignore the effects of parameter estimation, whereas 

the uncertainty due to parameter estimation will figure into the Bayesian posterior. 

We might expect this difference not to matter very much when N is large, however.� 

(p. 95) 

Furthermore, Kim and Schmidt (2000) when comparing CSFA and BSFA with a specific focus 

on inference results found there to be significant advantages to estimation that employs 

distributional assumptions, and that there are few differences between CSFA and BSFA results 

if the same modelling assumptions are employed (e.g., fixed effect vs random effects). 
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Brümmer (2001) compared DEA and CSFA for a sample of farms in Slovenia. He found the 

CSFA confidence intervals to be wider than the DEA confidence intervals, attributing this to the 

more restrictive assumptions of DEA. Brümmer also notes that the separation of the sample into 

distinct groups (i.e. low, medium and high efficiency) is easier for low levels of efficiency. As a 

result he concludes that the pessimistic conclusions that are drawn regarding the point estimates 

of technical efficiency for Slovenian agriculture need to be tempered. 

 

4. Data and Estimation 

 

4.1. Data 

The data for this study were taken from an Australian wide survey of dairy farms conducted in 

2000 as part of the Dairying for Tomorrow project for the Dairy Research Development 

Corporation (DRDC) (DRDC, 2000). The date of the survey is important as all data were 

collected prior to the deregulation of milk marketing in Australia. Our analysis will reveal those 

farms performing at lower levels of technical efficiency and it may be conjectured, likely too 

struggle in the new competitive market environment.  

 

The data was collected by a thirty-minute phone survey. The survey covered all the main dairy 

production regions in Australia. Our analysis focuses on one of the eight main dairy regions in 

Australia, the River Murray region of Victoria and New South Wales.  We selected this region 

to conduct our analysis for two reasons. First, the Murray region yielded a relatively large 

sample, 241 family run dairy farms. Second, almost all dairy farmers in this region (i.e., over 90 

percent) irrigate their pasture. This compares to a national average of 60 percent reported by 

DRDC (2000).  In Australia irrigation water is an increasingly binding input in production 

because of increasing consumption and the need to accommodate environmental flows. Both the 

Australian Academy of Technological Science and Engineering (AATSE) (1999) and the 

DRDC (1999) note the need for improved water use efficiency in irrigated agriculture, 

especially dairying, if farming is to remain viable.  

 

The data used covers the 1999/2000 lactation season.  A summary of the data used is presented 

in Table 1. 

 {Approximate position of Table 1} 
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The data set contains one output and four inputs.  All data are normalised by farm area so all 

measures are per hectare. Our output is litres of milk standardised to 4 percent fat. In terms of 

input use we were able to construct four from the survey. First, we took information on various 

forms of additional/supplementary feed to construct a dollar measure of purchased feed. Second, 

the number of cows is a measure of the number of animals in the milking herd. Third, as a 

measure of irrigation water use, we did not have available the number of megalitres of water 

applied. Instead we employ area in hectares of the farm irrigated.  We would argue that this 

measure of irrigation water use is a reasonable proxy since all farmers in this region have to pay 

significant sums of money for water and will equate marginal benefits and costs. There is also a 

well functioning market in the transfer of water right entitlements between users.  Four, we have 

a composite measure of fertiliser. The fertiliser input is an aggregate measure of various inputs 

such as Super phosphate, urea and gypsum and is measured as dollars spent per annum.  

 

4.2. Estimation 

 

In terms of the importance of the choice of functional form on estimates of technical efficiency 

evidence in the literature is mixed. Some authors state that the choice of functional form makes 

little difference to the estimates of technical efficiency. For example, Ahmad and Bravo-Ureta 

(1996) found that switching from a Cobb-Douglas functional form to translog yielded almost 

identical average, minimum and maximum technical efficiency estimates. In terms of statistical 

properties they rejected the Cobb-Douglas functional form in favour of their simplified translog, 

but this does not appear to affect efficiency measures derived.  Battese and Broca (1997) report 

similar results. In contrast, Koop et al. (1994) found that the choice of functional did impact on 

their efficiency estimates when moving from a Cobb-Douglas to an Almost Ideal Model for a 

cost function.  Brümmer (2001) also rejected the use of a Cobb-Douglas compared to a translog 

production function.  

 

For both CSFA specifications we estimated the generalized likelihood-ratio statistic, which is 

distributed 2
)( Jχ , to test the null that a Cobb-Douglas frontier was an adequate representation of 

the data as opposed to a translog (i.e., H0: βij=0). In both cases we were able to reject the null 

hypothesis. Given these results a non-constant returns to scale translog frontier production 

function is estimated.  Our production function takes the following form: 
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where βjk = βkj (k≠j) and subscript i represent the i-th farm and i = 1.....241 is the number of 

farms in the sample. Y represents output of milk per hectare, X1 is the logarithm of the number 

of cows per hectare, X2 is the logarithm of the ratio irrigation area to total farm area, X3 is the 

logarithm of the cost fertiliser per hectare, and X4 is the logarithm of the cost of 

supplementary feed per hectare. 

 

5. Results 

 

Our results are presented in the following order. We begin by examining the production frontier 

function estimates for the CSFA and BSFA specification. We then examine the point estimates 

of technical efficiency for all estimation method. Finally, we examine interval estimates of 

technical efficiency. 

 

5.1. Stochastic Frontier Analysis 

 

We begin by presenting results derived when estimating Equation (12) assuming that ui is a half-

normal (CSFA) and exponential probability distribution (BSFA, CSFA). To simplify the 

examination of our results, prior to estimation we normalised our sample data by dividing 

throughout by the sample mean of each variable. Thus, our βi (i=1,2,3,4) estimates are equal 

to 
iX
Y

∂
∂ ln . This also allows us to check if the monotonicity condition is satisfied, by examining 

the parameter estimates. The production function estimates, Bayesian posterior means and 

Classical point estimates are reported in Table 2.  

 {Approximate Position of Table 2} 

The results in Table 2 show a great degree of uniformity.  The exponential specifications, 

irrespective if Classical or Bayesian, yielded almost identical results. There are small changes 

for the Bayesian specification for theory imposed at all data points but these are generally 

marginal and do not alter the interpretation of the results. For the two Classical specifications 

there are small differences but these are very minor.  The lack of variation in our frontier 

production function results as we impose theory is not unexpected. We found that the 

unrestricted data does not conform to monotonicity and/or curvature at for only 19 out 241 data 
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points.  Indeed our frontier parameter estimates suggest that there are many characterisations of 

the DGP that do equally well.  Hence, if interest, is exclusively in the regression parameter 

estimates, with this data it would really not make much, if any difference, which methodology 

we employed. Kim and Schmidt (2000) make similar observations regarding all three data sets 

employed in their analysis. 

 

For the input elasticities for all of the Bayesian specifications reported in Table 2 we find that all 

of the posterior mass is to the positive side of zero. For the Classical specifications most 

parameter estimates are statistically different from zero. In all cases, as we would expect for 

farm level dairy data, the number of cows is the most important contributor to the quantity of 

milk produced.  Both the area irrigated and expenditure on supplementary feed, are statistically 

significant. The only input in our data that is not significant for most specifications is fertiliser 

(β3). However, we can see from Table 2 that as we impose the theoretical restrictions every more 

tightly the parameter on fertiliser increases. In terms of returns to scale for all specifications the 

sum of the parameters is very close to one. Indeed, for both CSFA specifications performing a 

generalized likelihood-ratio statistic, which is distributed 2
)( Jχ , we were unable to reject a null 

hypothesis of constant returns to scale. 

 

Finally, we can consider the degree of technical inefficiency in our sample. For our Classical 

models the relative magnitude of variances indicates the existence of technical inefficiency. 

Similarly, for the Bayesian specifications the estimate of λ is large resulting in the derivation of 

farm level estimates of technical inefficiency. This statistical significance of this result is 

provided by the one-sided generalized likelihood-ratio test to test the null hypothesis of no 

technical inefficiency effects for both CSFA models. In both cases we were able to reject the 

null hypothesis of no technical inefficiency in our models. 

 

5.2.       Comparison of Technical Efficiency Estimates 

 

5.2.1 Mean Estimates 

 

We now examine the farm level technical efficiency estimates (i.e., posterior means for the 

Bayesian specifications) generated by all the estimation methodologies.  As these estimates are 

frequently the focus of efficiency estimation for policy makers it is important to see if any 
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differences between the alternative methodologies can be identified.  Technical efficiency 

estimates for a random sample of ten farms as well as various summary and out-of sample 

predictive measures are reported in Table 3. 

 {Approximate Position of Table 3}  

In general the results in Table 3 show that the average estimates of technical efficiency for the 

various methodologies appear to be relatively similar except for DEA that has a lower average.  

This finding is in keeping with most other comparative studies in the literature. Furthermore, this 

result is not surprising given the fact that Zhang and Bartels (1998) have shown that for larger 

samples DEA average estimates of technical efficiency are smaller. Indeed with our data it was 

found that by randomly reducing sample size that sample average technical efficiency increases. 

 

The bottom part of Table 3 reports out-of-sample predictive efficiencies for all exponential 

specifications. These summary measures are frequently reported in the Bayesian stochastic 

frontier literature (e.g., van den Broeck et al., 1994, and Koop and Steel, 2001) and are 

interpreted as measuring the performance of a (maybe hypothetical) firm. Van den Broeck et al. 

describe this measure as a,� Bayesian counterpart of the classical characteristics of �average� 

inefficiency.� (p. 279). We have computed these measures following van den Broeck et al. and 

we find that there is virtually no difference between these measures (Bayesian or Classical) and 

the summary measures of technical efficiency also reported in Table 3.  The equivalence of 

sample average and out-of-sample estimates is in keeping with the findings of Huang (2004).  

 

In summary, even allowing for the lower DEA average all our estimates of technical efficiency 

are within the range of existing estimates in the literature for dairy farms (Ahmad and Bravo-

Ureta, 1996, p. 409).  Furthermore, with an average level of technical efficiency from all 

methodologies of approximately 80 percent, irrespective of estimation methodology, the farms 

in this sample can be considered very efficient. This result may not be surprising given that 

dairying in Australia is a mature industry with a well-established extension services distributing 

information on current best practice on a regular basis. Indeed, it is probably unrealistic to 

expect higher average estimates of technical efficiency when we allow for exogenous stochastic 

events that disrupt production such as human error, machinery malfunctions and disease 

outbreaks. 

 

An important aspect of the point estimates of technical efficiency is seen by examining the 

results in Table 4. 
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{Approximate Position of Table 4} 

The results in Table 4 show the frequency distribution of technical efficiency for all the methods 

employed as well as the results for each specific methodology. The most striking feature of the 

results is that for all frontier methods there is an obvious tail of inefficient farms. This tail is 

fatter and longer for the DEA results.  

 

From Table 4 we can also identify for CSFA and BSFA the bottom decile of farms.  These 

results, like those of the DEA, indicate that there are a significant number of technically 

inefficient farms in our sample. But, unlike DEA these farms are part of a much narrower tail 

and as a result more easily identified.  However, the identification of the best performing farms 

is less clear with CSFA and BSFA, with so many farms yielding technical efficiency estimates 

clustered around 0.85. As a result we would argue that it is easier to identify those farms that are 

performing badly compared to farms that are truly best practice. This result is important for 

applied practitioners of frontier research in that CSFA and BSFA provide a strong 

characterisation of poorly performing farms. As we noted in the Introduction it is the 

identification of this very group of farmers that is most important given the recent institutional 

changes in the Australian dairy industry. 

 

To statistically examine differences between the results generated by the estimation 

methodologies we use various statistical tests. First, we examine if the sample mean estimates of 

technical efficiency are statistically different from each other. By performing a simple t-test on 

the difference between sample means for paired data we find that there are significant 

differences at the five percent level of significance between DEA and all other methodologies, 

and between the Classical half-normal specification and all the exponential specifications. 

However, there are no significant differences between any of the exponential specifications. 

 

Second we estimate the Spearman Rank Correlation Coefficient (SRCC) between the technical 

efficiency estimates to examine if the relative rank of the farms is consistent between the 

estimation methods, even if the actual estimates differ in terms of magnitude.  The null 

hypothesis tested is that there is no statistical relationship between the two variables. The 

results for the SRCC are presented in Table 5.  

{Approximate Position of Table 5} 
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In all cases we reject the null hypothesis at the 1% significance level. Hence, the SRCC 

results indicate that the rank of the farms is statistically invariant to the choice of estimation 

methodology.  

 

Our findings presented in this section are in keeping the vast majority reported in the literature to 

date. For example, Kumbhaker and Lovell (2000) note that sample mean efficiencies are 

sensitive to the distribution assigned to the one-sided error component and there is plenty of 

evidence to this effect.  This finding is mirrored here in terms of the choice of half-normal and 

exponential distributions. Kumbhaker and Lovell also report that the choice of distribution does 

not significantly influence the rank of pairs of efficiency estimates. Again our results support 

Kumbhaker and Lovell. In terms of dairy studies, our results are also in keeping with the 

literature e.g., Bravo-Ureta and Rieger (1990) and Ahmad and Bravo-Ureta (1996).  

 

5.2.2.      Interval Estimates  

 

We now extend our comparison of farm level technical efficiency estimates to include interval 

estimates generated by the alternative frontier estimation methodologies.  We estimate 95 

percent confidence intervals for the DEA and CSFA specifications and the BSFA credible 

interval estimates are the 2.5 and 97.5 percentiles of the marginal densities. Our interval 

estimates presented in Table 6 are for the same ten farms highlighted in Table 3. 

{Approximate Position of Table 6} 

First consider the DEA confidence interval estimates.  The results presented are for ς=0.057. 

Like Simar and Wilson (1998) we allowed our bootstrap algorithm to search over a large range 

of values of ς to find the optimal value. There are two features of the confidence interval 

estimates reported. First, for all farms the resulting confidence interval does not include the point 

estimate. For example, farm 1 has a point estimate of 0.76 and an upper bound of 0.74.  As we 

previously noted, the DEA program is an upward biased estimator and the confidence interval 

estimation takes this into account. This finding is entirely consistent with Simar and Wilson 

(2000). Second, the DEA confidence intervals are in many, but not all, cases significantly 

narrower than for the other model specifications.  This type of result has previously been 

reported by Brümmer (2001), who attributes it to the alternative modelling philosophies of DEA 

and stochastic frontiers. DEA is deterministic with data treated as if observed with certainty and 

random errors in production ignored. Only if the underlying DGP is accurately represented by 
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our DEA model can we consider these results to be more accurate than those generated by the 

other methodologies examined. 

 

Turning to the CSFA interval estimates we can see from Table 6 that irrespective of choice of 

distribution the upper bound is frequently equal or very close to one. This finding is slightly less 

common for the half-normal specification but with an average estimated upper bound of 0.88 

this is still much higher than the DEA results.  Again, these results are in keeping with those of 

Brümmer (2001). When we compare the CSFA exponential with the three BSFA specifications 

we see that the upper bound estimates are almost identical and the lower bound estimates are 

only marginally less so.  

 

Finally, a result common to all methods is that the interval estimates for many of the farms in the 

sample overlap. That is, the intervals for many of the farms include values also included in many 

of the other farms intervals.  This overlapping of the intervals has been identified previously in 

the literature by Brümmer (2001), and it means that we have to be more conservative about the 

interpretation we place on our point estimates. This is particularly pronounced for the 

exponential results that have a large number of farms with an upper bound equal or nearly equal 

to one. 

 

6. Summary and Conclusions 

 

In this paper we have employed various frontier estimation methodologies to estimate technical 

efficiency for a sample of irrigated dairy farms. We have examined both point and interval 

estimates of technical efficiency. For the data examined and the particular methodological 

specifications employed we find some differences in the results generated by the alternative 

frontier approaches. 

 

Our point estimate results indicate that there is some evidence of differences between average 

farm level technical efficiency. We also found that our CSFA and BSFA results provided a 

sharper distinction of technically inefficient as opposed to technically efficient farms. However, 

when we examine the relative rank of the farms using the SRCC we find that all methods are 

statistically significant and close to one, implying that the efficiency rank of farms is consistent 

across methodologies.  Both results are in keeping with previously reported research in much of 

the literature, which compares frontier estimation methodologies.  
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From an applied perspective the statistical robustness of the rank of point estimates of technical 

efficiency is reassuring. It means that analysts will be able to accurately identify those farms 

operating at lower levels of technical efficiency irrespective of methodology employed.  

However, when analysts are concerned about the relative level of technical efficiency the 

statistical differences identified raises serious questions as to the appropriate choice of 

methodology.  But, this finding needs to be qualified when we extend our analysis and also 

consider interval estimates of technical efficiency. We find that there is significant overlap of 

intervals for all farms for each methodology employed. The BSFA credible interval estimates 

are in keeping with CSFA exponential specification. This result parallels closely the findings of 

Kim and Schmidt (2000).  For the DEA confidence intervals, although narrower than the CSFA 

and BSFA specifications, we would argue is simply a function of the underlying modelling 

assumptions. 

 

Taken together our interval estimates imply that we can no longer place such a strong 

interpretation on the point estimates in terms of the actual efficiency score estimate. Instead we 

have to satisfy ourselves with being able to identify efficient and inefficient groups of farms but 

for many of the farms we can no longer statistically distinguish their degree of technical 

efficiency.  As previously observed by Brümmer (2001), identification of a group of inefficient 

farms is easier than identifying efficient farms as so many especially with CSFA and BSFA 

have upper bound intervals close or equal to one. These results raise questions as to the 

ability of frontier methods to identify best practice in way frequently demanded by applied 

researchers and practitioners. 

 

Finally, in the Introduction we addressed the question of the meaning of comparative analysis of 

different frontier techniques using empirical data. We recognised that identifying the best 

characterisation of the DGP was a critical step for choosing the correct method, since estimation 

methods, as employed in this paper, incorporate very different assumptions regarding the DGP. 

This issue has been examined in the literature before, and continues to be of interest. Gong and 

Sickles (1992), and more recently, Sickles (2004) have shown using Monte Carlo methods how 

the preferred choice of method changes depending on the underlying technology (i.e., DGP).  

Although less than perfect, the sets of criteria proposed by De Borger and Kerstens (1996) and 

Bauer et al. (1998) also provide some insights into the issue of choice of methodology.  We 

agree with De Borger and Kerstens and Bauer et al. who argue that researchers should attempt to 
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select reference technologies based on economic arguments. When this is not possible De 

Borger and Kerstens note that there may well be no solution to identifying the best (most 

appropriate) reference technology and that we should employ several methods simultaneously 

and consider a synthesis of the results.  Interestingly, this is the approach advocated and being 

formalised by Sickles. Our findings in this paper add support to this viewpoint.  Indeed, we have 

no a priori reason to assume that one or other frontier method will �better� capture the 

underlying DGP of our data. The fact that we generate results that provide only minimal 

evidence regarding any difference between DEA and stochastic frontiers, and that these 

differences can be explained by the deterministic nature of DEA and its upwardly biased point 

estimates and narrow interval estimates of technical efficiency, only adds further support to the 

view that we should consider a synthesis of results. 
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Table 1: Descriptive Statistics 

 

Variable Type Units Summary Measures  
Total Milk  Output Litres/hec Mean 

Low 
High 

10983 
1901 
37500 

Number of 
Cows  

Input (X1) Number per 
hec 

Mean 
Low 
High 

2.24 
0.51 
6 

Area Irrigated Input (X2) Hec/hec Mean 
Low 
High 

0.9 
0.04 
1 

Expenditure on 
fertiliser 

Input (X3) $/hec Mean 
Low 
High 

170 
11 
667 

Expenditure on 
supplementary 
feed 

Input (X4) $/hec Mean 
Low 
High 

3.6 
0.06 
20 
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Table 2: Production Function Results 
Classical Point Estimates and Bayesian Posterior Means 

 
 Classical 

Exponential 
Classical Half-
Normal 

Bayesian 
Unrestricted 

Bayesian � 
Restricted  at 
Sample Means 

Bayesian � 
Restricted at all 
data points 

α 0.218 
(0.03) 

0.295 
(0.033) 

0.215 
(0.029) 

0.217 
(0.028) 

0.215 
(0.026) 

β1 0.694 
(0.07) 

0.703 
(0.074) 

0.691 
(0.064) 

0.685 
(0.062) 

0.632 
(0.055) 

β2 0.115 
(0.07) 

0.128 
(0.076) 

0.113 
(0.067) 

0.121 
(0.061) 

0.175 
(0.05) 

β3 0.055 
(0.036) 

0.041 
(0.04) 

0.056 
(0.03) 

0.059 
(0.029) 

0.083 
(0.023) 

β4 0.164 
(0.034) 

0.161 
(0.037) 

0.167 
(0.03) 

0.166 
(0.03) 

0.165 
(0.028) 

β11 -0.498 
(0.145) 

-0.524 
(0.165) 

-0.473 
(0.156) 

-0.481 
(0.156) 

-0.326 
(0.113) 

β22 -0.035 
(0.048) 

-0.033 
(0.051) 

-0.031 
(0.045) 

-0.03 
(0.043) 

0.001 
(0.019) 

β33 -0.012 
(0.038) 

-0.019 
(0.039) 

-0.013 
(0.038) 

-0.018 
(0.035) 

-0.012 
(0.018) 

β44 0.046 
(0.02) 

0.044 
(0.023) 

0.048 
(0.016) 

0.048 
(0.016) 

0.029 
(0.01) 

β12 0.295 
(0.13) 

0.307 
(0.136) 

0.282 
(0.122) 

0.286 
(0.121) 

0.191 
(0.082) 

β13 0.232 
(0.103) 

0.258 
(0.104) 

0.226 
(0.106) 

0.231 
(0.103) 

0.108 
(0.07) 

β14 0.083 
(0.103) 

0.094 
(0.119) 

0.071 
(0.09) 

0.07 
(0.09) 

0.066 
(0.055) 

β23 -0.046 
(0.062) 

-0.069 
(0.068) 

-0.046 
(0.059) 

-0.043 
(0.055) 

-0.016 
(0.028) 

β24 0.007 
(0.055) 

0.025 
(0.058) 

0.008 
(0.057) 

0.009 
(0.055) 

0.012 
(0.027) 

β34 -0.047 
(0.028) 

-0.051 
(0.03) 

-0.046 
(0.031) 

-0.043 
(0.029) 

-0.019 
(0.022) 

hv 0.021 0.014 0.024 
(0.001) 

0.024 
(0.001) 

0.026 
(0.001) 

hu  0.048    
λ 
 

0.207  
 

0.207 
(0.026) 

0.206  
(0.025) 

0.198 
(0.026) 

  
Note: Values in brackets are standard errors for the classical results and standard deviations of the 
posterior distributions for the Bayesian Results. 
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Table 3: Farm Specific Technical Efficiency Estimates 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Farm DEA Classical 
Exponential 

Classical Half-
Normal 

Bayesian - 
Unrestricted

Bayesian � 
Restricted  at 
Sample Means 

Bayesian � 
Restricted at all 
data points 

1 0.76 0.92 0.9 0.92 0.92 0.91 
2 0.77 0.91 0.88 0.91 0.91 0.92 
3 1 0.92 0.9 0.91 0.91 0.92 
4 0.80 0.91 0.87 0.91 0.91 0.91 
5 0.83 0.93 0.91 0.93 0.93 0.92 
6 0.87 0.94 0.92 0.94 0.94 0.94 
7 0.52 0.77 0.67 0.78 0.78 0.81 
8 0.58 0.85 0.77 0.85 0.85 0.82 
9 0.82 0.91 0.86 0.90 0.90 0.91 
10 0.39 0.60 0.53 0.62 0.62 0.64 

Sample Summary Statistics 
Mean 0.65 0.82 0.77 0.83 0.83 0.84 
Standard 
Deviation 0.16 0.12 0.13 0.11 0.11 0.11 
Minimum 0.21 0.31 0.28 0.31 0.31 0.33 
Maximum 1.00 0.96 0.96 0.96 0.96 0.96 

Out-of-Sample Predictive Efficiency 
Mean  0.83  0.83 0.83 0.84 
Standard 
Deviation  0.15  0.15 0.15 0.14 
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Table 4: Frequency Distribution of Technical Efficiency Estimates for all Models 
 

Efficiency 
Score DEA 

Classical 
Exponential 

Classical 
Half-Normal 

Bayesian 
Unrestricted 

Bayesian � 
Restricted 
Sample 
Means 

Bayesian � 
Restricted at 
all data points

< 0.35 8 2 2 1 1 1 
0.35-0.39 6 2 2 1 2 2 
0.40-0.44 6 1 2 2 1 1 
0.45-0.49 18 1 5 1 1 1 
0.50-0.54 20 3 8 3 3 2 
0.55-0.59 33 7 9 6 6 5 
0.60-0.64 26 11 16 9 9 6 
0.65-0.69 32 3 23 5 5 8 
0.70-0.74 33 18 26 14 14 11 
0.75-0.79 20 24 28 26 24 19 
0.80-0.84 11 32 39 33 36 43 
0.85-0.89 9 60 47 64 65 64 
0.90-0.94 3 72 30 73 71 74 
0.95-1.00 15 4 3 3 3 4 
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Table 5: SRCC 
 

 
Note: * Statistically significant at 1% level (2 tailed).  
 

 DEA Classical 
Exponential 

Classical 
Half-Normal 

Bayesian 
Unrestricted 

Bayesian -  
Restricted 
Sample 
Means 

Classical Exponential 0.842* 
 

    

Classical Half-Normal 0.835* 
 

0.998*    

Bayesian Unrestricted 0.831* 
 

0.998* 0.996*   

Bayesian - Restricted 
Sample Means  

0.834* 0.997* 0.996* 0.997*  

Bayesian � Restricted 
at all data points 

0.833* 0.997* 0.995* 0.997* 0.996* 
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Table 6: 95 Percent Confidence/Credible Interval Estimates  

 

Farm 
DEA 

Lower  Upper 

Classical 
Exponential 
Lower Upper 

Classical 
Half-Norma 
Lower  Upper 

Bayesian 
Unrestricted 
Lower      Upper 

Bayesian 
Restricted 
Sample Means  
Lower      Upper 

Bayesian � 
Restricted at all 
data points 
Lower     Upper 

1 0.69 0.74 0.78 1.00 0.75 0.99 0.79 0.99 0.79 0.99 0.77 0.99 
2 0.65 0.74 0.76 1.00 0.72 0.99 0.78 0.99 0.79 0.99 0.79 0.99 
3 0.39 0.95 0.78 1.00 0.75 0.99 0.77 0.99 0.76 0.99 0.79 1.00 
4 0.71 0.78 0.75 1.00 0.72 0.99 0.77 0.99 0.77 0.99 0.77 0.99 
5 0.73 0.80 0.79 1.00 0.76 1.00 0.81 1.00 0.81 0.99 0.80 0.99 
6 0.75 0.83 0.81 1.00 0.79 1.00 0.83 1.00 0.83 1.00 0.83 1.00 
7 0.43 0.50 0.58 0.97 0.52 0.80 0.60 0.96 0.60 0.96 0.63 0.97 
8 0.52 0.56 0.67 0.99 0.61 0.93 0.68 0.98 0.68 0.98 0.64 0.98 
9 0.60 0.79 0.76 1.00 0.70 0.99 0.75 0.99 0.75 0.99 0.77 0.99 
10 0.31 0.37 0.45 0.80 0.40 0.63 0.47 0.81 0.47 0.81 0.48 0.84 

Sample Summary Statistics 

Mean 0.50 0.63 0.66 0.96 0.61 0.88 0.68 0.96 0.68 0.95 0.68 0.96 
SD 0.15 0.16 0.12 0.09 0.13 0.14 0.12 0.09 0.12 0.08 0.12 0.08 
Min 0.05 0.20 0.23 0.40 0.20 0.31 0.23 0.41 0.23 0.41 0.24 0.44 
Max 0.86 0.98 0.87 1.00 0.88 1.00 0.88 1.00 0.88 1.00 0.88 1.00 
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Technical Efficiency of Australian Dairy Farms: A Comparison of 

Alternative Frontier Methodologies 
 
 Abstract  
 
 In this paper we estimate and examine technical efficiency for a cross-section of 

Australian dairy farms using various frontier methodologies; Bayesian and Classical 
stochastic frontiers, and Data Envelopment Analysis. Our results indicate technical 
inefficiency is present in the sample data.  We also identify statistical differences 
between the point estimates of technical efficiency generated by the various 
methodologies. However, the rank of farm level technical efficiency is statistically 
invariant to the estimation technique employed. Finally, when we compare 
confidence/credible intervals of technical efficiency we find significant overlap for many 
of the farms’ intervals for all frontier methods employed. Our results indicate that the 
choice of estimation methodology may matter, but the explanatory power of all frontier 
methods is significantly weaker when we examine interval estimate of technical 
efficiency.  

   
 Key words: Technical efficiency, point estimates, interval estimates, dairy farms.
 JEL: C21, C40 and Q12 

 

1. Introduction 

 

When estimating efficiency frontiers there are an array of techniques available, including 

Classical Stochastic Frontiers Analysis (CSFA), Bayesian Stochastic Frontier Analysis (BSFA) 

and Data Envelopment Analysis (DEA).  CSFA and BSFA are ostensibly differentiated from 

each other by statistical paradigms which lead not only to differences in interpretation, but also 

the ease of which important theoretical properties can be enforced (O’Donnell and Coelli, 2005). 

However, DEA, while within the classical paradigm, is differentiated from the first two by 

assumptions about the underlying data generating process (DGP). The fact that there are so 

many alternative methods has meant that applied researchers across a vast range of different 

problem settings have sought guidance from the literature as to the appropriate methodology to 

employ.  In turn there are numerous papers in the frontier literature that compare the results 

generated by various methods (e.g., Hjalmarsson et al., 1996, Ahmad and Bravo-Ureta, 1996, 

Sharma et al., 1997, Cummins and Zi, 1998, and Kim and Schmidt, 2000) as well as several 

papers (e.g., De Borger and Kerstens, 1996, and Bauer et al., 1998) that provide guidance on 

how to assess the choice of estimation method for particular applied problems.  
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 3

In this paper we add to this literature in two important ways.  First, we provide a comparison of 

CSFA, BSFA and DEA methods applied to a sample of Australian dairy farms.  BSFA is a 

relatively recent methodological development (i.e., van den Broeck et al. 1994) with a limited 

number of applications in the literature to date (e.g., Koop et al. 1994, 1995, 1997, Kim and 

Schmidt, 2000, Fernández et al. 2000, 2002 and Kleit and Terrell, 2001, Kurkalova and 

Carriquiry, 2003, Huang, 2004, and Bezemer et al. 2005).  Our comparison adds to the extensive 

literature that has compared the relative strengths and weaknesses of DEA and CSFA. We 

compare the results derived using the various methodologies and consider whether those 

differences identified are of fundamental importance.  

 

Second, unlike most of the existing literature that has compared alternative frontier methods we 

extend the analysis to include interval (confidence and credible) estimates of technical 

efficiency.  There already exist a growing number of papers that report point and interval 

estimates (e.g., Rezitis et al., 2002).  Therefore, recent methodological developments to compute 

interval estimates indicates a need to reassess how we think about selecting any particular 

method when undertaking frontier research. The comparison of interval estimates considered in 

this paper differs from most reported in the literature to date (e.g., Kim and Schmidt, 2000 and 

Brümmer, 2001) in that we examine cross-sectional data that limits the CSFA specifications and 

possible inference techniques.  Our results add to those of Latruffe et al. (2004) who estimate 

technical efficiency employing CSFA and DEA for a cross-section of Polish farms. 

 

Another contribution of the paper is that we provide a BSFA of dairy farming. There exist 

numerous examples in the literature of CSFA and DEA analysis of the dairy sector. Examples of 

CSFA studies of the dairy farming include Battese and Coelli (1988), Ahmad and Bravo-Ureta 

(1996), Cuesta (2000), Karagiannis et al. (2002) and Haghiri et al. (2004).  DEA studies of dairy 

farms include, Weersink et al. (1990), Cloutier and Rowley (1993), Jaforullah and Whiteman 

(1999), and Fraser and Cordina (1999). In terms of Bayesian studies of dairying there is only one 

in the literature. Fernandez et al. (2002) use a panel data set of Dutch dairy farms to examine 

technical and environmental efficiency. They report that farms tend to be more efficient 

technically than environmentally, and there is a positive, but moderate, correlation between 

these measures.  

 

The rationale for examining dairy farming in Australia is that in July 2000 the industry was 

deregulated with the removal of State level milk marketing arrangements. As a results there is 
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 4

now far more pressure on dairy farmers to be efficient (Edwards, 2003). Research by the 

Australian Competition and Consumer Commission (ACCC) (2001) on the effects of 

deregulation indicates that many dairy farmers will be severely affected by these changes. 

Therefore, there is a need to identify best and worst practice in an effort to help with the 

transition of the industry and frontier methods provide a suitable methodology. But, as is 

frequently the case in applied frontier research, how should we conduct the analysis so as to 

generate the appropriate information for the dairy industry, needs to be considered. 

 

Some qualifying statements regarding our comparison of parametric frontier methods with DEA 

are worth making. It could be argued that comparisons, when the DGP is unknown, are 

uninteresting because parametric stochastic frontiers and DEA simply incorporate different 

assumptions regarding the underlying DGP. By contrast, Monte Carlo studies such as Gong and 

Sickles (1992), Giannakas et al. (2003) and Sickles (2005) can cast light on the performance of 

different methods under alternative DGPs. Research aimed at identifying the correct DGP and, 

therefore, the correct choice of method is obviously valuable. However, our research, along with 

other empirical studies that have made comparisons between methods, performs a different role. 

In our view the purpose of a comparison such as is conducted in this paper is not to seek the 

elevation of one methodology above the rest, or to recommend the choice of a particular 

methodology. Instead, albeit subject to different assumptions regarding the DGP, we would 

argue that if results from different methods concur, this can only add to the confidence with 

which applied researchers report and interpret their results. By contrast, disagreement across 

methods must lead to more tentative conclusions. This point still stands, should better 

methods be developed to discern between competing characterisations of the DGP, 

particularly when none of them may accurately reflect the true one. We believe that 

comparisons between Bayesian and Classical methods also serve this purpose. Therefore, our 

position on the purpose of comparing alternative frontier methods is in many ways the same 

as the advice offered by De Borger and Kerstens (1996) and Bauer et al. (1998). Finally, 

Sickles (2005) suggestion of that a form of model averaging can be also used to assess and 

interpret efficiency estimates generated by several methods is a natural extension to the view 

that multiple methods should be employed. 

 

The structure of this paper is as follows.  In Section 2 we describe the various estimation 

methodologies and how inference is conducted within each of them. We then review the 

literature that has compared and contrasted the frontier methodologies employed in this paper. In 
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Section 4 we describe the data set used and provide details about the methods used for 

estimation. Next, we present and discuss the results of our study.  Finally, in Section 6, we 

discuss our findings and consider implications for applied frontier research. 

 

2. Frontier Estimation 

 

In this section we briefly outline each of the estimation techniques. We also detail how the 

various inference results we examine are generated. These pertain to the analysis of cross-

section data only. 

 

2.1. CSFA 

 

CSFA is based on Aigner et al. (1977) and Meeusen and van den Broeck (1977).  It is assumed 

that a stochastic frontier contains an error term that is composed of two elements: a random error 

capturing statistical noise (v) and a one-sided non-negative error (u).  By decomposing the error 

term into these two components the frontier production function can be expressed as follows,  

(1)  iiii uvxy −+= β'  

where ui≥0,  i=1….N (i indexes farms), yi is the logarithm of farm level output, xi is a vector of 

the logarithm of inputs including an intercept and cross products and β is a vector of 

coefficients, vi is an iid error term with mean zero and constant variance (hv) assumed to be 

independent of ui. As yi is the log of output, technical efficiency r, of the i-th farm is ri =exp(-ui). 

 

Typical distributional assumptions that are made for ui are exponential (with parameter λ), half-

normal or truncated normal with variance hu. Following Jondrow et al. (1982) we estimate farm 

specific technical efficiency assuming that ui is both exponential and half-normal. The choice of 

the exponential distribution is to allow comparison with BSFA for which there is a well-

developed analytical framework for estimation. The results for the half-normal distribution are 

also reported as they allow us to compare the influence of choice of distribution on the CSFA 

results generated. 

 

For CSFA we estimate confidence intervals following Horrace and Schmidt (1996). The 

confidence intervals for the exponential and normal distributions follow from Theorems 1 and 2 

of Jondrow et al. (1982). Jondrow et al. showed that the distribution of ui|εi, where εi is the 
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observed difference between vi and ui, is that of a N(µi*,σ2
*) random variable truncated at zero 

where 1* )( −+= vuiui hhh εµ  and 12
* )( −+= vuvu hhhhσ . It is assumed that E(ui|εi) is a point 

estimate of ui. To construct confidence intervals from the point estimates is relatively straight 

forward as demonstrated by Horrace and Schmidt (1996). Critical values can be obtained from a 

standard normal distribution which allow us to place upper and lower confidence intervals on 

ui|εi. Specifically, for the normal distribution a (1-δ)100% confidence interval (Li,Ui) for ri|εi is 

given by: 

(2a) )exp( *
* σµ lii zL −−=   

(2b) )exp( *
* σµ uii zU −−=  

with z distributed as N(0,1): so 

(3a) )]}/(1)[2/(1{ *
*1 σµδ ilz −Φ−−Φ= −  

(3b) )]}/(1)[2/1(1{ *
*1 σµδ iuz −Φ−−−Φ= −  

 

To estimate the confidence intervals for the exponential distribution it is simply a matter of 

implementing Theorem 2 in Jondrow et al. (1982) in a similar manner to the normal distribution. 

As noted by Horrace and Schmidt (1996) with this approach to confidence interval estimation it 

is assumed that β, hu and hv are known.  That means that the confidence intervals do not reflect 

parameter uncertainty. If N is large this is probably of little importance as this source of 

variability is small relative to the variability inherent in the distribution ui|εi.  

 

2.2. BSFA 

 

BSFA also adopts the model in Equation (1). However, estimation and inference is undertaken 

by formulating a prior probability density function (pdf) f(θ) where θ are unobserved parameters 

(in Equation (1) of dimension k) and combining the prior with the likelihood function f(y|θ), 

where y is a set of observable data, using Bayes’ theorem to form a posterior pdf f(θ|y). The 

interpretation of the prior and the posterior is that they both reflect subjective probability 

distributions of θ, prior to observing y and after. We use the posterior distribution to form 

credible intervals for the parameters of interest. With BSFA θ is multidimensional so there are 

difficulties in finding the marginal posterior distribution for a single parameter θi. The marginal 

posterior distribution of θi is defined by integrating the joint posterior density of θ with respect 

to all elements of θ other than θi, but this may not be analytically tractable.  
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An alternative approach to conducting Bayesian inference on our model when we do not need to 

know the analytical form of the unconditional posterior distributions, and the approach used 

here, is the Markov Chain Monte Carlo (MCMC) method of Gibbs sampling (Casella and 

George, 1992) and Metropolis-Hastings (M-H) algorithms (Chib and Greenberg, 1995).  The 

Gibbs sampler allows us to approximate the marginal posterior distribution of a parameter of 

interest by generating a sample drawn from the marginal posterior distribution. The sample is 

derived by making random draws from the full conditional distributions of all parameters in a 

model. In the case of Bayesian frontier estimation when employing the Gibbs sampler the ui’s 

(in Equation (1)) are part of the set of random quantities from which the joint posterior 

distribution is derived. 

 

Following Koop, Osiewalski and Steel (1997) and Koop and Steel (2001), as in the Classical 

exponential case, it is assumed that v is normally distributed with mean zero and constant 

variance (hv), and u is Gamma distributed with a shape parameter j and an unknown scale 

parameter λ. When j=1 this yields an exponential probability distribution i.e., 

)exp(),1,(~ 111 −−− −∝ λλλ iiGi uufu where λ is an unknown parameter. Van den Broeck et al. 

(1994) found the exponential probability distribution to be the most robust model with respect to 

assumptions on the prior median efficiency.  

 

In the case of BSFA with cross-sectional data Fernández et al. (1997) note that most non-

informative or reference priors used in Bayesian analysis are improper (as is the case with Van 

den Broeck et al., 1994). Importantly, Fernández et al. have shown that when dealing with 

cross-sectional data where every firm has its own efficiency, a flat prior on p(hv)∝ hv
-1 such as 

)()(),,( λβλβ pphhp vv ∝ does not yield a posterior distribution (see Theorem 1). However, in 

Proposition 2 they define appropriate prior conditions for hv that yield a well-defined statistical 

procedure. We employ these conditions here to ensure that a posterior is defined. 

 

In our analysis we assume the following prior for β 

(4) )()( Λ∈∝ ββ Ip  

where I(.) is an indicator function that takes the value one if the argument is true and zero 

otherwise. In this context Λ is the region of the parameter space where the constraints implied 

by economic theory (i.e., monotonicity and curvature) are satisfied. 
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It is common practice in Bayesian applications in the frontier literature (e.g., Koop et al., 1994, 

Kleit and Terrell, 2001, Fernández et al., 2002 and O’Donnell and Coelli, 2005) to impose 

regularity conditions drawn from economic theory. This is because the imposition of regularity 

conditions is relatively simple when employing Bayesian techniques compared to Classical 

estimation.  To date many of the Bayesian papers have employed the Cobb-Douglas functional 

form, and as a result, have only been concerned with monotonicity. There are a few papers that 

have estimated more flexible functional forms (e.g., translog) and in these cases curvature is also 

imposed.  In this paper we estimate a translog production function and impose monotonicity and 

quasi-concavity via the indicator function in Equation (4).  

 

To show the impact of imposing the regularity conditions upon our results we estimate four 

Bayesian specification; (i) without regularity conditions imposed; (ii) with regularity conditions 

imposed at sample means; and (iii) with regularity conditions imposed at all data points. Like 

O’Donnell and Coelli (2005) we employ a random-walk Metropolis-Hastings (MH) step in our 

Gibbs sampling algorithm to estimate the model when imposing the regularity conditions at all 

data points. In this case we conducted 500,000 MH iterations with 100,000 “burn-in”, with 

every tenth draw being recorded. Where the Gibbs sampler was feasible the introduction of the 

MH step gave equivalent results, but convergence was significantly slower. 

 

The choice of prior for λ is taken from Fernández et al. (1997) and it is of the following form 

(5) ))ln(,1()( *1 rfp G −=−λ  

where r* is the prior median of the efficiency distribution. The results for the informative prior 

(r*) of 0.875 are presented. In terms of existing Bayesian applications the choice of value for the 

prior median of efficiency has varied, with Koop et al. (1997) employing 0.85, Kim and 

Schmidt (2000) employing 0.8 and Kleit and Terrell (2001) employing 0.875. The choice of 

informative prior used here is therefore consistent with the literature. In addition our results 

were found to be robust to the choice of informative prior for the type of values typically 

employed in the literature. 

 

Finally, the choice of prior for hv (also from Fernández et al. (1997)) is  

(6) )exp()( 02
20

ahhhp v

n

vv −=
−

 

with n0 ≥ 0 and a0 >0. We set n0 = 0 and a0  equal to a very small numbers. We found that setting 
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n0 equal to zero or a small number, and doing an equivalent examination of a0, yielded very 

robust results for n0 , whereas the results were fairly invariant for a0  for values less than 10-2 but 

induced a stall in the sampler when set above this level.   

 

To conduct Bayesian inference on our model using Gibbs sampling we make sequential draws 

from the following conditional posteriors. 

(7) *))ln(|(),,,|( 111 ruNfuhyp Gv −= −−− λλβλ  

(8) 













 −+=−

0
01

2
',

22
),,,|( avvnNfuyhp Gv λβ  

(9) )())(,(),,,|( 1'1 Λ∈×∝ −− ∑ βλβ Ixxhbfuhyp iivNv  

(10) 

∏
=

−−

−
−

−

=

>×







−−∝

n

i
viv

iviiNvi

hyuphyup

uIh
h

xyfhyup

1

11

1
1

'1

),,(),,,(

),0(,),,,|(

λβλβ

λβλβ
 

In terms of the results of interest our focus will be the marginal density functions of β and the 

measure of technical inefficiency. We derive our results by taking MCMC draws from the joint 

posterior density. 

  

To assess the convergence of our model we estimated each specification several times to ensure 

that the results were consistent. The 50,000 (every tenth draw of 500,000) draws that were 

collected from the MCMC algorithm after the “burn-in” phase, were split into two equal 

samples and the parameter estimates (means of the posteriors) were compared. Over a number 

of runs of the data we found all our parameter estimates to be consistent to at least three decimal 

places.   

 

2.3. DEA 

 

The DEA methodology used in this paper is based on linear programming. Like Simar and 

Wilson (1998) we estimate an input-orientated model. The input-orientated DEA efficiency 

estimator 0θ̂ for any data point (x0,y0),is derived by solving the following linear program: 

(11) ∑ ∑ ∑
= = =

=≥=>≥≤=
n

i

n

i

n

i
iiiiii nixxyy

1 1 1
000 },......1,0;1;0;;|min{ˆ γγθγθγθθ  
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where y and x are observed outputs and inputs, and γ is a non-negative intensity variable used to 

scale individual observed activities for constructing the piecewise linear technology. There are 

two points to note about Equation (11). First, we can impose CRS by removing the constraint 

∑
=

=
n

i
i

1
1γ from the DEA program. Second, Simar and Wilson (1998, 2000) observe that 0θ̂ is an 

upward biased estimator of 0θ . The importance of this observation will become apparent when 

we examine the DEA interval estimates.  

 

To derive interval estimate for our DEA efficiency estimates 0θ̂ we follow Simar and Wilson 

(1998 and 2000) by using bootstrapping. We employ their Homogeneous bootstrap approach 

that means we are assuming that the inputs are given by random radial deviations from the 

isoquant of the input set. In other words, conditioned on the outputs and the input proportions, 

the stochastic component of production is represented by random input efficiency measures. By 

employing the homogenous bootstrap we are implicitly assuming that inefficiency does not vary 

with farm size, which is somewhat analogous to assuming homoskedasticity in linear regression. 

 

The reason why bootstrap procedures have been adopted in this context is because very few 

results exist for the sampling distributions of interest (see Simar and Wilson, 2000, for 

details).  The idea behind bootstrapping is simple. We simulate the sampling distribution of 

interest by mimicking the DGP. The DGP here is the DEA program described by Equation 

(11). To implement the bootstrap procedure we assume that the original sample data is 

generated by the DGP and that we are able to simulate the DGP by taking a “new” or pseudo 

data set that is drawn from the original data set. We then re-estimate the DEA model with this 

“new” data. By repeating this process many times we are able to derive an empirical 

distribution of these bootstrap values that gives a Monte Carlo approximation of the sampling 

distribution that facilitate inference procedures. The performance of the bootstrapping 

methodology and the reliability of the statistical inference crucially depends on how well the 

DGP characterises the true data generation and the accuracy of the re-sampling simulation to 

copy the DGP. 

 

The Monte-Carlo algorithm we employ is that of Simar and Wilson (1998). The steps 

involved are follows:  

1. Estimate for all firms in the sample data iθ̂ for i=1,……,n. 
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2. Employ the smoothed bootstrap procedure to generate a random sample of 

size n from iθ̂ i=1,…..,n which provides **
1 ,....... nbb θθ . The smoothed bootstrap 

approach overcomes problems identified with other bootstrap DEA estimates 

(Simar and Wilson, 2000). Using the smoothed bootstrap requires we choose a 

smoothing parameter (ς) as part of the algorithm. 

3. The pseudo data, },......1),{( ** niyx iibb =χ  is now computed where *
ibx is 

estimated as iibiib xx )/ˆ( ** θθ= , i=1,……n.  

4. Compute the bootstrap estimate *
,

ˆ
biθ of iθ̂  by solving for each 

(x0,y)

∑ ∑ ∑
= = =

=≥=>≥≤=
n

i

n

i

n

i
iibiiii nixxyy

1 1 1

*
,000 },......1,0;1;0;;|min{ˆ γγθγθγθθ  

5. Repeat steps 2-4 B times to yield for i=1,….n a set of estimates 

},........,1,ˆ{ *
, Bbbi =θ . 

 

Having completed the bootstrap procedure we are in a position to derive interval estimates. 

At this point we depart from the approach described in Simar and Wilson (1998) and instead 

follow their revised approach described in Simar and Wilson (2000). 

 

Specifically, we can use the empirical distribution of the pseudo estimates *
b̂θ to find 

estimates of δa and δb . To find δâ and δb̂ requires sorting )),(ˆ),(ˆ( 0000
* yxyxb θθ − for 

b=1,……,B in increasing order and then deleting (δ/2*100) percent of the elements from 

either end such that δâ and δb̂ are equal to the endpoint values, such that δâ ≤ δb̂ . Simar and 

Wilson (2000) note that it is tempting to construct a bias corrected estimator of θ . However, 

this can introduce additional noise to the bootstrap procedure. They provide a rule for when 

bias correction can be employed. For the data considered here it was found that bias-

correction was unnecessary. Thus, the 100(1-δ)% confidence interval is then 

δδ θθθ byxyxayx ˆ),(ˆ),(ˆ),(ˆ 000000 +≤≤+ . 

 

3. Existing Findings from Methodological Comparisons 

 

3.1. Points Estimates of Technical Efficiency 
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There are many applied studies in the literature that compare point estimates of technical 

efficiency for DEA and CSFA. Most studies report a difference between average estimates of 

technical efficiency derived using the alternative methodologies e.g., Bravo-Ureta and Rieger 

(1990), De Borger and Kerstens (1996), Sharma et al. (1997), Bauer et al. (1998), Cummins and 

Zi (1998), Wadud and White (2000), Brümmer (2001) and Latruffe et al. (2004).  Frequently, 

CSFA yields a higher average estimate of technical efficiency than DEA.  However, most 

studies then report relatively high rank correlation coefficient estimates of technical efficiency 

between methods.  

 

When lower rank correlation coefficient estimates between alternative methodologies are 

reported these results can typically be explained by fundamental differences in methodology. 

For example, De Borger and Kerstens (1996) found differences between parametric and non-

parametric approaches. Similarly Cummins and Zi (1998) found when comparing a variety of 

CSFA and mathematical programming techniques that the rank of efficiency estimates was 

stable for all CSFA approaches but less so when compared with DEA and Free Disposal Hull 

(FDH).  Hence, they concluded that the choice of frontier method significantly effects the 

conclusions of an efficiency study. 

 

A useful way to place the above finding in context is to consider findings of Gong and Sickles 

(1992). They used Monte Carlo techniques to compare CSFA and DEA. They found that the 

relative performance of CSFA is greater than DEA if the choice of functional form is close to 

the underlying technology i.e., DGP. But, as the degree of misspecification between the 

underlying technology and functional form increases DEA becomes more attractive. What this 

implies is that differences identified between alternative methods may well result from one 

method or another more closely capturing the DGP. However, as the DGP is unknown to 

applied researchers it is difficult (if not generally impossible) to necessarily advocate one 

method over another. Sickles (2005) also presents the findings of a Monte Carlo study that 

examines not only CSFA and DEA estimators but also some semiparametric estimators. The 

thrust of the results reported are in keeping with the earlier findings of Gong and Sickles. 

 

Finally, several papers in the literature attempt to provide guidance for applied researchers 

regarding the appropriate choice of frontier method or methods to employ. These papers, such as 

De Borger and Kerstens (1996) and Bauer et al. (1998), provide sets of conditions with which to 
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evaluate efficiency estimates.  De Borger and Kerstens concluded that given the various 

measures (e.g., point estimates and correlation coefficients) they advocate using to assess 

different frontier methods that it is sensible to analyse efficiency using a variety of methods as a 

check on the robustness of the results generated by any single method.  Bauer et al. extend this 

approach by also including conditions that require the researcher to undertake qualitative reality 

check of the results generated. Common to both is the observation that researchers can be more 

confident in their findings if different methods yield consistent results. An interesting and 

natural extension to the ideas in De Borger and Kerstens and Bauer et al. is the model averaging 

approach proposed by Sickles (2005). Sickles illustrates results for a simple weighting of 

efficiency estimates of all methods he employs. Model averaging of efficiency results, because 

of uncertainty over model specification, has previously been successful employed in the frontier 

literature by van den Broeck et al. (1994).   

 

3.2. Interval Estimates of Technical Efficiency 

 

To date there have been very few studies that have compared interval estimates of technical 

efficiency derived from alternative frontier estimation methodologies. However, in the Bayesian 

literature much has been made of the strength of BSFA relative to CSFA in that inference of the 

efficiency estimates follows directly from estimation. As Koop et al. (1997) observe the,  

"adoption of a Bayesian perspective for making inferences from such models, since such 

an approach yields exact finite sample results, allows us to mix over models, to conduct 

inference on the actual efficiencies, and surmounts some difficult statistical issues which 

arise in classical analysis." (p. 79). 

But, Kim and Schmidt (2000) argue that the classical approach to confidence interval 

construction based on Jondrow et al. (1982) has a Bayesian flavour. As Kim and Schmidt 

note;  

“The main difference between this distribution and a Bayesian posterior distribution 

is that it relies on asymptotics to ignore the effects of parameter estimation, whereas 

the uncertainty due to parameter estimation will figure into the Bayesian posterior. 

We might expect this difference not to matter very much when N is large, however.” 

(p. 95) 

Furthermore, Kim and Schmidt (2000) when comparing CSFA and BSFA with a specific focus 

on inference results found there to be significant advantages to estimation that employs 
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distributional assumptions, and that there are few differences between CSFA and BSFA results 

if the same modelling assumptions are employed (e.g., fixed effect vs random effects). 

 

Brümmer (2001) compared DEA and CSFA for a sample of farms in Slovenia. He found the 

CSFA confidence intervals to be wider than the DEA confidence intervals, attributing this to the 

more restrictive assumptions of DEA. Brümmer also notes that the separation of the sample into 

distinct groups (i.e. low, medium and high efficiency) is easier for low levels of efficiency. As a 

result he concludes that the pessimistic conclusions that are drawn regarding the point estimates 

of technical efficiency for Slovenian agriculture need to be tempered. Latruffe et al. (2004) 

report very similar results to Brümmer albeit with a cross-sectional data set. 

 

4. Data and Estimation 

 

4.1. Data 

The data for this study were taken from an Australian wide survey of dairy farms conducted in 

2000 as part of the Dairying for Tomorrow project for the Dairy Research Development 

Corporation (DRDC) (DRDC, 2000). The date of the survey is important as all data were 

collected prior to the deregulation of milk marketing in Australia. Our analysis will reveal those 

farms performing at lower levels of technical efficiency and it may be conjectured, likely too 

struggle in the new competitive market environment.  

 

The data was collected by a thirty-minute phone survey. The survey covered all the main dairy 

production regions in Australia. Our analysis focuses on one of the eight main dairy regions in 

Australia, the River Murray region of Victoria and New South Wales.  We selected this region 

to conduct our analysis for two reasons. First, the Murray region yielded a relatively large 

sample, 241 family run dairy farms. Second, almost all dairy farmers in this region (i.e., over 90 

percent) irrigate their pasture. This compares to a national average of 60 percent reported by 

DRDC (2000).  In Australia irrigation water is an increasingly binding input in production 

because of increasing consumption and the need to accommodate environmental flows. Both the 

Australian Academy of Technological Science and Engineering (AATSE) (1999) and the 

DRDC (1999) note the need for improved water use efficiency in irrigated agriculture, 

especially dairying, if farming is to remain viable.  
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The data used covers the 1999/2000 lactation season.  A summary of the data used is presented 

in Table 1. 

 {Approximate position of Table 1} 

The data set contains one output and four inputs.  All data are normalised by farm area so all 

measures are per hectare. Our output is litres of milk standardised to 4 percent fat. In terms of 

input use we were able to construct four from the survey. First, we took information on various 

forms of additional/supplementary feed to construct a dollar measure of purchased feed. Second, 

the number of cows is a measure of the number of animals in the milking herd. Third, as a 

measure of irrigation water use, we did not have available the number of megalitres of water 

applied. Instead we employ area in hectares of the farm irrigated.  We would argue that this 

measure of irrigation water use is a reasonable proxy since all farmers in this region have to pay 

significant sums of money for water and will equate marginal benefits and costs. There is also a 

well functioning market in the transfer of water right entitlements between users.  Four, we have 

a composite measure of fertiliser. The fertiliser input is an aggregate measure of various inputs 

such as Super phosphate, urea and gypsum and is measured as dollars spent per annum.  

 

4.2. Estimation 

 

In terms of the importance of the choice of functional form on estimates of technical efficiency 

evidence in the literature is mixed. Some authors state that the choice of functional form makes 

little difference to the estimates of technical efficiency. For example, Ahmad and Bravo-Ureta 

(1996) found that switching from a Cobb-Douglas functional form to translog yielded almost 

identical average, minimum and maximum technical efficiency estimates. In terms of statistical 

properties they rejected the Cobb-Douglas functional form in favour of their simplified translog, 

but this does not appear to affect efficiency measures derived.  Battese and Broca (1997) report 

similar results. In contrast, Koop et al. (1994) found that the choice of functional did impact on 

their efficiency estimates when moving from a Cobb-Douglas to an Almost Ideal Model for a 

cost function.  Brümmer (2001) also rejected the use of a Cobb-Douglas compared to a translog 

production function.  

 

For both CSFA specifications we estimated the generalized likelihood-ratio statistic, which is 

distributed 2
)( Jχ , to test the null that a Cobb-Douglas frontier was an adequate representation of 

the data as opposed to a translog (i.e., H0: βij=0). In both cases we were able to reject the null 
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hypothesis. Given these results a non-constant returns to scale translog frontier production 

function is estimated.  Our production function takes the following form: 

(12) ∑∑∑
= ==

−+++=
4

1

4

1
ji

4

1
2

1Ln
j k

iikijijk
j

jii uvXXXY ββα  

where βjk = βkj (k≠j) and subscript i represent the i-th farm and i = 1.....241 is the number of 

farms in the sample. Y represents output of milk per hectare, X1 is the logarithm of the number 

of cows per hectare, X2 is the logarithm of the ratio irrigation area to total farm area, X3 is the 

logarithm of the cost fertiliser per hectare, and X4 is the logarithm of the cost of 

supplementary feed per hectare. 

 

5. Results 

 

Our results are presented in the following order. We begin by examining the production frontier 

function estimates for the CSFA and BSFA specification. We then examine the point estimates 

of technical efficiency for all estimation method. Finally, we examine interval estimates of 

technical efficiency. 

 

5.1. Stochastic Frontier Analysis 

 

We begin by presenting results derived when estimating Equation (12) assuming that ui is a half-

normal (CSFA) and exponential probability distribution (BSFA, CSFA). To simplify the 

examination of our results, prior to estimation we normalised our sample data by dividing 

throughout by the sample mean of each variable. Thus, our βi (i=1,2,3,4) estimates are equal 

to 
iX
Y

∂
∂ ln . This also allows us to check if the monotonicity condition is satisfied, by examining 

the parameter estimates. The production function estimates, Bayesian posterior means and 

Classical point estimates are reported in Table 2.  

 {Approximate Position of Table 2} 

The results in Table 2 show a great degree of uniformity.  The exponential specifications, 

irrespective if Classical or Bayesian, yielded almost identical results. There are small changes 

for the Bayesian specification for theory imposed at all data points but these are generally 

marginal and do not alter the interpretation of the results. For the two Classical specifications 

there are small differences but these are very minor.  The lack of variation in our frontier 
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production function results as we impose theory is not unexpected. We found that the 

unrestricted data does not conform to monotonicity and/or curvature at for only 19 out 241 data 

points.  Indeed our frontier parameter estimates suggest that there are many characterisations of 

the DGP that do equally well.  Hence, if interest, is exclusively in the regression parameter 

estimates, with this data it would really not make much, if any difference, which methodology 

we employed. Kim and Schmidt (2000) make similar observations regarding all three data sets 

employed in their analysis. 

 

For the input elasticities for all of the Bayesian specifications reported in Table 2 we find that all 

of the posterior mass is to the positive side of zero. For the Classical specifications most 

parameter estimates are statistically different from zero. In all cases, as we would expect for 

farm level dairy data, the number of cows is the most important contributor to the quantity of 

milk produced.  Both the area irrigated and expenditure on supplementary feed, are statistically 

significant. The only input in our data that is not significant for most specifications is fertiliser 

(β3). However, we can see from Table 2 that as we impose the theoretical restrictions every more 

tightly the parameter on fertiliser increases. In terms of returns to scale for all specifications the 

sum of the parameters is very close to one. Indeed, for both CSFA specifications performing a 

generalized likelihood-ratio statistic, which is distributed 2
)( Jχ , we were unable to reject a null 

hypothesis of constant returns to scale. 

 

Finally, we can consider the degree of technical inefficiency in our sample. For our Classical 

models the relative magnitude of variances indicates the existence of technical inefficiency. 

Similarly, for the Bayesian specifications the estimate of λ is large resulting in the derivation of 

farm level estimates of technical inefficiency. This statistical significance of this result is 

provided by the one-sided generalized likelihood-ratio test to test the null hypothesis of no 

technical inefficiency effects for both CSFA models. In both cases we were able to reject the 

null hypothesis of no technical inefficiency in our models. 

 

5.2.       Comparison of Technical Efficiency Estimates 

 

5.2.1 Mean Estimates 
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We now examine the farm level technical efficiency estimates (i.e., posterior means for the 

Bayesian specifications) generated by all the estimation methodologies.  As these estimates are 

frequently the focus of efficiency estimation for policy makers it is important to see if any 

differences between the alternative methodologies can be identified.  Technical efficiency 

estimates for a random sample of ten farms as well as various summary and out-of sample 

predictive measures are reported in Table 3. 

 {Approximate Position of Table 3}  

In general the results in Table 3 show that the average estimates of technical efficiency for the 

various methodologies appear to be relatively similar except for DEA that has a lower average.  

This finding is in keeping with most other comparative studies in the literature. Furthermore, this 

result is not surprising given the fact that Zhang and Bartels (1998) have shown that for larger 

samples DEA average estimates of technical efficiency are smaller. Indeed with our data it was 

found that by randomly reducing sample size that sample average technical efficiency increases. 

 

The bottom part of Table 3 reports out-of-sample predictive efficiencies for all exponential 

specifications. These summary measures are frequently reported in the Bayesian stochastic 

frontier literature (e.g., van den Broeck et al., 1994, and Koop and Steel, 2001) and are 

interpreted as measuring the performance of a (maybe hypothetical) firm. Van den Broeck et al. 

describe this measure as a,” Bayesian counterpart of the classical characteristics of ‘average’ 

inefficiency.” (p. 279). We have computed these measures following van den Broeck et al. and 

we find that there is virtually no difference between these measures (Bayesian or Classical) and 

the summary measures of technical efficiency also reported in Table 3.  The equivalence of 

sample average and out-of-sample estimates is in keeping with the findings of Huang (2004).  

 

In summary, even allowing for the lower DEA average all our estimates of technical efficiency 

are within the range of existing estimates in the literature for dairy farms (Ahmad and Bravo-

Ureta, 1996, p. 409).  Furthermore, with an average level of technical efficiency from all 

methodologies of approximately 80 percent, irrespective of estimation methodology, the farms 

in this sample can be considered very efficient. This result may not be surprising given that 

dairying in Australia is a mature industry with a well-established extension services distributing 

information on current best practice on a regular basis. Indeed, it is probably unrealistic to 

expect higher average estimates of technical efficiency when we allow for exogenous stochastic 

events that disrupt production such as human error, machinery malfunctions and disease 

outbreaks. 
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An important aspect of the point estimates of technical efficiency is seen by examining the 

results in Table 4. 

{Approximate Position of Table 4} 

The results in Table 4 show the frequency distribution of technical efficiency for all the methods 

employed as well as the results for each specific methodology. The most striking feature of the 

results is that for all frontier methods there is an obvious tail of inefficient farms. This tail is 

fatter and longer for the DEA results.  

 

From Table 4 we can also identify for CSFA and BSFA the bottom decile of farms.  These 

results, like those of the DEA, indicate that there are a significant number of technically 

inefficient farms in our sample. But, unlike DEA these farms are part of a much narrower tail 

and as a result more easily identified.  However, the identification of the best performing farms 

is less clear with CSFA and BSFA, with so many farms yielding technical efficiency estimates 

clustered around 0.85. As a result we would argue that it is easier to identify those farms that are 

performing badly compared to farms that are truly best practice. This result is important for 

applied practitioners of frontier research in that CSFA and BSFA provide a strong 

characterisation of poorly performing farms. As we noted in the Introduction it is the 

identification of this very group of farmers that is most important given the recent institutional 

changes in the Australian dairy industry. 

 

To statistically examine differences between the results generated by the estimation 

methodologies we use various statistical tests. First, we examine if the sample mean estimates of 

technical efficiency are statistically different from each other. By performing a simple t-test on 

the difference between sample means for paired data we find that there are significant 

differences at the five percent level of significance between DEA and all other methodologies, 

and between the Classical half-normal specification and all the exponential specifications. 

However, there are no significant differences between any of the exponential specifications. 

 

Second we estimate the Spearman Rank Correlation Coefficient (SRCC) between the technical 

efficiency estimates to examine if the relative rank of the farms is consistent between the 

estimation methods, even if the actual estimates differ in terms of magnitude.  The null 

hypothesis tested is that there is no statistical relationship between the two variables. The 

results for the SRCC are presented in Table 5.  
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{Approximate Position of Table 5} 

In all cases we reject the null hypothesis at the 1% significance level. Hence, the SRCC 

results indicate that the rank of the farms is statistically invariant to the choice of estimation 

methodology.  

 

Our findings presented in this section are in keeping the vast majority reported in the literature to 

date. For example, Kumbhaker and Lovell (2000) note that sample mean efficiencies are 

sensitive to the distribution assigned to the one-sided error component and there is plenty of 

evidence to this effect.  This finding is mirrored here in terms of the choice of half-normal and 

exponential distributions. Kumbhaker and Lovell also report that the choice of distribution does 

not significantly influence the rank of pairs of efficiency estimates. Again our results support 

Kumbhaker and Lovell. In terms of dairy studies, our results are also in keeping with the 

literature e.g., Bravo-Ureta and Rieger (1990) and Ahmad and Bravo-Ureta (1996).  

 

5.2.2.      Interval Estimates  

 

We now extend our comparison of farm level technical efficiency estimates to include interval 

estimates generated by the alternative frontier estimation methodologies.  We estimate 95 

percent confidence intervals for the DEA and CSFA specifications and the BSFA credible 

interval estimates are the 2.5 and 97.5 percentiles of the marginal densities. Our interval 

estimates presented in Table 6 are for the same ten farms highlighted in Table 3. 

{Approximate Position of Table 6} 

First consider the DEA confidence interval estimates.  The results presented are for ς=0.057. 

Like Simar and Wilson (1998) we allowed our bootstrap algorithm to search over a large range 

of values of ς to find the optimal value. There are two features of the confidence interval 

estimates reported. First, for all farms the resulting confidence interval does not include the point 

estimate. For example, farm 1 has a point estimate of 0.76 and an upper bound of 0.74.  As we 

previously noted, the DEA program is an upward biased estimator and the confidence interval 

estimation takes this into account. This finding is entirely consistent with Simar and Wilson 

(2000). Second, the DEA confidence intervals are in many, but not all, cases significantly 

narrower than for the other model specifications.  This type of result has previously been 

reported by Brümmer (2001), who attributes it to the alternative modelling philosophies of DEA 

and stochastic frontiers. DEA is deterministic with data treated as if observed with certainty and 

random errors in production ignored. Only if the underlying DGP is accurately represented by 
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our DEA model can we consider these results to be more accurate than those generated by the 

other methodologies examined. 

 

Turning to the CSFA interval estimates we can see from Table 6 that irrespective of choice of 

distribution the upper bound is frequently equal or very close to one. This finding is slightly less 

common for the half-normal specification but with an average estimated upper bound of 0.88 

this is still much higher than the DEA results.  Again, these results are in keeping with those of 

Brümmer (2001). When we compare the CSFA exponential with the three BSFA specifications 

we see that the upper bound estimates are almost identical and the lower bound estimates are 

only marginally less so.  

 

Finally, a result common to all methods is that the interval estimates for many of the farms in the 

sample overlap. That is, the intervals for many of the farms include values also included in many 

of the other farms intervals.  This overlapping of the intervals has been identified previously in 

the literature by Brümmer (2001), and it means that we have to be more conservative about the 

interpretation we place on our point estimates. This is particularly pronounced for the 

exponential results that have a large number of farms with an upper bound equal or nearly equal 

to one. 

 

6. Summary and Conclusions 

 

In this paper we have employed various frontier estimation methodologies to estimate technical 

efficiency for a sample of irrigated dairy farms. We have examined both point and interval 

estimates of technical efficiency. For the data examined and the particular methodological 

specifications employed we find some differences in the results generated by the alternative 

frontier approaches. 

 

Our point estimate results indicate that there is some evidence of differences between average 

farm level technical efficiency. We also found that our CSFA and BSFA results provided a 

sharper distinction of technically inefficient as opposed to technically efficient farms. However, 

when we examine the relative rank of the farms using the SRCC we find that all methods are 

statistically significant and close to one, implying that the efficiency rank of farms is consistent 

across methodologies.  Both results are in keeping with previously reported research in much of 

the literature, which compares frontier estimation methodologies.  
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From an applied perspective the statistical robustness of the rank of point estimates of technical 

efficiency is reassuring. It means that analysts will be able to accurately identify those farms 

operating at lower levels of technical efficiency irrespective of methodology employed.  

However, when analysts are concerned about the relative level of technical efficiency the 

statistical differences identified raises serious questions as to the appropriate choice of 

methodology.  But, this finding needs to be qualified when we extend our analysis and also 

consider interval estimates of technical efficiency. We find that there is significant overlap of 

intervals for all farms for each methodology employed. The BSFA credible interval estimates 

are in keeping with CSFA exponential specification. This result parallels closely the findings of 

Kim and Schmidt (2000).  For the DEA confidence intervals, although narrower than the CSFA 

and BSFA specifications, we would argue is simply a function of the underlying modelling 

assumptions. 

 

Taken together our interval estimates imply that we can no longer place such a strong 

interpretation on the point estimates in terms of the actual efficiency score estimate. Instead we 

have to satisfy ourselves with being able to identify efficient and inefficient groups of farms but 

for many of the farms we can no longer statistically distinguish their degree of technical 

efficiency.  As previously observed by Brümmer (2001), identification of a group of inefficient 

farms is easier than identifying efficient farms as so many especially with CSFA and BSFA 

have upper bound intervals close or equal to one. These results raise questions as to the 

ability of frontier methods to identify best practice in way frequently demanded by applied 

researchers and practitioners. 

 

Finally, in the Introduction we addressed the question of the meaning of comparative analysis of 

different frontier techniques using empirical data. We recognised that identifying the best 

characterisation of the DGP was a critical step for choosing the correct method, since estimation 

methods, as employed in this paper, incorporate very different assumptions regarding the DGP. 

This issue has been examined in the literature before, and continues to be of interest. Gong and 

Sickles (1992), and more recently, Sickles (2005) have shown using Monte Carlo methods how 

the preferred choice of method changes depending on the underlying technology (i.e., DGP).  

Although less than perfect, the sets of criteria proposed by De Borger and Kerstens (1996) and 

Bauer et al. (1998) also provide some insights into the issue of choice of methodology.  We 

agree with De Borger and Kerstens and Bauer et al. who argue that researchers should attempt to 

Page 56 of 68

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

 23

select reference technologies based on economic arguments. When this is not possible De 

Borger and Kerstens note that there may well be no solution to identifying the best (most 

appropriate) reference technology and that we should employ several methods simultaneously 

and consider a synthesis of the results.  Interestingly, this is the approach advocated and being 

formalised by Sickles. Our findings in this paper add support to this viewpoint.  Indeed, we have 

no a priori reason to assume that one or other frontier method will “better” capture the 

underlying DGP of our data. The fact that we generate results that provide only minimal 

evidence regarding any difference between DEA and stochastic frontiers, and that these 

differences can be explained by the deterministic nature of DEA and its upwardly biased point 

estimates and narrow interval estimates of technical efficiency, only adds further support to the 

view that we should consider a synthesis of results. 
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Table 1: Descriptive Statistics 

 

Variable Type Units Summary Measures  
Total Milk  Output Litres/hec Mean 

Low 
High 

10983 
1901 
37500 

Number of 
Cows  

Input (X1) Number per 
hec 

Mean 
Low 
High 

2.24 
0.51 
6 

Area Irrigated Input (X2) Hec/hec Mean 
Low 
High 

0.9 
0.04 
1 

Expenditure on 
fertiliser 

Input (X3) $/hec Mean 
Low 
High 

170 
11 
667 

Expenditure on 
supplementary 
feed 

Input (X4) $/hec Mean 
Low 
High 

3.6 
0.06 
20 
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Table 2: Production Function Results 
Classical Point Estimates and Bayesian Posterior Means 

 
 Classical 

Exponential 
Classical Half-
Normal 

Bayesian 
Unrestricted 

Bayesian – 
Restricted  at 
Sample Means 

Bayesian – 
Restricted at all 
data points 

α 0.218 
(0.03) 

0.295 
(0.033) 

0.215 
(0.029) 

0.217 
(0.028) 

0.215 
(0.026) 

β1 0.694 
(0.07) 

0.703 
(0.074) 

0.691 
(0.064) 

0.685 
(0.062) 

0.632 
(0.055) 

β2 0.115 
(0.07) 

0.128 
(0.076) 

0.113 
(0.067) 

0.121 
(0.061) 

0.175 
(0.05) 

β3 0.055 
(0.036) 

0.041 
(0.04) 

0.056 
(0.03) 

0.059 
(0.029) 

0.083 
(0.023) 

β4 0.164 
(0.034) 

0.161 
(0.037) 

0.167 
(0.03) 

0.166 
(0.03) 

0.165 
(0.028) 

β11 -0.498 
(0.145) 

-0.524 
(0.165) 

-0.473 
(0.156) 

-0.481 
(0.156) 

-0.326 
(0.113) 

β22 -0.035 
(0.048) 

-0.033 
(0.051) 

-0.031 
(0.045) 

-0.03 
(0.043) 

0.001 
(0.019) 

β33 -0.012 
(0.038) 

-0.019 
(0.039) 

-0.013 
(0.038) 

-0.018 
(0.035) 

-0.012 
(0.018) 

β44 0.046 
(0.02) 

0.044 
(0.023) 

0.048 
(0.016) 

0.048 
(0.016) 

0.029 
(0.01) 

β12 0.295 
(0.13) 

0.307 
(0.136) 

0.282 
(0.122) 

0.286 
(0.121) 

0.191 
(0.082) 

β13 0.232 
(0.103) 

0.258 
(0.104) 

0.226 
(0.106) 

0.231 
(0.103) 

0.108 
(0.07) 

β14 0.083 
(0.103) 

0.094 
(0.119) 

0.071 
(0.09) 

0.07 
(0.09) 

0.066 
(0.055) 

β23 -0.046 
(0.062) 

-0.069 
(0.068) 

-0.046 
(0.059) 

-0.043 
(0.055) 

-0.016 
(0.028) 

β24 0.007 
(0.055) 

0.025 
(0.058) 

0.008 
(0.057) 

0.009 
(0.055) 

0.012 
(0.027) 

β34 -0.047 
(0.028) 

-0.051 
(0.03) 

-0.046 
(0.031) 

-0.043 
(0.029) 

-0.019 
(0.022) 

hv 0.021 0.014 0.024 
(0.001) 

0.024 
(0.001) 

0.026 
(0.001) 

hu  0.048    
λ 
 

0.207  
 

0.207 
(0.026) 

0.206  
(0.025) 

0.198 
(0.026) 

  
Note: Values in brackets are standard errors for the classical results and standard deviations of the 
posterior distributions for the Bayesian Results. 
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Table 3: Farm Specific Technical Efficiency Estimates 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Farm DEA Classical 
Exponential 

Classical Half-
Normal 

Bayesian - 
Unrestricted

Bayesian – 
Restricted  at 
Sample Means 

Bayesian – 
Restricted at all 
data points 

1 0.76 0.92 0.9 0.92 0.92 0.91 
2 0.77 0.91 0.88 0.91 0.91 0.92 
3 1 0.92 0.9 0.91 0.91 0.92 
4 0.80 0.91 0.87 0.91 0.91 0.91 
5 0.83 0.93 0.91 0.93 0.93 0.92 
6 0.87 0.94 0.92 0.94 0.94 0.94 
7 0.52 0.77 0.67 0.78 0.78 0.81 
8 0.58 0.85 0.77 0.85 0.85 0.82 
9 0.82 0.91 0.86 0.90 0.90 0.91 
10 0.39 0.60 0.53 0.62 0.62 0.64 

Sample Summary Statistics 
Mean 0.65 0.82 0.77 0.83 0.83 0.84 
Standard 
Deviation 0.16 0.12 0.13 0.11 0.11 0.11 
Minimum 0.21 0.31 0.28 0.31 0.31 0.33 
Maximum 1.00 0.96 0.96 0.96 0.96 0.96 

Out-of-Sample Predictive Efficiency 
Mean  0.83  0.83 0.83 0.84 
Standard 
Deviation  0.15  0.15 0.15 0.14 

Page 65 of 68

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

 32

Table 4: Frequency Distribution of Technical Efficiency Estimates for all Models 
 

Efficiency 
Score DEA 

Classical 
Exponential 

Classical 
Half-Normal 

Bayesian 
Unrestricted 

Bayesian – 
Restricted 
Sample 
Means 

Bayesian – 
Restricted at 
all data points

< 0.35 8 2 2 1 1 1 
0.35-0.39 6 2 2 1 2 2 
0.40-0.44 6 1 2 2 1 1 
0.45-0.49 18 1 5 1 1 1 
0.50-0.54 20 3 8 3 3 2 
0.55-0.59 33 7 9 6 6 5 
0.60-0.64 26 11 16 9 9 6 
0.65-0.69 32 3 23 5 5 8 
0.70-0.74 33 18 26 14 14 11 
0.75-0.79 20 24 28 26 24 19 
0.80-0.84 11 32 39 33 36 43 
0.85-0.89 9 60 47 64 65 64 
0.90-0.94 3 72 30 73 71 74 
0.95-1.00 15 4 3 3 3 4 
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Table 5: SRCC 
 

 
Note: * Statistically significant at 1% level (2 tailed).  
 

 DEA Classical 
Exponential 

Classical 
Half-Normal 

Bayesian 
Unrestricted 

Bayesian -  
Restricted 
Sample 
Means 

Classical Exponential 0.842* 
 

    

Classical Half-Normal 0.835* 
 

0.998*    

Bayesian Unrestricted 0.831* 
 

0.998* 0.996*   

Bayesian - Restricted 
Sample Means  

0.834* 0.997* 0.996* 0.997*  

Bayesian – Restricted 
at all data points 

0.833* 0.997* 0.995* 0.997* 0.996* 
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Table 6: 95 Percent Confidence/Credible Interval Estimates  

 

Farm 
DEA 

Lower  Upper 

Classical 
Exponential 
Lower Upper 

Classical 
Half-Norma 
Lower  Upper 

Bayesian 
Unrestricted 
Lower      Upper 

Bayesian 
Restricted 
Sample Means  
Lower      Upper 

Bayesian – 
Restricted at all 
data points 
Lower     Upper 

1 0.69 0.74 0.78 1.00 0.75 0.99 0.79 0.99 0.79 0.99 0.77 0.99 
2 0.65 0.74 0.76 1.00 0.72 0.99 0.78 0.99 0.79 0.99 0.79 0.99 
3 0.39 0.95 0.78 1.00 0.75 0.99 0.77 0.99 0.76 0.99 0.79 1.00 
4 0.71 0.78 0.75 1.00 0.72 0.99 0.77 0.99 0.77 0.99 0.77 0.99 
5 0.73 0.80 0.79 1.00 0.76 1.00 0.81 1.00 0.81 0.99 0.80 0.99 
6 0.75 0.83 0.81 1.00 0.79 1.00 0.83 1.00 0.83 1.00 0.83 1.00 
7 0.43 0.50 0.58 0.97 0.52 0.80 0.60 0.96 0.60 0.96 0.63 0.97 
8 0.52 0.56 0.67 0.99 0.61 0.93 0.68 0.98 0.68 0.98 0.64 0.98 
9 0.60 0.79 0.76 1.00 0.70 0.99 0.75 0.99 0.75 0.99 0.77 0.99 
10 0.31 0.37 0.45 0.80 0.40 0.63 0.47 0.81 0.47 0.81 0.48 0.84 

Sample Summary Statistics 

Mean 0.50 0.63 0.66 0.96 0.61 0.88 0.68 0.96 0.68 0.95 0.68 0.96 
SD 0.15 0.16 0.12 0.09 0.13 0.14 0.12 0.09 0.12 0.08 0.12 0.08 
Min 0.05 0.20 0.23 0.40 0.20 0.31 0.23 0.41 0.23 0.41 0.24 0.44 
Max 0.86 0.98 0.87 1.00 0.88 1.00 0.88 1.00 0.88 1.00 0.88 1.00 
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