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Abstract: We consider the question whether top tennis players in a top tour-
nament (Wimbledon) employ an optimal (efficient) service strategy. While
we show that top players do not, in general, follow an optimal strategy, our
principal result is that the estimated inefficiencies are not large: the ineffi-
ciency regarding winning a point on service is on average 1.1% for men and
2.0% for women, implying that — by adopting an efficient service strategy
— players can (on average) increase the probability of winning a match by
2.4%-points for men and 3.2%-points for women. While the inefficiencies may
seem small, the financial consequences for the efficient player at Wimbledon
can be substantial: the expected paycheck could rise by 18.7% for men and
even by 32.8% for women. We use these findings to shed some light on the
question whether economic agents are successful optimizers.
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1 Introduction

Most economists believe that agents maximize something and that they are
successful in doing so. Stigler (1976) provides a typical and outspoken exam-
ple of such a view in his critique of Leibenstein’s (1966) notion of X-efficiency.
Any inefficiency claimed by Leibenstein or others is — according to Stigler
— nothing but a failure to measure all relevant inputs, or to correctly specify
what is being maximized. For example, John Capozzi’s well-known business
maxim:

Only make a great deal if you have no intention of ever doing
business with that person again. . . otherwise make a good deal,

would not — if followed — indicate inefficiency. It might indicate that the
agent does not maximize short-term profit, but he or she would still maximize
long-term profit or, more vaguely, ‘utility.’ Førsund, Lovell and Schmidt
(1980, p. 21) point out that such a view is essentially an act of faith, as it
can be neither proved nor disproved.

Perhaps, however, we can prove or disprove the hypothesis that agents
are successful maximizers. For this we would need a situation where (a) it
is unambiguous what it is that the agent wishes to maximize, and (b) clean
and complete data are available. Under these conditions any apparent sub-
optimality must be true suboptimality. Such a situation can only be found
in a very structured environment. One possibility for creating such an en-
vironment is through a laboratory experiment. This has the advantage of
maximum control, but it also has disadvantages: in laboratory experiments,
reported violations of optimality are often belittled by claiming that the in-
centives were insufficient or that the violations will be eliminated by learning
or by market competition. Although Tversky and Kahneman (1986) agree
that these factors are relevant, they question whether accounting for them
would ensure fully optimal choices. In the end, this is an empirical issue.

Our environment is a field experiment: the service strategy of tennis
players at Wimbledon. This is a real-life setting where high prizes can be
won, competition is fierce, and the players (our agents) are highly trained
and very experienced. They want to win matches on the professional tour,
especially at the ‘grand slam’ tournaments of which Wimbledon is arguably
the most important. It seems reasonable to assume that these agents wish to
maximize the probability of winning a match. In addition, our data are clean.
The tennis environment is therefore ideal to study the efficiency of human
behavior, also because tennis has an unusual and archaic rule which does
not exist in other comparable sports (table tennis, badminton, volleyball),
namely that the server has two chances to bring the ball into play (first
service, second service) rather than one. Even with one service the question
needs to be answered how difficult this service should be: too easy and the
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server loses the point in the subsequent rally, too difficult and the service
will be a fault much of the time. Choosing the right balance is obviously
important. In the current situation the server has two services, and this has
two consequences. First, to determine the optimal strategy of choosing the
strengths of the two services is more difficult than in the one-service case.
Second, the existence of two services doubles the amount of information we
possess about a player’s strategy against a specific opponent.

Based on a simple model we can calculate the players’ optimal strategy
and we can compare this with their actual strategy. The discrepancy (ratio)
between the two defines their efficiency. We shall show that tennis players are
not entirely successful in maximizing their objective function. This is not sur-
prising, because 100% efficiency is humanly unattainable given the continuity
of the decision problem. Our main interest, however, is not a discrete test
for (in)efficiency, but rather an estimate of the continuous measure of how
close top players are to full efficiency. Since we also have a good measure of
the quality differences among the players (position on world ranking), we can
examine how the players’ inefficiencies depend on their quality and competi-
tion within a match. This will shed some light on Tversky and Kahneman’s
(1986) question whether incentives, experience, and competition ensure fully
optimal choices.

We emphasize that our interest is not in relative efficiency (how well does
one agent perform relative to another agent, in particular relative to the
most successful agent), but rather in absolute efficiency (how well do agents
perform compared to the optimum achievable). Thus we shall not assume
that top agents lie on the efficiency frontier. Instead we want to measure
how far they are removed from the frontier. We also note that we do not
measure the efficiency of average agents, but of top agents. We want to know
whether top tennis players are efficient and, if not, how much room for im-
proving their efficiency exists. Several methods have been proposed to allow
for inefficiencies of firms, in particular stochastic frontier analysis; see the
surveys by Førsund, Lovell and Schmidt (1980) and Schmidt (1985/86), the
monograph by Kumbhakar and Lovell (2000), and a Bayesian perspective by
Koop, Osiewalsky and Steel (1997). Nonparametric tests of optimizing be-
havior of consumers as well as firms have been introduced by Varian (1982,
1985). The main emphasis of these studies is, however, the measurement
of efficiency (productivity) of an average agent, while our interest is on the
efficiency of a top agent. The latter should also help us to better understand
the relevance of high levels of experience and ability for efficiency.

Sports statistics (and sports economics) has developed from an anecdotal
field where one collects statistics (so many double faults, so many aces), to an
almost-respectable discipline. An important reason for this development is
that sport statistics can help answer behavioral questions. Moreover, sports
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data are readily available and they are measured much more precisely than
most economic data. This has led to studies on racial discrimination (Gwart-
ney and Haworth, 1974; Kahn and Sherer, 1988; Nardinelli and Simon, 1990;
Stone and Warren, 1999; Szymanski, 2000; Kanazawa and Funk, 2001; and
Goff, McCormick and Tollison, 2002), efficiency of the betting market (Zu-
ber, Gandar and Bowers, 1985; Sauer, Brajer, Ferris and Marr, 1988; Golec
and Tamarkin, 1991; Dixon and Coles, 1997; and Gray and Gray, 1997), com-
parison of betting markets and financial markets (Levitt, 2004), the effect of
labor strikes on consumer demand (Schmidt and Berri, 2004), preferences
under risk (Julien and Salanié, 2000), mixed strategy equilibria (Walker and
Wooders, 2000, 2001; Chiappori, Levitt and Groseclose, 2002; and Palacios-
Huerta and Volij, 2008), incentive effects (Ehrenberg and Bognanno, 1990),
rationality (Gandar, Zuber, O’Brian and Russo, 1988), optimal labor con-
tracts (Lazear and Rosen, 1981), control of externalities (Carlton, Frankel
and Landes, 2004), favoritism (Garicano, Palacios-Huerta and Prendergast,
2005), maximizing behavior of firms (Romer, 2006; and Adams, 2006), and
so on.

The studies most closely related to our paper are Walker and Wooders
(2001), Chiappori, Levitt and Groseclose (2002), Palacios-Huerta and Volij
(2008), Romer (2006), and Adams (2006). Walker and Wooders examine
whether tennis players aim their first service to the receiver’s left or right
(only two options), in such a way that the probability of winning a point
is equal for the two directions, as the theory of mixed-strategy equilibrium
implies. Their results provide some evidence that the behavior of top players
conforms closely to this theory, which contrasts to the conclusions in many
experiments. Our set-up and analysis differs from theirs in three important
respects. First, since the probability of winning a point depends not only
on the direction of the first service (especially when the first service is a
fault), but also on spin, speed, and many other factors, we concentrate on
a broader concept, namely the probability of serving in, and we consider
both the first and second service. Our analysis should therefore have higher
power. Second, since our analysis is continuous rather than discrete, we not
only test for efficiency, but also (and in particular) estimate the magnitude
of the inefficiency. Third, both Walker and Wooders and we are interested in
the relevance of a player’s quality for optimal play. Using a different data set,
involving inexperienced card players, Walker and Wooders reject the theory,
and they take this as evidence that play by high-quality players conforms
more closely to the theory than play by novices. In our analysis, we can test
the relevance of a player’s quality for optimality within a single data set.

Chiappori, Levitt and Groseclose (2002) also test mixed-strategy play,
but now for penalty kicks in soccer rather than for tennis. Their results are
also consistent with optimality, thus confirming the conclusions of Walker
and Wooders (2001). Palacios-Huerta and Volij (2008) bring professional
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soccer players to the laboratory to play card games, and find that they play
close to optimality, in sharp contrast to college students.

Romer (2006) studies profit maximization of firms by focusing on coaches
and their teams in professional (American) football. More specifically, he
tests for optimality of the coach’s decision on ‘fourth down’ between kicking
and ‘going for it.’ In contrast to Walker and Wooders (2001), Chiappori,
Levitt and Groseclose (2002), and Palacios-Huerta and Volij (2008), he over-
whelmingly rejects optimality. Even though Romer studies teams and allows
for interactions between agents, whereas we study individual behavior, our
tennis data may help answer some of his questions. Romer gives two possible
explanations for his rejection and the overconservative behavior of coaches.
First, the coach’s objective function may be more complicated than Romer
assumes; second, coaches are not able to correctly maximize. Unfortunately,
says Romer, there is little evidence which of the two explanations causes the
suboptimal behavior. In tennis, however, there are two services, and the
maximization for the second service is easier than for first service. We shall
see that this fact can be exploited to shed some light on the true cause of
suboptimal behavior.

Adams (2006) questions Romer’s results, in particular the assumption
that success rates on third down equal those on fourth down, and concludes
that coaches may in fact make optimal decisions.

The literature thus reports mixed evidence on optimality. Our contribu-
tion is to provide some new and cleaner insights to help resolve this ambiguity,
and also to estimate the level of efficiency, rather than testing for perfect ef-
ficiency, which is the focus in the existing literature.

The organization of this paper is as follows. In Section 2 we present the
theoretical model, based on the relationship between the probability that
a service is in (x) and the conditional probability that the server wins the
point if the service is in (y(x)). We prove the existence and uniqueness of
an optimal strategy and introduce the concept of efficiency of the service.
In Section 3 we propose a functional form for y(x). Since tennis allows
two services, we have information on the (current, not necessarily optimal)
strategy (x1, x2) and the corresponding ‘yield’ (y1, y2). We do not, however,
observe these probabilities directly, only the associated relative frequencies.
In Section 4 we emphasize the importance of correcting for measurement error
and the use of random effects. In Section 5 we estimate the key probabilities
using a generalized method of moments (GMM) approach. Next, in Section 6
we discuss the identification and estimation of the curvature of the y-curve.
Then, in Section 7, we estimate and discuss the (in)efficiencies of top tennis
players. In our conclusion we try to relate these results to the inefficiency of
economic agents.

5
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2 Theoretical model

Consider a tennis match between two players i and j. Both i and j are maxi-
mizing the probability of winning the match. If points are independent, then
each server chooses that service strategy which will maximize the probability
of winning a point. We will develop a model that answers the question how
difficult a player should make his or her service in order to maximize the
probability of winning a point on service.

2.1 Existence and uniqueness of an optimal strategy

Given the strengths of both players, let x1 denote the probability that the
first service is in, and let x2 denote the probability that the second service
is in. Also, let y(x) denote the conditional probability that player i wins the
point if the service has probability x of being in. So, y1 := y(x1) denotes the
conditional probability that player i wins the point on his or her first service
if the first service is in, and similarly for the second service y2 := y(x2). We
realize that both x and y will be influenced by other factors (speed, direc-
tion, spin, concentration, (mental) effort to determine the optimal strategy,
emotions). For the moment we abstract from these unobservable factors, but
we shall discuss them in Section 2.3. Implicit in our set-up is the assumption
that a first service of probability x yields the same y as a second service of
probability x. We therefore ignore the possibility that a receiver may be more
aggressive on a second service of strength x than on a (relatively weak) first
service of the same strength x. In reality, however, there is typically a gap
in strength between the first and second service, which mitigates the influ-
ence of the single y-curve assumption. Moreover, in Sections 6.3 and 7.1 we
examine the importance of this assumption by allowing for separate y-curves
for the first and second services, and show that our results are robust.

Given x and y(x) we define w(x) := x · y(x), which transforms the con-
ditional probability y into an unconditional probability w. The probability
that player i wins the point is then given by

p(x1, x2) = w(x1) + (1 − x1)w(x2). (1)

If the functional form of y(x) is known, we can calculate the optimal service
strategy (x∗

1, x
∗
2) by maximizing p(x1, x2). Under suitable regularity condi-

tions and in the absence of a boundary solution, the optimal strategy satisfies
the first-order conditions

w′(x∗
1) = w(x∗

2), w′(x∗
2) = 0. (2)

In what follows we shall, however, allow for the possibility of a boundary
solution x∗

2 = 1.

6
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It seems reasonable to assume that the easier a player makes his or her
service, the more likely it is that the service is in (x increases), but the less
likely it is that the point is won if the service is in (y decreases). Hence, we
impose the condition that y is a (locally) decreasing function of x.

Condition R1 (monotonicity): The real-valued function y is continu-
ous and monotonically decreasing on [0, 1], and satisfies 0 ≤ y(x) ≤ 1 for all
x ∈ [0, 1].

In order to achieve existence and uniqueness of the optimal strategy we need
more than monotonicity. We shall also impose (local) concavity.

Condition R2 (concavity): The real-valued function y is twice differ-
entiable on (0, 1) with y′(1) := limx↑1 y′(x) < 0, and w(x) satisfies w′(x) < 0
for all x ∈ (0, 1).

Condition R2 implies that w is strictly concave on the interval (0,1) and
reaches a unique maximum for some x ∈ (0, 1]. This reflects the fact that
if a player’s service is too easy he/she is unlikely to win the point, but if
the service is too difficult he/she is also unlikely to win the point — in fact,
w(0) = 0. There should be an optimal service, neither too difficult nor too
easy, which maximizes the player’s probability of winning the point on that
service. Given these regularity conditions we can now prove Theorem 1.

Theorem 1 (existence and uniqueness): Assume that regularity con-
ditions R1 and R2 hold. Then there exists a unique optimal service strategy
(x∗

1, x
∗
2) which maximizes p(x1, x2).

Proof. Both steps of the proof use the fact that w′ is monotonically decreas-
ing. For the first step (regarding x∗

2) we note that w′(0) := limx↓0 w′(x) =
y(0) > 0. If w′(1) := limx↑1 w′(x) < 0, then there exists a unique x∗

2 ∈ (0, 1)
such that w′(x∗

2) = 0. If w′(1) ≥ 0, then w(x) is monotonically increasing for
all x and hence reaches its maximum at x∗

2 = 1.
For the second step (regarding x∗

1) we show first that w(x∗
2) > w′(x∗

2). If
w′(1) < 0, then w′(x∗

2) = 0 and w(x∗
2) > 0, and hence w(x∗

2) > w′(x∗
2). If

w′(1) ≥ 0, then x∗
2 = 1 and

w(x∗
2) = w(1) = y(1) > y(1) + y′(1) = w′(1) = w′(x∗

2),

because y′(1) < 0. In addition,

w(x∗
2) = x∗

2y(x∗
2) ≤ y(x∗

2) < y(0) = w′(0).

Thus we find that
w′(x∗

2) < w(x∗
2) < w′(0),

7
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and hence there exists a unique x∗
1 with 0 < x∗

1 < x∗
2 such that w′(x∗

1) =
w(x∗

2). ‖

We remark that both conditions can be much weakened. Regarding con-
dition R1 (global monotonicity) it is sufficient that the y-curve is negatively
sloped around x∗

1 and x∗
2. Similarly, condition R2 (global concavity) need

only hold locally for all x ∈ (x0, 1), where 0 ≤ x0 < x∗
1, and this is in fact

what we shall use in our estimation. (The choice x0 = 0.4 appears to be
satisfactory.) In fact, it is possible to choose the y-curve such that it gives
us maximum flexibility over the slopes at x∗

1 and x∗
2, because all we need is

that there exists a pair (x∗
1, x

∗
2) with 0 < x∗

1 < x∗
2 ≤ 1, such that w(x) has a

unique maximum at x∗
2 and w(x) + (1 − x)w(x∗

2) has a unique maximum at
x∗

1. The y-curve may thus have kinks. We shall use this generalization later
when we discuss the robustness of the specification.

2.2 Implications

Theorem 1 has certain implications for the optimal service strategy (x∗
1, x

∗
2);

see also Gale (1971).

Theorem 2 (implications): If conditions R1 and R2 are satisfied, then
the following relations must hold for the optimal strategy (x∗

1, x
∗
2):

(a) x∗
1 < x∗

2,
(b) y(x∗

1) > y(x∗
2),

(c) w(x∗
1) < w(x∗

2), and
(d) w(x∗

2) − w(x∗
1) < (x∗

2 − x∗
1)w(x∗

2).

Proof. Statement (a) is implied in the proof of Theorem 1. Statement (b)
then follows since y is a decreasing function. Statement (c) follows from the
fact that if (x∗

1, x
∗
2) is the optimal service strategy, then this strategy should

lead to a higher probability of winning the point than the strategy (x∗
1, x

∗
1)

(always using the first service), that is,

w(x∗
1) + (1 − x∗

1)w(x∗
2) > w(x∗

1) + (1 − x∗
1)w(x∗

1),

and this simplifies to (c). Similarly, the optimal strategy (x∗
1, x

∗
2) should lead

to a higher probability of winning the point than the strategy (x∗
2, x

∗
2) (always

using the second service). This implies

w(x∗
1) + (1 − x∗

1)w(x∗
2) > w(x∗

2) + (1 − x∗
2)w(x∗

2)

which simplifies to (d). ‖

8
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Relations (a) and (b) say that the first service should be more difficult than
the second in two senses: (a) it is less often in, and (b) if it is in it is more
likely to win the point. Relation (c) is less obvious. It says that the proba-
bility of winning a point at the first (difficult) service should be smaller than
the probability of winning a point on the second (easier) service.

As a preliminary exercise, we calculate the observed frequencies for each
player in each match using the data described in Section 5.1. If a player serves
optimally, he or she should satisfy the four implications stated in Theorem 2.
In fact, these implications are often not satisfied; see Table 1. The condition

Table 1: Empirical verification of the four consistency conditions in Theo-
rem 2

(a) (b) (c) (d) Total
Men 1.00 0.91 0.78 0.80 0.59
Women 0.98 0.72 0.77 0.64 0.42

x1 < x2 appears to be almost always satisfied, which means that almost all
players take more risk on their first service than on their second service (as
they should). However, this additional risk does not necessarily translate into
higher productivity: the condition y(x1) > y(x2) is only satisfied for 91% of
the men and 72% of the women. Condition (c) requires that (x1, x2) is a
better service strategy than (x1, x1), but this is only true for 77–78% of the
players. Condition (d) requires that (x1, x2) is a better service strategy than
(x2, x2), but this is only true for 80% of the men and 64% of the women.
For only 59% of the men and 42% of the women are all four consistency
requirements satisfied.

It therefore seems that for many players the probability of winning a
point can be increased by making small changes to their service strategy.
Indeed, since the four consistency conditions are necessary but not sufficient
for an optimal strategy (and hence even if all four conditions are satisfied
a player may not follow the optimal strategy), the actual deviations from
the optimum will be even larger. This conclusion, however, is too hasty
and simplistic. For one, there will be measurement error: we are interested
in probabilities but we observe relative frequencies, and this might lead to
smaller deviations from the optimum. A more careful statistical analysis is
required.

2.3 Other influences

It would be naive to believe that the y-curve only depends on x. In fact, both
x and y will depend on a p × 1 vector ω representing speed, direction, spin,
concentration, (mental) effort to determine the optimal strategy, emotions,
et cetera. We define an auxiliary vector v = (v1, . . . , vp−1)

′ such that (x, v)

9



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

and ω are in one-to-one correspondence, and we write y = y(x, v). Suppose
we have only one service. Then we should maximize w(x, v) := x · y(x, v)
with respect to x and v. The first-order conditions are

y(x, v) + x
∂y(x, v)

∂x
= 0, ϕh(x, v) :=

∂y(x, v)

∂vh

= 0 (h = 1, . . . , p − 1).

For given x, assume that the equations ϕh(x, v) = 0 have a unique solution
v = ζ(x), so that each ϕh(x, ζ(x)) = 0 for all x. At the optimum (x∗, v∗) we
have ϕh(x

∗, v∗) = 0, and hence

∂y(x, ζ(x))

∂x

∣∣∣∣
x=x∗

=
∂y(x, ζ(x∗))

∂x

∣∣∣∣
x=x∗

+

p−1∑

h=1

ϕh(x
∗, v∗)

∂ζh(x)

∂x

∣∣∣∣
x=x∗

=
∂y(x, ζ(x∗))

∂x

∣∣∣∣
x=x∗

.

The same reasoning applies when there are two services. We conclude that
we may think of the y-curve as y(x, ζ(x)), where v = ζ(x) is chosen optimally
for given x. Obviously some assumption is required on v, since no data are
available on either v or ω. The particular assumption of choosing v optimally
implies a ‘conservative’ estimate of the efficiency. The same applies to the
identification and estimation of λ (the curvature parameter of the y-curve),
as we shall see in Section 6: no data and a conservative approach. We shall
come back to the effects of the conservative approach when we discuss our
efficiency results in Section 7.1.

In fact, it is not necessary that all p − 1 components of v are chosen
optimally. We may partition v = (v1, v2), where v1 is adjusted optimally
(spin, direction) and v2 does not vary with respect to x (concentration).

2.4 Efficiency

In a given match between two players the probability that the server wins a
point is given by (1):

p = x1y1 + (1 − x1)x2y2. (3)

Whether or not (x1, y1) and (x2, y2) are the optimal probabilities, the y-
curve will pass through these two points. If the y-curve were linear then the
two points would determine the curve, but we shall see that linearity is too
restrictive. Suppose therefore that the y-curve depends on one (or more)
curvature parameter λ. Given the y-curve, we obtain the optimal strategy
(x∗

1, x
∗
2) and the corresponding function values y∗

1 = y(x∗
1) and y∗

2 = y(x∗
2), all

of which depend on λ. The maximum probability of winning a point is thus

p∗ = x∗
1y

∗
1 + (1 − x∗

1)x
∗
2y

∗
2, (4)
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and we define the efficiency of the server in this match as

eff := p/p∗, (5)

which is a number between zero and one. The closer eff is to one, the higher
is the efficiency. Note that the efficiency differs per player.

A natural question is whether we should measure efficiency at point level
(as we propose) or at a higher level of aggregation: game, set, match, or even
tournament or season. If we assume that points are independent and identi-
cally distributed, then the only difference between levels of aggregation is the
counting system. For example, we may find that (p, p∗) = (0.65, 0.66) at point
level, which translates to game winning probabilities (g, g∗) = (0.83, 0.85)
(see Klaassen and Magnus, 2003), so that the inefficiency measure increases
from 1 − p/p∗ = 1.5% to 1 − g/g∗ = 1.9%. If a game is defined differently,
then the inefficiency measure will change, even if players behave in the same
way. The inefficiency at a tiebreak will be measured differently than at a
regular game; the inefficiency at a best-of-three match will be measured dif-
ferently than at a best-of-five match. This seems undesirable. Hence we
define efficiency at point level.

One might also argue that we should measure inefficiency in absolute
terms (p∗−p) rather than in relative terms (1−p/p∗), as we do. We believe the
relative definition is more appropriate. For example, for (p, p∗) = (0.9, 1.0)
and (p, p∗) = (0.1, 0.2), respectively, we find p∗ − p = 10%-points in both
cases, but 1 − p/p∗ = 10% in the first case and 50% in the second case,
and the relative numbers seem intuitively more reasonable indications of
inefficiency. All this relates to the measurement of (in)efficiency. Another
matter is the impact of inefficiency. This will be discussed in Section 7.2.

In order to compute the efficiency measure (5) we need the probabilities
(x1, y1) and (x2, y2) and the curvature parameter λ. Of course, we do not
know these probabilities and this curvature. Their estimation is taken up in
Sections 5 and 6. But first we shall discuss the specification of the y-curve.

3 Functional form for y(x)

It will be convenient to specify a functional form for the y-curve. The sim-
plest specification is a linear function. This, however, does not work well in
practice. For example, it forces x∗

1 ≤ 1/2, which is not realistic since the
observed frequencies for x1 are 59.5% for men and 61.6% for women. Some
curvature is required. We propose the following simple nonlinear function:

y(x) =
α − xλ

τ
, λ > 0. (6)

Despite its simple form, this specification is already quite flexible over the
relevant range [0.4, 1.0], but it may still be too restrictive. We shall see
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in Sections 6.3 and 7.1 that a more flexible generalization of (6) does not
change the results. In fact, the generalization even strengthens our main
result. Hence, (6) suffices.

The two regularity conditions R1 and R2 are satisfied if and only if

1 ≤ α ≤ τ + xλ
0 , (7)

where 0 ≤ x0 < x∗
1. The proposed y-curve allows y to be either concave

or convex (or linear) on the (0, 1) interval, depending on whether λ > 1 or
0 < λ < 1 (or λ = 1). Given (6) we obtain w(x) = x(α−xλ)/τ . If α < λ+1,
then w′(1) < 0 and x∗

2 is obtained from the first-order condition

w′(x∗
2) =

α − (λ + 1)x∗
2
λ

τ
= 0,

so that x∗
2
λ = α/(λ + 1). If α ≥ λ + 1, then w′(1) ≥ 0 and x∗

2 = 1. Hence,

x∗
2
λ = min

(
α

λ + 1
, 1

)
. (8)

Given x∗
2, we find x∗

1 from the equation w′(x∗
1) = w(x∗

2), that is

α − (λ + 1)x∗
1
λ = x∗

2(α − x∗
2
λ)

from which we solve

x∗
1
λ = x∗

2
λ

(
1 −

λ

λ + 1
x∗

2

)
. (9)

From (x∗
1, x

∗
2) we immediately obtain y∗

1 = y(x∗
1) and y∗

2 = y(x∗
2).

The geometry of the solution is illustrated in Figure 1. On the horizontal
axis we find the probability x that the service is in; on the vertical axis we
find the conditional probability y(x) that server wins the point if the service
is in, the unconditional probability w(x) = x ·y(x) that server wins the point
on this service, and the derivative w′(x). The optimal service strategy is
found from Equations (8) and (9) which yields x∗

1 = 60.4% and x∗
2 = 84.3%.

If the optimal strategy is employed, the probability of winning a point on
service is p∗ = 63.9%, the probability of a double fault is 6.2%, and the
probability of winning a service game is 81.1%.

Suppose we have observed x1, x2, y1, and y2 for the server in a given
match. This gives us two points (x1, y1) and (x2, y2) on the curve. For each
λ we can solve τ and α from the two equations

α − xλ
1

τ
= y1,

α − xλ
2

τ
= y2. (10)
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y(x)

w′(x)

w(x)

(x∗
1, y

∗
1)

(x∗
2, y

∗
2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1: The y-curve as a function of x and the induced optimal service
strategy (for α = 2.4, τ = 3.0, λ = 3.0).

The solution reads

τ =
xλ

2 − xλ
1

y1 − y2

, α =
y1x

λ
2 − y2x

λ
1

y1 − y2

. (11)

Inserting (11) into (6) then gives

y(x) =
y1x

λ
2 − y2x

λ
1

xλ
2 − xλ

1

−
y1 − y2

xλ
2 − xλ

1

· xλ. (12)

Hence, in order to compute the y-curve and the optimal service strategy, we
need to estimate λ and the probabilities (x1, y1) and (x2, y2); that is, the
probabilities actually employed by the player.

4 Measurement error and random effects

In (12) we see that the y-curve depends on x (of course) and on five param-
eters: four probabilities x1, x2, y1, y2; and a curvature parameter λ, where
the parameters may be match- and player-specific. It is not so clear how the
curvature should be estimated, but the four probabilities can be estimated
straightforwardly using relative frequencies. We shall see in this section that
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this does not provide us with useful estimates of the slope (let alone of the
curvature) of the y-curve, unless we correct for measurement error and use
random effects.

Using the data described in Section 5.1 we calculate for both players
i and j in each match the observed relative frequencies (over the whole
match) fij(x1) and fij(y1) for the first service, and fij(x2) and fij(y2) for
the second service, corresponding to the (unobserved) probabilities x1, y1,
x2, and y2. This gives two points (fij(x1), fij(y1)) and (fij(x2), fij(y2)) for
player i and also two points (fji(x1), fji(y1)) and (fji(x2), fji(y2)) for player
j, hence four points per match. These points are plotted in Figure 2.
In the left panel (men’s singles) we see two point clouds centered around

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Empirical (x, y(x)) plot based on relative frequencies, match data
(men left, women right).

(f̄(x1), f̄(y1)) = (0.59, 0.74) and (f̄(x2), f̄(y2)) = (0.86, 0.59) and a nonpara-
metric regression line (with precision bounds). The curve is flat precisely
where we are interested in the y-curve, namely around f̄(x1) and f̄(x2).
We know that the slope is negative at x1 and x2, but we can not estimate
it. If the slope can not be estimated, then to estimate curvature around
these points will be fruitless. For the women (right panel) the points center
around (0.62, 0.63) (first service) and (0.86, 0.53) (second service). There is
some weak indication of a downward slope around f(x1), but not around
f(x2). The reason that the slopes appear flat could be that we do not have
enough data to obtain precise estimates given the little variation in x1 and
x2 across players, but it could also be the bias caused by measurement error
in the frequencies as a proxy for the probabilities x1 and x2, or it could be
that relevant variables have been omitted.

To assess the impact of omitted variables, we consider set averages (rather
than match averages), so that we can control for all variables that are con-
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Figure 3: Empirical (x, y(x)) plot based on relative frequencies (centered),
first service, set data (men left, women right).

stant over sets by including fixed effects. Thus we compute (f
(s)
ij (x1), f

(s)
ij (y1))

and (f
(s)
ij (x2), f

(s)
ij (y2)) as the relative frequencies of the first and second ser-

vices, observed in set s of a match of player i against player j. We then
compute the averages over s: (f̄ij(x1), f̄ij(y1)) and (f̄ij(x2), f̄ij(y2)) and the
centered values

f̃
(s)
ij (x1) := f

(s)
ij (x1) − f̄ij(x1), f̃

(s)
ij (y1) := f

(s)
ij (y1) − f̄ij(y1)

for the first service, and similarly for the second service. The advantage of
considering the centered relative frequencies lies in the fact that locational
differences across server-service combinations have been removed, so that
only the slopes around the first and second services remain. In Figure 3

we plot (f̃
(s)
ij (x1), f̃

(s)
ij (y1)) for the first service for both men and women; the

results for the second service (not reported here) are similar. The slopes are
still very flat. What could be the reason? One possibility is that there are
omitted variables, but that centering removes too much information. We
could remedy this by using random effects instead of fixed effects. Another
possibility is that omitted variables is not the main problem, but that the
x-variables are measured with error. This would lead to a severe bias toward
zero. (In general, measurement error in x leads to bias toward zero. The
within transformation in panel models makes this bias even stronger, and the
centering above is essentially a within transformation.) We now demonstrate
that measurement error is indeed a serious factor here.

The sample standard deviation for the match frequencies across players
is 6.4% for the first service in and 6.1% for the second service in. How much
of this is noise due to the fact that frequencies differ from probabilities? In
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other words, how much is due to measurement error? Let t1,ij denote the
number of first services and f1,ij the proportion that is in. (For the men we
have on average t1,ij = 115 and f1,ij = 0.59. Similarly, for the second service,
t2,ij = 47 and f2,ij = 0.86.) This produces an approximate variance of the
deviation of the frequencies from the probabilities of f1,ij(1−f1,ij)/t1,ij for the
first service. Averaging over all players and taking the square root defines our
measurement error indicator, which is 4.7% (for the second service, 5.1%).
Hence, the noise in the relative frequencies for a single player is a substantial
part of the variation of the frequencies over players. So, measurement error is
relatively large and this explains to a large extent the flatness of the curves.
(The same is true in the women’s singles: 9.4% and 8.8% versus 6.2% and
7.0%.)

This is the situation at match level. To examine the possible benefit of
going from match to set data we analyze the within-player variance of the
set frequencies, averaged over all players. For the men the square root of
this average is 9.3% for the first service, and 10.4% for the second service.
The measurement error indicator for the first service is now the square root

of the average f
(s)
1,ij(1 − f

(s)
1,ij)/t

(s)
1,ij over all sets and players, which is 8.9%.

(For the second service it is 9.6%.) Hence, for a given player measurement
error can almost fully explain the variation in frequencies across sets, which
means that the variation in the underlying probabilities across sets is close to
zero. (For the women the total variation 9.3% and 11.1% is also explained by
the measurement error indicators 9.2% and 10.2%.) This again shows that
moving from match to set data is not useful.

We conclude that we need to correct for measurement error in x, that
we must use random effects in order to avoid efficiency loss associated with
fixed effects, and that we may focus on match data. This is precisely what
we shall do.

5 Estimation of the key probabilities

The previous section showed the importance of taking measurement error
seriously and of using random effects. Our proposed method estimation is a
two-step procedure motivated by the fact that we can estimate (x1, x2, y1, y2)
and λ separately. The difficulty in estimating the curvature thus plays no
role in this section, and will only be taken up in Section 6.

In Section 2 we highlighted the importance of the two probabilities x
(probability that service is in) and y (conditional probability that server wins
the point if service is in). For player i against player j the key probabilities
are given by

zij := (x1,ij , x2,ij , y1,ij, y2,ij)
′ ,

where x1,ij denotes the probability that i (playing against j) serves his or her
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first service in, and similarly for the other three probabilities. We cannot ob-
serve these four key probabilities, but we can observe the associated relative
frequencies, denoted by fij, and the associated number of observations under-
lying each of the relative frequencies, denoted by tij . If the tij-dimension were
sufficiently large, then the probabilities in zij would be well approximated
by the relative frequencies in fij , and there would be no need to model zij

further. In that case we could jump directly to Section 6 and treat (zij , zji)
as given. However, the tij-dimension is not large, especially for the second
service where (in our data set) it gets as low as 14 (men) and 5 (women).
Hence important efficiency gains can be achieved by modeling zij .

5.1 The data

Our data consist of singles matches played at Wimbledon during 1992–1995:
508 matches for the men and 508 matches for the women. For each of these
matches we know the two players, their rankings at the beginning of the
tournament, and the match result. For almost half of the matches (258
matches in the men’s singles and 223 matches in the women’s singles) we
know the complete sequence of points. The data are described in detail in
Magnus and Klaassen (1999a).

The reason that we do not have detailed data on all matches played
during the four years is that only matches played on one of the five ‘show
courts’ (Centre Court and Courts 1, 2, 13, and 14) have been recorded.
Typically, matches involving the most important players are scheduled on
the show courts, and this causes an under-representation in the data set
of matches involving weaker players. All results in this section have been
corrected for this selection problem by weighting the matches by the inverses
of the sampling percentages. The weighting procedure is discussed in detail
in Magnus and Klaassen (1999b).

We shall use sixteen summary statistics per match, thus not the complete
sequence of points; in fact we only use the data in Sections 4 and 5, and in
Table 1. (In Section 4 we use match and set data, but from now on we only
use match data.) For player i serving against player j we use the relative
frequencies fij and the associated numbers of observations tij ; and the same
for player j serving against i. For example, suppose player i serves 100 times
against player j. Of the 100 first services, 60 are in and 40 are a fault; if the
first service is in, player i wins the point in 44 cases and loses it in 16 cases.
Of the 40 second services, 35 are in and 5 are a fault (double fault); if the
second service is in, player i wins the point in 21 cases and loses it in 14 cases.
This information allows us to compute fij = (0.600, 0.875, 0.733, 0.600)′ and
tij = (100, 40, 60, 35)′.

We do not have access to more matches of which all relevant summary
statistics are known. If we had, this would have decreased the estimation
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uncertainty from the GMM procedure described below. We could have in-
creased the number of matches where we only require the rankings (currently
508 matches) by including Wimbledon singles matches from 1996 onwards.
This would, however, have added nothing and it would also have raised the
question of parameter instability over time.

5.2 The measurement equation

In what follows we assume that matches are independent (even when servers
occur in several matches), and that points played in one match are inde-
pendent and identically distributed (i.i.d.). The independence of matches
seems a reasonable assumption, but the i.i.d. assumption of points within
one match is a hot issue (not only in tennis), and was analyzed by Klaassen
and Magnus (2001). They conclude that points in tennis are neither inde-
pendent nor identically distributed, but that the deviation is small (though
statistically significant) and that therefore the i.i.d. assumption will still be
reasonable in many specific directions. In addition, in our case, we do not
use the points themselves but summary statistics (averages) so that any pos-
sible harm caused by the wrong assumption is much reduced. Finally, any
remaining error caused by the i.i.d. approximation will result in an overes-
timation of the inefficiency, which would strengthen rather than weaken our
main conclusion that the inefficiency is small.

In measuring the (nonobservable) random probability zij with the (ob-
servable) random relative frequency fij , a measurement error occurs:

fij = zij + ηij . (13)

Since each t
(k)
ij f

(k)
ij (k = 1, . . . , 4) follows a binomial distribution conditional

on zij , we obtain

E(ηij | zij) = 0, var(ηij | zij) = ∆ij , (14)

where the diagonal elements of ∆ij are given by

∆
(k)
ij =

1

t
(k)
ij

z
(k)
ij (1 − z

(k)
ij ) (k = 1, . . . , 4). (15)

We assume that the off-diagonal elements of ∆ij are zero, which is reasonable,
because the components of ηij represent ‘pure noise.’ In addition and for
the same reason, we assume that E(ηji | zij) = 0 and that ηij and ηji are
uncorrelated (conditional on zij and zji).
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5.3 A model for zij

Since the four probabilities in zij will be correlated and, in addition, zij and
zji will be correlated, we need to model an eight-dimensional distribution.
The probabilities depend on the characteristics of the server and his or her
opponent. Some of these characteristics are observable, some are not. An
important characteristic is a player’s ‘quality.’ In tennis a player’s quality is
partly measured by his or her official ranking. Although this is not a perfect
measure of quality (for example, it does not account for ‘form of the day’), the
ranking contains important information about the key probabilities, which
we want to exploit.

Let RANKi denote the ranking of player i at the moment of the tourna-
ment. Direct use of the ranking is not satisfactory, because quality in tennis
is a pyramid: the difference between the top two players (ranked 1 and 2)
is generally larger than between two players ranked 101 and 102. As moti-
vated in Klaassen and Magnus (2001), RANKi is transformed into a smooth
version of the ‘expected round’ by defining

ri = 8 − log2(RANKi).

For example, if RANKi = 4 then ri = 6.00, and if RANKi = 3 then ri = 6.42,
indicating that both are expected to lose in round 6 (the semifinal in grand
slam tournaments like Wimbledon). The additional 0.42 indicates that the
number 3 ranked player is somewhat better than the player ranked 4.

Apart from the ranking there are also quality components that we do
not observe, such as form of the day, special ability on the court surface
on which the match is played (grass for Wimbledon), and fear against a
specific opponent. In addition, each player has his or her own style of play,
a characteristic that may also affect the four key probabilities. None of
these features is observed, but we correct for them by including two four-
dimensional vectors εij and εji of unobservable effects.

We model the key probabilities in a given match between i and j as an
eight-dimensional vector (z′ij , z

′
ji)

′, where

zij = µ + riβS + rjβR + εij . (16)

The linearity assumption underlying this equation is acceptable when we use
ri as a regressor, but not when we use RANKi, as preliminary nonparametric
regressions show. The vectors βS and βR contain the effects of the server’s
and receiver’s rankings on each probability in zij, respectively. For the errors
we assume homoskedasticity, which implies

(
εij

εji

)
∼

((
0
0

)
,

(
Σ1 Σ2

Σ2 Σ1

))
. (17)
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It is convenient to center ri and rj. The zero mean standardization of the
errors then implies that µ is equal to the mean of zij .

The assumption regarding the errors implies that εij is a random (instead
of fixed) effect. Because the rankings RANKi and RANKj are determined
before the tournament starts, we assume that there is no correlation between
εij and the rankings. To account for the correlations between the key proba-
bilities for a given server we include a variance matrix Σ1. In addition, there
may be correlations between the key probabilities across the two servers in a
given match. For example, if player i is better on the present court surface
(grass, say) than his or her ranking indicates, or if player i usually performs
well against j, then especially the two last components of εij and εji, which
concern the winning probabilities, are negatively correlated. Thus we in-
troduce a covariance matrix Σ2. Since the moments do not depend on the

specific players (i and j), we have, for example, cov(ε
(3)
ij , ε

(4)
ji ) = cov(ε

(3)
ji , ε

(4)
ij ),

so that Σ2 is symmetric.
In summary, we have a model for the whole vector (z′ij , z

′
ji)

′ of probabilities
that govern the two service series within a match. These probabilities are
restricted to be constant within a match. However, in all other respects, the
probabilities are unrestricted, as we allow for full heterogeneity across players
(servers and receivers) and for possible correlations within a match. There
are four free parameters in each of µ, βS, and βR, and ten free parameters in
each of Σ1 and Σ2, in total 32 parameters.

5.4 Moment conditions

We employ the generalized method of moments (GMM) to estimate the 32
parameters. Hence we need to derive moment conditions, taking into account
that the lengths of the service series across players vary, as do the lengths of
the four service series for each player (in tij). We define

B = (µ : βS : βR), r′ij = (1, ri, rj),

and write (16) in matrix form as

zij = Brij + εij. (18)

Combining (18) with (13) then gives

fij = Brij + εij + ηij ,

where the fact that E(ηij | zij) = E(ηji | zij) = 0 implies that εij is uncorre-
lated with ηij and ηji. From the conditional moments (14) we find E(ηij) = 0
and var(ηij) = E(∆ij). Since zij (and hence ∆ij) cannot be observed, we

define the diagonal matrix ∆̃ij whose k-th diagonal element is given by

∆̃
(k)
ij =

1

t
(k)
ij − 1

f
(k)
ij (1 − f

(k)
ij ) (k = 1, . . . , 4), (19)
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and we note that E(∆̃ij | zij) = ∆ij so that E(∆̃ij) = E(∆ij). (If t
(k)
ij

equals one or zero, then (19) breaks down. This does not occur in our data
set, because the minimum number of second services in is 14 (men) and 5
(women), and the minimum number of first services in is 31 (men) and 14
(women).) The following expectations are then implied:

E((fij − Brij)r
′
ij) = 0

var(fij − Brij) = Σ1 + E(∆̃ij)

cov(fij − Brij , fji − Brji) = Σ2. (20)

The first moment is the usual least-squares orthogonality condition (12 re-
strictions), the second moment concerns the within-server variance (10 re-
strictions, because of the symmetry), and the third moment captures the
correlation between the frequency vectors of the two servers in a match (10
restrictions).

5.5 Implementation

Let n1 denote the number of server series (twice the number of matches),
the cross-section dimension of the panel. In our sample we have n1 = 516
in the men’s singles and n1 = 446 in the women’s singles. Because n1 is
substantially larger than the elements of tij (especially the elements that
concern the second service), our asymptotic justification is based on large n1

and finite tij. The moment conditions have thus been set up in a format that
is standard in studies that rely on large-n1 asymptotics.

The set of moment conditions (20) contains 32 different elements. Each
server i in his or her match against j has exactly one observation of each
element. Let hij denote the 32-dimensional vector containing all observations:

hij =




vec
(
(fij − Brij)r

′
ij

)

vech
(
(fij − Brij)(fij − Brij)

′ − Σ1 − ∆̃ij

)

vech ((fij − Brij)(fji − Brji)
′ − Σ2)


 ,

where vech() denotes the half-vec operator stacking the nonrepeated elements
of a symmetric matrix. Obviously, E(hij) = 0 and one could use the sample
average (1/n1)

∑
hij in a GMM procedure to estimate the parameters. There

are however two sources of inefficiency that we wish to take account of. First,
all players serve a different number of points, so that the precision of the
frequencies varies. Taking an unweighted average across players does not
take this into account. Second, for a given server the number of points varies
across the key frequencies. To increase the efficiency of our estimates, we
weight each element of hij by the number of observations used to compute
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that element. Hence, we obtain a new moment vector

h̃ij = Ωijhij ,

where Ωij is a diagonal 32 × 32 matrix with the 32 weights on the diagonal.
This leads to the following GMM objective function:

min

(
1

n1

∑
h̃ij

)′

W

(
1

n1

∑
h̃ij

)
,

where we minimize over all 32 parameters. We use the standard optimal
weighting matrix W , that is, the inverse of the variance of the limiting dis-

tribution of h̃ij . We begin with W = I32 to obtain a consistent estimate of

the parameter vector, then we estimate W by Ŵ , and finally we minimize

the objective function again using Ŵ instead of the identity matrix. This
two-step procedure gives us consistent, asymptotically normal, and efficient
estimates.

5.6 Estimation results

The estimates of µ, βS, βR, Σ1, and Σ2, together with their standard errors
are reported in Table 2. The µ-parameters give the results for the average
player and are estimated very precisely. On average 59.5% of the first services
are in for the men (61.6% for the women) and 86.4% of the second services
(same for men and women). The similarity between men and women is
remarkable. The scoring power of the service is of course rather different for
men and women. If the first service is in then men score 74.0% (63.1% for
women) on average, and if the second service is in they score 59.4% (52.6%
for women).

The βS-estimates show that the better a player is, the higher are the
key probabilities. As expected, this is clearly true for y1 and y2 and (less
strongly) also for x1 and x2. The estimates of βR show just the opposite.

The estimates in the variance matrix Σ1 are presented as standard devia-
tions (for the four diagonal elements) and correlations (for the six off-diagonal
elements). Of the ten estimated parameters in the covariance matrix Σ2,
seven are statistically and logically insignificant, and are set equal to zero.
Yet we use 32 (rather than 25) moments at the estimation stage. This allows
an overidentifying restrictions test (ORT), giving ORT = 11.77 (0.11) for
the men and ORT = 2.33 (0.94) for the women (p-values in brackets), thus
providing further support for restricting the seven parameters to zero. The
three remaining estimates in Σ2 are correlations, also the estimate indicated
by (y1, y1) (and similarly (y2, y2)) as it measures the correlation between y1,ij

and y1,ji. The three correlations are negative because if player i is ‘in form’
(relative to j) as a server he or she is also likely to be ‘in form’ as a receiver.
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Table 2: GMM parameter estimates of Equations (16) and (17)
Men Women

Coefficients Estimate St. error Estimate St. error
µ x1 0.5947 0.0034 0.6157 0.0051

x2 0.8642 0.0031 0.8644 0.0047
y1 0.7403 0.0037 0.6308 0.0051
y2 0.5942 0.0044 0.5262 0.0077

βS x1 0.0010 0.0015 0.0056 0.0029
x2 0.0028 0.0013 0.0108 0.0031
y1 0.0148 0.0017 0.0228 0.0025
y2 0.0110 0.0020 0.0144 0.0037

βR x1 0.0007 0.0015 0.0042 0.0024
x2 −0.0011 0.0013 −0.0002 0.0025
y1 −0.0062 0.0017 −0.0198 0.0026
y2 −0.0088 0.0021 −0.0200 0.0039

Σ1 x1 0.0488 0.0049 0.0685 0.0059
x2 0.0317 0.0051 0.0505 0.0075
y1 0.0547 0.0042 0.0486 0.0083
y2 0.0540 0.0062 0.0754 0.0113

(x2, x1) 0.6390 0.1540 0.2973 0.1343
(y1, x1) −0.0985 0.1226 −0.5923 0.1720
(y2, x1) 0.0652 0.1377 0.2415 0.1782
(y1, x2) −0.2593 0.1671 −0.3052 0.1970
(y2, x2) 0.2700 0.2112 0.1454 0.2308
(y2, y1) 0.5752 0.1360 0.0919 0.2473

Σ2 (y1, y1) −0.1070 0.1547 −0.5843 0.3830
(y2, y2) −0.4106 0.2347 −0.3392 0.3889
(y2, y1) −0.2375 0.1319 −0.3370 0.2411

The correlations in the (not reported) 25 × 25 variance matrix of the
estimates are all small, so that the variables satisfy a high degree of orthog-
onality and there is no problem of multicollinearity. The estimates are all
very plausible and the fact that all signs are the same for men and women
underlines their significance.

6 Identification of λ

Now that we have estimated the distribution of (zij , zji), we know the distri-
bution of (x1, y1) and (x2, y2) for server i in his/her match against j, but we
do not yet know λ, a necessary ingredient for the estimation of the y-curve
(12). The curvature parameter λ is essentially unidentified, because the y-
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curve depends on three parameters and we only observe two points on each
curve: (x1, y1) and (x2, y2).

Thus we treat λij as a random effect, in the same way as we have treated
εij in the estimation of zij , and assume

λij | (zij , zji) ∼ (λ, σ2
λ). (21)

We shall obtain ‘conservative’ estimates of λ and σλ, in line with our discus-
sion in Section 2.3, in the sense that we shall solve

max
λ,σλ

1

n

∑
E(effij),

where eff = p/p∗ is the efficiency defined in (5), and n denotes the num-
ber of players. We shall discuss the seriousness of this conservativeness in
Section 7.1. We maximize the average of the expected efficiency (over the
n players), because the elements over which we maximize are all positive,
so that the average is equal to the mean absolute error and therefore takes
account of the spread as well as the location. This measure is therefore
preferable over the median (only location).

The (nontrivial) estimation procedure is described below. We shall see
that the estimate of σλ is essentially zero, so that we may take λij = λ
(constant). Apparently we may assume that for each player the y-curve has
the same curvature (but different height and slope).

We treat men and women separately. For both men’s singles and women’s
singles we consider 508 matches, that is, all singles matches played at Wim-
bledon during 1992–1995. This gives n = 1016 servers. For each match
we require the rankings ri and rj , but not the summary statistics used in
Section 5.

6.1 Monte Carlo

In Section 5 we estimated the 25 parameters in µ, βS, βR, Σ1, and Σ2, and
also the 25 × 25 variance matrix. We collect the 25 parameters in a vector

θ, denote its estimator by θ̂, the asymptotic variance matrix of θ̂ by V , and

its estimator by V̂ . Then, approximately, θ̂ ∼ N(θ, V ).
The Monte Carlo procedure consists of two stages. In the first stage we

draw, for r = 1, . . . , R (R = 50), a vector θ(r) from the N(θ̂, V̂ ) distribution
under the restriction that the matrix

(
Σ

(r)
1 Σ

(r)
2

Σ
(r)
2 Σ

(r)
1

)

is positive definite. Hence we draw from a truncated normal distribution.
The first stage of the Monte Carlo draw is independent of λij.
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In the second stage we simulate E(effij) by drawing (zij , zji, λij, λji), for
each of the 508 matches and for each of the R draws of θ. By (16) and (17)
we have in each match

(
zij

zji

)
∼

((
µ(r) + riβ

(r)
S + rjβ

(r)
R

µ(r) + rjβ
(r)
S + riβ

(r)
R

)
,

(
Σ

(r)
1 Σ

(r)
2

Σ
(r)
2 Σ

(r)
1

))
.

Since the densities of the four frequencies in fij have the appearance of nor-
mal curves, it seems reasonable to assume normality of the distribution of
(zij , zji), but truncated for two reasons. First, we must have x0 ≤ x1 ≤ 1 and
x0 ≤ x2 ≤ 1. In particular, the condition x2 ≤ 1 must be imposed. Second,
conditions R1 and R2 must hold, which is the case if and only if condition
(7) holds. Using (11), the truncation thus depends on λij because

1 ≤
y1,ijx

λij

2,ij − y2,ijx
λij

1,ij

y1,ij − y2,ij

≤
x

λij

2,ij − x
λij

1,ij

y1,ij − y2,ij

+ x
λij

0 ,

where we set x0 = 0.4. We also assume normality of (λij , λji), but trun-
cated because of the restriction λ > 0. We now draw S = 50 ten-dimensional
vectors of independent realizations (uij, uji) from the uniform distribution de-
fined on the [0, 1] interval. We transform them into S draws (zij, zji, λij, λji)
using the GHK procedure; see Hajivassiliou, McFadden and Ruud (1996).
The resulting draws will satisfy regularity conditions R1 and R2, have pos-
itive λ, and all probabilities will be in the [0, 1] interval. We then compute
eff ij for each draw, and approximate E(effij) by taking the average over the
S draws.

6.2 Estimation of λ

The result of the two-stage procedure is that we can calculate, for each of
the R draws θ(r) and for each server, the expectation E(effij) as a function
of λ and σλ, and hence also the average expected efficiency

eff(λ, σλ) :=
1

n

∑
E(effij).

To estimate λ and σλ, we calculate the function eff(λ, σλ) for different values
of λ and σλ, where in each function calculation the draw of (zij, zji, λij, λji)
is based on the same draw of (uij, uji). Because of the concavity of the un-

derlying functions, the function eff(λ, σλ) will have a maximum in a suitably
chosen parameter range.

The R maximizing parameter values have a mean (standard error) of

λ̂ = 3.07 (0.13) and σ̂λ = 0.002 (0.003) for the men, and λ̂ = 3.77 (0.35)
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and σ̂λ = 0.005 (0.008) for the women. Since σ̂λ is not significantly different
from zero, we set σλ = 0 and re-estimate λ. The R draws for λ have a mean

(standard error) of λ̂ = 3.07 (0.13) in the men’s singles and λ̂ = 3.83 (0.37)
in the women’s singles. (If we maximize the median instead of the mean of

the expected efficiency, we obtain λ̂ = 3.06 (0.13) for the men and λ̂ = 3.71
(0.35) for the women.) The estimate of λ is significantly different for men
and women, and is rather precise.

At the end of this admittedly complicated estimation procedure we thus
have, for each of the R draws of θ, S feasible 8 × 1 vectors (zij, zji) for all
508 matches and one λ. In short, we have S = 50 feasible 9 × 1 vectors
(zij , zji, λ).

6.3 Sensitivity

A crucial element in this paper is the specification of the y-curve and the
estimation of its curvature. It is therefore important to find out how sensitive
our results are to (small) deviations from the chosen specification. In Table 3

Table 3: Sensitivity analysis of the curvature parameter λ
y-curve Curvature Men Women

C0 λ 3.0677 3.7727
(0.1315) (0.3455)

C1 λ 3.0553 3.4338
(0.1246) (0.2751)

C2 λ1 3.1373 3.5720
(0.1879) (0.2816)

λ2 2.8955 2.9366
(0.2538) (0.6754)

we compare the λ-estimates from three different specifications of the y-curve.
The curve C0 is our preferred specification (6), while the curves C1 and C2 are
based on the idea that the most important aspect of the y-curve is the area
around x1 and x2. Suppose we allow two y-curves: one around x1 and one
around x2. The two curves are both power curves like (6), but with different
sets of parameters (α, τ, λ). Both curves are only specified locally, that is,
between x1 and x∗

1 and between x2 and x∗
2, and are essentially unrestricted

elsewhere. In the curve C1 we set λ1 = λ2, while in the curve C2 we do not
restrict λ. We see that for the men the estimate of λ is hardly affected; the

value λ̂ = 3.1 appears to be very stable. For the women slightly less so. Still,
there is no statistical support for rejecting the specification (6).
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7 Efficiency

For both men and women the previous section provides S feasible 9 × 1
vectors (zij, zji, λ) for each of the 508 matches (1016 players). Thus we
obtain a distribution of the 50 × 1016 = 50,800 observations on pij and p∗ij
and thus on the efficiency effij. In this section we analyze these observations
in various directions.

7.1 Efficiency estimates

0.95 0.96 0.97 0.98 0.99 1.000.95 0.96 0.97 0.98 0.99 1.00
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Figure 4: Distribution of the efficiency p/p∗ across players (men left, women
right).

The density of effij is estimated nonparametrically using the quartic ker-
nel. This standard approach, however, leads to a downward bias near the
boundary of the support, in our case near one. To avoid the boundary effect
we use a local linear fitting method, described in Karunamuni and Alberts
(2005). Repeating this for all R replications we find the median and the 2.5
and 97.5 percentiles in Figure 4. The 95% band reflects uncertainty resulting
from the GMM procedure of Section 5.

For the men, the mean of the (median) distribution is 98.9% (with a
standard error of 0.2%) and the distribution can be characterized by the 5%,
25%, 50%, 75%, and 95% quantiles given by (96.7, 98.6, 99.3, 99.7, 99.9).
Hence, on average the inefficiency is 1.1%, while 25% of the players have an
inefficiency of more than 1.4% and 5% of the players an inefficiency of more
than 3.3%. At the median, the men can thus increase the probability p of
winning a point on service by 0.7%-points: from 64.8% to 65.5%.

For the women, the mean of the distribution is 98.0% (0.3%) and the 5%,
25%, 50%, 75%, and 95% quantiles are given by (94.2, 97.2, 98.6, 99.4, 99.8).
Hence, on average the inefficiency is 2.0%, while 25% of the players have an
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inefficiency of more than 2.8% and 5% of the players an inefficiency of more
than 5.8%. The women are thus less efficient servers than the men. At the
median, the women can increase the probability of winning a point on service
by 1.2%-points: from 56.3% to 57.5%.

The inefficiency estimates are lower bounds because of our conservative
approach. This conservativeness has two sources. The first source consists
of the maximization over λ in Section 6.2. To analyze the sensitivity of the
efficiency estimates with respect to λ, we compute the efficiency in the feasible
range of 2 ≤ λ ≤ 5. (The reason why this may be considered the feasible
range is that λ < 2 is unrealistic because it implies x∗

1 < 57.7% while the
observed frequencies for x1 are about 60%, and λ > 5 is unrealistic because
it implies x∗

1/x
∗
2 > 0.7 despite an average x1/x2 of about 0.7.) For λ fixed at

2, 3, 4, and 5 we obtain mean efficiency estimates of 98.7, 98.9, 98.8, and 98.5
for the men, and 97.3, 97.8, 98.0, and 98.0 for the women. These are close
to the conservative estimates above (98.9 and 98.0), so that maximization
over λ does not appear to contribute much to the conservativeness of our
efficiency estimates.

If we assume, instead of model C0, one of the models C1 or C2, then

λ̂ changes little (see Table 3), but this does not necessarily imply that the
efficiency p/p∗ also changes little. This, however, is the case. For example,
under model C2 the mean efficiency is estimated as 99.0% for men (89.9% un-
der C0) and 98.1% for women (98.0% under C0). The (in)efficiency estimates
are therefore not very sensitive to small misspecifications in the y-curve.

The second source of conservativeness is the assumed optimality of (some
of the) service inputs apart from x, as discussed in Section 2.3. We now
argue that this second source is minor. First, the variable x captures most of
the relevant service inputs. Second, the potentially important other aspects
(insofar they are not represented through x) are speed, direction, and spin.
These will vary in particular between first and second services. Model C2 al-
lows for separate y-curves for first and second services, and shows that their
impact on efficiency is small. Third, Walker and Wooders (2001) show that
optimality regarding direction is justified. Fourth, other aspects (emotion,
concentration) will have an even smaller effect on efficiency, as their depen-
dence on x is small. Thus, the potential harm of the conservativeness of
our approach is small, so that we may ignore the fact that our estimates are
actually upper bounds.

One might ask how much of inefficiency is caused by aggregation. We
assume that points are i.i.d. over a match, but suppose they are only i.i.d.
over a set or a game? We have two answers to this objection. First, points
are almost i.i.d. over a match, as shown in Klaassen and Magnus (2001).
Second, disaggregation increases the measurement error and is therefore not
feasible in our data. The discussion in Section 4 shows that moving from
match to set data produces essentially no new information.
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We conclude that the service strategy of top tennis players is not fully
efficient. This is perhaps not surprising, because 100% efficiency is unattain-
able, even for top athletes. We thus differ from Walker and Wooders (2001),
who do not reject that the probability of winning a point is the same for
a service to the left and to the right. Our main result, however, is not the
lack of full efficiency, but rather the fact that we obtain estimates of the
(in)efficiency: 1.1% (0.2%) for men and 2.0% (0.3%) for women. These are
small compared to the large suboptimalities found in laboratory experiments.

7.2 Impact of inefficiency

The fact that the inefficiency is small does not necessarily imply that the
impact of the inefficiency is small too. We analyze the impact at point,
game, set, and tournament level.

Although we measure efficiency in relative terms (p/p∗, see Section 2.4),
the impact, we believe, is best captured by the absolute difference, that is,
p∗ − p at point level. For example, for (p, p∗) = (0.9, 1.0) and (p, p∗) =
(0.1, 0.2), respectively, we find p∗ − p = 10%-points in both cases, while the
inefficiency measure 1 − p/p∗ is 10% in the first case and 50% in the second
case. In the second case, the player can thus increase p by 50%, indicating
a large inefficiency. But the impact is small: he/she still has only 20%
probability of winning the point. In the first case, the player can increase
p by 10% both absolutely and relatively. Although the inefficiency is lower
than in the second case, the impact is equal, and this seems about right.

At point level the impact of inefficiency is that by serving efficiently,
men can increase p by 0.7%-points (from 64.8% to 65.5%) on average, and
women by 1.2%-points (from 56.3% to 57.5%). This again seems small. But
a player serves many points in a tennis match. Thus we study the impact
at higher levels of aggregation, applying the software developed in Klaassen
and Magnus (2003) to all p and p∗.

If we consider a game, then the impact of inefficiency increases, not be-
cause the players perform differently but because of the structure of the tennis
scoring system: from 0.7%-points at point level to 1.1%-points at game level
for the men, and from 1.2%-points at point level to 2.5%-points at game level
for the women.

At match level (arguably the most natural unit) the impact of ineffi-
ciency does not only depend on the inefficiency of player i but also of player
j. What would be the efficiency gain for player i if he or she switches to
serving efficiently while player j does not? The mean increase in the prob-
ability of winning the match is 2.4%-points (0.5%-points) for the men, and
3.2%-points (0.5%-points) for the women. These estimates can be related to
Romer (2006), who finds a potential 2.1%-points increase of the probability
of winning an (American) football match. Despite the fact that he studies
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teams — for which one might expect larger inefficiencies than for individ-
ual players — Romer’s efficiency gain is lower than in our study, probably
because his analysis considers only a small aspect of a match, whereas the
service in tennis is of great importance.

The mean match efficiency gain averages out differences in efficiency gains
across matches. In well-balanced matches, for example, serving efficiently is
more important than in matches where one player is much stronger than the
other. This issue is addressed in Figure 5. For all S draws of (zij , zji, λ)
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Figure 5: Efficiency gain m∗ − m as a function of m, match level (men left,
women right).

and for each match, we compute the probabilities mij (i wins the match
against j, both serving normally) and m∗

ij (i wins the match against j, i
serves optimally, j serves normally). Then we regress (m∗

ij − mij) on mij

(50,800 observations) using nonparametric quantile regressions. We use the
same kernel as above, including the boundary correction method, though now
not only for mij near one but also near zero. The fact that the support is
bounded also implies that the fitted regression curve exhibits flattening at the
boundaries. We avoid this by using the local linear regression method instead
of the more standard locally weighted averaging approach; see Fox (2000).
Finally, to account for the skewness of m∗

ij − mij , we use quantile regression
instead of the usual (mean) regression, taking the 10, 50 and 90% quantiles;
see Koenker (2005, p. 222) on locally linear quantile regression. This whole
procedure gives median and 10 and 90 percentiles regression curves, where
the 80% band represents the variation of m∗

ij −mij across servers. These are
the three solid lines in Figure 5. We repeat the procedure for each of the R
replications, so that we can estimate the 95% confidence intervals around the
three curves to measure the impact of the GMM estimation uncertainty. For
simplicity, Figure 5 only contains the confidence band (dashed) around the
median curve. If the two players are approximately of equal strength then
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the median efficiency gain at match level for the efficient server is 2.7%-points
for the men and 4.4%-points for the women. Moreover, 10% of the players
will have an efficiency increase of more than 10–15%-points. In very uneven
matches, however, serving efficiently is essentially irrelevant.

We now have estimates of the impact of inefficiency at point, game, and
match level, but this does not yet answer the question what the monetary
impact is. In order to answer this question, be it crudely, we run a hypo-
thetical tournament of 128 players (seven rounds, like Wimbledon), where
in each match both players have probability 50% to win the match, except
one player who serves efficiently. The only efficient player has 52.7% (that
is, an additional 2.7%-points) probability of winning a match in the men’s
singles (54.4% in the women’s singles). What is the expected monetary gain
for the efficient player? In grand slam tournaments the paycheck approxi-
mately doubles in each round. If we assume that this is exactly true, then
the expected paycheck for the efficient player will rise by 18.7% for men and
32.8% for women. At Wimbledon this would mean an expected additional
income of approximately $10,000 for the efficient man and $15,000 for the
efficient woman. Hence, even though the inefficiency at point level may seem
small, the monetary impact of inefficiency can be substantial.

Since a player has two services, we may ask whether an optimal first ser-
vice is more or less important than an optimal second service. This question
is answered in Figure 6, where we only consider the median. The graph
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Figure 6: Decomposition of efficiency gain into first and second service, match
level (men left, women right).

(x∗
1, x

∗
2) is the same as the median in Figure 5, but now decomposed into

(x1, x
∗
2) where only the second service is optimal and (x∗

1, x2) where only the
first service is optimal. The figure shows that players can achieve a larger
efficiency gain on their second service than on their first service, possibly
because of a misguided (inefficient) fear for a double fault.
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7.3 Efficiency and player’s quality

Finally we ask whether better players are more efficient than weaker players,
as we would perhaps expect. This is no tautology because better players
could also be more talented and equally efficient as weaker players. Our
basic equality is

success = talent + efficiency.

A talented but not so efficient player may be as successful as a less talented
player who is more efficient. We observe success by the ranking of a player,
and we can measure efficiency; talent is unobserved, but can be deduced.

We run the following simple linear regression:

effij = β1 + β2ri + β3|ri − rj| + β4rirj + ξij.

To account for the random effects in eff ij, we use for each server the draws
(zij , λ) from Section 6.2, so that we have 50,800 observations. The regression
is performed for each of the R replications of θ. To combine the results across

θ, we draw 100 times from each estimated distribution of β̂ and, to account
for skewness, the resulting 5000 draws are summarized in a 95% confidence
interval around the median.

Two conclusions emerge. First, the confidence interval for β2 is (0.0004,
0.0015) for the men and (0.0004, 0.0023) for the women. Hence, higher-
ranked players are indeed more efficient. This is consistent with Walker
and Wooders (2001) who find strong rejections of mixed-strategy play in a
data set involving inexperienced card players, in contrast to their results for
experienced tennis players. Our evidence is even stronger since it comes from
a single data set.

Second, the confidence interval for β3 is (−0.0010, −0.0001) for the men
and (−0.0011, 0.0000) for the women. Hence, the closer the contest, the
more efficient players are forced to be.

8 Conclusions and implications

In a tennis match between two players, the objective of each player is to
win the match. If it is a match between two amateurs (possibly business
partners), one player may be hesitant to beat his or her boss or to win too
decisively. But top professionals do not act like this. If we were studying
a minor tournament, even a top player might not fully commit because he
or she wants to be fit for next week’s major tournament. That is why we
study only a major tournament, namely Wimbledon. Our ‘utility’ function
to be maximized is the probability that a player (given his or her opponent
and given the strengths of both players) wins a point while serving. It seems
likely that this is indeed the function which players wish to maximize.
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We asked the question whether the service strategy for top tennis play-
ers, playing in a top tournament, is efficient. The answer is that it is not.
The rejection of perfect efficiency is not surprising. More important are our
estimates of the magnitude of the inefficiency, and our conclusion that the
inefficiencies are small. Our model and set-up are very general. Most assump-
tions have been subjected to extensive sensitivity analyses in order to check
whether (small) deviations from the assumptions have a significant impact
on the results. The results are robust, and even if the remaining restrictions
were incorrect and thereby would inflate the estimated inefficiencies, this
would only strengthen our conclusion that inefficiencies are small.

The inefficiency is measured by the potential relative increase in the prob-
ability of winning a point on service, and is on average 1.1% for men (2.0% for
women). The impact of serving efficiently can be quantified at various levels
of aggregation. At point level the impact is 0.7%-points (1.2%-points), at
game level 1.4%-points (4.0%-points), and at match level 2.4%-points (3.2%-
points). These differences do not reflect the players but the scoring system
and the fact that at match level the impact of service efficiency depends on
the quality difference between the players. In terms of expected monetary
gains we have calculated that the expected paycheck for the efficient player
could rise by 18.7% for men and 32.8% for women. So even small inefficiencies
can have substantial financial consequences.

What is the reason for this inefficiency? Perhaps top tennis players know
their y-curve, but are not able to solve the optimization problem. Or do they
correctly solve the optimization, but on the wrong y-curve? The decompo-
sition into first and second service (Figure 6) may help us here. From the
point of view of achieving optimality it is much easier for a server to work out
the optimal second service (maximize w(x)) than to work out the optimal
first service (maximize w(x) + (1 − x)w(x∗

2)). Nevertheless, the second ser-
vice appears to be less efficient than the first service. This provides evidence
that, although players may be maximizers, they do not maximize the correct

function.
We also find that higher-ranked players are more efficient than lower-

ranked players, and that the closer the match, the more efficient a player
serves.

Let us now try and relate these results to economics, and in particular to our
original question whether economic agents are successful maximizers. First,
our results show that economic agents and even top agents are not fully ef-
ficient, and that this inefficiency can be financially nontrivial. Second, the
different inefficiency results at point-, game-, and match level show that the
market form has an impact on the measurement of inefficiency. For example,
in the case of Bertrand competition for homogeneous goods, a ‘winner-takes-
all’ effect is induced, and this nonlinearity is not related to productivity

33



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

but to the nature of the competition. Third, the fact that tighter matches
cause players to be more efficient suggests that in a more competitive mar-
ket firms are forced to be more efficient; otherwise they will be driven out
of the market. This supports the view of many policy makers that mea-
sures aimed at strengthening market mechanisms lead to a more efficient
economy. Moreover, it corroborates Friedman’s (1953, p. 22) point that only
return-maximizing businesses survive in a competitive market.

What contribution, if any, does this paper make to the closely related
subject of rational behavior? In rational choice theory the ‘rational man’ is
assumed to (a) know his or her preferences over all relevant alternatives, and
(b) choose the best alternative. In our tennis framework this corresponds
to (a) a player who knows the pay-off structure p(x1, x2), and (b) is able to
maximize that pay-off.

We find inefficiency and hence the agent does not know the pay-off struc-
ture and/or is not able to solve the maximization problem. This would reject
rationality in favor of bounded rationality, and therefore corroborates find-
ings from the experimental economics literature.

The inefficiency is larger for the second than for the first service, even
though the maximization problem for the second service is easier. This sug-
gests that at least (a) is rejected, that is, the agent does not fully use his or
her true preference relations.

The inefficiency is much smaller than typically found in studies using
laboratory experiments. This can be explained by the higher motivation,
larger experience, and stronger competition among top tennis players. The
impact of competition is supported by our data. The impact of experience
is confirmed by studies in experimental economics, which find that learning
reduces violations of rationality; see van de Kuilen and Wakker (2006). An
open question in that literature is whether in the limit (infinite learning)
these violations of rationality disappear. Our results suggest that extensive
learning leads to quite rational decisions. This comes close to an affirma-
tive answer to Tversky and Kahneman’s (1986) question whether incentives,
experience, and competition ensure fully rational choices.

Another implication is that rationality might be an acceptable approxi-
mation in many applications, at least for the top agents. Friedman’s (1953,
p. 21) expert billiard players are like our top tennis players: they make their
shots as if they know and can implement the complicated mathematical for-
mulas underlying the optimal paths of the balls. This will be approximately
true for expert billiard players, but not necessarily for the average billiard
player. Since we find that the efficiency is smaller for weak players than for
strong players, rationality may not be a good approximation for the typical
(amateur) tennis player, billiard player, or economic agent. Hence, in spite
of Friedman’s (p. 21) assertion that

It is only a short step from these examples to the economic hypoth-
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esis that under a wide range of circumstances individual firms be-
have as if they were seeking rationally to maximize their expected
returns,

it is not justified to think of ‘individual firms’ (that is, not the top firms) as
rational.
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