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"Bildung", die Erstberufe "freie Berufe" und "Klerus" und bei den Berufen des Vaters ebenfaüs

"freie Berufe" und "Klerus" lokalisiert D.h., bleibt die Berufsstabüität und die Berufsvererbung

außerhalb der Betrachtung, so gaben diejenigen, die 1848/49 hauptberuflich in der Bildung tätig

waren, als Erstberuf sowie als Beruf des Vaters überdurchschnittlich oft "Klerus" und "freie Be¬

rufe" an. Ähnliches gilt für den Hauptberuf "Justiz" (rechter oberer Quadrant); die Angehörigen
dieses Berufes kamen, abgesehen von "Justiz", überdurchschnittlich oft aus der "Verwaltung"
bzw. sie waren als "Advokaten" tätig.
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2. Stochastic Dynamic Programming in Life Course Analysis: Basic Concepts
and A simple model

Ulrich Mueller

For causal analysis in demography, individual longitudinal data are indispensable. Life table

and transition rate methods, however, allow the analysis of Single events only, they do not

capture the character of the human life course as a adaptive sequence of transitions. Using

concepts from evolutionary life history research, a new approach to analyzing whole life courses

is presented: from measuring trade-offs between life course traits identifying optimal life courses

with dynamic stochastic programming, and modeüng the effect of covariates as determining
deviations from the optimal sequence.

Stochastic Dynamic Programming is the tool of choice for the problem of optimizing the

overall outcome of a sequence of decisions when the optimal choice of later steps depends on

earlier steps (Mangel and Clark 1988; Puterman 1994).

Fundamental to Stochastic Dynamic Programming is the principle of optimality:
"From any point on an optimal trajectory, the remaining trajectory is optimal for the

corresponding problem initiated at that point" (Luenberger 1979,419).

The trick in this seemingly trivial Statement is that, if the trajectory is optimal, the principle
works backwards as forwards. Assume the trajectory is a sequence of discrete moves, with

discrete outcomes. We consider a possible outcome of the process at terminal time T. Once we
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know that the trajectory leading to this outcome is optimal, we can determine the optimal last

move at time T-l, which has brought the trajectory from its position at time T-l to its position at

time T. Next, from the penultimate position of the process at time T-l, we can determine its

position at time T-2, and so forth determine the optimal trajectory aü the way backwards until the

beginning of the process at time t=0.

The application to the problem of an optimal sequence of reproduction decisions would be like

this: Consider an individual in a stationary population whose total remaining reproductive

potential V at age t+1 is

V1+1 = V,+ G,-Pt (1)

the total reproductive potential V at age t plus some current income Gt minus current parental
investment Pt at t, Gt being a non increasing function of Pt. G, is reaching its maximum, if there is

no parental investment in this period: there exists a trade-off between P, and Gt.

Assuming that aü individuals die at terminal age T, the optimal aUocation at this age is to

divert all remaining resources into current investment. From that the optimal aUocation at time T-

1 can be calculated, from that the one at T-2, and so forth down to age 0. Thus, for any assumed

reproductive investment in the last time period of the individual's life, the sequence of aUocation

decisions can be derived which maximizes üfetime fitness.

Up to now, most applications of stochastic dynamic programming to life history analysis have

been for animals: hunting behavior of lions (Mangel and Clark 1988); migration by salmons (Levy

1987, quoted in Puterman 1994); foraging of smaU birds in winter (Houston et al. 1988); the

dawn chorus of birds in spring (McNamara et al. 1987); parental aUocation and clutch size

(Mangel 1987; Mangel and Clark 1988); mate desertion in hawks (Keüy and Kennedy 1993);

foraging in many species (references in Clark 1991). Any appücation to human reproductive

strategies could easüy make use of many weü documented trade-offs between costs and returns

of parental investment

We want to determine the optimal number and optimal timing of births which under certain

environment conditions maximize expected üfetime fitness. As an ülustration, we are describing a

very simple example of a life course problem.
From maturity on, in a population, a female with an ever-present, faithful husband, or,

alternatively, an abundant supply of males may live uniformly seven years during which she may

reproduce. She may give birth once per year but may decide not to. Beyond what she needs for

her own subsistence, she has a fixed income of one resource unit per year. As long as she has no

chüdren, she saves this amount. Once she has chüdren, the current income is split up evenly

among them. Her savings (the resources she had saved before reproduction) wül be split up

among her chüdren after her death. This assumption may reflect the investment she has made in

her own rank which in many species is known to be transferred to chüdren and, thus, to increase

reproductive success of children beyond current maternal investment

In order to keep things simple, let children uniformly start reproduction after the death of their

mother, notwithstanding theü own age at this moment.
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In consistence with the fitness criterion from stochastic population theory as sketched above,

her goal is to maximize the survival of her lineage, or to irunimize the probabüity that no

descendants of her survive. Simulation can support the intuitive notion that in sexuaUy

reproducing species, the vast majority of aü lineage extinction events takes place in the first

generation, therefore we wül take into account only lineage survival probabüities into this first

generation (Mueller 1992).

Let there be two built in-trade-offs with respect to number of children.

1) Mortality of chüdren shall go up with number of chüdren already present as an effect of the

decreasing share of current income per child. Empirical evidence for that assumption can be

found in the studies of Anderson (1990) and Haukioja et al. (1989). By comparing infant

mortality of twins and singletons these studies circumvent the problem that realized number of

children may be a reaction to expected Infant mortality, as weü as the problem that subsequent
chüdren are born at increasing age of mothers with increasing risk of maternal and infant

mortality.

2) Chances of adult chüdren of not remaining chüdless shaU go up with increasing amount of

resources each child inherits from parents. This inheritance in turn is the bigger the longer the

parents have postponed reproduction and the smaUer the number of their chüdren is. Positive

correlations between number of chüdren and percentage of chüdren remaining chüdless were

found in the famities of US American professional soldiers (noncommissioned and commissioned

officers) (Mueller 1992), in the famities of West German and East German physicians (Mueller

unpublished), and in the famities of German female university professors (Schmid 1994).
In both tradeoffs, we model the desired effect not as a proportional function of the share of

current income or of inheritance but a logarithmic function, taking into account that from an early

age on, life chances of children depend on parental investment only with decreasing marginal
effect

Finally, we wül consider two situations. In the no-care-necessary Situation, children can be on

their own and are able to statt reproduction already in the first year they have entered alive. In

the care-necessary Situation, chüdren need two fuü years of maternal care, before they can Start

reproduction: the first year they have entered alive, and the foUowing year. In this Situation, a

chüd, whose mother does not live through these two years, will never reproduce.
For any stochastic dynamic optimization model, essential components are (Mangel and Clark

1988, 215-233; Puterman 1994, 17-25):
- a State variable Xt;
- a set of constraints on Xt, defining a State space;
- a set of actions i, which can be used with probabüity b*, such that 2Zb\= 1;
- a State dynamics;
- an optimization criterion.

Applied to our model, we have

1) the State variable X,, the expected number of chüdren at time t;

2) a discrete time structure, consisting of right-side-open intervals [t, t+1) of equal length,
with a Start period [to, ti) and with a terminal period, denoted as [T, T]. We wül think of time

periods as years. The beginning of year [t, t+1) is denoted as t. Where the context is

unambiguous, t may also denote the year [t, t+1). The State variable is measured at the beginning
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of each year, reproduction and mortality occur during the year, the female dies at the end of the

yearT, T];

3) the constraints 0 < Xt, 0 < (X, - XM) < 1
,
0 = Xtfor t = W

the expected number of chüdren alive at the beginning of the process is zero, thereafter a non¬

negative number not exceeding the number of years passed, since there can be only one birth per

year;

4) the set of actions: Here simply the binary decision to give birth to a chüd in year; [t, t+1)

with probabüity bt, or not, with probabüity (1-b,);

5) the state dynamics given by:

Xt+1 = { X,(l - m,(m,Xt) + 1) b,+ Xt(l - m,(m,Xt))(l - b,)} (2)

The number of chüdren Xt+i at time t+1 equals the number of chüdren X, at time t, diminished

by the mortality ra,(mÄ) during the year [t, t+1), which is a function of the number of chüdren

present at t, and some base line mortality m, an envüonment parameter, the one a chüd is subject

to if there are no other children present and it gets the whole of the parental investment. In order

to model the first trade-off, we want m, to be an increasing function of number of children

present, but with decreasing increment, and propose:

Neither age of chüdren nor age of mother shaü have an effect on chüd mortality, which for

simplicity shall work only on children alive at the beginning ofthe year [t, t+1).

6) The optimal!ty criterion is the üfetime fitness function (|>t(Xt, Rt). the function which maps

number of children ative at the beginning of the terminal year [T, T] and the resources Rt which

they wül receive after the death of their mother at the end of [T, T], into the expected lineage
survival probabüity = lifetime fitness.

In the model, we assume that RT = t* with bt* > bt-i = bt.2 = ...
= b0 ,

since the mother can

save one resource unit each year before she Starts reproducing.

Appropriately, lifetime fitness is measured at the end of [T, T]. The more resources going to a

chüd, the smaüer the probabüity c that this chüd wül remain chüdless (not finding a mate, being

sterile, or die before onset of reproduction). As in the case of infant mortality m, in order to

model the second trade-off, we want the probabüity c be an increasing function of number of

resources going to a child, but with decreasing increment, and propose:

(pr(XT, RT): = 1 - c(y, RT)X, and c(y, RT): = y/ (1 +ln(l +Rt/Xt)) (4)

The üneage survival probabüity, according to our definition - see above - is the complement to

the probabüity that aü chüdren XT wül remain chüdless. This is the individual chances of

childlessness among these chüdren, dependent on some base line childlessness y and the number

of resources per capita RT/ XT, raised to the power XT.
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Now we can determine the optimal trajectory, that is the optimal timing of reproduction
decisions bo > bi,... , br-i, br.

The general procedure is:

1) For each possible value of the State variable XT , the expected number of chüdren at

terminal time T, we determine the optimal trajectory, which maximizes the terminal fitness

function tp for that XT. We may call such a trajectory a locaUy optimal trajectory for Xt. There

may be more than one locaUy optimal trajectory for a given Xt .

2) Then we select from that set of locaUy optimal trajectories for all values of XT which are

possible under the constraints of the State space, the one trajectory which leads to the highest
value of the terminal fitness function <p over the whole state space. We may call this trajectory the

globally optimal trajectory for aU XT . Again, there may be more than one globaüy optimal

trajectory for all XT, several distinct sequences of reproduction decisions may be equaUy globally

optimal.
Whüe the second half of the task does not pose specific problems, the first one requires

stochastic dynamic programming, a working backwards in the State dynamics, as defined in eq.

(5).

We introduce a new function

F(x, t, T): = max E{ q>(XT)) I X, = x} (5)

F is the function, which at the end of [T, T] maximizes expected lifetime fitness of the State

variable Xt , under the condition that the State variable X at time t equals x. In order to find a

general method of calculating F, we write

F(x, T, T): = max E{q>(( XT(l-mT) + 1) br)+ q>(( XT(l-mT))(l - br))} (6)

The right hand side of this equation gives the expected value of the expected lifetime fitness at

the end of the terminal year for any Xt depending on

- the mortality in T, itseü a function of XT,
- the fitness function q>, which also is a function of XT and Rt, the latter at least being bound by

XT;
- and the action "reproduction", taken with probabüity bi-and avoided with probabüity (1 - br).

Finding F(x, T, T) means determining the value of br, which maximizes the right hand side of

eq.(6).

After we have found F(x, T, T), we want to find F(x, T-l, T).

Let x't : = [(XM) (1-m,.,) + 1]

and x",: = [(X,.i) (l-mt.i)]
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Then, by the total probabüity formula, we have

F(x, T-l, T) = max {F(x, T, T) | Xu = x}

= {F(x\ T, T)br., + F(x", T, T)(l - br.,)} (7)

Again, we solve this equation by an appropriate choice of br-i, which together with br gives

F(x, T-l, T). Applying the same algorithm, we obtain F(x, T-2, T), and all the way backwards to

F(x, to, T) for any given X,.

Since we want to keep this model as simple as possible, we set child mortality equal at aü

ages. First we consider the no-care-necessary Situation when no child reproduces as long as the

parents are alive, but Starts to do so as soon as they are dead, never mind how old the child is.

We also disregard adult mortality among children.

For the simple model presented here, inspection of eq.(7) shows that, in the no-care-necessary

Situation br must equal one, and so must br-i, and so forth, down to some t, such that the optimal

trajectory = sequence of reproduction decisions has the following general form:

. bo = bi = ... =bt.i = 0, and bt= ...
= br-i = br= 1

Once reproduction has begun, it is not advisable to take a break.

Imagine that the female has achieved the optimal number of births, the one which maximizes

survival probabüity of her lineage. In this Situation the best last move for the female must have

been to place this last birth in the last year of her life, because any other choice would

unnecessarily expose the last child to additional years with the risk to die before comrnencing

reproduction.
The best move before this last best move again is to give birth to a child the year immediately

before and so on backwards. Put it in forward perspective: as soon as the female has started

reproduction, she should get a child every year until death.

Thus, if the optimal number of births is 1,2,3 ... , we know the optimal timing of births. In

order to find the number of births, which actually maximizes lineage survival chances, we first

calculate the expected number of children alive at the death of their parents and then the lineage
survival probabüity from this number and from the size of the maternal inheritance (her mother's

savings) bequeathed to them.

Next we may wish to consider the care-necessary Situation: no child may be able to survive

the first two years without the ongoing support of the mother. That means, the mother should

give birth to her last child not immediately before her death. But from that time backwards, by
force of the same argument already applied, the female, from the onset of her reproduction on,

should have a baby each year. And again, in order to find the optimal number of births, we first

calculate the expected number of chüdren alive at the death of their mother and then the lineage
survival probabüity from this number and from the size of the inheritance left to them.
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In the care-necessary Situation brmust be zero, and so must br-i, but from there on br-2 = br-3

...
= 1. Here the optimal trajectory = sequence of reproduction decisions has the following

general form:

bo = bi = ...
= b,., = 0, b,= ...

= br-3 = bT-2= land br-i = br=0

In the last step, the maximal fitness value of the various locaUy optimal trajectories has to be

found which identifies the globally optimal trajectory.
We consider three types of environments,

- one "rough" with child mortality at .15 and childlessness chances at .40,
- one "moderate" with child mortality at. 10 per year and childlessness chances at .30,
- one "rieh" with child mortality at .05 per year and a .20 chance of an adult child to remain

chüdless.

Figures 1-6 show for both situations (no-care-necessary and care-necessary) and for all three

environments (rough, moderate, and rieh) the optimal life course in terms of number and timing
of births.

In a rough environment, in the no-care-necessary Situation, if children can be on their own

immediately after birth, the mother should wait three years, have four children and then die

immediately after the birth of her last child. In the care-necessary Situation, if children need two

years before they can be on their own, the female should wait three years, have two children

without a break, and then care for these children during her last two years.

In a moderate environment, in the no-care-necessary Situation, the mother should wait three

years, have four children and then die immediately after the birth of her last child. In the care-

necessary Situation, the female should wait two years, have three children without a break, and

then care for these chüdren during her last two years.

In a rieh environment, in the no-care-necessary Situation, the mother should wait two years

after maturity, have five children and then die immediately after the birth of her last child. In the

care-necessary Situation, the female should wait one year, have four chüdren without a break,

and then care for these children during her last two years.

Figure 1: Rough environment, without care Figure 2: Rough environment, with care

Nutnbar of Bkth. un» Tim. t Un.ag. Bunrtml PrababINty Numb*r ol Bbthi unt« Tim. I UnHg. Sunrival ProlwbIHty
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Figure 3: Moderate environment, without care Figure 4: Moderate environment, with care

bUin, "- *"*

Figure 5: Rieh environment, without care Figure 6: Rieh environment, with care
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Further model refinements, in order to make it more realistic, are easily conceivable. We could

vary child mortality by age of child. We could allow chüdren Start reproducing with their parents

still alive, we could make the time of inheritance more flexible (allow for dowries) and so on. The

next Step would then be fitting the model to real data in order to see how close the distribution of

empirical life courses in a population matches the Optimum predicted by the model. For this, the

two tradeoff fünctions probably would have to be re-speeified.
On the other hand, very simple modeis can have considerable predictive power. For example,

the relatively inflexible spacing of the optimal number of children which was not included in the

assumptions of the model, fairly well reflects the empirical findings. In subsistence societies like

the hunter-gatherers of the Kalahari, the optimal spacing is about 4 years (Blurton Jones 1986,

1987). In modern societies, made possible by modern medicine and improved nutrition, optimal

spacing, can be somewhat shorter (Yamaguchi and Ferguson 1995): but apparendy not less than

three years.

But also in modern societies, with a much lower number of births per women, leaving much

more freedom of choice for the timing of births, adaptation to environment fluetuations oecurs by

varying the onset of reproduction and - possibly - the total number of children born, but not by

varying the spacing between births. Figure 6 shows the intervals between marriage and birth of
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first child, between first and second child and so forth, on the one side, the age at first marriage
for women in West Germany 1964-94. Age at first marriage varied between 22.7 and 26.9, more

than 4 years. The crude birth rate varied between 17.4 and 9.9 per 1000. The spacing between

births, however, was remarkably stable: changes of one year most. There seems to be a large

evolutionary premium on having the optimal number of births in the shortest possible period in

life, once reproduction has begun. In estimating the effects of covariates on the extent of eventual

deviations, some techniques analogous to semiparametric transition rate modeis may be useful.

The general procedure could be as follows:

Figure 7: Age at First Marriage and Intervals before Birth 1 - 5

German Women 1964-1994 / Legitimate Births only

—Marriage-child 1 ?Inteival Child 1-2 -A-Interval Child 2-3

-»-Interval Chüd 3-4 X Intetval Child 4-5 Age at 1. Marriage

27 yuus

A^atFMMariiag« Mg» InWiraJ Moni Birth 1 • 5

5 yaara

IfftM e6a887DBBB7O7f7273 74 757fl77TBT9aoai82BaB4aSSBB7neBBO«ffl2M04

Mean age at first marriage and intervals before birth 1-5, German Women 1964-1994 (Federal Statistical Office,

own computations)

1) Determine trade-offfünctions from empirical data;

2) Derive the optimal transition probabilities, and, hence, the optimal life course in this

environment;

3) Link the Variation in the covariates with the Variation in the observed transition probabilities.
Standard linking modeis from life event analysis (proportional and linear hazard modeis;

accelerated failure time modeis) may possibly be too simple. Imagine that one deviation may

be a condensation in time (have your first child later, your last one earlier), the other deviation

a stretching of events (have your first child earlier, your last one later). Better might be just

determining the degree of suboptimality of deviations, and identifying the contribution of

single transitions to this differential. This could be done analogous to determining the elasticity
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of the intrinstic growth rate with respect to changes in age specific vital rates. It has been

shown also for industrial societies that changes in the optimal age class have the greatest

impact on the overall growth rate, as predicted (Caswell 1989,133).

4) If there are several fitness maxima, measuring the degree of suboptimatity may require
additional assumptions. Whether stable polymorphism as compared to varying degrees of

suboptimatity of üfe courses in human populations is a frequent Situation, must be decided

empiricaüy.
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