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Abstract

Empirical analysis of individual response behavior is sometimes limited due to
the lack of explanatory variables at the individual level. In this paper we put forward
a new approach to estimate the effects of covariates on individual response, where
the covariates are unknown at the individual level but observed at some aggregated
level. This situation may, for example, occur when the response variable is available
at the household level but covariates only at the zip-code level.

We describe the missing individual covariates by a latent variable model which
matches the sample information at the aggregate level. Parameter estimates can
be obtained using maximum likelihood or a Bayesian analysis. We illustrate the
approach estimating the effects of household characteristics on donating behavior
to a Dutch charity. Donating behavior is observed at the household level, while the
covariates are only observed at the zip-code level.
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1 Introduction

Empirical analysis of individual behavior is sometimes limited due to the lack of explana-

tory variables at the individual level. There may be various reasons why individual-level

explanatory variables are not available. When using individual revealed preference data,

information about explanatory variables may simply not be available as databases cannot

be properly linked. For survey data, there may be a missing explanatory variable due to

a missing question in the survey or a question which is interpreted the wrong way by the

respondents.

In some cases it is possible to obtain information on explanatory variables at some

aggregated level. For example, if the zip code of households is known, it may be possible to

obtain aggregated information on household characteristics, like income and family size,

at the zip-code level. This zip-code level information is usually obtained through surveys.

The aggregated information of the variables is summarized in marginal probabilities which

reflect the probability that the explanatory variable lies in some interval (income, age) or

category (gender, religion) for a household in that zip-code region.

The goal of the current paper is to estimate the effects of covariates on individual

response when the covariates are unobserved at the individual level but observed at some

aggregated level. There are several studies in economics which try to link individual and

aggregated data, see, for example, Imbens and Lancaster (1994) and van den Berg and

van der Klaauw (2001). In contrast to our situation, these studies assume that both

individual-level data and aggregated data is available. The aggregated data is assumed

to be more reliable and is used to put restrictions on the individual-level data. The

situation of missing individual covariates is related to ecological inference, see, for example,

Wakefield (2004) for an overview. The main difference with regular ecological inference

problems is that we observe individual responses, whereas ecological inference also relies

on aggregated information on the response variable. The extra information on individual

responses may help us to overcome certain identification issues in ecological inference.

As far as we know, the only paper that comes close to our situation is Steenburgh et al.

(2003). The motivation for the use of aggregated data in this paper is however different
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from ours. The authors use zip-code information to describe unobserved heterogeneity

in the individual behavior of households instead of estimating the effects of covariates on

behavior. Our problem also bears similarities with symbolic data analysis, see Billard

and Diday (2003) for an overview. Symbolic data analysis also deals with aggregated

explanatory variables and dependent variables at an individual level. The motivation for

the use of aggregated data is however different. Aggregation is pursued to summarize large

datasets. Therefore the form of the aggregated information is different and represents, for

example, intervals instead of marginal probabilities.

In this paper we develop a new approach to estimate the effects of covariates on in-

dividual response when the covariates are unknown at the individual level but observed

at some aggregated level in the form of marginal probabilities. We extend the standard

individual response model with a latent variable model describing the missing explanatory

variables. This latent variable model describes the missing explanatory variables in such

a way that it matches the sample information at the aggregated level. In case of one

explanatory variable, the model simplifies to a standard mixture regression with known

mixing proportions. A simple simulation experiment shows that this new approach out-

performs in efficiency the standard method, where we replace the missing explanatory

variables by the observed marginal probabilities at the aggregated level.

Parameter estimates of the individual response model can be obtained using Simulated

Maximum Likelihood [SML] or a Bayesian approach. Given the computational burden

of SML, the latter approach may be more convenient. To obtain posterior results, we

use a Gibbs sampler with data augmentation. The unobserved explanatory variables

are sampled alongside the model parameters. Conditional on the sampled explanatory

variables, a standard Markov Chain Monte Carlo [MCMC] sampler can be used for the

model describing individual response.

The outline of the paper is as follows. In Section 2 we provide a simple introduction

into the problem and perform a small simulation experiment to illustrates the merits of our

approach. In Section 3 we generalize the discussion to a more general setting. Parameter

estimation is discussed in Section 4. In Section 5 we illustrate our approach estimating

the effects of household characteristics on donating behavior to a Dutch charity. We use
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aggregated information on household characteristics at the zip-code level to explain the

individual response of households to a direct mailing by the charity. Finally, Section 6

concludes.

2 Preliminaries

To illustrate the benefits of our new approach, we start the discussion with a simple

example. We consider a linear regression model with only one explanatory variable. The

explanatory variable xi can only take the value 0 or 1, for example, a gender dummy. Let

the observed response of individual i yi, be described by

yi = α + βxi + εi, (1)

where α is an intercept parameter and where β describes the effect of the 0/1 dummy

variables xi on yi for i = 1, . . . , N . The error term εi is assumed to be normally distributed

with mean 0 and variance σ2. We assume that xi is unobserved at the individual level

but that we have aggregated information on xi, for example, at the zip-code level. This

aggregated information is summarized by pi = Pr[xi = 1] for i = 1, . . . , N .

A simple approach to estimate β is to regress yi on pi instead of xi. The error term of

this regression equals

ηi = (xi − pi)β + εi. (2)

The OLS estimator is consistent if E[piηi|pi] = 0. As

E[piηi|pi] = E [pi × ((xi − pi)β + εi)|pi] = E [pi(xi − pi)β|pi] + E[piεi|pi]

= E [pixiβ|pi]− E
[
p2

i β|pi

]
+ E[piεi|pi] (3)

this condition is fulfilled if E[piεi|pi] = 0 and E[xi|pi] = pi. Although this OLS estimator

is in general consistent, it is clear from (2) that the error term is heteroskedastic, and

hence the OLS estimator is not efficient. Hence, a GLS estimator may improve upon OLS

estimates.

An alternative approach to use the aggregated information to estimate β is to con-

sider a mixture regression, see Quandt and Ramsey (1978), Everitt and Hand (1981) and
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Titterington et al. (1985). To describe the response variable yi we consider a mixture of

two linear regression models where in the first component the xi variable is 1 and in the

second component xi equals 0. The mixing proportion is pi which is known but may be

different across individuals. Hence, the distribution of yi is given by

yi ∼
{

N(α + β, σ2) with probability pi

N(α, σ2) with probability (1− pi).
(4)

The parameters α and β can be estimated using maximum likelihood [ML]. ML estimates

can easily be obtained using the EM algorithm of Dempster et al. (1977).

To illustrate the efficiency gain of the mixture approach we perform a simulation

study. For N = 1, 000 individuals we simulate 0/1 xi values according to Pr[xi = 1] =

pi. We use different simulation schemes for pi. We either allow the value of pi to be

different across individuals, or we impose that groups of individuals have the same value

for pi corresponding to the idea that these individuals live in the same zip-code region.

Furthermore, we allow the range of possible values for pi to be different. We sample pi from

U(0.2, 0.4) or U(0.01, 0.99). The values of yi are generated according to yi = 1 + 2xi + εi

with εi ∼ N(0, 1).

We estimate the β parameter using four approaches. In the first approach we estimate

β using a linear regression model where we include the true xi as explanatory variables.

In practice this solution is of course not feasible but it allows us to compute the efficiency

loss due to using explanatory variables at an aggregated level. In the second approach we

consider an OLS estimator in a linear regression model with pi as explanatory variable.

The third approach uses a GLS estimator in the same linear regression model. The GLS

weights are based on (3) and are computed using the true value of β and σ2. In practice

these parameters are of course unknown but the simulation results already show that

accounting for heteroskedasticity using the true values does not compensate the efficient

loss of the OLS estimator. In the last approach we consider the mixture solution as in (4).

Table 1 displays the efficiency loss in the estimator for β for the last three estimation

approaches compared to using full information. Simulation results are based on 1,000

replications. The efficiency loss is computed using the root mean squared error [RMSE]

of the estimates as all estimators are consistent. Several conclusions can be drawn from

5



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 1: Efficiency loss of using aggregated data with
respect to using full information for the three estimators

Distribution Number of Efficiency Loss
of pi pi

a OLS GLS Mixture
U(0.20, 0.40) 1,000 90.5% 90.5% 33.3%
U(0.01, 0.99) 1,000 50.4% 49.8% 24.1%
U(0.20, 0.40) 100 90.4% 90.4% 32.4%
U(0.01, 0.99) 100 52.5% 52.2% 23.0%
U(0.20, 0.40) 10 92.4% 92.3% 31.5%
U(0.01, 0.99) 10 62.4% 62.1% 23.0%
U(0.20, 0.40) 2 96.6% 96.6% 33.5%
U(0.01, 0.99) 2 73.9% 73.9% 31.3%
a Number of different pi values drawn from the uni-

form distribution. Total number of individuals is
1,000.

the table. First of all, the mixture approach outperforms the other two estimators. Sec-

ondly, the GLS estimator hardly improves upon the OLS estimator, indicating that het-

eroskedasticity is not the main cause of the efficiency loss of the OLS estimator. Thirdly,

all estimators perform better when the range in possible values of pi is larger, which is not

a surprise as a large variation in pi provides more information about the slope parameter.

Finally, the estimators perform better when there are less individuals with the same pi

value. The mixture approach however seems hardly affected by the number of individuals

with the same value for pi.

As already indicated by our simulation results, a GLS estimator does not compensate

the efficiency loss due to aggregation of the explanatory variables. A second reason why

the GLS estimator is not useful, is that constructing a feasible GLS estimator is often not

possible if we have more than one explanatory variable. Consider, for example, the case

with k explanatory variables which are unobserved at the individual level

yi = α +
k∑

j=1

βjxij + εi, (5)

where xij are unobserved 0/1 dummy variables. Assume that we have aggregated infor-

mation summarized in k marginal probabilities Pr[xij = 1] = pij. It is straightforward to

extend the proof above and show that the OLS estimator for βj is consistent when the

6
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Table 2: Average RMSE of forecasting yi using the
parameter estimates of 4 methods and using either
individual, aggregated or a Bayesian update of the
individual data in the forecasts

using xi using pi using x̂i|yi

Full information 1.00 1.35 1.18
OLS 1.06 1.35 1.22
GLS 1.06 1.35 1.22
Mixture 1.00 1.35 1.18
a 1,000 out-of-sample observations.

xij are replaced by pij. In this case, the error term becomes

ηi =
k∑

j=1

(xij − pij)βj + εi. (6)

Although the OLS estimator is consistent, it is impossible to estimate the variance of ηi,

because the covariance matrix of xi is unknown. As in practice we often only observe the

marginal probabilities Pr[xij = 1] = pij and not the joint probabilities it is not feasible to

estimate these covariances.

Before we turn to our solution to this problem, we first consider forecasting. Fore-

casting individual response when only aggregated explanatory variables are available is

hampered because of two reasons. First, the effects of the explanatory variables can be

estimated less precise compared to the case where individual data is available. The sec-

ond reason is that the lack of out-of-sample explanatory variables at the individual level

introduces more uncertainty in our forecast. To assess the out-of-sample forecasting per-

formance of the four estimation methods, we simulate another set of 1,000 yi values for

each replication. We predict the value of yi using the estimates of α and β obtained in

the first part of the simulation for each of the four estimation procedures.

Table 2 displays the average RMSE for each of the four estimation procedures. We

only show the results where we simulate pi from U(0.2, 0.4) and where we draw a distinct

value for each individual. The other cases show similar results. We make a distinction

between three situations. The second column displays the results when we assume that

the out-of-sample xi are known. In this case the full information approach and the mixture
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approach have similar average RMSE while the OLS and GLS approach perform worse. In

case we only use aggregated out-of-sample information, all approaches perform the same,

see third column of Table 2. Hence, the loss in forecast precision due to having aggregated

out-of-sample information outweighs the efficiency loss in parameter estimation. The final

column shows the results in case we only simulate new yi values using the same xi values

of the original sample. This allows us to estimate the value of xi given the in-sample

information via Bayesian updating. Note that this is only possible in the case of a panel

data set and time-invariant xi variables. Again, the full information approach and the

mixture approach have similar average RMSE while the OLS and GLS approach perform

worse.

We can conclude from the simulation experiments in this section that the mixture

approach is preferred when we want to estimate the effects of explanatory variables which

are only observed at the aggregated level on individual response. In the next section we

extend the mixture approach to situation of more than one explanatory variable. The

information in the individual responses helps to estimate the unobserved correlations

between the covariates.

3 Model specification

In this section, we generalize the discussion in the previous section in several ways. First,

we relax the assumption that the model for yi is a linear regression model. Secondly, we

allow for m explanatory variables summarized in the m-dimensional vector Xi. Finally, we

allow for other types of explanatory variables like ordered and unordered categorical vari-

ables. The vector of explanatory variables is written as Xi = (X
(1)
i

′, X(2)
i

′, X(3)
i

′)′, where

X
(1)
i contains the binary explanatory variables, X

(2)
i the ordered categorical explanatory

variables and X
(3)
i the unordered explanatory variables.

We will use the general model specification

yi = g(Xiβ, εi), (7)

where yi is the observed dependent variable, β is an m-dimensional vector with the param-

eters of interest, εi is a random term, and g is some (non)linear function. The distribution
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of εi is known and depends on the unknown parameter vector θ. We assume that εi is

independent of Xi.

This general model can be a linear regression model, but also a limited dependent

variable model or any other nonlinear model. If the Xi variables are observed, parame-

ter estimation is usually standard. In our case, the Xi variables are unobserved at the

individual level but we know the marginal distribution of each Xi, which may or may

not vary across individuals. To estimate the model parameters β and θ we extend (7)

with a latent variable model describing the joint distribution of the Xi variables. Some

of the parameters of this latent variable model are fixed to match the available sample

information at the aggregated level. In the following subsections we describe the latent

variable model for the three different types of explanatory variables. Note that we only

discuss them separately to facilitate the exposition. The different types of variables can

easily be combined in one multivariate model.

3.1 Binary explanatory variables

Assume that X
(1)
i consists of k binary variables. The joint distribution of X

(1)
i is discrete

with 2k mass points of which the associated probabilities sum up to 1. If we observe these

2k mass points at some aggregated level, we can follow the mixture approach of Section 2

to estimate the β parameters. In practice, however, we typically observe the k marginal

probabilities denoted by P
(1)
i = (p

(1)
i1 , . . . , p

(1)
ik )′. Romeo (2005) proposes a method to

estimate the joint discrete distribution from the marginal probabilities. He assumes that

the joint distribution is known at an aggregated level. Since we do not have this joint

distribution at an aggregated level, his method is not feasible for our problem.

The k marginal probabilities plus the fact that probabilities sum up to 1 leave us

with 2k − (k + 1) degrees of freedom on the 2k mass points, unless we assume that the

explanatory variables are independent. To facilitate modeling the joint distribution of

X
(1)
i , we introduce a latent continuous random vector X

(1)∗
i = (x

(1)∗
i1 , . . . , x

(1)∗
ik )′ with

x
(1)
ij = 1 if x

(1)∗
ij > 0

x
(1)
ij = 0 if x

(1)∗
ij ≤ 0

(8)

for i = 1, . . . , N and j = 1, . . . , k, see also Joe (1997) for a similar approach. A convenient
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distribution for X
(1)∗
i is a multivariate normal. The variance of x

(1)∗
ij is set equal to 1

for identification. We impose that the mean of x
(1)∗
ij equals Φ−1(p

(1)
ij ) for j = 1, . . . , k

and i = 1, . . . , N , where Φ denotes the distribution function of the standard normal

distribution. It holds that Pr[x
(1)
ij = 1] = Pr[x

(1)∗
ij > 0] = Φ(Φ−1(p

(1)
ij )) = p

(1)
ij , and

hence these restrictions match the marginal distribution of the X
(1)
i variables. In sum, we

assume that

X
(1)∗
i ∼ N

(
Φ−1(P

(1)
i ), Ω11

)
, (9)

where Ω11 is a k × k positive definite symmetric matrix with ones on the diagonal. This

leaves us with 1
2
k(k − 1) free parameters, that is, the sub-diagonal elements of Ω11. Al-

though we loose some flexibility by assuming this structure, the correlation parameters do

get an intuitive interpretation as they are related to correlations between the explanatory

variables. The model for X
(1)
i is in fact a multivariate probit [MVP] model, see Ashford

and Sowden (1970), Amemiya (1974) and Chib and Greenberg (1998). The aggregated

data provides the values of the intercepts such that only the sub-diagonal elements of Ω11

have to be estimated.

3.2 Ordered categorical explanatory variables

The setup for the binary variables can easily be extended to ordered categorical variables.

If we have one ordered categorical variable with r categories, the X
(2)
i vector in (7) contains

r−1 0/1 dummies, leaving one category, say the last one, as a reference category. Denote

the r − 1 dummies by x
(2)
i1 , . . . , x

(2)
ir−1. We typically observe the marginal distribution of

the categories at some aggregated level which we denote by the r probabilities P
(2)
i =

(p
(2)
i1 , . . . , p

(2)
ir )′.

If we only have one ordered categorical explanatory variable in our model, we can

use the simple mixture approach in Section 2 to estimate the effects of the r categories.

In practice, we usually have a combination of several binary and ordered categorical

variables and hence we need to deal with correlation between these variables. To describe

correlations between several categorical variables, it is convenient to introduce a normal

distributed random variable x
(2)∗
i and describe the distribution of the categorical variable

10
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in the following way

x
(2)
i1 = 1 if x

(2)∗
i ≤ qi1 and x

(2)
i1 = 0 otherwise

x
(2)
i2 = 1 if qi1 < x

(2)∗
i ≤ qi2 and x

(2)
i2 = 0 otherwise

...

x
(2)
ir−1 = 1 if qir−2 < x

(2)∗
i ≤ qir−1 and x

(2)
ir−1 = 0 otherwise.

(10)

For identification we impose that the variance of x
(2)∗
i is 1 such that

x
(2)∗
i ∼ N (0, 1) . (11)

To match sample probabilities P
(2)
i , the limit points qi1 . . . qir−1 are set equal to

qij = Φ−1

(
j∑

l=1

p
(2)
il

)
, i = 1, . . . , N, j = 1, . . . , r − 1. (12)

The proposed model for X
(2)
i is in fact the ordered probit model of Aitchison and Silvey

(1957), see also Cowles (1996) for a Bayesian estimation procedure.

The equations (10)–(12) provide the latent variable model for the case of one ordered

categorical explanatory variable. In case we have more categorical variables it is easy to

extend the current solution with more latent x
(2)∗
ij variables and allow them to correlate

using a covariance matrix Ω22 with ones on the diagonal. It is also possible to correlate the

resulting X
(2)∗
i variables with the latent random variables for the binary variables X

(1)∗
i

to describe correlations between binary and ordered categorical explanatory variables.

3.3 Unordered categorical explanatory variables

We may also encounter an explanatory variable which is categorical with, say, r categories,

but without a natural ordering in the categories. We assume here that an individual can

only belong to one category. If (s)he can belong to several categories we can apply the

approach in Section 3.1. To model the effects of such a variable on yi we include r−1 0/1

dummy variables x
(3)
i1 , . . . , x

(3)
ir−1 in X

(3)
i , leaving the rth category as reference. We observe

the marginal probabilities of the r categories at some aggregate level which we denote by

P
(3)
i = (p

(3)
i1 , . . . , p

(3)
ir )′.

To deal with the unordered categorical variable we build upon the multinomial probit

[MNP] literature, see, for example, Hausman and Wise (1978) and Keane (1992). We
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introduce r − 1 normally distributed variables X
(3)∗
i = (x

(3)∗
i1 , . . . , x

(3)∗
ir−1) with

x
(3)
i1 = 1 if x

(3)∗
i1 > max(x

(3)∗
i2 , . . . , x

(3)∗
ir−1, 0) and x

(3)
i1 = 0 otherwise

...

x
(3)
ir−1 = 1 if x

(3)∗
ir−1 > max(x

(3)∗
i1 , . . . , x

(3)∗
ir−2, 0) and x

(3)
ir−1 = 0 otherwise,

(13)

which means that x
(3)
i1 = . . . = x

(3)
ir−1 = 0 if max(x

(3)∗
i1 , . . . , x

(3)∗
ir−1) ≤ 0. Hence, the vector

X
(3)∗
i correspond exactly to the utility differences in MNP models. The distribution of

X
(3)∗
i is given by




x
(3)∗
i1
...

x
(3)∗
ir−1


 ∼ N







µ
(3)∗
i1
...

µ
(3)∗
ir−1


 ,




1 1
2

· · · 1
2

1
2

. . . . . .
...

...
. . . . . . 1

2
1
2
· · · 1

2
1





 , (14)

where µ
(3)∗
i = (µ

(3)∗
i1 , . . . , µ

(3)∗
ir−1)

′ represents the mean of X
(3)∗
i . As individuals can only

belong to one of the categories, we cannot identify the covariance matrix of X
(3)∗
i and

have to fix its elements. For simplicity we take the implied covariance matrix of an MNP

model where the individual utilities have a covariance equal to 1/2 times the identity

matrix. If we take category r as the base category we end up with same covariance

structure as above. The positive correlations are caused by the fact that the value of x
(3)∗
ij

is influenced by both p
(3)
ij and the probability of belonging to the reference category p

(3)
ir .

If the reference has a vary small probability, all x
(3)∗
ij , j = 1, . . . , r − 1 should have a high

value.

The observed probabilities imply r − 1 restrictions on the distribution parameters of

X
(3)∗
i . To match the sample data with the model we have to solve µ

(3)∗
i from

Pr[x
(3)∗
i1 > x

(3)∗
i2 , . . . , x

(3)∗
i1 > x

(3)∗
ir−1, x

(3)∗
i1 > 0] = p

(3)
i1

... (15)

Pr[x
(3)∗
ir−1 > x

(3)∗
i1 , . . . , x

(3)∗
ir−1 > x

(3)∗
ir−2, x

(3)∗
ir−1 > 0] = p

(3)
ir−1

Pr[x
(3)∗
i1 ≤ 0, . . . , x

(3)∗
ir−1 ≤ 0] = p

(3)
ir .

Note that the last restriction is automatically satisfied if the first r − 1 restrictions hold.

Unfortunately, there is no closed form expression for the probabilities from the LHS of

(15) and hence we have to use numerical methods. If r is small, numerical integration

12
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techniques can be used to evaluate the probabilities. For larger values of r the probabilities

can be evaluated using the Stern (1992) simulator or the Geweke-Hajivassiliou-Keane

[GHK] simulator (Börsch-Supan and Hajivassiliou, 1993; Keane, 1994). The values of

µ
(3)∗
i can be found using a numerical solver. Notice that the values of µ

(3)∗
i have to be

determined only once before parameter estimation.

The equations (13) and (14) provide the latent variable model in case of one unordered

categorical explanatory variable. In case there are more categorical variables it is easy

to extend the current solution in a similar way as discussed before. It is also possible

to correlate the X
(3)∗
i variables with the X

(1)∗
i and X

(2)∗
i variables in a straightforward

manner.

3.4 Continuous explanatory variables

So far, we only used discrete explanatory variables. Dealing with the case where continu-

ous variables are not observed at the individual level but at some aggregated level is not

easy in practice. It is not enough to know the average value of the continuous variable at

some aggregate level (e.g. the average value in each zip-code region) unless we make very

strong assumptions. To deal with a continuous variable, we need to know the marginal

distribution of the variable at the aggregated level. In case of a discrete variable, this dis-

tribution is represented by a few probabilities. In case of a continuous variable we need to

know the type of distribution and the values of the parameters of the distribution. If the

continuous variable is however divided in several intervals and we know the probability

distribution over these intervals we can model it like an ordered categorical explanatory

variables, see Section 3.2 and Section 5 for an example.

To summarize this section. The explanatory variables Xi which are missing at the

individual level are described by the latent variable X∗
i = (X

(1)∗
i

′, X
(2)∗
i

′, X(3)∗
i

′)′. This

latent variable has a multivariate normal distribution. The mean of this distribution is

determined by the marginal probabilities at the aggregate level. The covariance matrix

of X∗
i is denoted by

Ω =




Ω11 Ω′
12 Ω′

13

Ω12 Ω22 Ω′
23

Ω13 Ω23 Ω33


 , (16)
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where the matrices Ω11 and Ω22 contain ones on the diagonal and Ω33 is equal to the

covariance matrix given in (14) in case of just one unordered variable. If there are more

unordered variables, Ω33 contains as many blocks of the covariance matrix from (14) on

the diagonal. The remaining elements of Ω are free and describe the correlations between

the latent variables X∗
i . We summarize the free elements of Ω in the vector ρ. The models

for the X∗
i variables together with (7) provide the complete model specification.

4 Parameter estimation

To estimate the model parameters of the model proposed in the previous section, we can

choose for maximum likelihood or a Bayesian approach. In this section we discuss both

approaches and their relative merits.

We first derive the likelihood function. Let the density function of the data yi for the

model in (7) conditional on the missing variables Xi be given by

f(yi|Xi; β, θ), (17)

where β and θ denote the model parameters. To derive the unconditional density of yi

we have to sum over all possible values of Xi, which we will denote by the set χ. Hence,

the density of yi given the observed marginal probabilities Pi is given by

f(yi|Pi; β, θ, ρ) =
∑
Xi∈χ

Pr[Xi|Pi; ρ]f(yi|Xi; β, θ), (18)

where Pr[Xi|Pi; ρ] denotes the probability of observing Xi given the data at the aggregated

level which we denote by Pi = (P
(1)
i

′, P (2)
i

′, P (3)
i

′)′. These probabilities depend on the

unknown parameter ρ which summarizes the free elements of the covariance matrix Ω as

discussed in the previous section. Hence, the log likelihood function is given by

L(y|P ; β, θ, ρ) =
N∑

i=1

log f(yi|Pi; β, θ, ρ), (19)

where y = (y1, . . . , yN)′ and P = (P1, . . . , PN)′. The parameters β, θ and ρ have to be

estimated from the data.

14
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4.1 Maximum likelihood estimation

A maximum likelihood estimator can be obtained by maximizing the log likelihood func-

tion (19) with respect to (β, θ, ρ). To evaluate the log likelihood function we need to

evaluate the probabilities Pr[Xi|Pi; ρ] . Unfortunately, there is no closed form expression

to compute these probabilities. For small dimensions it is possible to use numerical in-

tegration techniques but in general we have to use simulation methods to evaluate the

probabilities. This implies that we end up with a Simulated Maximum Likelihood [SML]

estimator, see Lerman and Manski (1981). The probabilities Pr[Xi|Pi; ρ] can be evaluated

using the Stern (1992) simulator or the GHK simulator (Börsch-Supan and Hajivassiliou,

1993; Keane, 1994).

The SML estimator is only consistent if the number of observations and the number

of simulations goes to infinity. Given the literature on SML in MNP models (see for

example, Geweke et al., 1994), we expect that obtaining accurate values of the probabilities

Pr[Xi|Pi; ρ] is computationally intensive, especially when the dimension of the latent X∗
i is

large and/or the number of observations N is large. Note that the number of probabilities

Pr[Xi|Pi; ρ] we need to evaluate grows exponentially with the number of variables in Xi.

4.2 Bayesian analysis

The model can also be analyzed in a Bayesian framework. To obtain posterior results

for the model parameters, we propose a Gibbs sampler (Geman and Geman, 1984) with

data augmentation, see Tanner and Wong (1987). The latent X∗
i variables are simulated

along side the model parameters (β, θ, ρ). The main advantage of this Bayesian approach

is that it does not require the evaluation of the complete likelihood function. If suffices

to evaluate the likelihood function conditional on the latent X∗
i which determine Xi.

We focus in this section on the sampling of the latent variable X∗
i . We assume that

if we know the X∗
i and hence the Xi variables, an MCMC sampling scheme to simulate

from the posterior distribution of the model parameters β and θ is available. Hence, we

do not discuss simulating from the full conditional distribution of β and θ as this is model

specific. We do however discuss simulating from the full conditional distribution of ρ as

this is part of the model for the latent variable X∗
i .

15
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4.2.1 Sampling of XXX∗∗∗
iii

Because Xi is a deterministic function of X∗
i we only need to sample X∗

i . The full condi-

tional density of X∗
i is given by

f(X∗
i |yi, Pi; β, θ, ρ) ∝ f(yi|Xi(X

∗
i ); β, θ)f(X∗

i |Pi; ρ), (20)

where f(yi|Xi(X
∗
i ); β, θ) is given in (17) with Xi(X

∗
i ) the deterministic mapping of X∗

i

to Xi given in (8), (10) and (13). The function f(X∗
i |Pi; ρ) denotes the density of X∗

i

implied by the latent variable model for X∗
i . Given the structure of the latent variable

model, X∗
i has a multivariate normal distribution with a mean µi which is determined by

Pi and a covariance matrix Ω of which the free elements are denoted by ρ, that is,

f(X∗
i |Pi; ρ) = φ(X∗

i ; µi(Pi), Ω(ρ)), (21)

where φ denotes the multivariate normal density function. Sampling the complete X∗
i

vector at once is very difficult. Therefore, we sample the individual elements of X∗
i

separately from their full conditional distribution. Let us consider the jth element of X∗
i

denoted by x∗ij. The full conditional density of x∗ij is given by

f(x∗ij|yi, Pi, X
∗
i,−j, β, θ, ρ) ∝ f(yi|xij(x

∗
ij), Xi,−j(X

∗
i,−j); β, θ)f(x∗ij|X∗

i,−j, Pi; ρ), (22)

where X∗
i,−j and Xi,−j denote the vector X∗

i and Xi without x∗ij and xi,−j, respectively.

The full conditional density of x∗ij consists of two parts. The second part f(x∗ij|X∗
i,−j, Pi; ρ)

is the conditional density of one of the elements of X∗
i which is of course a normal den-

sity with known mean, say, µ̄ij, and variance, say, s̄2
j , which are functions of µi(Pi) and

Ω(ρ). The first part f(yi|xij(x
∗
ij), Xi,−j(X

∗
i,−j); β, θ) is a function of Xi(X

∗
i ) and can take

a discrete number of values depending on the value of x∗ij.

In case x∗ij corresponds to a binary explanatory variable, xij can take two values

depending on whether x∗ij is larger or smaller than 0. We can sample x∗ij from in one step

from its full conditional posterior distribution using the inverse CDF method but it is

computationally more efficient to sample x∗ij in two steps. In the first step, we determine

whether x∗ij is larger or smaller than 0, that is whether xij is 1 or 0, respectively. From
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(22) it follows that

Pr[xij = 1|yi, Pi, X
∗
i,−j, β, θ, ρ] =

kij1

(
1− Φ

[
−µ̄ij

s̄j

])

kij0Φ
[
−µ̄ij

s̄j

]
+ kij1

(
1− Φ

[
−µ̄ij

s̄j

]) , (23)

where kij0 = f(yi|xij = 0, Xi,−j(X
∗
i,−j); β, θ) and kij1 = f(yi|xij = 1, Xi,−j(X

∗
i,−j); β, θ).

In the second step, we sample x∗ij|xij from a truncated normal distribution with mean

µ̄ij and variance s̄2
j . We sample x∗ij either positive or negative, depending on the whether

xij is 1 or 0, respectively. For this truncated sampling we use the efficient accepting

algorithm in Geweke (2005, pp. 113), see also Geweke (1991).

The other types of variables can be sampled in a similar manner. Appendix A also

provides the sampling schemes in case x∗ij is associated with an ordered or an unordered

categorical variable.

4.2.2 Sampling of ρρρ

To complete the Gibbs sampler, we need to sample the parameters in ρ from their full con-

ditional posterior distribution. The vector ρ contains the free elements of the covariance

matrix of X∗
i which is denoted by Ω, see (16). As discussed in Section 3, identification

requires several restrictions on the covariance matrix Ω. In the first place, all diagonal

elements of Ω are equal to 1 and hence Ω is a correlation matrix. Furthermore, the corre-

lations between elements of the same unordered categorical variable are set equal to 1/2.

Hence, the full conditional distribution of Ω is not an inverted Wishart distribution.

There exists several algorithms to sample a correlation matrix, see, for example, Chib

and Greenberg (1998), Manchanda et al. (1999), and Liechty et al. (2004). In this paper

we follow Barnard et al. (2000). They suggest sampling one correlation at a time from

their full conditional posterior distribution using a griddy-Gibbs sampler, see Ritter and

Tanner (1992).

Suppose we want to draw the jth correlation in ρ denoted by ρj. Denote the vector ρ

without ρj as ρ−j. Furthermore, let X∗ = (X∗
1 , . . . , X∗

N)′ and µ(P ) = (µ1(P1), . . . , µN(PN))′,

where µi(Pi) denotes the mean of X∗
i determined by Pi for i = 1, . . . , N . The full condi-
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tional posterior density of ρj is given by

f(ρj|y, P, X∗, β, θ, ρ−j, ) ∝ f(X∗|P, ρj, ρ−j)f(ρj|ρ−j)

∝
N∏

i=1

φ(X∗
i ; µi(Pi), Ω(ρj, ρ−j))f(ρj|ρ−j)

∝ |Ω(ρj, ρ−j)|−N
2 exp

(
−1

2
(X∗ − µ(P ))′Ω(ρj, ρ−j)

−1(X∗ − µ(P ))

)
f(ρj|ρ−j),

(24)

where f(ρj|ρ−j) denotes the prior density of the jth element of ρ, conditional on all other

elements of ρ. Barnard et al. (2000) show how to determine the range of values for which

ρj leads to a positive definite matrix. Within this range we can define a set of grid points

to evaluate the kernel (24) for the griddy-Gibbs sampler.

As correlations in Ω which are related to the jth explanatory variable are not identified

if βj = 0, we suggest to impose an informative prior for the parameters in ρ. We use a

truncated normal prior with variance ω2 for the parameters in ρ, that is,

f(ρ) ∝ I[Ω(ρ) = PD]
∏

j

exp(−ρ2
j/(2ω

2)), (25)

where I[Ω(ρ) = PD] is an indicator function which is 1 if Ω(ρ) is positive definite and 0

otherwise. Hence, we concentrate the probability mass around zero.

5 Application

To illustrate our approach, we consider in this section an application where we analyze

the characteristics of households who donate to a large Dutch charity in the health sector.

Households receive a direct mailing from the charity with a request to donate money. The

household may not respond and donate nothing or respond and donate a positive amount.

We have no information about the characteristics of the households apart from their zip

code. At the zip-code level we know aggregated household characteristics.

Our sample contains 10,000 households which are randomly selected from the database.

The mailing we consider took place in February 1997. The response rate is 39.0%. The

average donation is 3.39 euros and the average donation conditional on response is 8.68

euros. We match these data with aggregated data at the zip-code level (4 digits) from

Statistics Netherlands (CBS). Table 3 shows the relevant aggregated data at the zip-code
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Table 3: Available explanatory variables at the zip-code level
Variable Type Description
Church Binary Goes to church every week

Not-active Binary Not active in labor force

Reference: Family with kids
Single Unordered (3 cat.) Lives alone
Family no kids Unordered (3 cat.) Family without kids

Reference: Average income
Income low Ordered (3 cat.) Income in lowest 40% nationally
Income high Ordered (3 cat.) Income in highest 20% nationally

Reference: Age between 25 and 44
Age 0-24 Ordered (4 cat.) Age between 0 and 24
Age 45-64 Ordered (4 cat.) Age between 45 and 64
Age 65+ Ordered (4 cat.) Age over 65

Urbanization Observed Measure for the degree of urbanization

level. As can be observed from the table we have aggregated data for different types of

explanatory variables, that is, for binary, unordered, and ordered categorical variables.

Note that we only know urbanization level at the zip-code level. As it is the same for

each individual in the zip-code region, this variable is treated as an observed variable.

To describe donating behavior we consider a censored regression (Tobin, 1958) because

the donated amount is censored at 0. We use the log of (1 + amount) as dependent variable

which leads to the following model specification

log(1 + yi) =

{
x′iβ + εi if x′iβ + εi > 0
0 if x′iβ + εi ≤ 0,

(26)

with εi ∼ N(0, σ2). As explanatory variables we take the variables displayed in Table 3.

To estimate the effects of the covariates on response, we use two approaches. First,

we follow the simple regression approach of Section 2, which means that we replace the

unknown household characteristics by their sample averages at the zip-code level. The

parameters of (26) are estimated using ML. Although we have only shown in Section 2

that OLS in a linear regression model provides consistent estimates, simulations suggest

that this result carries over to the ML estimator in a censored regression model. Secondly,

we use the mixture approach to estimate the censored regression parameters, where we

opt for a Bayesian approach. For ρ we take the informative prior (25) with ω2 = 1/4.
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Table 4: Posterior means, posterior standard deviations, and HPD
regions of the model parameters for the mixture approach together
with ML results for the simple approach

mixture approach simple approach
mean s.d. 95% HPD ML s.e.a

Intercept -1.77 0.05 (-1.87,-1.68) -2.89 0.81
Urbanization 0.05 0.03 (-0.01, 0.11) 0.63 0.35
Church 0.64 0.02 ( 0.59, 0.69) 0.24 0.25
Not-active -0.72 0.01 (-0.75,-0.69) -1.03 0.74
Single 3.63 0.04 ( 3.55, 3.71) 0.52 0.55
Family no kids 3.61 0.04 ( 3.53, 3.70) 3.51 1.20
Income low -0.01 0.03 (-0.07, 0.05) 0.41 1.17
Income high 0.71 0.02 ( 0.68, 0.75) 1.60 0.87
Age 0-24 -0.01 0.03 (-0.07, 0.06) 2.96 1.35
Age 45-65 -3.60 0.09 (-3.77,-3.42) -1.42 1.28
Age 65+ 0.72 0.02 ( 0.68, 0.75) 1.80 1.05
σ 0.17 0.00 ( 0.17, 0.18) 2.36 0.02
a Heteroskedastic-consistent standard errors, see White (1982).

For β we use a normal prior with mean 0 and standard deviation 0.5 and for σ2 we use

an inverted Gamma-2 prior with parameters 12.5 and 50. These priors help to obtain

a smoother convergence of the MCMC sampler. Posterior results turn out not to be

sensitive to moderate changes of this prior specification.

We use a total of 120,000 draws, which took about six hours on an Pentium 4, 2.8

Ghz processor. The first 20,000 draws were used as burn-in period. Furthermore, we only

used every 20th draw to obtain a random sample of 5,000 draws. Our code is tested using

the approach of Geweke (2004).

Table 4 displays the estimation results for both approaches. It is clear from the table

that the posterior standard deviations of the mixture approach are much smaller than

the standard errors of the ML estimator, where the unknown household characteristics

are replaced by their sample averages at the zip-code level. Although the number of

observations is very large, the estimated standard errors of the simple approach are still

substantial. This illustrates the huge efficiency gain of using our method. This efficiency

gain enables us to identify more significant influences from household characteristics.

When using the simple approach, only Family no kids and Age 0-24 are identified as
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Table 5: Posterior means of the correlations between unobserved variables
with posterior standard deviations in parentheses

Church Not-
active

Single Family
no kids

Income Age

Church 1
(-)

Not-active 0.19 1
(0.10) (-)

Single -0.34 -0.14 1
(0.10) (0.14) (-)

Family -0.72 0.19 0.50 1
no kids (0.09) (0.08) (-) (-)
Income 0.06 -0.54 0.33 -0.27 1

(0.09) (0.16) (0.10) (0.10) (-)
Age 0.33 0.27 0.29 -0.19 -0.17 1

(0.10) (0.06) (0.08) (0.06) (0.06) (-)

having a significant impact on the donating behavior. But, using our mixture approach

it becomes clear that many other household characteristics also influence this decision.

Being Religious has a positive effect, while not being active in the labor force has a

negative effect. Both single households and families without children tend to donate

more. Household with higher income tend to donate more, while the effect of age is

nonlinear. The highest posterior density [HPD] interval shows that urbanization grade

has no influence on donating behavior.

There are two differences in the results of the two methods. First, both find that

families without children donate more than families with children, however, the ML results

suggest that single households donate about the same as families with children while the

mixture approach suggest that their donating behavior is more comparable to families

without children. The second difference in results concerns the effect of age. The main

difference is the level of the reference category, as all parameters have a higher value in

the ML estimates. Moreover, according to the ML results individuals younger than 25 are

the most lucrative group, while the mixture approach suggests that this group consists of

individuals over 65.

Table 5 displays the estimated correlation matrix of X∗
i . The diagonal elements are

fixed for identification. The correlation between the variables Single and Family no kids

is fixed at 1/2, because they belong to the same unordered categorical variable. Many
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of the posterior means of the correlations are more than two times larger than their

posterior standard deviation, illustrating the importance of our approach. In general, the

correlations have the expected sign. For example, there is a negative correlation between

being not active in the labor force and income, and a positive correlation between being

religious and age.

6 Conclusions

In this paper we have developed a new approach to estimate the effects of explanatory

variables on individual response where the response variable is observed at the individual

level but the explanatory variables are only observed at some aggregated level. This

approach can, for example, be used if information about individual characteristics is

only available at the zip-code level. To solve the limited data availability, we extend

the model describing individual responses with a latent variable model to describe the

missing individual explanatory variables. The latent variable model is of the probit type

and matches the sample information of the explanatory variables at the aggregated level.

Parameter estimates for the effects of the explanatory variables in the individual response

model can be obtained using maximum likelihood or a Bayesian approach.

A simulation study shows that our new approach clearly outperforms a standard ap-

proach in efficiency. The efficiency loss which is due to aggregation is about 50% smaller

than for the standard method. We illustrated the merits of our approach by estimat-

ing the effects of the household characteristics on donating behavior to a Dutch charity.

For this application we used data of donating behavior at the household level, while the

covariates were only observed at the zip-code level.

There are several ways for future research. It may be interesting to investigate whether

the proposed method can be used to deal with nonresponse in survey data. Another topic

for future research is to consider the complement case where explanatory variables are

observed at the individual level but that the response variable is only observed at some

aggregated level.
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A Derivation of full conditional distributions

In this appendix we provide the simulation schemes for missing ordered categorical vari-

ables and unordered categorical variables. As starting point we take the general form of

the full conditional density of x∗ij given in (22).

A.1 Ordered categorical variable

For an ordered categorical variable with r categories, we have to sample the variable x
(2)∗
ij .

If we assume that r is the reference category, the x
(2)∗
ij variable determines the r − 1 0/1

dummy variables x
(2)
i1 , . . . , x

(2)
ir−1. Let P

(2)
i = (p

(2)
i1 , . . . , p

(2)
ir )′ denote the observed marginal

probabilities that the individual belongs to the r categories. The threshold levels qit are

set equal to Φ−1(
∑t

l=1 p
(2)
il ) for i = 1, . . . , N and t = 1, . . . , r− 1. Let µ̄ij denote the mean

of x
(2)∗
ij |X∗

i,−j, ρ in the latent model and let s̄2
j denote the variance of x

(2)∗
ij |X∗

i,−j, ρ, where

X∗
i,−j denotes X∗

i without x
(2)∗
ij .

Sampling of x
(2)∗
ij proceeds in the same way as for the binary variables except for the

fact that there are now r possible values for f(yi|Xi; β, θ) instead of only 2, that is,

kij1 = f(yi|Xi,−j(X
∗
i,−j), x

(2)
i1 = 1, x

(2)
i2 = 0, . . . , x

(2)
ir−1 = 0; β, θ)

...

kijr−1 = f(yi|Xi,−j(X
∗
i,−j), x

(2)
i1 = 0, . . . , x

(2)
ir−2 = 0, x

(2)
ir−1 = 1; β, θ)

kijr = f(yi|Xi,−j(X
∗
i,−j), x

(2)
i1 = 0, . . . , x

(2)
ir−1 = 0; β, θ),

where Xi,−j denotes Xi without x
(2)
i1 , . . . , x

(2)
ir−1.

First we draw x
(2)
i1 , . . . , x

(2)
ir−1 using the fact that they are mutually exclusive and

Pr[x
(2)
it = 1, x

(2)
i,−t = 0|yi, Pi, Xi,−1(X

∗
i,−j), β, θ, ρ] =

kijt(p̄it − p̄it−1)∑r
l=1 kijl(p̄il − p̄il−1)

(27)

for t = 1, . . . , r − 1, where p̄it = Φ
(

qit−µ̄ij

s̄j

)
with p̄i0 = 0 and p̄ir = 1, and where x

(2)
i,−t

denotes x
(2)
i1 , . . . , x

(2)
ir−1 without x

(2)
it .

Next, we sample x
(2)∗
ij |x(2)

i1 , . . . , x
(2)
ir−1 from a truncated normal distribution with mean

µ̄ij and variance s̄2
j . If x

(2)
it = 1 we sample x

(2)∗
ij between qit−1 and qit for t = 1, . . . , r − 1,

where qi0 = −∞. If x
(2)
i1 = . . . = x

(2)
ir−1 = 0, we sample x

(2)∗
ij larger than qir−1. We again

use the acceptance sampling algorithm of Geweke (2005, pp. 113).
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A.2 Unordered categorical variable

For an unordered categorical variable with r categories, we add r − 1 0/1 dummies in

X
(3)
i , say, x

(3)
i1 , . . . , x

(3)
ir−1. The r− 1 normal distributed random variables which belong to

this unordered categorical variable are denoted by (x
(3)∗
i1 , . . . , x

(3)∗
ir−1)

′.

Suppose that we want to sample x
(3)∗
ij from its full conditional posterior distribution.

The full conditional posterior density is given by (22). The second part f(x
(3)∗
ij |X∗

i,−j, Pi; ρ),

where X∗
i,−j denotes X∗

i without x
(3)∗
ij , is a normal density with known mean, say µ̄ij, and

variance, say s̄2
j . Conditional on X∗

i,−j the first part f(yi|xij, Xi,−j(X
∗
i,−j); β, θ) can take

two values. Define x
(3)∗
il = max(x

(3)∗
i1 , . . . , x

(3)∗
ij−1, x

(3)∗
ij+1, . . . , x

(3)∗
ir−1). The two possible values

are given by

kij0 = f(yi|x(3)
i1 = 0, . . . , x

(3)
il−1 = 0, x

(3)
il = 1, x

(3)
il+1 = 0, . . . x

(3)
ir−1 = 0, Xi,−j(X

∗
i,−j); β, θ)×

I[x
(3)∗
il > 0] + f(yi|xi1 = 0, . . . , xir−1 = 0, Xi,−j(X

∗
i,−j); β, θ)I[x

(3)∗
il ≤ 0]

kij1 = f(yi|x(3)
i1 = 0, . . . , x

(3)
ij−1 = 0, x

(3)
ij = 1, x

(3)
ij+1 = 0, . . . x

(3)
ir−1 = 0, Xi,−j(X

∗
i,−j); β, θ),

where Xi,−j denotes Xi without x
(3)
i1 , . . . , x

(3)
ir−1.

In the cases of a binary or ordered categorical variable the distribution of x∗ij|Xi

is a univariate truncated normal. However, for an unordered variable this is not the

case anymore, as its distribution also depends on the value of x
(3)∗
il . The sampling of

x
(3)∗
i1 , . . . , x

(3)∗
ir−1 given x

(3)
i1 , . . . , x

(3)
ir−1 becomes non-standard. Therefore, it is more efficient

to use the inverse CDF method to draw from x
(3)∗
ij and x

(3)
ij simultaneously.

The full conditional posterior density of x
(3)∗
ij is given by

cij(kij0φ(x
(3)∗
ij ; µ̄ij, s̄j)I[x

(3)∗
ij ≤ max(x

(3)∗
il , 0)]+

kij1φ(x
(3)∗
ij ; µ̄ij, s̄j)I[x

(3)∗
ij > max(x

(3)∗
il , 0)]), (28)

where the integrating constant cij equals

cij =

(
(kij0 − kij1)Φ

(
max(x

(3)∗
il , 0)− µ̄ij

s̄j

)
+ kij1

)−1

. (29)

Straightforward derivation leads to the following inverse CDF

x
(3)∗
ij (u) =





Φ−1
(

u
cijkij0

)
s̄j + µ̄ij if u ≤ ū

Φ−1

(
u

cijkij1
+

kij1−kij0

kij1
Φ

(
max(x

(3)∗
il ,0)−µ̄ij

s̄j

))
s̄j + µ̄ij if u > ū,

(30)
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where ū = cijkij0Φ

(
max(x

(3)∗
il ,0)−µ̄ij

s̄j

)
.
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