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High-School Students’ Conceptual Difficulties and Attempts at Conceptual 

Change: The Case of Basic Quantum Chemical Concepts  

 

This study tested for deep understanding and critical thinking about basic quantum chemical 

concepts taught at twelfth grade (age 17-18). Our aim was to achieve conceptual change in 

students.  A quantitative study was conducted first  (n = 125), and following this 23 selected 

students took part in semi-structured interviews either individually or in small groups that 

were allowed to interact under the coordination of the investigators. The planetary Bohr 

model was strongly favored, while the probabilistic nature of the orbital concept was absent 

from many students’ minds. Other students held a hybrid model. In some cases, students did 

not accept that the electron cloud provides a picture of the atom.  Many students had not 

understood the fundamental nature of the uncertainty principle. Finally, the mathematical 

description of the formation of molecular orbitals caused problems in the case of destructive 

(antibonding) overlap of atomic orbitals.  Our approach to conceptual change employed 

active and co-operative forms of learning, that are consistent with social-cultural 

constructivism, and to Vygotsky’s zone of proximal development.  It proved effective in a 

number of cases, and ineffective in others. The variation in students’ approaches was 

explained on the basis of Ausubel’s theory about meaningful and rote learning and of the 

ability to employ higher-order cognitive skills.  Nevertheless, the methodology used can be 

useful for all students, irrespective of their behavior in traditional written exams.   
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High-School Students’ Conceptual Difficulties and Attempts at Conceptual Change: 

The Case of Basic Quantum Chemical Concepts  

 

Introduction 

Atomic orbitals (AOs), molecular orbitals (MOs) and related concepts derive from quantum 

mechanical theories of atomic and molecular structure. Because of their conceptual difficulty, 

these concepts are not taught in introductory school chemistry, but they now form a part of 

most senior high school curricula at advanced and are also taught at the undergraduate level. 

To aid the explanation and understanding of phenomena, science uses a wide variety of 

models and theories. Such models play an important role in science education (Gilbert & 

Boulter, 1998 a, b; Justi & Gilbert, 2003) and can be broadly distinguished into either (i) 

material or physical or concrete, or (ii) abstract or conceptual or symbolic (Gilbert, Boulter, 

& Elmer, 2000). Symbolic models include mathematical formulas and equations. We may 

refer to theories using the term theoretical models.  

A number of researchers have addressed students’ difficulties and misconceptions with 

current sophisticated models of the atom and the molecule. For a comprehensive review see 

Taber (2001). Harrison and Treagust (2000) reported that senior high school students often 

confused electron shells and electron clouds. Taber (2002a, 2002b) found that British 

advanced secondary (A-level) students treated the terms orbital, shell, and orbit, 

interchangeably, and confused the mathematical modelling (LCAO) of MO formation by 

referring to ‘linear orbitals’. Taber (2005) also proposed a ‘typology of learning 

impediments’ that can be used for diagnosing the origins of students’ relevant difficulties. 

Mechanistic thinking (“electrons move around the nucleus in definite orbits”, “the electron is 

always a particle”, “electrons move along wavy orbits around the nucleus”) was found among 

first and second year undergraduate physics students in England prior to starting a quantum 
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mechanics course (Ireson, 2001). Senior high school students in Norway were also reported 

to hold a classical-physics view with respect to wave-particle duality (Olsen, 2001). In the 

case of hybridization, Zoller (1990) and Nakiboglu (2003) have attributed student difficulties 

to a poor understanding of the concept of AO and of s, p, d, and f orbitals.  

It is noteworthy that even chemistry students who had passed the quantum chemistry 

course (at the physical-chemistry level) demonstrated many failures in understanding the 

orbital shapes, the exact definitions for an AO and a MO, Slater determinants and the 

approximate nature of AOs for many-electron atoms, while a MO was identified only with a 

linear combination of AOs (Tsaparlis, 1997). Coll and Treagust (2001, 2002) examined 

advanced (upper secondary, undergraduate, and graduate) students’ mental models of 

chemical bonding, and found that all these learners preferred simple, concrete models, and 

referred to more abstract models only in the context of tests or examinations. Finally, 

Kalkanis, Hadzidaki, & Stavrou (2003) suggested that these misconceptions in general arise 

because of inability of many students to separate the conceptual frameworks of classical and 

quantum physics, producing epistemological obstacles to the acquisition of the required  

knowledge. 

 

The Context and Rationale of the Present Study 

 

In Greece, quantum-chemical concepts were only recently introduced (1999-2000) into the 

upper secondary school (lykeion) curriculum, at twelfth grade (final school year, age 17-18). 

The relevant chemistry course is now compulsory for all students taking the ‘positive stream’ 

of studies leading to science, engineering, medicine, and agro-science tertiary education 

departments. All students study from the same book published by the Greek Ministry of 

Education, and teachers are required to adhere very closely to the content of the book. In the 
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final national examination, the Ministry of Education sets a common paper. Because 

achievement in this examination is crucial to a student's chances of obtaining a university 

place, all students study the course conscientiously during the whole of the twelfth grade. 

Also, the questions that are included in the examination are of a similar nature each year. The 

essence of teaching lies of course in the teacher leading the instruction, so we cannot exclude 

the possibility that some of the teachers may supplement their teaching with additional 

information. However the contents of the book clearly dominate the teaching programme and 

it therefore follows that the all students will have a similar background in terms of the taught 

content. 

 In a previous quantitative study (Tsaparlis & Papaphotis, 2002), we exposed students to a 

number of questions that differed from the standard simple recall or application/algorithmic 

questions set in the examinations, which have been practiced by the students. The questions 

were intended to test for deep understanding and critical thinking. The findings indicated that 

many students thought in terms of old quantum theory, assuming that the term ‘orbital’ is 

another word for an ‘orbit', and that the electrons rotate around the nucleus like the planets 

around the sun. In addition, a number of them considered that orbitals are unique and 

represent a well-bound fixed space. Many students failed to realize the probabilistic nature of 

AOs, subscribing to a deterministic perspective. In addition, students had the misconception 

that the hydrogenlike orbitals are as exact for many-electron atoms as they are for the one 

electron case. 

In this study, we extend on our previous work by attempting to promote conceptual 

change in students' thinking. This has been conducted through a qualitative study in which we 

interviewed selected students individually or in small groups that were allowed to interact 

under the coordination of the investigators.  
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Despite the fact that the Bohr atomic model had been abandoned for more than eighty 

years ago, it still holds a dominant place in chemical education. Considering just the Greek 

school books, from which the students of our study had been taught, we note that they were 

taught that “electrons are constantly moving around the atomic nucleus in a strict 

arrangement on orbits” (Alexopoulos et al., 1996, p. 9) from primary school (in sixth grade), 

Then in their first chemistry course at lower secondary school (eighth grade) they were 

informed that: 

 

“Electrons are moving constantly around the nucleus, in various specific orbits. We say that 

electrons that have the same (or about the same) orbital radius belong to the same electronic 

shell.” (Frassaris & Drouka-Liapati, 1989, p. 36)  

 

Ninth-grade physics went along similar lines, but was more elaborate: 

 

“Electrons carry out two movements at the same time: one around the nucleus (orbiting), and one 

around their own axis (spinning), in the same manner that earth moves around the sun and its own 

axis. The orbits of the electrons around the nucleus are elliptic, but for simplicity we consider 

them as circular. The radii of these orbits are not random, but take certain values that are 

characteristic for each kind of atom.” (Zenakos, Lekatis, & Schoinas, 1996, p. 91)  

 

Moving on to upper secondary school, in tenth grade, our students studied Bohr’s model 

of the atom in detail.  Although a passing reference was made to the concept of orbitals 

(Mavropoulos et al., 1990, p. 31), this was unlikely to have much effect on students thinking. 

Only after nine years of schooling based on Bohr’s ideas had resulted in stable mental models 

and strong associations in their long-term memory, were students in twelfth grade introduced 

to the quantum-mechanical model. Note that use of the Bohr model still continued to be 
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widely used. In addition, this model continued to dominate the general-education physics 

course, for mathematical equations and problems, involving calculation of orbital radii.    

Science education research has established that students’ scientific concepts are often at 

odds with accepted scientific views. Such concepts are termed alternative frameworks or 

alternative conceptions or students’ misconceptions (Driver, 1983; Taber, 2002c). The theory 

of constructivism was developed to account for the formation of misconceptions. According 

to this, knowledge is constructed in the mind of the learner and can never be transferred intact 

from the mind of the teacher to the mind of the student.  

It should be stressed at this point, that the models and concepts of the old quantum theory 

do not strictly fit into the alternative-conceptions paradigm. They are not misconceptions but 

rather represent earlier models, which in many ways are still operational and useful today 

even in actual scientific practice. They constitute deep theoretical constructs to which 

students have been exposed over a long period of time. Vosniadou et al. (2001) maintain that 

such constructs (entrenched presuppositions) constrain the interpretation of scientific 

information and are difficult to change. We assume that the Bohr model of the atom and other 

old quantum-theory concepts constitute such entrenched presuppositions in students. Old 

quantum theory is the prior knowledge that ideally should serve as a springboard for the 

learning of new knowledge. On the basis of this knowledge, and depending on various 

factors, incoming information (the modern quantum models) may be interpreted as right, or 

wrong, or even a hybrid.  In this way, old models very often constitute a learning impediment 

for the desired deterministic to probabilistic transitions, and, as such, they are operationally 

equivalent to genuine alternative conceptions.     

According to the constructivist paradigm, knowledge “results from a more or less 

continual process in which it is both built and continually tested. Our knowledge must be 

viable; it must work … (and) function satisfactorily in the context in which it arises” (Bodner, 
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Klobuchar, & Geelan, 2001). Learning is a matter of actively constructing and reconstructing 

knowledge in the light of new experiences, and thus involves revising existing knowledge 

structures (Savinainen, Scott, & Viiri, 2004; Vosniadou et al., 2001). Kelly’s theory of 

personal constructs (Kelly, 1955) has two main hypotheses: firstly individuals differ from 

each other in their construction of events, and secondly that one individual’s constructs are 

similar to another’s. The latter hypothesis gives importance to social interaction, combining 

personal and social constructivism. 

Constructivist methods of teaching require that teachers, firstly, recognize their students’ 

alternative conceptions, and, secondly, take them into account in planning and delivering 

their teaching, so that the aim of conceptual change is fulfilled. Successful teaching of the 

quantum mechanical model needs therefore to incorporate a strategy for conceptual change. 

Conceptual change consists in the ‘replacement’ or ‘substitution’ of misconceptions with the 

corresponding scientific concepts. Replacement and re-organization of any conceptual 

framework will only occur when a student encounters cognitive contradictions and conflicts 

with the exhibiting models (Chi, 1991; Posner et al., 1982).   

Conceptual change cannot be achieved by traditional didactic methodology, but only 

through active, constructivist approaches. In particular, concept addition and concept 

modification toward the scientific option are proper actions and better terms than ‘concept 

replacement/substitution’. Posner et al. (1982 - see also Strike and Posner, 1985) listed four 

conditions/elements for bringing about conceptual change: (i) dissonance – leading to 

dissatisfaction with an existing conception; (ii) intelligibility - minimal understanding of the 

new conception (a person must realize how the new conception can restructure experience); 

(iii) plausibility - the new conception must have the capacity to solve problems that the old 

one could not; (iv) fruitfulness - the new conception must be fruitful, opening up new areas of 

thinking and learning.  
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Shiland (1997) analyzed secondary school chemistry texts and found that the above four 

elements were not present in sufficient quantities to promote conceptual change, that is, to 

have quantum mechanics rationally accepted in preference to simpler atomic models, such as 

the Bohr model. Stefani (2007) repeated Shiland’s analysis with twelfth-grade Greek 

chemistry texts and her findings were similar: the extensive coverage of the Bohr model re-

inforced it, contrary to the stated relevant objectives of the official program of studies, 

according to which “students should be aware of the need for the introduction of the orbital / 

electron cloud concept” (Pedagogic Institute, 2000, p. 261).      

Numerous studies have shown that conceptual change is very hard to accomplish. 

Concepts deeply rooted in students’ mental images are difficult to replace by other models, 

strongly resisting change, despite the fact that the information presented is logical, and the 

teaching strategies used are well-thought out and carefully planned and implemented. 

Further, even if students come close to realizing the limitations of their established thinking, 

they continue to revert very easily to previous ideas, with which they are more comfortable 

(Driver, 1983, Eylon & Linn, 1988)  

In this study, we employed active learning methods of teaching and learning, with 

students working together in small groups to accomplish an assigned common learning task 

under the instructor’s observation and guidance. Research evidence suggests that these 

discursive approaches to learning provide a better learning environment, and contribute to 

deeper understanding and development of learning skills (Duncan-Hewitt, Mount, & Apple, 

1995; Johnson, Johnson, & Smith, 1991; Stamovlasis, Dimos & Tsaparlis, 2006).  

Active and cooperative learning methods are consistent with social-cultural 

constructivism, which is linked to Vygotsky. According to Vygotsky (1962), the learner 

actively constructs his/her knowledge, but this process is greatly assisted by interactions with 

peers and with the teacher who acts at the students’ zone of proximal development. Central in 
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Vygotsky’s approach is the relationship between language and thought, which affects the 

development of higher mental functions. These functions develop through social interactions 

(with the teacher and/or peers) but progressively and ultimately are internalized by the 

individual.  

  

Method 

 

The study was carried out at the beginning of the 2001 academic year, with students from 

three departments, chemistry (CHE), biotechnologies (BIO), and material science (MAT), at 

a Greek university. All students had studied the same basic and advanced chemistry courses 

in upper secondary school, and participated in the same national, university-entrance 

examination in these subjects. They had just started their university courses that included a 

general chemistry course, but had not yet received tuition on the topics and concepts related 

to this study. Hence their knowledge was derived from their education in upper secondary 

school.  

A quantitative study, in which 125 students from the three departments answered a 

written questionnaire, was conducted first. This was followed by a qualitative study in which 

23 of the above students took part in semi-structured interviews.  

The written questionnaire, students’ written responses, and all discussions in the 

interviews were in Greek. Accuracy of translation into English was checked by back 

translation of the English version into Greek. The two Greek versions (original and back-

translated) were then compared, and, after some changes to the English version we arrived at 

the forms presented in this paper (Brislin, 1970; 1986).       
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The Written Questionnaire 

The Written Questionnaire consisted of 14 questions, of these five (Questions A1-A5) 

required just the application of known and well-practiced algorithms or simple recall of 

knowledge. The remaining nine questions (C0-C8) were more demanding, requiring 

conceptual understanding. One knowledge-only question (A5) and many of the conceptual 

questions (C2, C4-C8) were also used in the earlier study  (Tsaparlis & Papaphotis, 2002), 

and content validity had been dealt with at this time. Indices of discrimination obtained from 

this study were taken into account in formulating our questionnaire. In the qualitative study, 

we dealt only with questions C0, C3, C4, C6 and C7.  

Appendix 1 contains all the knowledge-only questions A1-A5, as well as any conceptual 

questions that are not dealt with in this study; it also provides performance data. Performance 

was much higher in the recall-algorithmic questions, ranging from 56.8 to 74.4%. 

Performance in the conceptual questions was generally much lower, ranging from 9.6 to 

35.2% with the exception of C3, which was a two-choice question and had a relatively high 

score of 56.0%. 

The Interviews 

On the basis of their performance in the written questionnaire, we invited a number of 

selected students to take part voluntarily in the interviews. We wanted to include students 

with a range of performances in the written questionnaire: students with an overall 

satisfactory performance; students with good performance in recall-algorithmic questions but 

not so good in the conceptual questions; and vice versa. A total of 35 students were invited, 

of which 23 (12 males and 11 females) accepted.  

Appendix 2 includes data for the performances of these 23 students in both the 

algorithmic/recall of knowledge (ALG) and the conceptual questions (C) on the written 

questionnaire. The mean mark in ALG was 79.1 (s.d. 19.0), while that in C was only 42.5 
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(s.d. 16.6).  It is noteworthy that two of the three students with the highest marks in C had 

relatively low marks for the ALC questions. On the other hand, the four students with top 

mark (100%) on the ALG questions obtained low marks for the C part of the questionnaire. 

Such discrepancies are well documented in the literature (Nakhleh, 1993; Stamovlasis et al., 

2004, 2005).       

Interviews were conducted individually or in groups of three or four. There were six 

individual interviews, with two students from each department; and five group interviews, 

three with BIO, one with CHE, and one with MAT students. All student names used in this 

paper are pseudonyms.  

Our aim with the group interviews was to bring face to face students, at least some of 

whom had given different answers to the written questions, to try to get them involved in 

discussions among themselves, and to observe these interactions. Both of the authors were 

involved as instructors (I) for the interviews. The interviews ran according to a semi-

structured questionnaire.  

Questions C0, C3, C4, and C6 referred to the deterministic or probabilistic conceptual 

interpretation of basic quantum chemical concepts and principles. Question C0 asked students 

to make a drawing of the hydrogen atom. Question C3 looked for the origin of the uncertainty 

deriving from the Heisenberg principle. Question C4 concerned the possibility of the electron 

of the ground-state hydrogen atom being found outside the space that is defined as a 1s 

orbital. Question C6 was related to Question 4, showing a correct and a faulty diagram of the 

electron densities deriving from the 1s and the 2p orbitals respectively, and asking students to 

identify any errors. Finally, question C7, which dealt with MOs as linear combinations of 

AOs, required good mathematical knowledge.   

Note, that while performance in the written question C2 was poor (correct: 22.4%), we 

will not consider it further here because all students participating in the interviews quickly 
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worked out that the carbon atom configuration entering this question is the ground-state 

structure, and that there are only two unpaired electrons in it, a fact that is not in agreement 

with the four equivalent bonds existing in the methane molecule: 

 

 “We have two unpaired (electrons), therefore it is wrong”. 

“It is not in agreement because as it appears here carbon can form two bonds, while in essence 

and in practice it forms four.” 

 

The reference to the bond angle values did not add to understanding. Also, since the 

hybridization model had not been taught to the students, it is natural that they could not draw 

inferences based on this model. 

 

 

Results 

 

Question C0.  Make a drawing depicting the hydrogen atom as you imagine it is in reality.   

At the outset, it must be emphasized that ‘reality’ did not mean the same thing to 

everyone:  

 

• As it is in nature, not in drawings. 

• It is difficult to conceptualize because the atom is very small.  

• Giving the right dimensions, that is distance from nucleus (a small nucleus and the electron 

away from it). 

• How the electron moves, the distances from the nucleus, which other orbits it has, to which it 

can go.  

• We could draw the nucleus, and one electron, in fact, anywhere.  

Page 12 of 65

URL: http://mc.manuscriptcentral.com/tsed  Email: editor_ijse@hotmail.co.uk

International Journal of Science Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 12 

• The electron to be on an orbit near the nucleus.  

 

To many, ‘reality’ had simply to do with the fact that the hydrogen atom consists of a 

(positively charged) nucleus and an electron at some distance away from it (a negatively 

charged electron to balance the charge):    

 

“Look, I know that it (the atom) has an electron that moves around the nucleus, it doesn’t have 

any neutron in the nucleus. So I would have one proton and one electron.”  

 

Figure 1 shows indicative drawings/answers to question C0. Most students had answered 

in the written questionnaire on the basis of the planetary Bohr model [see Figure 1, (a) and 

(b)]. As reasons for basing answers on this model, the students said that (i) it was the model 

taught to them in previous grades, (ii) it was what they most often had encountered in books, 

and (iii) it was simpler for them. In addition, most students felt it difficult or impossible to 

draw in static form something that is moving. (To include movement, one student had added 

a velocity vector on the electron.)  It is also worth noting that a mixed/hybrid model is used 

when a localized electron is included on the “surface” of the electron cloud [Figure 1, (c)]. 

 

(FIGURE 1 ABOUT HERE) 

 

In four out of five group discussions, the students accepted or were led by the instructors 

to accept that the most appropriate description of the hydrogen atom was that of an electron 

cloud. A decisive role in gaining acceptance of the electron-cloud model was played by the 

presence in each group of at least one student who had given the relevant answer in the 

written questionnaire. Take for instance the discussion that took place in the MAT group of 

students, where two out of the three students (Natalia and Tania) had drawn an electron cloud 
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in their written answers, and where Lampis, who had followed the Bohr model, was easy to 

persuade to adopt the electron-cloud model:   

 

Lampis: … In essence one cannot see the atom -  I drew a proton at the center and the electron 

moving around it. But the electron is a wave, a wave and a particle, and none could know where it is. 

Natalia: .. I showed with dots the space where the electron can move, but certainly (the space) is 

much larger… the probability is nowhere zero.  … I should actually fill in (with dots) all the paper. 

…Tania: I should have added more dots. 

…Lampis: All these are correct, …there should be more probability for the electron to be found 

near the nucleus, so there should be more dots, larger the density of dots near the center than outside, 

at least for the 1s ground state.   

 

In the CHE group of students, only Antonis had drawn an electron-cloud in his written 

answer, while Manolis and Christina followed the Bohr model. (Manolis actually wrote next 

to the orbit ‘a probable orbit’.) : 

 

Christina: I don’t believe that the shell is that way, it is an orbital, a wider space, but I don’t know 

how we should draw it when the electron moves.  

I:  If you could see it, what would you see?  

Christina: I wouldn’t see the electron because it moves very fast. … I would see a cloud, a small 

cloud. 

I: Then why didn’t you draw a small cloud?  

Christina: That’s how I had thought of then, that was the way I saw it in most books. 

… Antonis (reading his written comment): The higher the density of the dots in the figure, the 

larger the probability of finding the electron in that space. 

Manolis: I didn’t think it like that. I just wanted to give a static, so to say, form, to show both the 

electron and the rotation. 
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Eventually both Christina and Manolis accepted that Antonis’ drawing was the ‘proper’ 

one. Let us also see the discussion of the three students in the BIO3 group; here Dimitra 

produced the drawing in Figure 1(d), Isidora the one in 1(b), while Ioanna’s was similar to 

1(a) with the added comment “s orbital” for the outer circle. 

 

I: Isidora, what does the broken line show?  

Isidora: Here is 1s, … if we could say …  it is the space where various orbitals, 1s, 2s, 2p, it is all 

these and these make up the shells, it is what we have learnt in the tenth grade.  

I: Is it this that you want to show here, the orbits?  

Isidora: Yes, the orbits and the shells.  

I: Ioanna, what have you done here?  

Ioanna: I was trying to explain that the orbital is not a space that we can determine with precision, … 

but in the center there is certainly the nucleus, but the larger circle denotes that somewhere inside there, 

rather inside the larger circle the s orbital is contained and there is probability for the electron to be found.   

I: What about you Dimitra?   

Dimitra: I have put at the center of the atom one proton that we know that the hydrogen atom has, 

and with dots that as they go away from the nucleus become sparser, actually I have constructed the 

probability, rather the possible positions at which the electron can be found. 

I: So here we have all these drawings you have made, all of you can see them. …. Which of the three 

corresponds to reality, the reality we talk about in the question?  

Isidora: The one that Dimitra has made, because it has the nucleus and, around it, is the probability to 

find the electron, to be found in 1s, which does not become zero even at an infinite distance from the 

nucleus.   

I: Ioanna what do you think?  

Ioanna: The same.  

I: On the contrary, what does your own drawing show? 
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Ioanna: It reduces the probability and makes it zero at some distance.  

 

Some students’ statements show that their views were not clear, mixing in ideas from the 

planetary model; for instance, the representation of the hydrogen atom using a delineating 

curve (such as Ioanna’s above) represents a hybrid model: during conversations, this curve 

sometimes was called an ‘orbit’ and sometimes an ‘orbital’. Take for instance the following 

statements by two students: 

 

“(I drew) a proton at the center and around it the orbits that can … the space where the electron 

can move.” (Tania, MAT group) 

“…the hydrogen has a single proton in the nucleus, and the electron rotates on a shell, the first 

one … I don’t believe that it is such [an orbit] this shell, it is a …an orbital, a wider space.” (Christina, 

CHE group) 

 

A hybrid model was also generally used when students replaced their  representation of 

the electron as a dot or small circle with a small electron cloud/packet that again moves on 

specific orbits. Eleni (BIO1 group), interviewed on her own, was quick to replace the Bohr 

model with this hybrid model. 

 

Eleni: I made this drawing [Bohr model] because it is the drawing that we very often encounter in 

books.  

I: Would you now make a different drawing? 

Eleni (drawing a small packet in the place of the small circle): The electron would not be a small 

circle, that stands for a (material) body, but it would be some cloud, some frequency, that would move 

around the nucleus.  

I: Could that (cloud) be found here [a point far away from the orbit]. 

Eleni: It is very far away, I don’t think so.  
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I: So is the probability there zero? 

Eleni: Zero no, but it would be very-very small (least). 

I: Could that small packet you drew be here, near (the nucleus)?  

Eleni: Yes. 

I: Could you redraw now to show all these? 

 

Eleni went on to drawing a spread-out orbit, adding dots (see Figure 2).  

 

(FIGURE 2 ABOUT HERE) 

 

In the BIO2 group, the only group for which there was no written answer employing the 

electron-cloud model, no general change was observed as a result of the discussion. Two 

students, trying to combine the new ideas with their dominant planetary mental model, were 

led to accepting spread-out orbits [see Figure 3(b]. This view was also supported by the 

findings of the individual interviews, where four out of the six students insisted on the 

planetary model, from which they only moved to accept elliptic orbits in addition to circular 

or spread-out orbits [Figure 3(a) and (b)]. In two other cases, they arrived at intermediate 

drawings that combined the two models (hybrid model):  

 

“(the electron) rotates, is found at certain time intervals in different positions around the nucleus, 

(which however) is not an orbit, simply I have delineated in some way the place where it can be 

found.”  (Haris, MAT )  

 

(FIGURE 3 ABOUT HERE) 
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Most students accepted that a picture of an electron cloud is just a collection of dots 

representing probable positions of the electron at various instants in time, but could not 

accept that such a picture is representative of what we would see if we could see inside the 

hydrogen atom. So the students, being unable to illustrate motion in a static drawing, ended 

back with at a planetary model: 

 

“I would rather not see an electron cloud, I would see the electron at different points … normally 

I wouldn’t see the electron, I would see a sphere, … an orbital. … an electron cloud is however 

(made) of dots, I wouldn’t see dots. The dots are the possible positions of the electron.” (Stathis, 

BIO2 group) 

 

An analogy using the appearance of spokes on a fast rotating bicycle wheel proved 

effective in helping students to accept, that the probability depiction of an electron cloud was 

indeed a valid representation for a hydrogen atom. 

Note that question C5 (that asked how one could construct the picture of the electron 

cloud if it were possible to take photos of the electron) again led many students to make 

various drawings of the atom as shown in Figure 3.  

 

Question C3. The uncertainty that is predicted by the Heisenberg uncertainty principle is due 

to:  

(a) The fact that the very process of measurement introduces the errors, so that what we 

measure does not correspond to the exact values; this causes the uncertainty.  

(b) The fact that the particles that we study are so small that there are no available 

instruments to make the required exact measurements; this causes the uncertainty.  

 

Option (a) expresses one understanding of the uncertainty principle, although we do not claim 
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that it would necessarily cover all understandings. Any discussion of the interviews that 

follow must keep in mind this limitation.  It follows from the interviews that many (probably  

most) students, irrespective of their answer, attributing the uncertainty to the instruments, the 

measuring procedures or both, made this selection on the basis of their experiences at the 

macro level.   

Students who were interviewed individually produced a variety of arguments. Petros 

(BIO) who had not answered the written question, was definite about the cause: “With ideal 

instruments [in his words: these have zero error], I imagine that there should not be 

uncertainty”. Marios (CHE), who had chosen option (a), stated that the instrument is part of 

the process, and even with the proper instruments there will always be a small error:  

 

I: But “what if we suppose that we consider the process independent of the instrument? 

Marios: [at the level of molecules]… the error or better the uncertainty, would be due to the 

measurements and less to the instrument.  

 

Finally, Martha (BIO) used a process of elimination (in her words: ‘reductio ad 

absurdum’) to support that “option (b) cannot be the case, while option (a) must be at least 

more valid”. Discussion made her thought shaky for a moment, but she quickly returned to 

her initial choice.  

 

Martha: I assume that some instruments for the required precise measurements would be there. 

Therefore, (option) (a) must be valid or at least is closer to the truth.  

…I: Is then this uncertainty something that nature requires?  

Martha: Maybe, but even in lab always there are errors.  

I: Are the lab errors the same with the error of the uncertainty principle or different?” 

Martha: They are different.  

Page 19 of 65

URL: http://mc.manuscriptcentral.com/tsed  Email: editor_ijse@hotmail.co.uk

International Journal of Science Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 19 

I: In what are they different? 

Martha: By nature, that is, to measure velocity and position simultaneously. 

I: For what (material) bodies does the uncertainty principle apply? 

Martha: For particles that are very small, maybe because of the size we cannot see them clearly.  

I: I ask you to consider it again, is it the process of measurement itself that introduces the errors, 

or the fact that we don’t have the proper instruments, so if we had them there would be no need for 

the uncertainty principle?  

Martha: I am confused now – it might be the second. Because the particles are so small, it may 

not be due to the process but to the instruments, which must be very specialized. 

I: Do we have such instruments? 

Martha: We have them – then it is [must be due to] the process.  

 

Martha’s momentary confusion could also be attributed, to the limitation of the 

explanation in option (a) that we discussed above.     

Turning to the group interviews, there was only one student (Christina, CHE group) who 

had chosen option (b) but was then persuaded to change her opinion. In all other cases, it was 

very difficult, and often impossible, to change the expressed views. Occasionally, even 

students who had opted for option (a) were doubtful about their choice – but again this could 

be caused, at least in part, by the problematic nature of the explanation in option (a). The 

discussion in the BIO1 group is representative. Here Eleni, Leonidas and Themis had chosen 

option (a), while Irene had opted for (b). 

 

Eleni: I don’t know the instruments, simply I assume that with today’s technology the 

instruments to make the required measurements exist.   

I: Irene says that we don’t have proper instruments to measure. 

Irene: That we don’t have the instruments, no; that we can’t measure velocities or masses or 

momentums of such small order, yes.  
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I: Even if we had the instruments? 

Irene: Yes.  

I: Leonidas, from what you have heard, can you say anything to Sophia? 

Leonidas: I believe that the numbers are very small and very large [in the micro and the macro 

world respectively], so that there is a large difference between the two, the velocity and the mass and 

all these, and it is not possible that there is something that connects them.  

Irene: We can measure separately the mass and the velocity; there is no need to measure both 

[quantities] with the same instrument; so I am not convinced.   

Themis: I agree with [choice] (a), there are the instruments, that is, we can bombard an electron 

with photons; the coming together of photons and electrons I believe will change the electron’s 

momentum; so when the photon arrives at our eye it will have … it will not have the same momentum 

and … you know, it will have changed. The momentum will have changed.  

I: Irene, has the last argument you heard from Themis convinced you, in any way, to change?  

Irene: Yes, he said there are the instruments, but it is just the human agent that makes the error.  

I: Supposing that I am going to measure simultaneously the velocity of a car and its position, will 

the uncertainty principle be valid in that case?  

Leonidas: No. 

I: What about you Irene, is it valid?  

Irene: Even if it is valid, the error will be very minute, that we assume it as zero.  

I: Have you, Irene, been convinced – I say this because the others [who have opposite opinion] 

are three. … 

Irene: They don’t say anything certain about the instruments, and I don’t know; actually I don’t 

understand the process, and I don’t know if the instruments exist.  

I: So they don’t persuade you that they have made the right choice with [option] (a).   

Irene: No. 

I: Has any one of the others changed opinion after the discussion and changed to [option] (b)? 

All (except Irene): No.  
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In the CHE group, Manolis expressed for the view that one the one hand it is a matter of 

time for man to achieve precise measurements even in the micro world, but on the other hand 

the error will always be there both in the micro and the macro world:    

 

Manolis: I assume that both in the micro and the macro world it is (answer) (a), that is, they are 

just relative, that is, we can later be able to determine both the position and the momentum, that is, to 

approach the capacities we have in the macro world, but again it will not be so, … it will be due to the 

fact that … nor in the macro world we have essentially the precise position and the precise 

determination. 

Christina: But the errors [in the macro world] haven’t very large difference, compared with the 

micro world.  

Manolis: OK they don’t have because they are smaller, but it isn’t something that is prohibited to 

man to measure something like this (in the micro world). Some time (in the past) it was prohibited to 

man to make measurements also in the macro world. This is something that will be just there, … the 

error will exist always.  

 

Finally, Stathis (BIO2 group), who got the highest mark in the conceptual written 

questionnaire, expressed an interesting view; apparently, he based his thinking on the 

mathematical equation that expresses the uncertainty principle:   

 

“When we talk about the process, we don’t mean only the instruments, we may also mean the 

mathematical process that we will follow; that’s why I selected [the option] (a), that is, we know that 

from the equation we used to find one of the two, when we determine with a great precision the one, 

precision is wiped out for the other.”  

 

Question C4.  Is it possible for the electron of the ground-state hydrogen atom to be found 

outside the space that is defined as 1s orbital? Explain.  
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Students who held a probabilistic model of the orbital (thinking of the orbital as a probability 

envelope) were consistent in accepting that there was a probability of the electron being 

found outside the orbital: 

 

“It is possible. The orbital is the space inside which there is a large probability for the electron to 

be found; hence, in some special case it is possible [that the electron] is not found in that space.” 

(Manolis, CHE group) 

 

“I answered in accordance with what we learnt in school. I am not certain if the number I have 

put is right, but … the probability for the electron to be found in the space that is defined as the 1s 

orbital in the ground state is 95%; hence, there is a 5% probability for the electron to be also 

found outside the space of the 1s orbital (in the ground state), even if this probability is small, but 

it is there.” (Isidora, BIO3 group)   

 

“Certainly, because the electron can be found anywhere. Nowhere is the probability zero. It has 

just near the nucleus more probabilities, around 90 to 97%.” (Natalia, MAT group)   

 

On the other hand, many students identified the orbital only with the space enclosed (or 

possibly only its surface), that is, they believed that the fixed shape of the orbital 

corresponded  to a certain probability:  

 

“It is not possible (to be found outside the 1s space), because as an orbital is defined the space 

where the electron can be found – it is basically the space where the electron can be found, that 

is, the positions where the electron is found delineate (chart) the 1s orbital.”  

 

Stathis (BIO2 group) who had a probabilistic approach, was critical of the question itself. 

Page 23 of 65

URL: http://mc.manuscriptcentral.com/tsed  Email: editor_ijse@hotmail.co.uk

International Journal of Science Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 23 

He also emphasized the distinction between the orbital in terms of probability and the 

electron cloud (while the concepts of electron probability and electron density are essentially 

equivalent):  

 

“I believe that you set a trap in examining the students, that is, if they have confused the concept 

of the orbital with the concept of the electron cloud. The orbital is the probability, I think 95 or 

99%, for the electron to be found, while the electron cloud is all the possible positions which the 

electron can take. Hence, from what I’ve said, it [the electron] can also be found outside the 

orbital.”   

 

It is important to note that in pictures of the electron cloud, dots that were drawn outside 

the circle that was used to  “define the orbital” were assumed by several of the students to 

belong to other orbitals, “They are in other, … they are other orbitals.” The difficulty of 

conceptualization of this question became very apparent in the case of Pavlos (CHE) who 

was interviewed individually (and who had performed poorly on the conceptual written 

questionnaire). In his case, the instructors went through questions A6 and C6, according to 

which “the precise size of the orbitals cannot be shown, since the probability of finding the 

electron does not become zero even at large distances from the nucleus. This is shown in the 

orbital shapes, with a dense electron cloud near the nucleus which becomes sparser as we 

move away from the nucleus." While this student accepted that the sparse dots meant that the 

probability for the electron to be found there is smaller, but not zero, he refused to accept that 

the electron was still in the 1s orbital: “Outside the sphere, no, it will not be, or it will be in 

another orbital.”  

In the BIO3 group interview, Isidora appeared to hold a probabilistic approach (see 

above), but was not very much involved in the group discussion. On the other hand, Dimitra 

answered in terms of excited states and Ioanna in terms of energies. Remarkably here Dimitra 
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was led on her own to the acceptable view by invoking her answer to question C0; also she 

made a correct intervention in connection with energies and distances from the nucleus.  

 

Dimitra:  … for the electron to be found outside the space defined as the 1s orbital it must be in 

an excited state, because we know that every such region of an orbital is characterized by a certain 

energy. 

I: When it is excited, is it 1s or something else? 

Dimitra: Something else, who knows, [can] be 2s, 3s.  

I: But the question here asks about the 1s.  

Dimitra:  Of course, on the basis of what I have … drawn at the back [question C0], probably the 

space defined by the 1s orbital might be also these one-two dots at infinity, which essentially I have 

drawn [for question C0].  

I: That is, you mean that the space of the 1s orbital is the whole space.  

Dimitra: Not really, I just believe that, yes it is a space, it is like a closed sphere that defines a 

certain space, but also the orbital is also these remaining possible points where the electron can be 

found. 

I: Therefore, your answer to questions C0 and C4 are in conflict to each other.  

… Dimitra: Now I assume that they are about the same thing, so if I had to answer it [question 

C4] again, I would say that yes, the electron of [the] hydrogen [atom] can be found outside the 1s 

orbital.   

… I: On what does the energy of an electron depend?  

Ioanna: On the distance I think.  

… I: Is it possible for an electron in the 1s orbital to be farther from the nucleus than an electron 

in the 2s? 

Ioanna: According to the definition of the orbital I think that, yes, it can.  

… I: Is it possible for a 2s electron at some moment to be closer to the nucleus than the 1s electron, is 

this possible at some moment?  
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Dimitra: Momentarily yes. According to the definition of the orbital we have stated, the more we 

move toward the nucleus the higher is the probability for the electron to be found there, but this does not 

exclude that we can find it somewhere “outside”.  

 

The CHE group interview is representative of the various approaches taken. Manolis, as 

stated at the beginning of this section, held the acceptable probabilistic approach. Antonis, on 

the other hand, had rubbed out his initially written probabilisitc answer. Finally, Christina had 

answered in terms of excited states; but she quickly changed her view. We would like to  

emphasize the effectiveness of relating orbital size to the probability of encountering the 

electron as an approach to promoting conceptual change.   

 

Christina: It is not possible because the ground state exists in the subshell with the smallest 

energy, and the 1s has the minimum, therefore in anyone else it would not be in the ground state.  

… Christina: Yes, the hydrogen is in the ground state, well, and it tells us that it is outside the 

space that is defined as the 1s orbital, and since it is in the ground state, it has there the smallest 

energy, in which case it cannot go to another orbital, therefore …  

I: To be found outside that space it must go to another orbital – do you agree, Manolis, with this? 

Manolis: No, because the space also includes, let us say, the 2s orbital, even the p or the d orbital.  

Christina: It will not then be in the ground state. 

Manolis: Yes, it will not be in the ground state, but the electron moves in a region around the 

nucleus … that is, the issue of how the electron moves is relevant … 

... Manolis: When we say space of the orbital, we can say it is something very large, the space 

that the 1s orbital occupies, some part of the space occupies also the 2s orbital, … or even the p or the 

d orbital. 

Christina: But it will not be in the ground state then. 

… I: What about you Antonis, what are your comments?  

Antonis: The 1s is a small sphere, and the 2s is a larger sphere, and the 2s contains the 1s, hence 
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in the 2s the probability must be higher because it occupies larger space. [This is a misconception.]  

I: Let’s return to your answer. 

Antonis: In the ground state, how far the electron is from the nucleus, if it is in the ground state 

we say it is in the 1s orbital.  

I: Which has a specific distance, specific shape, hasn’t it? Hence, it cannot be found outside that 

[space]?  

Antonis: No.  

I: Could you repeat your definition of the orbital? 

Antonis: It is the space where the electron can be found.  

I: What about you Manolis? It is the space … 

Manolis: Where there is large probability to be found… 

I: How much probability? Let’s set a number … let’s quantify it.  

… Christina: It is 95%.  

I: So we can even set it at 98%, can’t we? If I set 90 it goes up to a point, if I set 95% it reaches 

another point. … If I set 100% how far will it reach?  

Christina: To infinity.  

I: That is, all space … that’s why we don’t set 100%.  

I: Antonis, may be what you wrote and then rubbed off was more correct?  Please try to read what 

you have rubbed off.  

Antonis: “The orbital is defined as the space with the largest probability of finding an electron; 

hence there is always a least probability of finding it outside that space.”… It depends how we will 

define the orbital; if we define it to have a certain size, to stop somewhere, then there is a very small 

probability.  

I: Therefore, we must set the probability at a lower value, of necessity, so we give it [the orbital] 

some shape. … If we set it, say, at 90%, we leave a 10% to be outside, so this answer is more correct.  

Antonis: This is what Manolis said.  

I: Let us see what Christina has to say. 

I: That is, when we say that there is 90% probability of finding it [the electron], this gives it [the 
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orbital] some shape, spherical – there is also a 10% to be outside. Do you agree? 

Christina: Yes.  

I: And it still is the 1s orbital. 

Christina: It still is.  

I: Then in what way does the 2s differ from the 1s? 

Manolis: In the 2s the electron can be found at larger distance from the nucleus with larger 

probability.  

I: With larger probability, do you agree Antonis?  

Antonis: Yes.  

… Antonis: If we had defined the orbital differently, there would be different probability of 

finding it [the electron] outside the orbital.  

I: … So if I defined the 1s it at 95%, what would change from 90%, in relation to the space, what 

would change?   

Antonis: The size would be a bit larger.  

I: A larger space, do you understand this Christina?  

Christina: Yes, because when we set 95% probability of finding the electron versus 90%, it 

means that we would have 5% more space [This is a misconception.]  

 

Consideration of ion formation when the electron is found at an infinite distance from the 

nucleus provides another interesting conceptualization perspective. The MAT group 

interview provides an example. In the written questions, only Natalia appeared to hold a 

probabilistic approach, while Tania and Lampis gave answers in terms of a fixed orbital. 

Concerning the formation of ions, Lampis initially thought that when the electron is at 

infinity, we have formation of an ion, but then he added a prerequisite to this: the presence of 

another atom to take the electron would be necessary. 
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Lampis: … as long as it [the electron] is in the 1s orbital, it can be found even at infinity, but still 

it will be in the 1s orbital, neither in the 2s nor …  

… I: …We draw a sphere and we call this sphere [a] 1s orbital. … Can [the electron] be found 

outside this sphere, and still be in the 1s?  

Lampis: The electron? No, after that it [the atom] would be an ion.  

I:  But it can, can’t it be even at infinity?   

Lampis: Yes, but if over there … would be no other electrons, other neighboring atoms to exert 

forces …  

I: You said an ‘ion’, it is considered an ion when it [the electron] goes to infinity, but to go to 

infinity for a moment or for ever?   

Lampis: For ever if it is to leave… 

I: Do we consider that it will go to infinity for ever or it will go for a moment and [then] come 

back? … If it goes forever, I have an ion, if it comes back, I don’t have an ion. 

… Lampis: Yes but this electron must go somewhere, there must be another neighboring atom 

that needs this electron. 

 

Question C6. Observe the pictures (a) and (b) that show the electron clouds in the 1s and a 2p 

orbital respectively (see Figure 4). While in (a) there are sparse dots far away from the 

nucleus, in (b) such dots do not exist. Do you think there is an error in either or in both of the 

pictures?  

PLACE Figure 4 ABOUT HERE 

 

Students who had given acceptable written answers, offered  explanations such as the 

following in the interviews: 
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• “I believe picture (b) is wrong because, as we had said, the probability of finding the electron 

is never zero, even if it is very minute; therefore there should exist more dots more sparse.” (Martha, 

BIO) 

• “Picture (b) is wrong. The probability of finding the electron in an orbital is not confined to a 

certain space but it extends to infinity, without ever becoming zero.” (Ioannna, BIO3 group) 

• “We know from the previous question that the exact size of the orbital is impossible to be 

interpreted, since as we have said the probability of finding the electron doesn’t become zero even at 

large distances from the nucleus. Therefore in picture (b) too it should be shown that the electron 

could be also found far from the nucleus.” (Dimitra, BIO3 group) 

 

In the interviews, we observed ad hoc attempts to explain the differences between the 

two pictures, based on a belief that both are correct: 

  

• “The first is an s orbital, representation, the other is a p. … It must be correct because 

probably for energy reasons this, in some way, must be like that, I am not quite sure.” (Pavlos, CHE) 

• “…Picture (a) shows the electron cloud, while picture (b) shows the orbital”. (Stathis, BIO2 

group) 

•  “The existence of electrons in the 2p orbital assumes a large nucleus that increases the 

attraction, so they (the electrons) won’t be able to get away from the nucleus. … But because the 

picture shows that [the cloud] stops somewhere abruptly, there is no probability of finding [the 

electrons] outside.” (Antonis, CHE group)  

 

Also, we encounter behavior and ideas that were observed in previous questions. Thus, 

the dots that are far from the nucleus may belong to another orbital “the electron there might 

have been excited”. It is encouraging however other students who had used the probabilistic 

model stuck to their view, as the following excerpt from the MAT group interview shows:  
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Tania: Where there is larger density of dots, it is there that there is a larger probability.  

I: … But when the dots are far away, does (the electron) continue to be in the 2p or is it excited?  

Tania: It might be excited.  

I: The same could happen with the 1s couldn’t it?  

Tania: Yes.  

I: You, Natalia, what do you think, would it be excited or would it still be in the 2p (… or the 1s) 

… when it is far?  

Natalia: I think that … it can still be in the 1s, only the probabilities are more when it is closer. 

Lampis: I agree with Natalia.   

 

Antonis (CHE group), who spoke of larger attraction to the electron by the larger 

nucleus, extended the same argument providing the correct concept about the electron cloud 

size of the same orbital for different atoms. “When we have many protons together in the 

nucleus, the  increased positive charge will attract the negative charge of the electron with a 

larger force, so it is more probable that [the electron] will be found closer to the nucleus than 

if it was in a hydrogen.atom”. This concept helped the investigator to lead Antonis to the 

answer that is consistent with the probabilistic model:   

 

I: If I asked you to draw the 1s orbital boundaries when we set the probability say at 90%, where 

would you place them?  

Antonis: [draws a circle on the paper] 

I: And where if the probability was 80%?   

Antonis: A smaller circle.  

… I: If we consider the 2p orbital and the probability was 100%? 

Antonis: 100%, according to the picture, because it stops abruptly, we could say that it would be 

where the dots stop, but again we could consider it would be the whole space.  

I: So you see here that it stops abruptly, while it should not stop? 
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Antonis: Yes. 

I: So, is it correct that it stops abruptly or is it wrong? 

Antonis: It is wrong.  

 

Finally, Marios (CHE) (who had given the acceptable answer in the written question) had 

also an interesting view about the size of the 1s orbital. Asked to draw a sphere representing 

the orbital, he encircled all dots shown in picture (a).    

 

I: So you haven’t left any dots outside. 

Marios: No, I haven’t. 

I: What then do these dots mean for you? 

Marios: That somewhere inside these dots there is probability that the electron is.   

I: Therefore, since there are no dots [left] outside, it must be ruled out that [the electron] is 

[outside].   

Marios: It is not ruled out, possibly it is inside here. 

I: Shouldn’t we then have left some dots outside? 

Marios: However, how far, it seems to me … 

I: Let’s say, just a little outside.  

Marios:  We should have an error in the orbital, that’s why, possibly, it is not certain that it will 

be inside.  

I: If we had left several dots outside, you wouldn’t accept that as an orbital?  

Marios: I would accept it.  

I; What then would be the difference from the one you drew? 

Marios: That we leave more dots outside, that is, the probability of finding it [the electron] inside 

here would be smaller than inside here. Maybe, we could draw it [the orbital] larger.  

… I: Therefore, we could enlarge the distance [the radius], and it will still be 1s orbital, without 

the need to excite it? 
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Marios: Up to its ionization energy.  

 

It appears that Marios felt more secure with a fixed shape for an orbital that includes all 

shown dots but accepted that there is still a possibility for the electron to be outside this  fixed 

orbital.  

 

Question C7. A molecular orbital is formed by the combination-overlap of two atomic 

orbitals. Mathematically, this combination is equivalent to addition of the two atomic 

orbitals. In your opinion, would it also be possible to subtract one atomic orbital from an 

other? If yes, what would be the consequences of that subtraction for the electron density in 

the space between the two nuclei as well as for the chemical bond? 

 

There were a considerable number of students (20.8%) who gave acceptable answers to the 

written question: “The electron density in the space (between the two nuclei) would decrease 

and the bond would break.” In the interviews, these students did not change their views, but 

often developed them:  

 

 “ From the moment that we wouldn’t have full electron density on each orbital, the bond of the 

MO would break, hence the two AOs would form again.” (Stathis, BIO2 group) 

 

In the case of the group interviews despite the fact that students with acceptable written 

answers and views were present in each group, great difficulty was encountered in 

understanding and accepting the subtraction of AOs. In fact, even in the cases where students 

arrived logically at the correct answer, they were not sure if that could happen in practice, 

that is, if there exist MOs that derive from subtraction of AOs or if that has simply to do with 

a theoretical-mathematical artifact:  
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“Here I mean that we can create this mathematically only, while chemically, in practice, we can’t 

create it.” (Antonis, CHE group) 

 

The instructor found it hard to lead students into accepting the possibility and the 

consequences of subtraction, as the following excerpt from the CHE group interview shows:  

  

I: If I tell you that the result of subtraction would be fewer dots, you can accept this, but you have 

difficulty in understanding how subtraction can occur.  

Manolis: The rationale would be that when they come close (to each other) the rule would be that 

with the addition of the orbitals a bond should form, but I can’t understand how with subtraction there 

would be no possibility of finding the electron. 

I: Subtraction leads to the conclusion that now the probability of finding electrons becomes less, 

therefore the result is no bond. How do you see this?  

Christina: Reasonable.  

Antonis: If it could happen, it might be reasonable, but it seems very improbable that it could  

occur.  

Manolis: I cannot picture in my head how this could happen.  

 

The main obstacle to accepting subtraction appears to be the way they think of an  

orbital,, seeing  it as a ‘space’ and not as a mathematical function. For instance, Eleni (BIO1 

group), while accepting the possibility of adding or subtracting probabilities, would not 

accept that orbitals might be subtracted because they are spaces: “… spaces where the 

electron can be found, not just numbers that can be subtracted.” Despite having a student 

(Irene) who both in her written answer and in the interview held the acceptable view, in the 

group, the others could  not be convinced:  
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Irene: … because mathematically we say that the combination of the orbitals is addition (of 

orbitals), therefore mathematically it can also be subtraction, … why not. … When I am doing 

subtraction, it must be the part of the orbitals in the figure where they do not overlap. (We have) 

reduction of the density.  

I: And what would be the consequences for the chemical bond?  Since the electron could not be 

inside there, would a chemical bond exist?  

Irene: No, a chemical bond would not exist.  

I: In the final analysis, what is the meaning of overlap? When I have positive overlap, the 

probability of finding the electron there increases, when I have negative (overlap) it reduces.  

Irene: There would be less probability that a  bond would  be formed.  

I: So the bond would be more … ?   

Irene: Weaker..  

I: Are you convinced by that Eleni? 

Eleni: No, I insist that subtraction of two orbitals cannot take place. Because they are spaces, we 

cannot subtract two spaces. 

Themis: I completely agree -  we cannot do it.  

 

Using the analogy of waves, starting from the quantum-mechanical wave model of the 

electron (a model that students accepted that they had heard of) did not help either. The 

discussion resulted in deadlock.  

There were also objections to subtraction, on the grounds that addition and hence bond 

formation, should be preferred by nature:   

 

“The thought therefore is that they [the AOs] always come close to each other, but while, let us 

say, the rule should dictate that a bond should form by means of addition of the orbitals, I can’t 

understand how subtraction could mean that there is no possibility of finding the electron, therefore it 

would not happen. I can’t understand it.” (Manolis, CHE group) 

Page 35 of 65

URL: http://mc.manuscriptcentral.com/tsed  Email: editor_ijse@hotmail.co.uk

International Journal of Science Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 35 

 

“Why, however, should nature favor weakening of bonds instead of stabilization of bonds?” 

(Themis, BIO1 group) 

 

Another misconception was that of the two nuclei moving apart from each other as a 

result of subtraction of the AOs. Also, where the overlapping orbitals were identical (e.g. 

both 1s) bond breaking would result, but if the orbitals were different (e.g. 1s and 2s) the 

result would merely be bond weakening.   

Using pictures of electron clouds seemed to facilitate understanding of the addition of 

orbitals, that is understanding of the thickening of the electron cloud at the regions where 

addition occurred. But the same approach did not appear to promote understanding of the 

process of subtraction of orbitals: “No, because we would not be able to distinguish the 

‘points’ (the dots) of the one orbital from the other.” 

 

Changes in students’ ideas  

The aim of our intervention was to try to change  students’ simplistic ideas into modern 

(probabilistic, quantum-mechanical) views. In Tables 1-3 we provide data for changes in 

student ideas concerning the uncertainty principle, the nature of orbitals and the atomic 

model.  Employing a chi-squared statistical test, changes for the last two concepts were found 

to be statistically significant  

 

 

 

(Tables 1, 2, 3 here) 
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Discussion, Conclusions, and Implications 

Research has shown that students at all levels prefer concrete or simple abstract models, for 

example: space-filling models of atoms and molecules (Harrison & Treagust, 1996); the Bohr 

model of the atom (Fishler & Lichtfeldt, 1992; Nicoll, 2001; Petri & Niedderer, 1998); or the 

octet rule (Coll & Taylor, 2002). These preliminary models are very stable. Although 

students at a higher educational level may have been exposed to abstract models with higher 

explanatory power, such as the quantum mechanical model of the atom or the concept of MO, 

they find it difficult to replace the earlier models. What is frequently observed is that learners 

accommodate new knowledge into their preexisting knowledge, constructing personal 

meanings and alternative mental models that contain elements from these earlier models 

(hybrid models) (Vosniadou & Brewer, 1992). The findings of this study are in agreement 

with these earlier observations.  

 

The Findings 

The planetary Bohr model remains prominent in the minds of many students. This is because 

it is simpler, it is the model taught in earlier education, and is most often encountered in 

books. Some of our students insisted on the planetary model, but were prepared to accepted 

elliptic orbits in addition to circular or spread-out orbits.  Other students were mixing ideas 

from the planetary model, representing the hydrogen atom with a delineating curve, thus 

mixing orbitals and orbits. Even if many students knew the concept of the electron cloud, 

they did not accept that it provides a picture of the atom. The analogy of an electron’s 

movement with the appearance of the spokes on a fast rotating bicycle wheel proved 

effective. A hybrid model was also the common replacement for the representation of the 

electron as a dot or small circle with a small electron cloud/packet that moves again on 

specific orbits.  
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A large number of students had not understood the fundamental nature of the Heisenberg 

principle. Based on experience at the macro level, they considered instruments or the 

measurement procedures or both as responsible for the uncertainty deriving from the 

Heisenberg principle. Consequently, “it is a matter of time for man to achieve precise 

measurements in the micro world”. In general it was very difficult and often impossible to 

change students’ views, while even students who had opted for the (assumed as) correct 

answer were doubtful about their choice. These findings suggest that the uncertainty principle 

does not fall within Vygotsky’s ‘zone of proximal development’. There were, however, 

students who considered correctly that the instrument is part of the process, and even with the 

proper instruments there would always be some error. We must point out, however, that the 

issue dealt with in the relevant question is a non-consensus topic in science, so the ‘correct’ 

explanation offered to the students [option (a)] might not be consistent with all explanations 

acceptable to physicists, and might not help students in their own interpretation of the 

uncertainty principle. The assumption that there is a fundamental limit to measurement 

because of the nature of the phenomena themselves, regardless of the measurement, provides 

an alternative approach that is consistent with the Copenhagen interpretation of quantum 

mechanics. 

Many students found it difficult to understand the probabilistic nature of the orbital 

concept. In addition, they identified the orbital only with the fixed space enclosed by the 

orbital shape used (or sometimes only with its surface), that is, the shape of the orbital refers 

to a certain probability. It is useful to emphasize that the particular envelope that is ‘fixing the 

orbital’ and we are interested in is the one which includes this probability distribution in a 

minimum volume.  In pictures of the electron cloud, those dots that were outside the circle 

that was drawn to “define the orbital”, were assumed by several students to belong to other 

(excited) orbitals. An effective approach to promoting conceptual change (bringing the 
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relevant concept within the ‘zone of proximal development’) was through relating change of 

orbital size with the value of the probability of encountering the electron.  

Energy considerations might also contribute to distinguishing between a dot ‘belonging’ 

to a lower- or to a higher-energy orbital; thus, a lower-energy electron spends most time 

closer to the nucleus than a higher-energy electron. Also the distinction made between an 

atom where an electron is momentarily at infinity but still technically part of the atom, and 

the ion with its separated electron is an interesting one.  Again this distinction can be linked 

to the energy of the state: in the former case the energy is the respective orbital energy, while 

addition of the ionization energy is required for ion formation.  

The mathematical description of the formation of MOs by means of linear combinations 

of AOs caused no problems in the case of constructive (bonding) addition, but was very 

problematic in the case of destructive (antibonding) subtraction. While there were several 

students who appeared to be comfortable with this process, many students encountered great 

difficulty with understanding and accepting the subtraction of AOs. Even in cases of logically 

correct answers, they were uncertain if that could happen in practice, or if it had simply 

resulted as the consequence of a mathematical artifact. The main obstacle to accepting the 

idea of subtraction appears to be the way in which students have built their concept of an 

orbital, seeing it as ‘space’ and not as a mathematical function. The analogy of waves, 

starting from the quantum-mechanical wave model of the electron, did not appear to be 

helpful. Some students believed that addition and hence bond formation, would be preferred 

by nature.  Another misconception was that of the two nuclei moving apart from each other 

(separating) as a direct result of AO subtraction. Also it was often believed that where 

overlapping orbitals are identical (e.g. both 1s) bond breaking will occur, but if they are 

different (e.g. 1s and 2s) subtraction will result in bond weakening.  Finally, the use of 
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pictures of electron clouds seemed to facilitate understanding of the addition but not of the 

subtraction of orbitals.   

It is worth noting that Question C7 is considered within the LCAO model that uses 

mathematical expressions for orbitals. There was then a shift in the meaning of orbital from 

that of space that the students of this study held into one of mathematical function.
*
 Thus, 

while subtraction may be possible in terms of LCAO, it becomes hard to be accepted if 

orbitals are approached from their probability/density perspective, and even harder if they are 

assumed simply as spaces. The students’ attempts to answer Question C7 should be seen in 

these terms. 

Our study uncovered three main problems for the learning of basic quantum chemistry 

concepts by high-school and freshmen university students: (a) the reliance on deterministic 

models of the atom derived from old quantum theory; (b) the misinterpretation of models and 

theories, and the poor understanding of modern quantum concepts, including their 

mathematical features; (c) the formation of misunderstandings and misconceptions.  

With regard to question C4, Martha (BIO) interviewed individually, revealed many of the 

relevant deterministic views, misunderstandings and misconceptions, as well as difficulty 

with and a reluctance to accept the probabilistic model of the atom. The interview started 

with the instructor asking her to show the actual 1s orbital. She responded by encircling the 

darkest area in figure (a) of question C6, assuming that the 1s electron could move only on 

the corresponding fixed spherical surface, but not inside or outside this boundary.  

 

Martha: The electron … I think … on the surface because it is an orbital.  

I: What is an orbital?  

                                                 
*
 In a study with students who had passed the quantum-chemistry course  (Tsaparlis, 1997), the definition of an 

AO as a one-electron, well-behaved mathematical function was found to be unfamiliar to the majority of the 

students, who understood or connected an AO with a region in space.     
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Martha: It is these three quantum numbers, n, l, ml, that … is in a three-dimensional space, in 

which case it cannot, I think, be found inside this space.  

I: Then it [the electron] moves in specified orbits.  

Martha: That has specified size, orientation, and shape. 

I: So it moves only on the surface, hence it has a certain distance from the nucleus.  

Martha: Yes.  

I: Is this in agreement with the Heisenberg uncertainty principle?  

… Martha: The uncertainty principle says that it is impossible to determine the electron’s 

position, that is, we go according to probabilities.    

… I: Let’s then talk in terms of probabilities – is there [a] probability of finding it inside the 

sphere you have drawn?  

Martha: Depending on the density of the electron cloud, … the more dense the dots are ….  

I: What does each dot stand for? … Does the dot relate to the electron?  

Martha:  No. – it relates more generally to the space, that is, …  

I: So, somewhere where I have many dots, what does this mean?  

Martha: There is [a] probability of finding the electron there.  … It helps us, when we see lots of 

dots, a large density there, may be there is high probability… 

I: So what does each dot stand for?  

… Martha: An electron? … a possible position [for the electron]. 

 

After a lengthy further discourse, Martha accepted that there is a probability of finding 

the electron inside and a small possibility of finding it outside the sphere. But then a new 

complication arose:  

 

I: When it [the electron] is outside the sphere, will it still be in the 1s? 

Martha: I think that it leaves the 1s.  

I: But all this time we talked about the 1s.  
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Martha: I don’t know, it can be it can also can … be somewhere in between.  

 

Eventually we arrived at a deadlock, with Martha concluding that the electron will be excited.  

(The view that the electron can be found outside the space that is defined as the 1s orbital 

only when it is excited was very common.)  Note that according to her performance on the 

written questionnaire, Martha would be categorized as algorithmic high and conceptual low 

(see also below). 

 

Meaningful and Rote Learning  

 

The concepts and processes of quantum chemistry are abstract and complex, so learning is 

difficult without a thorough understanding of the subject. Otherwise, students have to resort 

to rote learning of definitions, formulas, and processes. 

Ausubel (2000) has distinguished between meaningful and rote learning, while Novak 

(2002) has shown how meaningful learning and the transfer of knowledge relate. Both 

rote/meaningful and reception/discovery dimensions of learning exist on a continuum rather 

than being dichotomous in nature. According to Novak (2002), “meaningful learning at one 

edge of the continuum requires well organized relevant knowledge structure and high 

commitment to seek relationships between new and existing knowledge. Rote learning at the 

other edge results from little relevant knowledge poorly organized and little or no 

commitment to integrate new with existing relevant knowledge.” Evidence of meaningful 

learning occurs when tests of comprehension are presented in a somewhat different context to 

that originally encountered. The questions used in this study clearly have this feature.   

Pavlos (CHE) provides an example of a student who according to his performance in the 

written questionnaire could be categorized as a rote-learner (algorithmic high and conceptual 

low).  For instance, in his answer to question C3, he appeared to stick to and reproduce 

verbatim what is written in the books: 

Page 42 of 65

URL: http://mc.manuscriptcentral.com/tsed  Email: editor_ijse@hotmail.co.uk

International Journal of Science Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 42 

 

“…in school we had not learnt exactly what it is … I don’t remember precisely now, but in any 

case, we had said that the more [precisely] we can measure the position, the more we lose in 

measuring velocity or momentum. Therefore, I don’t believe that even with very good 

instruments, we would be able to measure precisely.” 

 

The Role of Mathematics and of Higher-Order Cognitive Skills 

 

In this study, we discussed with students their views on abstract quantum concepts. We 

focused on the ideas they expressed about the theoretical descriptions of non-observable 

entities and the connections they made between non-observables and reality. Quantum theory 

enables us to describe matter (as a rule, approximately) by means of mathematical functions 

and expressions that derive from Schrödinger’s wave mechanics. Although the Schrödinger 

equation can be derived using only classical arguments (Fong, 1962; see also Tsaparlis, 2001) 

(with Planck’s constant h serving as the bridge between classical and quantum mechanics), it 

has to be admitted that quantum mechanics can bring about a new way of thinking about the 

physical world at the submicroscopic level. It has even been suggested that thinking abilities 

beyond Piagetian formal operations may be required for an adequate understanding of 

quantum mechanics and relativistic issues (Castro & Fernandez, 1987). These post-formal 

operations include what Borkhoff and von Neumann (1936) have described as quantum 

logic. 

According to Pauling and Wilson (1935, p. iii), “quantum mechanics is essentially 

mathematical in character, and an understanding of the subject, without a thorough 

knowledge of the mathematical methods involved and the results of their application, cannot 

be obtained.” As a result, “mathematics is now so central, so much inside, that without it we 

cannot hope to understand our chemistry … These [quantum-chemical] concepts have their 
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origin in the bringing together of mathematics and chemistry” (Coulson, 1974, p. 17). The 

mathematical complexity has led even many practicing chemistry researchers to adopt a 

quasi-quantum character to the quantum chemistry tools they employ in their practice 

(Sánchez Gómez & Martín, 2004). 

In any case, the issues that are discussed in this work are highly conceptual, requiring 

what has been termed as higher-order cognitive skills (HOCS). According to Zoller and 

Tsaparlis (1997, p. 118), HOCS items include “quantitative problems or conceptual questions 

unfamiliar to the student, that require more than knowledge and application of known 

algorithms for their solution; they require analysis and synthesis, and problem solving 

capabilities, the making of connections, and critical evaluative thinking (Zoller et al. 1995)”. 

HOCS should be contrasted with lower-order cognitive skills (LOCS), “that require simple 

recall of information or a simple application of known theory or knowledge to familiar 

situations and contexts; they can also be problems (mostly computational exercises) solvable 

by means of algorithms, already familiar to the learner through previous specific directives or 

practice or both.”  

 

The Role of Interactive and Dialogic Communication 

The method we have employed can be considered within the analytical framework developed 

by Mortimer and Scott (2003). It focuses on the teacher’s role in making science concepts 

and issues available to the students and in helping them to make sense of them. At the heart 

of Mortimer and Scott’s analysis lies the communicative approach, which describes the 

different ways a teacher can work with students to address the different ideas that are under 

discussion. One can consider two dimensions of communicative approach:  (i) interactive and 

non-interactive - in terms of participation of more than one person or just one person 

respectively; (ii) dialogic and authoritative discourse. In a dialogic communicative approach 
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attention is paid to more than one point of view - different perspectives and different ideas are 

explored. In authoritative communicative approaches attention is paid to just one point of 

view, that of the teacher. Scott, Mortimer and Aguiar (2006) see these two forms of discourse 

not in terms of a dichotomy but as a continuum, with one form of discourse merging with the 

other in supporting meaningful learning. By combining the above two dimensions, we arrive 

at four classes of teacher-student classroom communication: (i) interactive and dialogic, (ii) 

non-interactive and dialogic, (iii) interactive and authoritative, and (iv) non-interactive and 

authoritative. 

Our study confirmed that the interactive and dialogic method of teaching and learning 

employed provided a better learning environment and contributed to deeper understanding 

and development of learning skills. In particular, very positive proved the dialogues and 

interactions that took place among the students within groups.  

As expected, students who performed well (Stathis, Leonidas, Ioanna) or satisfactorily 

(Isidora, Danae, and Antonis) on the conceptual questions of the written questionnaire gave 

‘good’ answers during the interviews, although they often encountered conceptual 

difficulties. Also, students with moderate or low performance on these questions often made 

useful, constructive, and interesting contributions. Our net conclusion is that the methodology 

used can be useful for all students, irrespective of their behavior on traditional written exams.   

 

Implications for Instruction and Curricula 

The ideas and concepts of the old quantum theory can be so dominant in shaping students’ 

thinking that their introduction in early school chemistry is questionable. They deserve of 

course a distinguished place in the history of science, but this could be visited at a later 

mature stage. Even at the elementary level, alternative approaches exist that while avoiding 

consideration of orbitals, do not use models such as the Bohr atom and the octet rule. 
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Johnstone, Morrison and Reid (1981) provide an example of this by considering bonding in 

terms of the concept of electrons trying to keep as far apart as possible. Gillespie contends 

that more emphasis should be placed on electron density rather than on orbitals; further, 

Lewis structures and VSEPR are all that is required at secondary school level, while the 

electron-domain model is sufficient for most general chemistry courses (Gillespie & Matta, 

2001).  

Staying with the orbital ideas, in our opinion, the following represents a minimal list of 

theoretical facts that (as a rule) are related to the findings of this study, and should form the 

basis for leading our students to better conceptual understanding and more meaningful 

learning: 

 

• Quantum mechanics has a probabilistic (in contrast to a deterministic) nature.  

• A physical meaning is attributed to the AOs by relating them to electron probabilities 

or equivalently to electron densities.    

• The representations of AOs as various shapes are just graphical forms of 

mathematical functions; particular emphasis needs to be placed on sections of 

contours with equal probability.   

• MO theory, which is based on linear combinations of AOs, is also a mathematical 

model, while constructing MO shapes by combining AO shapes is again a graphical 

representation of mathematical functions.        

  

Despite the mathematical character of quantum chemistry and the necessity for a 

mathematical approach, it could be argued that the quantum chemistry concepts can be 

understood at an acceptable level with only a minimal mathematical treatment, using 

mathematical equations and functions but without the need to solve differential equations or 
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performing other complicated mathematical operations. It is also advisable to reconsider the 

depth of the mathematical coverage of quantum chemistry even at the physical chemistry 

level. In any case, the underlying physical picture and its connections with mathematics 

should be emphasized. Conceptual meaningful learning should always be the main 

instructional target. 

The problem of misconceptions, arising partly from textbooks and instruction and partly 

from the very nature of quantum theory (Bodner, 1991; Fishler & Lichtfeldt, 1992; Kalkanis, 

Hadzidaki, & Stavrou, 2003; Tsaparlis & Papaphotis, 2002) is very serious. Misconceptions 

form epistemological obstacles to the acquisition of quantum mechanics knowledge 

(Kalkanis, Hadzidaki, & Stavrou, 2003). It is difficult to overcome these problems using 

traditional didactic teaching methods. It seems unlikely that more and better content, taught 

in the old didactic way will improve the situation (Stofflett & Stoddart, 1994).  

Despite limitations arising from the nature of learning, a constructivist pedagogy that 

employs active and cooperative forms of learning, and aims at conceptual conflict and 

conceptual change, holds the promise of being more effective in diminishing or indeed 

overcoming misunderstandings and misconceptions. To this end, special techniques, such as 

integration (which attempts to link concepts, for example AOs, hybrid orbitals, and MOs) 

and differentiation (which aims at identifying differences between related concepts, for 

example between hydrogenlike and non-hydrogenlike orbitals or between AOs and MOs) 

(Hewson & Hewson, 1984) can be effective. 

Last but not least, let us acknowledge that any improved instruction that takes into 

account the findings from this and similar studies, does not imply that the only reasonable 

outcome from instruction should be no lingering misconceptions (zero error tolerance). 

Needless to add our best current theories are only approximately true. “Orbital concepts are 

merely aspects of the best presently available model; they are not ‘real’ in the same sense that 
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experimental observations are” (Simons, 1991, p. 132). AOs, MOs, and related concepts 

derive from Schrödinger’s wave mechanics, which is itself an approximation to nature (a 

model). Suffice it to add that Dirac’s relativistic quantum mechanics (which takes the theory 

of relativity into account), is a better model that explains experimental observations which the 

Schrödinger model does not - such as the correct prediction of the entire hydrogen-atom 

spectrum, the electron spin and the Pauli principle, and various chemical properties 

(McKelvey 1983). It is noteworthy that the AOs and related concepts (quantum numbers, 

orbital shapes, physical meaning of the electron spin) which arise from the treatment of the 

hydrogen atom with relativistic quantum mechanics neither coincide nor are in a one-to-one 

correspondence with the ‘picture’ that emerges from Schrödinger’s wave mechanics 

(McKelvey, 1983).  
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Appendix 1. The Questions of the Written Questionnaire that Are Not Dealt With in this 

Study  

 

A1. Arrange sub-shells 3d, 2p, 5s, 4p, 5f, 3p, 4d, 4s, and 2s in order of ascending energy for 

any atom, except hydrogen. [Acceptable answers: 74.4%; no answer: 1.6%; unacceptable 

answers: 24.0% ] 

A2. Find the electron configuration for the chromium atom (Z = 24).  How many unpaired 

electrons exist in the atom of this element? [Acceptable answers: 56.8%; acceptable answers 

to one part only: 27.2%; no answer: 1.6%; unacceptable answers: 14.4% ]  

A3. State the Heisenberg uncertainty principle. [Acceptable answers: 61.6%; no answer: 

18.4%; unacceptable answers:  20.0%]  

A4. What is the physical meaning of each of the four quantum numbers? [Acceptable 

answers: 59.2%; no answer: 4.0%; unacceptable answers: 36.8.0%]  

A5. The Schrödinger equation can be solved exactly for the hydrogen atom, but only 

approximately for all other atoms. Do you know for what reason the equation cannot be 

solved in the case of the other atoms? [Acceptable answers: 35.2%; no answer: 41.6%; 

unacceptable answers: 23.2%]  

A6. In one school chemistry text for twelfth grade it is stated that “The exact size of the 

orbitals is impossible to show, since we have said the probability of finding the electron does 

not become zero even at long distances from the nucleus.” How is this shown or should be 

shown in the shapes of the orbitals? [Acceptable answers: 64.8%; no answer: 18.4%; 

unacceptable answers: 16.8%]  

C1. The order you wrote in answering question A1 is different in the case of the hydrogen 

atom. Which is the order now? Do you know for what reason hydrogen is differentiated? 

[Acceptable answers: 9.6%; no answer: 45.6%; partially acceptable answers: 4.0%; 
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unacceptable answers: 40.8%]   

C2. Is the ground-state configuration 2s
2
 2px

1
 2 py

1
 for the valence shell of the carbon atom in 

agreement with the fact that carbon forms four covalent bonds, e.g. in CH4, as well as with 

the tetrahedral arrangement of these bonds, with all angles HČH equal to 109
o
? Explain. 

[Acceptable answers: 22.4%; no answer: 46.4%; unacceptable answers: 31.2%] 

C5.  Supposing that one could take a photo of the electron as it moves around the nucleus, 

how could you construct the picture of the electron cloud? (HINT 1: The picture of the cloud 

is stable - still. –HINT 2: A camera takes still pictures. HINT 3: Photos can be either prints or 

transparencies.)  

[Acceptable answers (“I would take many photos of the electron printed on transparent 

paper, and then I would superimpose all these photos.”): 12.8%; no answer: 28.0%; 

irrelevant answers (electron cloud drawn): 41.6%; irrelevant answers (Bohr or hybrid model 

drawn): 13.6; unacceptable answers: 4.0%]   
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Appendix 2. The 23 Students of our Study and their Performance in the Written 

Questionnaire  

 

The following table lists the 23 students who participated in the interviews and their percent 

performance in the algorithmic/recall of knowledge and in the conceptual questions. Two 

percent marks are given for each student: the first mark is for the average for the five 

algorithmic/knowledge recall questions; and the second mark is the average for the nine 

conceptual questions.   

 

Group Interviews 

CHE group Antonis 100 55.6 BIO2 group  Stathis 60 77.8 

 Manolis 100 44.4  Alexia 100 44.4 

 Christina 80 22.2  Danae 60 55.6 

MAT group Tania 80 44.4  Stavros 100 11.1 

 Lampis 70 33.3 BIO3 group  Isidora 80 55.6 

 Natalia 40 50.0  Ioanna 60 66.7 

BIO1 group  Leonidas 90 66.7  Dimitra 80 44.4 

 Eleni 100 44.4 Individual Interviews 

 Themis 100 33.3 CHE  Pavlos 90 22.2 

 Irene 70 50.0  Marios 60 33.3 

    MAT Lazaros  80 22.2 

     Haris 80 22.2 

    BIO Martha 100 33.3 

     Petros 40 44.4 
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                (a)                                                  (b) 

         
         (c)                                                                                   (d) 

 

 

Figure 1. Indicative drawings/answers to question C0 (“Make a drawing depicting the 

hydrogen atom as you imagine it is in reality”). Drawings (a) and (b) are according to 

the planetary model. Drawings (c) and (d) show the electron cloud, with (c) showing 

also the elecron localized. The comment “probable positions of the electron” is added 

in (d)  
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Figure 2. Consecutive representations of the hydrogen atom by Constantinia (BIO1 

group) during the interview. (The first drawing was her answer in the written 

questionnaire.) 
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(a) (b) 

 

 

 

 

 
 

                         (c)                                                                                            (d)  

 

 

Figure 3. Indicative drawings/answers to question C5 (“Supposing one could take a 

photo of the electron … How could you construct the picture of the electron cloud?”). 

[The comment “electron cloud” is added in (d)] 
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(a) (b) 

 

Figure 4. The two pictures of Question 6, showing the electron clouds in the 1s and a 

2p orbital respectively [taken from the students’ textbook (Mavromoustakos et al., 

1999, pp. 7 & 8)].  
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Table 1: Change in student ideas for the uncertainty principle  

 

Option (a) Option (b) χ
2
 

Before After Before After  

9 11 8 6 0.486* 

* χ0.95
2 

= 3.84 (d.f. = 1) 
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Table 2: Change in student ideas for the nature of orbitals 

Deterministic 

interpretation 

Intermediate 

interpretation 

Probabilistic 

interpretation 
χ

2
 

Before After Before  Before After  

7 0 4 2 6 15 11.52* 

* χ0.995
2 

= 10.6 (d.f. = 2) 
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Table 3: Change in student ideas for the atomic model 

Planetary  

model 

Intermediate 

model 

Quantum mechanical 

model 
χ

2
 

Before After Before After Before After  

12 0 0 6 5 11 20.25* 

* χ0.995
2 

= 10.6 (d.f. = 2) 
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