SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(833.3Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-98459-3

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Examining bias perpetuation in academic search engines: An algorithm audit of Google and Semantic Scholar

[journal article]

Kacperski, Celina
Bielig, Mona
Makhortykh, Mykola
Ulloa, Roberto

Abstract

Researchers rely on academic Web search engines to find scientific sources, but search engine mechanisms may selectively present content that aligns with biases embedded in queries. This study examines whether confirmation biased queries prompted into Google Scholar and Semantic Scholar will yield r... view more

Researchers rely on academic Web search engines to find scientific sources, but search engine mechanisms may selectively present content that aligns with biases embedded in queries. This study examines whether confirmation biased queries prompted into Google Scholar and Semantic Scholar will yield results aligned with a query’s bias. Six queries (topics across health and technology domains such as ‘vaccines’, ‘Internet use’) were analyzed for disparities in search results. We confirm that biased queries (targeting ‘benefits’ or ‘risks’) affect search results in line with bias, with technology-related queries displaying more significant disparities. Overall, Semantic Scholar exhibited fewer disparities than Google Scholar. Topics rated as more polarizing did not consistently show more disparate results. Academic search results that perpetuate confirmation bias have strong implications for both researchers and citizens searching for evidence. More research is needed to explore how scientific inquiry and academic search engines interact.... view less

Keywords
science; investigation; scientific activity; source of information; search engine; information capture; research results; technology; perception; method

Classification
Sociology of Science, Sociology of Technology, Research on Science and Technology

Free Keywords
Confirmation Bias; akademische Suchmaschine; Suchanfragen

Document language
English

Publication Year
2024

Page/Pages
p. 1-20

Journal
First Monday, 29 (2024) 11

DOI
https://doi.org/10.5210/fm.v29i11.13730

ISSN
1396-0466

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial-ShareAlike 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.